
Süssmuth, Bernd

Working Paper

Endogenously-timed Herding and the Synchronization
of Investment Cycles

Munich Discussion Paper, No. 2000-1

Provided in Cooperation with:
University of Munich, Department of Economics

Suggested Citation: Süssmuth, Bernd (2000) : Endogenously-timed Herding and the Synchronization
of Investment Cycles, Munich Discussion Paper, No. 2000-1, Ludwig-Maximilians-Universität
München, Volkswirtschaftliche Fakultät, München,
https://doi.org/10.5282/ubm/epub.24

This Version is available at:
https://hdl.handle.net/10419/104074

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.5282/ubm/epub.24%0A
https://hdl.handle.net/10419/104074
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Bernd Süssmuth:

Endogenously-Timed Herding And The
Synchronization Of Investment Cycles

Munich Discussion Paper No. 2000-1

Department of Economics
University of Munich

Volkswirtschaftliche Fakultät
Ludwig-Maximilians-Universität München

Online at http://epub.ub.uni-muenchen.de/24/

http://www.vwl.uni-muenchen.de/


Endogenously-timed Herding and the Synchronization of Investment Cycles

Bernd SÄussmuth¤

Department of Economics, University of Munich

May 2000

Abstract. This paper combines the recent game theoretic approach of
endogenous timing of entry to herding models with a macroeconomic model of
investment cycles. The integrated description embodies the qualitative results
of the myopic herding model in a medium run investment objective of smooth-
ing the capital stock adjustment process. It features a completely disaggregated
structure and bears the potential to synchronize individual cyclic investing be-
haviors. This synchronization via nonlinear feedback from the aggregate ac-
tivity can serve as an explanation of the inexistent cancelling of heterogeneous
sectoral quasi-cycles. The model o®ers an explanatory base for the constitu-
tion of the observed strong cyclicality of the aggregate investment series by a
multitude of di®erent periodicities and phases on the individual level. Finally,
based on recent ¯ndings of the herding literature, the stabilization potential of
third parties' information revelation is conjectured.
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1. Introduction

Since the introduction of the idea by Forrester (1977) several authors1 have suggested
a nonlinear synchronization mechanism in form of `mode-locking' as an explanatory
baseline concept for cyclic co-movements between di®erent ¯rms, industrial sectors,
economic regions, national economies, or various economic aggregates, see Hillinger
and Weser (1988), Mosekilde et al. (1992, 1993), Larsen et al. (1993), Kampmann et
al. (1994), Sterman and Mosekilde (1994), Haxholdt et al. (1995), Krugman (1996),
Brenner, Weidlich and Witt (1998), Focardi and Marchesi (1998) and Selover and
Jensen (1999). All of these contributions have in common to outline the ability of
the mode-locking approach to synchronize economic cyclicalities in a deterministic or
combined deterministic-stochastic environment, but widely lack a micro-theoretical
argumentation behind their models. Therefore a central aim of this paper is to demon-
strate that investment delay as a result of myopic herding phenomena, as described
in the literature on social learning and investment under uncertainty, is able to serve
as the micro-theoretical underpinning of a macroeconomic model of investment cy-
cles' synchronization. The model is built up by combining the short-term investment
objective of triggering investment decisions by herding with a medium run objective
of smoothing the capital adjustment process. The crude principle of the triggering
mechanism consists in the balancing of the option value of waiting and thereby gain-
ing information by observing others' investment activities with the costs of this delay.
Herding models with endogenous timing are not only concerned with this triggering
of a project, but also with its timing. In other words the myopic triggering problem
operates in two dimensions: whether to invest in a project and if so when to invest.
This model of timing the triggering of an investment project is used to endogenize
the rate of capital adjustment of the medium run investment decision, as described
by a second order accelerator equation. The derived model features a completely dis-
aggregated structure. It holds the potential to synchronize individual cyclic investing
behaviors via nonlinear feedback from the aggregate activity. This synchronization
mechanism can serve as an explanation of the inexistence of the expected cancelling
of di®erent individual or sectoral cyclicalities in the °uctuating aggregate investment
series that we observe. Furthermore, it is argued that, despite a synchronization
through aggregate or key sectoral shocks, less phase locking or synchronization of
constituent quasi-cycles and thereby a stabilization of the aggregate behavior can be
achieved via third parties' surprise information revelation about the pro¯tability of
major investment opportunities.

1Remarkably many of them with an `econo-physics' background.
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2. Empirical Indications of Synchronization and Herding

As mentioned above research areas where synchronization of economic cycles is sug-
gested in the literature or might play a role are a) regional or national business cy-
cles, cf. Krugman (1996), Brenner, Weidlich and Witt (1998) or Selover and Jensen
(1999), b) di®erent cyclic phenomena like construction cycles and economic long
waves, cf. the numerous publications of the research group around John Sterman
and Erik Mosekilde, or c) industrial investment cycles on which we will focus in the
present paper. Recently, a ¯rst attempt to investigate empirically the mode-locking
hypothesis in the context of international business cycle co-movements is made in
the contribution by Selover and Jensen (1999). They analyze the implication of the
mode-lock concept that nonlinear entrainment of the deterministic parts of the ob-
served °uctuations would lead to a setting into phase of the constituting cycles. The
crucial point is that this drawing together of di®erent phases does according to a
phase-lock model not happen instantaneously, as would be the case for a common
shock scenario, but rather develop over time until it would reach its full impact.
An adequate technique to check this phenomenon is multivariate spectral analysis.
Table 1a displays the ¯ndings of Selover and Jensen (1999) for monthly industrial
production index series of seven major industrial countries. Their strategy consisted
in dividing the sample into three sub-intervals, namely an early period (1958:01 -
1973:09), followed by the turbulent oil price shocks period (1973:10 - 1979:12), and
¯nally a late period (1980:01 - 1995:12). In the focus of their investigations are the
early and late period while the period including the two major oil shocks and the
change in exchange rate regimes in 1973 is left out. The spectral analytic ¯ndings
displayed in Table 1a essentially report two main results: Firstly there seems to be a
tendency toward a similar periodicity of the national cycles, i.e. there appears to be
some synchronization, secondly this synchronization appears to have increased after
the turbulent years in the mid and late early seventies. Selover and Jensen (1999)
note: \This synchronization, with its convergence in frequency and in phase angles
is evidence in support of the mode-locking hypothesis." Table 1b reports features
of the distribution of estimates of the phase shift of 450 US SIC2 4-digit industrial
investment series relative to the aggregate investment series. The phase lead or lag is
estimated at the period length corresponding to the maximum of coherency between
the respective disaggregated and the aggregate periodicity. Again the sample is di-
vided into early and late period, and a second narrowed de¯nition of the late period
is considered to check the robustness of results. The results show that the modal
value of estimated phase shifts, covered by around one ¯fth of all sectors, more than
halves from early to late period and tends to take on a zero-value, made up by 40%

2Standard Industrial Classi¯cation
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(in de¯nition I of late period) up to more than 50% (in de¯nition II of late period) of
all sectoral series. The means of the absolute values3 of estimated phase shifts point
in the same direction. Altogether, these ¯ndings give grounds for the phase-locking
hypothesis in the context of sectoral investment cycles, too.

Table 1a. Log-di®erence-¯ltered industrial production indexes

Country Phase (radians) Period length (months)

Early period
1958:01 - 1973:09, n=189
Canada
France
Germany
Japan
Netherlands
UK
US

+ 3.12
¡ 1.51
+ 1.44
+ 2.13
+ 1.68
¡ 1.87
¡ 3.01

31.5
31.5
47.0
63.0
47.0
37.8
31.5

Late period
1980:01 - 1995:12, n=192
Canada
France
Germany
Japan
Netherlands
UK
US

¡ 1.46
¡ 1.40
¡ 0.57
¡ 0.98
¡ 0.65
¡ 2.26
¡ 1.54

64.0
48.0
48.0
48.0
48.0
48.0
48.0

Source: Selover and Jensen (1999)

3Taking absolute values ensures that phase leads and lags do not cancel out in the course of the
computation of mean values.
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Table 1b. Baxter/King-¯ltered SIC 4-digit investment series

Distribution of phase shift at maximum of coherency (degrees)

mode of phase shifts ¹ (absolute phase shifts)

Early period
1962:1 - 1973:4, n=48

¡ 1.5 (22%)* 4.45

Late period, def. I
1980:1 - 1990:1, n=41

¡ 0.4 (40%)* 3.97

Late period, def. II
1983:1 - 1990:1, n=29

+ 0.3 (53%)* 2.89

* values in brackets denote relative frequencies of sectors for which the modal value was estimated.

Data: NBER Manufacturing Productivity Database

As in the case of the phase-lock phenomenon, papers empirically investigating
herding behaviors as predicted by theoretical models, i.e. trying to directly test
implications of herding models besides empirically con¯rming clustering, are still an
exception, see e.g. Graham (1999).4

3. The Model

Let us consider i = 1; :::; N investing industries or ¯rms, each (su±ciently homoge-
neous to be) represented by a single decision maker i. Our model has two dimensions:
a medium run investment objective and a myopic one. We will start our outline with
the medium and long run objective of the decision makers, before going over to de-
scribe the \moving in the margin", i.e., the myopic behavior of timing the triggering
of a certain investment project. The results of the myopic model will have direct
implications for the previously outlined medium run model and will be implemented
in an integrated model where the rate of capital adjustment is endogenized, i.e., for
some of the individuals the adjustment coe±cients will depend on the overall aggre-
gate behavior.

4In contrast to the class of herding models that will be considered in the present paper, Graham
(1999) empirically investigates herding models without an endogenously-timing structure.
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3.1. The Medium-Term Investment Objective. For the moment, the long
run components of the model are assumed to be exogenously given and left out of the
explanation. This holds true for the desired ¯xed capital stock K¤

i of a ¯rm as well as
for its time derivative. They are regarded as products of long-term planning and as-
sumed to be exogenously given. Therefore the analysis is limited to the minimization
of costs due to capital de¯cit and adjustment processes arising in the medium-run
investment behavior. All costs are formulated in terms of deviations ki of the actual
capital Ki from its desired value K

¤
i ; i.e., ki = K

¤
i ¡Ki, k

0
i =

d
dt
(K¤

i ¡Ki), etc. These

costs may be expressed as a sum of contributions each quadratic in ki, k
0
i = ii and

k
00
i = i

0
i, where ii = k

0
i denotes the individual investment de¯cit. The microeconomic

underpinning of the medium run model of this section is an intertemporal optimiza-
tion calculus in the presence of these three quadratic adjustment cost components
outlined in more detail in the following three assumptions:

Assumption 1. Costs arise due to the individual capital de¯cit or excess of capital:
ki > 0 expresses excess capital of an industry leading to in°exibility and enhanced
depreciation causing costs.
ki < 0 stands for an underequipment with capital, i.e., a capital de¯cit of a ¯rm.
This leads to missing production possibilities and excessive capacity utilization.

Assumption 2. Costs arise due to changes of the individual capital stock:
k
0
i > 0 and k

0
i < 0 mark situations where imperfect substitutability with other pro-

duction factors leads to costs or, in the case of close to perfect substitutability, leads
to a sube±cient use of the other input factors and thereby cause costs.

Assumption 3. Costs arise due to changes of the individual investment strategy:
k
00
i = i

0
i > 0 and k

00
i = i

0
i < 0 re°ect changes in the medium run investment strategy of

a ¯rm. Changes of contractual commitments and supplier's arrangements are cost-
bearing consequences of this behavior.

Taking all the components expressed in these assumptions into account we can
formulate the following cost function for investor i:5

Ci
³
ki; k

0
i; k

00
i

´
= ®ik

2
i + ¯i

³
k
0
i

´2
+ °i

³
k
00
i

´2
. (1)

Every ¯rm determines the time paths of her production capital in such a way that
the present value of all potential medium-term cost components, i.e. (1) discounted
with an appropriate discount rate, is minimized. Since we are concerned with a

5The derivation and development of the model widely follows Hillinger, Reiter and Weser (1992).
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medium-term objective focusing, e.g., on labor force's training costs (assumption
2) or institutional costs due to changing suppliers (assumption 3), etc., we are con-
fronted with a situation of imperfect foresight. Hence, the relevant discount factor for
an intertemporal optimization calculus is the medium-term discount rate ½m, where
naturally ½m > ½l, i.e., the long-term discount rate ½l (as re°ected in the market
discount rate) usually takes on lower values than ½m:

min
ki(t)

Z 1

t0

·
®ik

2
i + ¯i

³
k
0
i

´2
+ °i

³
k
00
i

´2¸
e½

m(t0¡t)dt. (2)

Given the initial values for the individual capital and investment components Ki(t0)
and Ii(t0), the relevant transversality conditions are:

lim
t!1

iie
½m(t0¡t) = k

0
ie
½m(t0¡t) = 0,

lim
t!1

i
0
ie
½m(t0¡t) = k

00
i e
½m(t0¡t) = 0,

lim
t!1

i
00
i e
½m(t0¡t) = k

000
i e

½m(t0¡t) = 0.

(3)

These transversality conditions ensure that investment and its time derivatives do not
take place faster than ¯rms discount the future medium-term time horizon. From (2)
and (3), we are able to derive the following Euler equation for ki(t) by means of
standard techniques of variational analysis:

®iki + ¯i

Ã
½m ¡ d

dt

!
k
0
i + °i

Ã
½m ¡ d

dt

!2
k
00
i = 0. (4)

We ¯nd the characteristic polynomial of this fourth order di®erential equation in ki
to be:

P (x) = ®i + ¯i (½
m ¡ x)x+ °i (½m ¡ x)2 x2. (5)

P (x) is obviously quadratic in y = (½m ¡ x)x, so that applying the quadratic formula,
we get the following two solutions for (5) in terms of y:

y1;2 =
1

2°i

µ
¡¯i §

q
¯2i ¡ 4®i°i

¶
. (6)

Solving y = (½m ¡ x) x = ½mx ¡ x2 for x and substituting (6) in, leads us to the
following potential solutions of (5) that ful¯ll the transversality conditions:

x1;2 =
½m

2
¡

vuut(½m)
2

4
+
1

2°i

µ
¯i §

q
¯2i ¡ 4®i°i

¶
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=
½m

2

2
41¡

vuut1 +
4

2°i (½m)
2

µ
¯i §

q
¯2i ¡ 4®i°i

¶3
5 (7)

=
½m

2

2
41¡

vuut1 +
2

°i (½m)
2

µ
¯i §

q
¯2i ¡ 4®i°i

¶3
5

Obviously, the solutions are oscillatory for ¯2i < 4®i°i, i.e., su±ciently large values of
the cost parameters associated with discrepancies in the individual capital stock and
with changes in the investment strategy. Approximately, we can simplify equation
(7) as:6

x1;2 ¼ ½m

2

"
1¡ 1 + 1

°i (½m)
2

µ
¯i §

q
¯2i ¡ 4®i°i

¶#

¼ 1

2°i½m

µ
¯i §

q
¯2i ¡ 4®i°i

¶
. (8)

The values of x1;2 given by (8) are the roots of the following polynomial:

®i + ¯i½
mx+ °i (½

m)2 x2, (9)

which can be regarded as the characteristic polynomial of the di®erential equation

®iki + ¯i½
mk

0
i + °i (½

m)2 k
00
i = 0. (10)

Finally, substitution of the relationship ki = K
¤
i ¡Ki leads by setting (K

¤
i )
0 = (K¤

i )
00 =

0, according to our assumption about long run variables, to:

I
0
i = K

00
i =

®i

°i (½m)
2 (K

¤
i ¡Ki)¡

¯i
°i½m

K
0
i = ai (K

¤
i ¡Ki)¡ biK

0
i , (11)

where ai =
®i

°i (½m)
2 and bi =

¯i
°i½m

:

In conclusion, the second order accelerator equation (11) re°ects the inertia of the
investment process due to institutional medium-term frictions. It expresses the ac-
celeration K

00
i of the individual capital stock Ki or, in other words, the rate of change

of individual investment behavior I
0
i in the medium run. Accordingly, parameter ai

is mainly responsible for the rate at which individual investment is adjusted. While
parameter ai is mainly responsible for the period length of the cyclic series described
by equation (11), parameter bi determines the rate of damping.

6Actually, we apply
p

1 + x ¼ 1 + x
2 assuming su±ciently small values of x.
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3.2. The Short-Term Investment Behavior. The early and mid 1990s have
seen a growing interest of the economic community in herding phenomena. Pioneered
by the works of Scharfstein and Stein (1990), Banerjee (1992) and Bikhchandani,
Hirshleifer and Welch (1992), where herd externalities depended on the ordering or
queuing of players, the latest contributions focus on endogenous timing and informa-
tion revelation in herding models of investment, see e.g. Chamley and Gale (1994),
Gul and Lundholm (1995) or Sgroi (1999). A survey of these models is given in Gale
(1996a). This recent body of literature leads to the suggestion that the rate ai at
which an individual changes investment behavior for strategic reasons is not constant,
at least myopically. Informational cascades can cause longer lasting strategic delay
of investments able to a®ect the medium-term behavior and eventually also lead to
aggregate °uctuations. The few existing models in this vein that build the bridge to
aggregate cycles are the ones by Gale (1996b), Gonz¶alez (1997) and Chalkley and Lee
(1998). These authors focus on coordination failures among agents either based on
production or information externalities leading to the generation of genuine business
cycles. Besides they all put a lot of emphasis on the explanation of potential asym-
metry in business cycle time series caused by strategic delay. Their models relate
to some extent to the approach that is adopted here, but none of them explicitly
applies it to explain the synchronization of di®erent individual cycles underlying the
aggregate investment series. In general, the crucial reasoning behind endogenously-
timed herding is that the short run timing of an individual investment decision is
not independent of the overall investment behavior of the other agents in the respec-
tive sector or economy. This channel of aggregate in°uence arises due to uncertainty
about the pro¯tability of future investment projects: The individual strategy consists
in weighing up the option value of waiting and thereby gaining information by ob-
serving others' actions with the costs of this delay. The following subsection outlines
the myopic investment behavior on the basis of a basic herding scenario. The outline
is in its main parts adopted from Gale (1996a) and Sgroi (1999). In the course of this
section, the qualitative main results and implications for the medium-term investing
activity are summarized in the form of propositions7 to be later on embodied in a
game-like integrated model.

The Basic Herding Model of Investment. Initially we are considering N =
2 agents, although all results can and will be generalized to the multi-agent case.
These agents face a myopic two-sided investment decision problem: whether and if so
when to run a certain investment project. This project has a speci¯c value equaling
the state of the world, w, which in the simple base case is assumed ¯xed at the
beginning of time. Let us index the myopic time horizon by t 2 T++, e.g. days,

7Formal proofs of these propositions are given in the Appendix of the paper.
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weeks or months, i.e. for reasons of simpli¯cation, we assume to \move discretely in
the margin" of a continuous time world. Gul and Lundholm (1995) have shown that
in the more complex framework of continuous time, the results of the herding model
of investment remain qualitatively the same. Put it di®erently the reason for gradual
investment, i.e. strategicaly delayed investment and disinvestment, in this kind of
models is due to the informational externality and is not an artifact of a (quasi-
)discrete-time framework. This was already noted and shown in Caplin and Leahy
(1993). Agents do not directly observe w, instead they receive a signal, ¹, at t = 1. In
the following, we use superscript to index agents and subscript to index time, so ¹ti is
the signal of agent i 2 f1; 2g at time t. We will use i and j to denote our two agents.
Assume for the sake of simplicity that the signals ¹i and ¹j are independent and
identically drawn from a uniform distribution with range [¡1; 1], so ¹i » U [¡1; 1]
for i 2 f1; 2g. These signals do not change over time, and the state of the world w is
set equal to the sum of all signals, w = ¹i + ¹j. Actions are de¯ned as: xi = 1 ()
\invest"; and xi = 0 () \do not invest". An agent can observe his own signal, but
not the signal of the other agent. In each period actions are made simultaneously, so
the two agents cannot observe each others' actions. However, in period 2, the agent
will know the action that the other agent performed in period 1, and through the
observed choice of activity some information about the nature of the other agent's
signal may be revealed. We abstract from pre-play communication that would give
the agents a possibility to meet and reveal their signals. The ¯nal ingredient of our
basic setting are payo®s, ¼it, where t 2 T++ and i 2 f1; 2g, discounted strictly by a
short-term rate ½s8

¼it =

(
(½s)t¡1w if xi = 1

0 if xi = 0
. (12)

To solve the short-term decision problem, we consider the problem faced by agent i:
whether, and if so, when to invest. Myopically, we could consider the following simple
rules: (i) invest (i.e., xi = 1) if and only if E [¼it] > 0; (iia) if an investment is to be
made, then make it at t = 1 if and only if E [¼i1] > E [¼

i
2], otherwise wait. In these

rules the pro¯t function explicitly includes discounting the short run time horizon.
This might seem a sensible rule to adopt, but while we are capturing a notion of the
cost of delay since we have an implicit ½s < 1 in the second period payo®, we are
not capturing the bene¯t of delay, namely the option value of waiting. This option
value comes about because of the possibility that for some reason agent i may have
invested at time 1 even though doing so was foolish given the information available to
him at time 2. We will consider the cost and bene¯t of delay in turn, but ¯rst we will
de¯ne a symmetric signal value ¹ such that ¹i >¹> 0 () xi = 1. We have not yet

8By the same argumentation as above, we have now ½s > ½m > ½l.
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said anything about what to do at t = 2, but we have already de¯ned an alternative
decision rule for t = 1: (iib) invest at t = 1 (i.e. set xi1 = 1) if and only if ¹

i >¹> 0.

Proposition 1. There is some symmetric ¹ such that it is optimal for agent i to
invest at time t = 1 if and only if ¹i >¹> 0.

Proof. See Appendix.

Proposition 2. (a) The game will end at t = 2, i.e. if agent i did not invest at time
t = 1 he will either invest when t = 2 or never invest. (b) Agent i will only invest at
t = 2 if agent j invested at t = 1.

Proof. See Appendix.

We have now speci¯ed the basic ingredients of the investment herding model. The
next subsection will brie°y summarize some modi¯cations and extensions undertaken
in the literature on herding with endogenous timing. However, before going on it is
worth noting a number of interesting results which have come about so far. From
now on we will refer to the value ¹ established above as ¹ (½s) since it is a function
of ½s only. The features that characterize the above model as a herding model are:
information is not fully revealed, there is no direct mapping from signal to action
which can be inverted to reveal agents' signals; errors are made and private informa-
tion may be ignored, in particular even if ¹i > 0 for i = 1; 2 neither of the players will
invest unless ¹i > ¹ (½s) for at least some player i. There will be short-term delay in
this model. This scenario clearly describes what Bikhchandi, Hirshleifer and Welch
(1992) entitled an informational cascade: An individual, having observed the actions
of those ahead of him in a sequence, who follows the behavior of the preceding indi-
vidual, without regard of his own information, is said to be in a cascade. It embodies
also a herd externality in the de¯nition of Banerjee (1992); accordingly, a herd exter-
nality is the loss of information contained in later agents' private signals that comes
about when individuals in a sequence ignore their own private information and join
a herd. This has also been shown since in this basic setting the game will e®ectively
end at t = 2, beyond this point agents have either invested in the project or will
never do so. The addition of further agents would allow the game to continue beyond
two periods of interest, but at least one agent is needed to invest in a myopic time
interval or investment will stop, as in the two agents case. This is formally shown
to be true in the statement and proof of the following proposition 3 which extends
proposition 2 to the multi-agent case.
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Proposition 3. Investment at t = 2 takes place if some or at least one agent invested
at t = 1. A single period of no investment will end the prospect of any further
investment in a model with N 2 N++ agents: A Lemmings-E®ect is triggered.

Proof. See Appendix.

A summary of the propositions derived in this section is given in Table 2. It dis-
plays for the myopic point in time t = 1 all the potential constellations of aggregate
and individual investments, where > 0 denotes investment and = 0 no investment.
Furthermore it re°ects the reaction at t = 2 and t = 3 of the individual investor
for every constellation at t = 1. It can be noted that the ¯rst column, i.e. the two
parallel actions

P
Ij > 0 (aggregate investment)/ Ii > 0 (individual investment)9

and
P
Ij = 0 (no aggregate investment)/ Ii > 0 (individual investment) are clearly

situations where the individual i does not observe the aggregate behavior - otherwise
he would have waited up to t = 2. In the following, we will call such agents Type
II Agents. The second part of the t = 1-column of Table 2 represents Type I Agents
who only observe at this point in time. Therefore the ¯rst part of the t = 2-column
contains no actions since type II agent i already invested at t = 1. In the second
part of this column the action depends on the signal transported by the aggregate
behavior at t = 1. Now it should be obvious that in this game only the delay strategy:
t = 1 :

P
Ij = 0 = Ii = 0; t = 2 : Ii = 0; t = 3 : Ii = 0; ... etc., survives the myopic

time space and has a longer reaching impact also on medium-term investment (see
proposition 3 above).

Table 2.

t = 1 (investment opportunity) t = 2 t = 3P
Ij > 0

P
Ij > 0

Ii > 0 Ii = 0

P
Ij = 0

P
Ij = 0

Ii > 0 Ii = 0

¡ ¡
¡ Ii > 0

¡ ¡
¡ Ii = 0

¡ ¡
¡ ¡

¡ ¡
¡ Ii = 0

:::

t = T
¡ ¡
¡ ¡

¡ ¡
¡ Ii = 0

9Note
P

Ij denotes sum over all respectively observed other industries, i.e. the respectively
observed aggregate, where j = 1; :::;N n fig :
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The Information Revelation Extension. Recently, Sgroi (1999) noted that
the numerous contributions on herding and social learning did not consider the pos-
sibility of introducing a stochastic environment and a third party, as e.g. a govern-
mental or commercial research institute, capable of revealing the true state, through
which the value of information due to be revealed at a pre-determined date might be
evaluated. In his paper, Sgroi (1999) undertakes a re-consideration of a \standard
problem" or suggestive idea in modelling investment: \With common value multi-
agent investment under uncertainty it is easy to foresee a failure of investment even
if the true value of the state is strictly positive. This might lead to the suggested
solution that a third party, such as the government, a regulator or even a joint body
established by the agents to gather information, should attempt to evaluate the true
state and correct such an investment breakdown, by revealing positive value invest-
ments to all agents." In contrast, his ¯ndings in the framework of a modi¯ed version
of the above outlined basic herding model point in a di®erent direction: \A far more
damaging point is that in the great majority of cases complete revelation provides
no bene¯ts." In his analysis the only setting that bears a breakdown of the herding
cascade is a third party's surprise revelation of the true state at zero costs for the
agents. We will return to this point when it comes to highlight political implications
and draw conclusions. Another remarkable extension undertaken by Sgroi (1999) is
to let the state of the world w follow a Markow process. He ¯nds that all qualitative
results derived in the preceding paragraphs also hold true under such a setting.

3.3. The Integrated Model. It should be noted that propositions 1, 2 and 3
of the preceding section could be extended to the case of disinvestment, i.e. we can
simply reformulate them including the case of agent i facing a disinvestment deci-
sion. By disinvestment, not disinvestment in the narrow sense of a ¯rm's accounting
but rather decisions like closing a speci¯c production plant, shutting down machin-
ery equipment or ¯ring sta®, i.e. observable disinvesting activities, are meant. This
inclusion is just the other side of the same coin and it should be evident that the
informational herding results derived and outlined in 3.2 hold analogously in an in-
vestment or disinvestment scenario. This extension although quite obvious is crucial
in making our model symmetric in contrast to the ones of Gale (1996b), Gonz¶alez
(1997) and Chalkley and Lee (1998) who challenge the explanation of potential as-
symetry in investment cycles. There is no argument in the derivation of section 3.2
that should prevent the herding results of propositions 1, 2 and 3 from occuring also
in the disinvestment case. Propositions 1, 2 and especially proposition 3 then have a
direct implication on the individual acceleration rate of capital ai in equation (11) of
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section 3.1, in making it a function of the other agents' investment activity:

ai = ai

0
@X

j

Ij

1
A ) I

0
i = f

0
@X

j

Ij

1
A , where i 6= j: (13)

This in°uence could be quite heterogeneous between di®erent ¯rms, industries or
sectors i and j and, as we have argued above, even needs not to hold true at all for
some i (type II agents), depending on short-term characteristics (especially the short-
term discount factor ½s). According to proposition 1 to 3 the functional relationship
(13) applies for all agents i whose short-term characteristics are such that:

¹i <¹ (½s) < 0 =) E
h
¼i1

i
< E

h
¼i2

i
, (14)

where ¼it is the respective payo® in the investment or disinvestment (in terms of
avoided costs of production factors) case for the short-run instance t. Therefore we can
discriminate two types of agents: Firms who, due to their short-term characteristics
as re°ected in the inequality relations (14), tend to be in°uenced by the aggregate
investment behavior, i.e. more precisely their probability to strategically delay and
to get locked into a herding cascade is a priori positive

Pr

2
4I 0i = f

0
@X

j

Ij

1
A

3
5 > 0, (15)

and those who do not. The logic of our synthesized model can best be illustrated
by a game tree-like scheme as given in Figure 1. It consists in ¯ve stages of possible
alternatives and gives a chronological order of the events: Type of agent: in°uenced
by aggregate behavior vs. not in°uenced by aggregate behavior, type of game: in-
vestment vs. disinvestment, observation: aggregate activity vs. aggregate inactivity
or destructivity, timing: follow vs. delay and ¯nally action: smoothing vs. herding.
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Play investment game A Play disinvestment game B

Observe C Observe D Observe D Observe C

Timing E Timing F Timing E Timing G

smoothing herding smoothing herding

Type I Agent Type II Agent

t = 1

No effect No effectDelay No effectDelay

t = 2,3,...

type of game observation timing

A: K¤
i ¡Ki > 0 ! C:

P
jK

0
j =

P
j Ij > 0 ! E:

@I
0
i

@

³P
j
Ij

´ = 0

B: K¤
i ¡Ki < 0 ! D:

P
jK

0
j =

P
j Ij < 0 ! E:

@I
0
i

@

³P
j
Ij

´ = 0

A: K¤
i ¡Ki > 0 ! D:

P
jK

0
j =

P
j Ij < 0 ! F:

@I
0
i

@

³P
j
Ij

´ < 0

B: K¤
i ¡Ki < 0 ! C:

P
jK

0
j =

P
j Ij > 0 ! G:

@I
0
i

@

³P
j
Ij

´ > 0

Figure 1: Order of events
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Consider ¯rst the leftmost branch of the game tree. Here, we face a type I agent's
decision ful¯lling (14) and (15) who is confronted with an individual capital de¯cit
(K¤

i ¡Ki) > 0, i.e. who is about to \play the investment game". On the next stage,
he observes at an arbitrary point in time t = 1 that the other industries j = 1; :::; J of
his sector constituting \the aggregate" invest, i.e. take the opportunity in t = 1 and
make an investment in the project at stake. So does agent (subsector, industry or
¯rm) i and he does it immediately at the myopic point in time t = 1. Therefore there
is no additional e®ect from i's observation of the aggregate behavior. The investor
smoothes his capital stock by running the investment project.10 This is what he would
have done anyway according to the objective of section 3.1 expressed in equation (11)
and therefore

for aggregate activity:
X

j

Ij > 0 ) @I
0
i

@

Ã
P
j
Ij

!

¯̄
¯̄
¯̄
¯̄
¯̄
(K¤

i ¡Ki)>0

= 0:

Next consider a type I agent playing the investment game and observing the
aggregate not investing or disinvesting11 in t = 1: Agent i does not start an investment
project and waits like the other agents j do. A vicious circle or informational cascade
is triggered for t = 2; 3; ::: as suggested in proposition 3 above and indicated by the
backward loop in Figure 1. This strategic delay induced by herding behavior has now
a longer lasting e®ect12 that even impacts medium-term behavior by slowing down
the pace of the medium-term investment °ow:

for aggregate inactivity:
X

j

Ij · 0 ) @I
0
i

@

Ã
P
j
Ij

!

¯̄
¯̄
¯̄
¯̄
¯̄
(K¤

i ¡Ki)>0

< 0:

The argumentation for a ¯rm i playing the disinvestment game would proceed
analogously to the investment decision case. The only and crucial di®erence is the
fact that the consequence of strategic delay of disinvestment decisions implies in turn

10Haltiwanger (1997) and Doms and Dunne (1998) o®er some empirical evidence of the crucial role
and the impact of single plant-level investment projects a®ecting in form of \investment episodes"
the medium-term investment performance of US ¯rms.

11Since we are analyzing net equipment investment we can abstract from the weak inequality case.
12Actually the e®ect lasts until a new upcoming investment opportunity has to be decided upon.
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of course a positive e®ect on actual medium-run capital acceleration or velocity of
investment:

for aggregate inactivity:
X

j

Ij · 0 ) @I
0
i

@

Ã
P
j
Ij

!

¯̄
¯̄
¯̄
¯̄
¯̄
(K¤

i ¡Ki)<0

= 0;

for aggregate activity:
X

j

Ij > 0 ) @I
0
i

@

Ã
P
j
Ij

!

¯̄
¯̄
¯̄
¯̄
¯̄
(K¤

i ¡Ki)<0

> 0:

Now we turn to combine the arguments brought forward in section 3.2 with the
medium-term objective of section 3.1 meeting the argumentation of the last para-
graphs and in Figure 1. We achieve the synthesis by modifying our model of equation
(11) in the following way:

I
0
i = K

00
i = ai

8
<
:1 + Âi ¢ª

2
4(K¤

i ¡Ki)
X

j

Ij

3
5
9
=
; (K

¤
i ¡Ki)¡ biK

0
i , where (16)

ª is de¯ned as a transform function for example of the simple form:

ª [x] =

(
0 for x ¸ 0

¡x for x < 0 and (17)

parameter Âi 2 (0; 1] is assumed to be strictly positive, allowing it being interpreted
as the strength of individual interaction with the aggregate behavior. To see that the
requirements stated in this section so far are met consider ¯rst the case of strategic
delay in the investment case. This case implies (K¤

i ¡Ki) > 0 and
P
j Ij < 0 so that

the product of both expressions will be negative and

@I
0
i

@

Ã
P
j
Ij

!

¯̄
¯̄
¯̄
¯̄
¯̄
(K¤

i ¡Ki)>0

=
@I

0
i

@

"
(K¤

i ¡Ki)
P
j
Ij

# = ¡ai ¢ Âi (K¤
i ¡Ki) < 0:

is achieved. On the contrary according to (16) and (17) a strategic delay in the
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disinvestment case characterized by (K¤
i ¡Ki) < 0 and

P
j Ij > 0 yields:

@I
0
i

@

Ã
P
j
Ij

!

¯̄
¯̄
¯̄
¯̄
¯̄
(K¤

i ¡Ki)<0

=
@I

0
i

@

"
(K¤

i ¡Ki)
P
j
Ij

# = ¡ai ¢ Âi (K¤
i ¡Ki) > 0;

i.e. a positive e®ect on the pace of investment, as we stated above. The integrated
model as represented in reduced form by equations (16) and (17) therefore parallely
captures the qualitative result of the myopic herding model and the medium run in-
vestment objective of smoothing the capital stock adjustment process. Besides it is
a macroeconomic model that bears a complete disaggregative structure.
The Markow process (see the last paragraph of subsection 3.2 above) or in a con-
tinuous time world the Wiener process that the state of the world follows would
ultimately in°uence the evolution of K¤

i over time, depending on the demand of
goods in a certain sector i. This connection to the demand-side of the economy
makes our model essentially di®erent from multi-sector models with an origin in the
supply-sided RBC-tradition, see e.g. the impressive work on sectoral cyclicality by
Horvath (1998a, 1998b). An in some respects similar story underlies the models of
Caplin and Leahy (1993) and Zeira (1994): In their models agents try to reveal in-
formation on the \potential demand" - in our notation a (linear) transform of K¤

i

- by observing other agents' actions. The similarity can be found in the ¯rst and
second part of our model's derivation: The ¯rst part in section 3.1, e.g. , is cogenial
to the argumentation in Zeira (1994): \Since investment is costly, output expands
gradually, as ¯rms try to reduce the expected costs of over-investment"; the second
part, i.e. section 3.2, relates more or less to Caplin and Leahy (1993), where sectors
interact with the aggregate whereby \the process of investment itself helps to reveal
information concerning the pro¯tability of further investment". On the other hand,
the cyclicality in the model presented here is not generated by changes in investors'
information on demand and certain transmission mechanisms of demand shocks. The
informational interplay just in°uences the pace of an endogenously modeled capital
adjustment process.

4. The Synchronization Mechanism

This section brie°y outlines the potential of the model basically described by equa-
tions (16) and (17) to synchronize heterogeneous microeconomic °uctuations resulting
in a robust macroeconomic cyclic pattern of the aggregate investment series. A strong
criticism that multi-sector models or generally speaking business cycle models with
disaggregative structure have been confronted with is the reasoning that \as de¯nition
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of sectors became more disaggregate, aggregate volatility converged to zero at the rate
implied by the law of large numbers," see Horvath (1998a). The reason of why it does
not apply in our model is the synchronization of heterogeneous individual cyclic in-
vestment behavior. This synchronizing is the result of a phenomenon underlying our
model of investment for which Krugman (1996) gives an intuitive description and a
list of synonyma: \Phase locking, otherwise known as mode locking, frequency pulling
or simple synchronization of two oscillators, is one of those phenomena that occur in
wildly di®erent contexts and at a very di®erent scale." This list of synonyma could
be extended by the expressions: phase coordination, nonlinear or periodic entrain-
ment, resonant stimulation or feedback e®ects of interacting oscillations that are also
frequently used to describe the same phenomenon. In the context of international
business cycles' interplay and synchronization Krugman (1996) suggested it as an
adequate track of explanation to follow. Other authors like Mosekilde et al. (1992),
Larsen et al. (1993) and Sterman and Mosekilde (1994)13 applied it in a simple model
of the interplay between medium-term and long-term economic cycles. In the context
of inventories phase locking leading to resonant stimulation and self-organization is
analyzed in Focardi and Marchesi (1998). A model the most closely related to the
one suggested here, though not based on myopic herding behavior but rather on ad
hoc plausibility, was already sketched in a quite brief manner by Hillinger and Weser
(1988) and simulated on the basis of empirical data by SÄussmuth (1998) one decade
later.
But how does this synchronization actually come about in our model? Where do

we ¯nd the interaction of oscillators leading to resonant stimulation? To illustrate
this, let us reconsider equation (16) above. It is an equation of the so called Hill's
class of equations, since it assigns the second temporal derivative of a variable K

00
i

to a function including a temporally variable coe±cient ai [Ki (t) ; Ij (t)] ) ai (t),
see Arnol'd (1983). Consider next the case of quasi-cyclic investing behavior on
the sectoral or individual level, such that Ii idealistically °uctuates according to a
sinusoidal function depending on microeconomic characteristics as outlined in section
3.1 and contained in ai, e.g. cos (ait). For a su±ciently strong prominence of this
cyclic component in the individual investment activity, i.e. for a relatively small
damping corresponding to relatively small values of bi, we can write

K
00
i = I

0
i = f [(K

¤
i ¡Ki)] ! cos (ait) .

Suppose now that the aggregate investment series is constituted by many such quasi-

13Sterman and Mosekilde (1994) contributed their work to the Business Cycles compilation edited
by Semmler (1994) which can be seen as the counterbalance of the Frontiers of Business Cycle
Research compilation of the RBC research agenda edited by Cooley (1995).
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cycles with roughly equal periodicities, see Figure 2,14 so that the sum of its ¯rst-order
term follows approximately the same cyclical dynamics than I

0
i , i.e. cos (ait). This

implies that

X

j

Ij ¼
Z T

t
I
0
idt =

Z T

t
f [(K¤

i ¡Ki)] dt ! sin (ait) :

To summarize this idealistic reference case, let us assign an inner (in) and outer
(out) frequency to the system described by equation (16):

I
0
i = K

00
i =ai

8
>>>>>>>>>><
>>>>>>>>>>:

1 + Âi ¢ª

2
6664(K

¤
i ¡Ki) ¢| {z }
cos(ait)

X
j
Ij

| {z }
sin(ait)

3
7775

| {z }
1
2
sin(2ait) ) in=2ai

9
>>>>>>>>>>=
>>>>>>>>>>;

(K¤
i ¡Ki)

| {z }
cos(ait) ) out=ai

¡biK
0
i :

Arnol'd (1983) notes: \Equations or systems with constant coe±cients in the
leading term and with coe±cients in the form of trigonometric polynomials in the
lower-order terms have special properties, and can be called equations of Mathieu
type." Obviously, equation (16), in its above idealistic interpretation, represents an
equation of the Mathieu type. The special property of such an equation or system
lies in its potential to resonantly stimulate di®erent phases (parametric resonance
phenomenon) and periodically entrain them, see Arnol'd (1983), Hillinger and Weser
(1988) and Norris (1992). This e®ect depends on what is usually called forcing am-
plitude or depth of modulation, corresponding to the strength of interaction with the
aggregate, in our notation Âi. The general restriction is Âi < 1. Since we de¯ned
Âi as being 2 [0; 1] our model meets this requirement. The other conditio sine qua
non is a certain constellation of outer to inner frequency (in is sometimes also called
perturbation or frequency of driving signal): If many such constellations for di®erent
values of Âi exist, these zones of parametric resonance or periodic entrainment are
usually visualized in so called Arnol'd tongues, see Arnol'd (1983) and Norris (1992)
in general and Mosekilde et al. (1992) or Sterman and Mosekilde (1994) for applied
examples of the Arnol'd tongue concept. For systems of Mathieu type the by far

14As can be seen in Figure 2, about 90% of Standard Industrial Classi¯cation (SIC) 4-digit indus-
trial investment series of the U.S. manufacturing sector, for the period 1958-1994, show periodicities
corresponding to quasi-cycle lengths of 4-7 years. The corresponding empirical result, i.e. the
estimated deterministic cyclic component, of the aggregate series lies at 6.5 years.



Endogenously-timed Herding and the Synchronization of Investment Cycles 21

largest zone of periodic entrainment lies for a depth of modulation Âi 2 [0; 1] at the
constellation of

out

in
¼ 1

2
;

see Arnol'd (1983) or Hillinger and Weser (1988). The approximative equality sign
comes about, since this large area of parametric resonance also captures many con-
stellations of out to in that only roughly equal 0:5. As outlined above the system
characterized by equation (16), idealistically interpreted, exactly matches this condi-
tion, since

out

in
=
ai
2ai

=
1

2
:

The expression \idealistic" now gets a more meaningful interpretation, since for all
de¯ned values of Âi periodic entrainment is guaranteed. It should be noted that even
deviations (as long as they are not major ones) from this ideal case are capable to
produce resonant stimulation and phase locking.

Figure 2: Univariate spectral analytic results - estimated cycle lengths (years)15

Data: 450 SIC4-sectoral investment series, 1987 prices, annual: 1958-1994, detrending: see Baxter and King (1995)

Source: NBER Manufacturing Productivity Database, see Bartelsman and Gray (1996)

15Note: the relatively few rays pointing into the center of the polar diagram mark series that did
not show any periodicity or were distorted due to missing values.
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5. Implications and Conclusion

The model of this paper suggested an interplay of medium- and short-term invest-
ing behavior leading to an endogenous and deterministic synchronization of micro-
economic cyclic investment activities. This synchronization prevents di®erent micro-
phases to cancel out according to the law of large numbers or similar laws as suggested
in Horvath (1998a, 1998b). The model implies that less herding behavior reduces this
inherent synchronizing process, as long as there are no signi¯cant aggregate or partial
aggregate16 shocks that would exogenously set the microeconomic quasi-cycles into
a similar phase constellation. Recent ¯ndings of the literature on endogenous timing
and information revelation in herding models state that an unexpected revelation of
the pro¯tability of major investment opportunities, at zero costs for ¯rms or indus-
tries, by a regulatory institution (government, research institute etc.) would prevent
herding behavior and - in the framework of this paper's model - thereby synchro-
nization from happen. Finally, as a direct political implication, the establishment of
such an institution providing information of the true state with a reasonable degree
of accuracy, could ultimately lead to a stabilization of macroeconomic investment.
This is especially remarkable with regard to the fact that the inherent cyclicality of
the investment series is a widely agreed on empirical fact and seen by many authors
as the major cause of business cycles.

APPENDIX

Proof of Proposition 1:

Consider ¯rst the cost of delay that can be seen intuitively as (1¡ ½s)¹i. This is

simply the expected payo® at the myopic point in time 1 minus the expected payo® at 2.

The di®erence displays in some sense, the cost of delay. Since the unconditional expectation

E [¹j ] = 0 which is true for any signal distribution symmetric around zero, such as the

uniform [¡1; 1]. Consider now the bene¯t in delay: the option value. Here we need to take

into account the possibility of regret, where an investment made at t = 1 actually seems

less sensible when information made available at t = 2 is revealed. Information of this

sort comes about if it is observed that agent j did not invest at t = 1, therefore revealing

that ¹j <¹ which provides some evidence that the state of the world is less likely to merit

investment. This can be avoided if agent i waits and so provides the option value of waiting

which occurs with probability Pr
h
¹j <¹

i
. The option value can therefore be de¯ned as

16As e.g. exogenous shocks in key industries, see Horvath (1998b) for some historical examples.
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the expected loss avoided by agent i by not investing at t = 1 in the event that agent j
does not invest at t = 1:

¡½s Pr
h
¹j <¹

i n
¹i + E

h
¹j j ¹j <¹

io
: (18)

Let us now consider the condition which leaves the marginal decision-maker indi®erent when

deciding to invest at t = 1: indi®erence occurs when the option value exactly o®sets the

delay costs; this is none other than the standard value matching condition for a dynamic

planning problem. This condition implicitly de¯nes the value ¹ using the properties of the

uniform distribution:

(1¡ ½s) ¹ = ¡½s Pr
h
¹j <¹

i n
¹i + E

h
¹j j ¹j <¹

io
(19)

) ¹=
¡ (4¡ 2½s)§

h
(4¡ 2½s)2 + 12 (½s)2

i 1
2

6½s
:

For ½s 2 (0; 1) and ¹2 [¡1; 1] we can rule out one of this two results, eliminating:

¹=
1

6
(½s)¡1

½
¡ (4¡ 2½s)¡

h
(4¡ 2½s)2 + 12 (½s)2

i 1
2

¾
=2 [¡1; 1] for ½s 2 (0; 1) : (20)

This leaves the value of ¹ uniquely given as:

¹=
1

3
+
2

3
(½s)¡1

½h
(½s)2 ¡ ½s + 1

i 1
2 ¡ 1

¾
: (21)

Equation (21) is well de¯ned for ½s 2 (0; 1) and gives a range of values for ¹ of ¹2
³
0; 1

3

i
,

that can be roughly approximated by the linear function ¹= 1
3
½s over the relevant range of

values of ½s. It has been shown that there exists a unique value of ¹ given in equation (21)

such that if ¹i >¹ the cost of delay is strictly o®set by the option value of waiting. We

face the > relation since the cost of delay is rising in ¹i (and falling in ½s) which therefore

de¯nes the optimal decision rule for agent i at t = 1. The assumption of a positive option

value to delay immediately implies that ¹> 0. So far for the su±ciency-part of proposition

1. For ¹i >¹> 0 to be also a necessary condition of investment, consider the value ¹i must

take on if agent i has optimally decided to invest at t = 1. Optimally deciding to invest

implies that the delay cost is strictly o®set by the option value, hence we have:

(1¡ ½s)¹¤ < ¡½s Pr
h
¹j <¹

i n
¹i + E

h
¹j j ¹j < ¹¤

io
; (22)

where ¹¤ implicitly de¯nes the value of ¹ required for this inequality relation to hold. But

this is exactly the value ¹ we de¯ned above. This completes the proof of proposition 1.
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Proof of Proposition 2:

We are given that agent i did not invest at the myopic datum t = 1. If this was so

we know from proposition 1 that ¹i <¹. Investment will bene¯t agent i if E [¼i2] > 0.
Thereby two rationales for delay at t = 1 are possible and will be considered in turn:

(a) If ¹i 2 (¡1; 0] and therefore E [¼i2] < 0, only if new information suggested a rise in

E [¼i2] would it be rational to decide to invest. Agent i must have observed one of two

possible histories: xj1 = 1 or xj1 = 0. Only if he observed xj1 = 1 would he raise his

expectation of ¼i2 as follows:

E
h
¼i2 j xj1 = 1

i
= ¹i + E

h
¹j j ¹j >¹

i
= ¹i +

1+ ¹

2
> ¹i = E

h
¼i1

i
(23)

E
h
¼i2 j xj1 = 0

i
= ¹i + E

h
¹j j ¹j <¹

i
= ¹i ¡ 1¡ ¹

2
< ¹i = E

h
¼i1

i
: (24)

Since this is a symmetric problem the same holds true for agent j if ¹j 2 (¡1; 0], therefore

if agent j did not invest at t = 1 then he too would only raise his expectation if xi1 = 1.
If neither of the two agents invests then no increase in expectations occurs at t = 2 and

so no investment at all is undertaken at t = 2, and hence no rise in expectation occurs

at t = 3, etc. Therefore we have shown that if one agent does not observe investment

from the other he will not invest and the next period after a small additional incremental

change in time will look much like the second one, so the decision not to invest becomes

permanent. If either agent invested the other would increase his expectation, but only once

(since the other player may never move again) and will therefore raise his expectation, i.e.

E
h
¼i2 j xj1 = 1

i
> 0, and invest at t = 2 or despite the increase it will be the case that

E
h
¼i2 j xj1 = 1

i
< 0 because his signal was so low, and no investment will take place at

t = 2 or ever.

(b) If ¹i 2
³
0; ¹

´
and E [¼i2] > 0 then player i was delaying despite expecting positive

pro¯t because of the positive option value to delay. This option value has however been

expended. If xj1 = 1 then he would have been better o® investing at t = 1 and would have

done so had he realized that agent j would de¯nitely invest. He will invest at t = 2 since

there will be no further revelations as agent j has de facto left the game. Now if xj1 = 0
agent i will lower his payo® expectation as will agent j therefore if it was optimal for them

to delay at t = 1 it is optimal to delay at t = 2 a fortiori and so it will be optimal not

to invest at t = 2; 3; 4; ::: etc. We have shown that in all cases, agent i will either invest

at t = 1, invest at t = 2, or never invest and thereby given the proof of the ¯rst part of

proposition 2. Furthermore in all cases examined it is only optimal for player i to invest at

t = 2 if the other agent j invested at t = 1 and vice versus. Therefore also the second part

of proposition 2 is proven.
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Proof of Proposition 3:

To proof this statement, one has to show that if there is no investment at an ar-

bitrary point of the time continuum, t = ¿ , then there will be no investment at time

t = ¿ +1; ¿ +2; ::: etc.17 We know from proposition 2 above that if there is no investment

at time t = ¿ then agent i will not alter his optimal decision not to invest, and by symme-

try this will be the case for all players i. The only additional information revealed at time

t = ¿+1 lowers expected payo®s so as in proposition 2 agents will either go from a position

where ¹i 2 (¡1; 0] =) E
h
¼it+¿

i
< 0 and will then certainly not invest at t = ¿ + 2, or

¹i 2
³
0; ¹

´
=) E

h
¼it+¿

i
> 0 and they will have decided optimally to delay because of a

positive option value, and it will remain optimal to delay a fortiori just as in the two-agent

case. At t = ¿ + 3 agent i is in an identical position to the position at t = ¿ + 2, since no

agents have invested once more, so there is no additional information at all being revealed,

and this will clearly be the case for t = ¿ + 4; ¿ + 5; ::: etc. Therefore there will be no

reason for any agent to change his optimal decision not to invest.
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