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Abstract 

In this paper, we reexamine and extend the stochastic volatility model of Stein and 
Stein (1991) where volatility follows a mean-reversion Ornstein-Uhlenbeck process. 
Using Fourier inversion techniques we are able to allow for correlation between instan-
taneous volatilities and the underlying stock returns. A closed-form pricing Solution 
for European options is derived and some numerical examples are given. 

1 Introduction 

Modelling stochastic volatility is crucial to capture stock return variability. In Or
der to describe the empirical leptokurtic distributions of stock returns, a number of 
different specifications of stochastic volatility have been suggested. Wiggins (1987) 
considers a case where the log-volatility lnu(t) follows a mean-reversion Ornstein-
Uhlenbeck (O-U) process. Obviously, under this specification it is not guaranteed 
that volatilities are stationary. Hull and White (1987) solve a special option pricing 
problem with stochastic volatility by using a Taylor expansion technique. All models 
before 1990 including Scott (1987) do not present closed-form solutions and require 
an extensive use of numerical techniques. Stein and Stein (1991) (S&S) assume that 
the volatility follows a mean reversion O-U process and develop the analytic den
sity function of stock returns to evaluate option prices. But since volatilities are 
uncorrelated with stock returns, their Solution is not complete. Heston (1993) pro-
vides a new approach to derive a closed-form Solution for options where the squared 
volatility (variance rate) is specified as a Square-root process. The idea is that while 
the probability that the stock price is greater (less) than the strike price can not be 
expressed analytically, the corresponding characteristic function can indeed be de-
scribed analytically in many cases, at least in the case of a square-root process for 
the variance rate. The probability function is then obtained via inverse Fourier trans-
formation. Recently, using this approach, Bakshi, Cao and Chen (1997) develop and 
test a comprehensive closed-form option pricing formula including jump components 
of the stock price process, stochastic interest rates, and a square-root based stochastic 
volatility. Stochastic volatility option pricing models with closed-form solutions in-
clude also Bates (1994), Bakshi and Chen (1997) and Scott (1997). The first two are 
on currency options. The method used by Scott is somewhat different from the other 
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papers. Instead of deriving the characteristic functions from a fundamental partial 
differential equation (PDE), he calculates them directly using martingale methods. 

In this paper, we apply the method inspired by Scott (1997) to extend the model 
of S&S (1991) to the correlation case. That is, we assume that the stochastic volatility 
follows a mean-reversion O-U process and is possibly correlated with stock returns. 
Closed-form solutions for option prices and price sensitivities are then obtained via 
inverse Fourier transformation. 

The remainder of the paper is organized as follows: Section 1 examines how 
to construct characteristic functions (CF) in a European-style option pricing formula 
and then develops a closed-form Solution for our extension of S&S. Section 2 compares 
our model with S&S as well as with Heston's model. Section 3 concludes. 

2 The Model 

We consider that volatility follows a mean-reverting O-U process. As assumed by 
S&S (1991), the stochastic processes of the log of the stock price x(t) = In S(t) and 
its instantaneous volatility v(t) can be described by 

dx(t) = (r — ^v2(i)) dt + v(t)dwa(t), (1) 

and 

dv(t) = K {0 — v(t)) dt + adwv(t), (2) 

respectively. Here we suggest that dws and dwv are possibly correlated, dwsdwv 

— pd t which extends the S&S model. Both processes are interpreted under the risk-
neutralized probability measure.1 

In order to get a closed-form Solution using inverse Fourier transformation, we 
have two methods available. The pure PDE approach used by Heston (1993), who 
ends up with a system of ODEs, and the more elaborated approach used by Scott 
(1997) who applies stochastic calculus to compute the characteristic functions (CF) 
directly. Given the above processes (1) and (2), we find that the PDE-approach is 
too cumbersome to get closed-form solutions for the CFs while the second method 
turns out to be much more elegant and straightforward.2 It has the advantage that 
there is no need to guess a suitable form of the CFs. Instead these transformations 
can be perceived easily in following the calculations. 

We start from a fairly general representation of the pricing formula for European-
style (call) options with stock price S and strike price K. The value of a call option 
is the expected terminal value of the option relative to the money market account 

2 



C(S,t,T) = E« [e-'V-QMT) - K) • l {s(r)>*}] (3) 

= ES [e-r^S(T) • l {,(r)>inK}] - e-^KEP [l{x(r)>in*}] 

where Q denotes the risk-neutralized martingal measure. According to Geman, El 
Karoui and Röchet (1995), Björk (1996) and others, in Order to simplify calculations, 
we change numeraires. For the first term we choose the stock price S as numeraire 
and switch from measure Q to Q\. For the second term we use the T-forward measure 
to switch from Q to Q2- The Radon-Nikodym derivatives are then given by 

^=*M=«P{-/irC>*}fQ <4) 

and 

^ = 9''{t'T) = 'XP{-j/{s)ds}wf)' (5) 

respectively, where Q\ and Q2 are again two martingale measures. B(t,T) is the 
price of a zero-bond maturing at time T. Since the short rate of interest is constant 
here, we have immediately 

e-r(T-t)C(rp\ 
gi(t,T) = ^ and g2(t,T) = 1. (6) 

Under the new measures Q1 and Q2? the option price (3) can be restated as 

C{S,t,T) = S(t)EQl [l{x(D>mx}] - e-^-^KE«2 [l{l(T)>in/f}] 
(7) 

= S(t)F^ (S(T) >K)~ e-^-^KF®* (S(T) > K). 

A powerful way to get closed-form solutions for the probabilities F®1 and F®2 is 
to derive their corresponding CFs, which are defined by 

= EQi [exp{i<t>x(T)}\ j = 1,2. (8) 

Using the above two Radon-Nikodym derivatives, we obtain new expressions for 
the CFs fj(<p) under the original martingale measure Q: 
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f\{4>) = [exp {i(j>x(T)}\ = E"5 
e-r(T-t)5(T) 

5(i) 
exp {i(ßx(T)} (9) 

and 

/2(0) = E^2 [exp {i4>x(T)}\ = [exp {i^x(T)}], (10) 

where the interest rate here is specified as constant for simplicity.4 With these 
new expressions we start calculating the CFs fj{4>) u nder the martingale measure Q. 
As shown in the Appendix, we obtain f\{<j>) w hich has the following form 5 

= EQ [exp {-r (T -t) - x{t) + (1 + i<f>)x(T)}} 

= exp {i(j> (r (T - t) + x(t)) - \p{ 1 + itfy \cr lv2{t) + a (T — £)] } x 

CEQ exp^ — sj J v2(u)du — S 2 j v{u)du + S2,V2(T) 

with 

= exp [icj) (r (T -t) + x(t)) - \p( 1 + i<f>) [er 1v2(t) + a (T - t)] } x 

x exp {\D(t,T\ sx, sz)v2{t) + B(t,T-,si,s2,s3)v(t) +C(t,T;si,s2,s3)} 

(11) 

si = —5(1+ i<f>)2 (1 - p2) + \ (1 -f i<j>) ( l - 2Kpcr~v) , 

S2 = (1 4- ifynßpa'1, 

s3 = \(l -\-i<t>)pa~l. 

The functions D(t,T), B(t,T) and C(t,T) are also derived in the Appendix. 
Similarily, f2{4>) is given by 
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h{(t>) =EQ[exp {i(j)x(T)}] 

= exp {i<fi (r (T — t) + x(t)) — \i$p [er lv2(t) + er (T - £)] } x 

x E<? 
T j-T 

exp <j —si / v2(u)du — s2 / v{u)du + S3V2 (T) 
t J t 

f2((ß) = exp {i(ß (r (T - t) + x(t)) - fap [a 1v2(t) + er (T - t)]} x 

x exp {iD(i,T; sl5 s3)v2(i) + £(£,T; Si, s2,s3)v(t) + C(£, T; si, s2, £3)} 

(12) 
with 

•5i = (1 — P2) + \i<t> (l — 2KP(T~X) , 

s2 = i4>KQpa~l, 

s3 = \icj)p(T'1. 

Given the CFs, the probability distribution funetions Fi and F2 can be calculated 
using the Fourier inversion formula: 

j=i2- (13) 

Finally, the call option pricing formula is given by 

C(S,v,t,T) = S(t)F1 - e~r(T~^KF2. (14) 

The formula for European puts can easily be obtained by using put-call parity. 
Formula (14) is more general than S&S since here the volatilities are correlated with 
the stock prices. Furthermore, our closed-form Solution has a clear strueture and gives 
the two probabilities Fi and F2 explicitly. Hence, the hedge ratio A and other Greeks 
can be given analytically. This is certainly a positive feature for the application of 
the model. Some populär hedge ratios are: 

A s(S,v,t,T) = ̂  = Fu (15) 
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A.(S,„,«,D-f (16) 

r /o (17) 
s( ' ' ' ) d52 <95' 

r„(S,M,T) = 0 = S(t)U - e'^K^, (18) 

where for h = S,v and j = 1,2 

and 

oh 7r J o \ ah i(p ) 

>=i-a-

Our results on hedge ratios are similar to those in Bakshi, Cao and Chen (1997). 
While Heston (1993), and Bakshi, Cao and Chen (1997) got via two-dimensional 
partial differential equations, as shown in the Appendix, we only need to solve a one 
dimensional PDE using the Feynman-Kac theorem after reducing the explicit form of 
fj(4>) t o a one dimensional problem. In the next section, we will compare our model 
with the S&sS m odel and with Heston's Solution. 

3 Comparison with Other Stochastic Volatility Models 

Heston shows that if the volatility in his model follows an O-U process with mean-
reversion level equal to zero [Equation (2) in Heston (1993)], that is 

dv(t) = —ßv(t)dt + 6dw, (19) 

then, from Itö's Lemma, the squared volatility y(t) = v(t)2, namely the variance 
of instantaneous stock returns, follows a square-root process 

dy(t) = Kh(0h - y(t))dt + (Thy/y{t)dw, ^ 

with 
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R — — A — Ib . f) — — 
ß~ 2 ' 2 ' h Kh (21) 

Hence, the only difference between equation (2) and equation (19) is the mean-
reversion parameter 9. While 9 in (2) generally differs from zero, in (19) it is always 
nil. Since 9 gives the level of volatility in the long run, process (19) seems not very 
reasonable. Therefore, this restricted Heston model can be considered as a special 
case of our model in the sense of processes (19) and (20). Our model is reduced to 
Heston's model by setting the following parameters: 

*=T' " = 9 = 0' *" = -• <22) 

2 2 

However, note that the parameters in (20) are overdetermined by (21). This means 
that for a wide ränge of values for Kh,Ch and 9h, the volatility process (20) can not 
be derived from (19). Therefore the two processes (19) and (20) are not mutually 
consistent for many parameter values. Hence, in this sense the Heston model is not a 
special case of our model. A favorite property of our model is that both volatility and 
the squared volatility perform mean-reversion, whereas in the Heston model, only the 
squared volatility exhibits mean-reversion.6 

Here we present some option prices based on formula (14). For comparison, we 
calculate the Black-Scholes (BS) option prices according to the spot volatility v with 
K, p and er n il. The calculated BS prices are identical to these prices by using the BS 
formula. In Table 1, we choose the parameters suggested by S&S. In order to show 
the impact of correlation on the option prices, let p ränge from -1.0 to 1.0. Some 
observations are in order. First, options with different moneyness have different 
sensitivity to the correlation p. Overall the values of at-the-money (ATM) options do 
not change remarkably. However, the sensitivity of out-of-the-money (OTM) options 
to p is more conspicuous than of in-the-money (ITM) options. For example, in Panel 
C the relative changes of the OTM option prices due to the correlation p for K = 120 
is about ±14% of the S&S value which is here 2.64. 

Second, a comparison of Panels A, B and C shows that the mean-reversion level 
9 is important for the pricing of options. Keeping other parameters unchanged, the 
differential 9 — v (mean-reversion level minus current volatility) has a great impact 
on the option values. From Panel A to C, 9 — v is 0, -0.1 and 0.1 respectively, and the 
differences in option prices across these panels are mostly between 0.60$ and 1.50$. 
Since the expectation of the future spot price volatility approaches 9, the prices of 
options, especially the options with a long-term maturity, should be mainly affected 
by 9. It is not surprising that the price differences between BS and our model are 
the smallest for Panel A where 9 = v. 

Finally, ITM options and OTM options react to correlation just oppositely. Whereas 
ITM options (K = 90,95) decrease in value with increasing correlation p, OTM op
tion prices (K = 105,110,115,120) go up. This finding is consistent with Hull's 
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(1997, pages 492-500) excellent intuitive explanation of how correlation affects op
tion prices. It is also empirically evident that stock returns are inversely correlated 
with the underlying volatilities. Panels A to C show that a negative correlation p 
leads to ITM (OTM) option prices in our model that are greater (less) than the 
corresponding BS option prices. MacBeth and Merville (1979) found that the BS op
tion prices undervalue (overvalue) on average market prices for ITM (OTM) options. 
Hence, this indicates that option prices in our model should be closer to the actual 
market prices. S&sS r eport an overall overvaluation due to stochastic volatility. Our 
numerical examples from Panel A to Panel C show that this upward pricing bias is 
caused by the zero correlation assumption between volatility and its underlying asset 
returns. For p = 0 the direction of the movement of S(t) is not affected by stochastic 
volatility, and any stochastic volatility raises only the additional uncertainty of S(t). 
Consequently, S&S overvalues option prices relative to BS. Therefore, this result of 
S&S is no longer surprising. Ball and Roma (1994) found that the S&S misdiagnosis 
of stochastic volatility effects is due to using an "inappropriate" value for variance 
in the BS price. In context of our model, these arguments are not confirmed. The 
volatility smile may be reasonably explained only in presence of correlation. If cor
relation is different from zero, the direction of the movement of S(t) is influenced by 
v(t). The correlation between volatility and spot returns is thus necessary to cre-
ate skewness and kurtosis in the distribution of spot returns. Not surprisingly, all 
of these discussions are similarily true for the Heston model with and without zero 
correlation. Bakshi, Cao and Chen (1997) reported that taking stochastic volatility 
is of first-order importance in eliminating the volatility smile, but only in presence of 
correlation. Their results should be also valid for our model. 

(Insert Table 1) 

In Table 2, we examine how the option prices vary with the mean-reversion level 
9. The finding that option prices are very sensible to 0 is confirmed. Since 0 indicates 
the long-run level of volatility, this sensitivity can be considered as the sensitivity of 
option prices to their volatilities in the long run. Furthermore, it seems to be that 
9 is more important than the spot volatility v(t) for the pricing of options in the 
framework of a mean-reversion process. If the true process of volatility performs 
mean-reversion, and option prices are evaluated using the spot volatility from the BS 
formula, a significant pricing bias will occur. All prices in Panel E correspond to the 
case of S&S. The numbers in italics in Panels D, E, and F are option prices under 
the restricted Heston model in the sense of equations (19) and (20). The implied zero 
level of the mean-reversion leads to an overall undervaluation of options compared 
with BS. 

(Insert Table 2) 

Table 3 demonstrates the impact of p on Delta As which is of first-order im
portance for hedging purposes whenever stochastic volatility models are used. First, 
for the given parameters almost all of the Deltas are a decreasing with correlation 
p except a few deep-ITM and deep-OTM options across the three Panels G, H and 
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I. Second, the changes of values of near-ATM options relative to the correlation p 
are more sensitive than these of deep-ITM and deep-OTM options. The differences 
between A5 in our model and the BS model for near-ATM options should not be ne-
glected. For a negative correlation, using A5 of the BS model seems to cause a severe 
underhedging for near-ATM options. Furthermore, the long-term level of volatility 9 
is also important for hedging. Keeping other parameters unchanged, the greater 9 is, 
the smaller (greater) A5 will be for ITM (OTM) options. The sensitivity of As to 
9 is remarkable and can be studied more detailed by the second derivative Aso- We 
conclude that an unbiased estimate of 9 is crucial for Delta-hedging. 

(Insert Table 3) 

4 Conclusions 

Stochastic volatility option pricing models provide us with new insights into derivative 
security markets. Generally stochastic volatilities have been specified at least by two 
classes of stochastic processes. The first specification is the mean-reversion square-
root process in the line with the famous interest rate process of Cox, Ingersoll and 
Ross (1985b). The closed-form pricing formula for options with squared volatility 
(variance) following such a process is given by Heston (1993). The advantage of 
square-root process might be obvious: Squared volatilities never become negative. 

The second specification is a mean-reversion O-U process. In this paper, we have 
derived a closed-form pricing formula for the general case where volatility is allowed 
to display arbitrary correlation with the underlying stock price. Since in a diffusion 
context negative volatilities only mean that upward moves of the driving Brownian 
motion become downward moves of the stock price and vice versa, we believe that 
this is not a severe theoretical restriction and suggest this new closed-form pricing 
formula is an alternative to Heston's Solution: Not surprisingly, squared volatilities 
never become negative here either. 

Certainly it is interesting to study the empirical evidence of this second specifi
cation and compare its Performance with the Heston model and its generalizations. 
This is left for future research. 

Notes 

1 Because the volatility v is not a traded asset, this risk-adjusted martingale measure 
is not unique but depends on the market price of volatility risk A whic h is (implicitly) 
determined by the market participants. A common way to specify A is to assume 
Adt = 7Cov[dv,dC/C] where 7 and C are the relative-risk aversion parameter and 
consumption respectively. From the Cox, Ingersoll and Ross (1985a) equilibrium 
model, one can get a consumption process [also see equation (8) in Heston (1993)]: 

dC = Hcv(t)2Cdt + (Tcv(t)Cdwc(t), 

where the investor is assumed to have log-utility, i.e. 7 = 1. Consequently, the risk 
premium is proportional to v, \(v) = Xv with A a constant. 
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2 Heston (1993) wrote in the appendix of his paper: " Although Stein and Stein (1991) 
assume the volatility process is uncorrelated with the spot asset, one can generalize 
this to allow z\{t) and z2(t) to have constant correlation. Following this sug-
gestion, we found that this leads to a rather cumbersome procedure. His method does 
not lead to a decomposition of the PDE into several ordinary differential equations 
which can be solved successively. 
3 Our choice of probability measure to calculate the CFs corresponds with Scott 
(1997). Depending on the two numeraires "stock price" and "default-free discount-
bond price" the two functions g\ in (4) and g2 in (5) define two likelihood processes 
which are martingales themselves. Therefore we can switch from one measure to the 
other without violating the no arbitrage condition. For a constant interest rate, g2 

has a value of one. Thus in this case, the measure Q2 is identical to the original 
measure Q. See Geman, El Karoui and Röchet (1995) for details. 
4 In fact, we can embody stochastic interest rates into this option pricing model 
by asssuming that stochastic interest rate and stochastic volatility are mutually in-
dependent. Interest rates can be specified either as a mean-reverting O-U process 
(Vasicek, 1977) or as a mean-reverting square-root process (Cox, Ingersoll and Ross, 
1985b). The derivation of the corresponding CFs follows the same lines as shown in 
the Appendix. 
5 In these calculations, two facts from stochastic calculus are employed. One is the 
decomposition of a Standard Brownian motion. If two Standard Brownian motions 
dw\ and dw2 are correlated with dw\dw2 = pdt, so dw\ can be expressed as dw\ = 
pdw2 + \Jl — p 2dw where dwdw2 = 0 and dwdw\ = y/l — p2dt. The second is the so-
called Itö isometry which says var[f^v(u)dw(u)] = E[ v2(u)du\ for any Ito process 
v(t). 
6 Applying Ito's Lemma once again, we obtain the process of v(t) = \Jy(t) : 

dv(t) = [\{Kh9h - \cr\)v{t)'1 - \Khv(t)]dt + \ahdw{t). 

Obviously, if (21) is not satisfied, KhOh — will not be zero. Hence the term 
v(t)~l will appear in the volatility process. As a consequence, the specification of 
y(t) = v(t)2 such as (20) should also be examined carefully. If the volatility follows a 
mean-reversion O-U process as (2), the process for the squared volatility is 

dy(t) = [er2 -I- 2K,0y/y(t) — 2ny(t)]dt + 2cry/y(t)dwv(t). 

This is also a mean reversion square-root process with an additional term 2K0yjy(t). 

Appendix 

can be calculated as follows (The expansion of f2{<t>) f ollows the same way.): 
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/i(<?) = EQ [exp {-r{T - t) - x(t) + (1 +id>)x(T)}} 

EQ exp < — r (T — t) — x(t) + (1 + i<j>) ( x {t) + / rdu - i / v 2(n)du+ I v(u)dws(u)^j | 

exp {ich (r {T — t) + x(£))} E^ 
r ,-T N 

exp ^ (1 + z'0) I I v2(u)du + / v(u)dws(u) 

fi(cp) = exp {i</> (r (T-t) + x(t))} x 

xEQ exp |(1 + i<j>) ^—5 J v2(u)du + p j v(u)dwv(u) + y/l - p2 j v(u)dw(u) 

Note that dw is uncorrelated with dwv: 

= exp {i(t> (r (T-t) + x(t))j x 

xEQ exp (l+i<t>) 5 J v2(u)du + p J v(u)dwv(u)j + 5(1 + «0)2(1 - p2) j v2(u)du 

exp {icj) (r (T — t) + x(t))} x 

XEQ exp 5(1 + i(j>) ((1 + icj>)(\ - p2) - l) j v2(u)du + (1 + i<p)p j v(u)dwv(u) 

exp {icj) (r (T — t) + a;(t))} E® exp • 5(1 + icj>) ((1 + icj))(l- p2) - 1) I v2(u)du+ 

+(1 + i4>)-^- | V2{T) — v2(t) — <T2(T — t) — 2K9 J v(u)du + 2K j v2{u)d. 

— exp {i<j> (r {T — t) + x{t))}E® exp < 5(1 + i<(>) ( (1 + i<P)( 1 - p2) - 1 + 
2K p v2(u)du— 

-(1 + (v2(t) -I- <T2(T - t)) + (1 + i4>)-£-V2(T) - (1 + I v{u)du 
2(7 Za er J t 

xp |icj) [x{t) +r(T -t)]~ (1 + icj)) ^ (v2(t) + cr2(T - t)) | x 

xEQ exp -si J v2(u)du — S2 J v(u)du + s^v2(T) 
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Now we have to calculate the expectation 

y(v,t,T) = EQ 

= EQ 

T rT 
2_L_ <,„,,2/ exp -si / v2(u)du - s2 / v(u)du + s3v2(T) 

J t J t 

exp y (-sii;2(u) - s2v(u))duj exp(s3v2(T)) 

for arbitrary complex numbers si, S2 an d S3 and — s\v2(u) — S2v(u) is lower bounded. 
According to the Feynman-Kac formula, y satisfies the following differential equation 
[see Karlin and Taylor (1975) and 0ksendal (1995)] 

with boundary condition 

+ K(9 - v)^ - (siv2 + s2v)y + ̂ 7 = 0 
dy 
dv 

&y 
dt 

y(v,T,T) = exp (s3v2). 

It can be shown that the above differential equation has a Solution of the form 

y(v,t,T) = exp {̂ A(t,T)v2(t) + B(t,T)v(t)+C(t,T) + s3v2(t)} 

= exp (A(t, T) + 2s3)v2 (t) + B{t, T)v(t) + C(t, T)} 

= exp {D(t, T)v2(t) + B(t, T)v(t) + C(t, T)} 

with D(t, T) = A(t, T)+2s3. Substituting this into the differential equation, we obtain 
a system of three ordinary differential equations that determine D(t, T), B(t, T) and 
C(t,T). 

Dt 

Bt 

Ct 

—a2D2 + 2 KD + 2si 

(K — <T2D) B — KQD + S2 

—^<J2B2 — K6B — \&2D 

where D(T,T) = 253 and B(T,T) = C(T,T) = 0. Solving these equations is straight-
forward but tedious. We get 
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n(t T) = — (K- sinh bi {T - Q} + 72 cosh {7i(T - t)}' 
er2 \ 7lcosh {7I(T - £)} + 72sinh {71 (T - t)}/ 

D, , T] 1 A (*#71 -7273) +73(sinh{71(r —t)} + 72 cosh {71 (T - t)}) _ N 

<T27I V cosh {71 (T-it)}+ 72 sinh {71 (T-t)} * 71 

C{t,T) = ln(cosh{7i(T - t)}+72sinh{7i(T - t)}) + - t)+ 

l (K2^2^I ~ f sinh {71 (T — £)} (T_,lU 

2<727I \cosh {71 (T - £)} + 72 sinh {71 (T - t)} 1 ' 

(«071 - 7273) 73 ( cosh {71 (T -t)} - 1 
a2-yf \cosh {71 (T - t)} + 72 sinh {71 (T - t)} 

with 

7i = \/2a2si 4- K 2, 72 = — (K - 2a2s3) , 73 = K20 - s2a2. 
7i 

Using the time dependent functions D(t,T), B(t,T) and C(t,T), we obtain closed-
form solutions for fj (</>). 
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Table 1. The impact of p on option prices. 

p K 90 95 100 105 110 115 120 
BS 15.12 11.34 8.14 5.58 3.66 2.29 1.38 

-1.00 15.42 11.62 8.31 5.576 3.47 1.96 0.99 
-0.75 15.35 11.56 8.28 5.58 3.53 2.06 1.11 
-0.50 15.29 11.50 8.24 5.60 3.58 2.16 1.22 
-0.25 15.22 11.44 8.21 5.61 3.64 2.25 1.32 
0.00 15.16 11.38 8.18 5.62 3.69 2.33 1.42 
0.25 15.08 11.31 8.14 5.63 3.75 2.42 1.51 
0.50 15.00 11.24 8.11 5.64 3.80 2.50 1.61 
0.75 14.92 11.17 8.07 5.65 3.86 2.58 1.70 
1.00 14.83 11.09 8.03 5.66 3.91 2.65 1.77 

A: 0 = 0.2, K = 4, a = 0.1,v = 0.2,T- t = 0.5,5 = 100, r = 0.0953 

P K 90 95 100 105 110 115 120 
-1.00 14.73 10.60 6.98 4.06 1.98 0.74 0.18 
-0.75 14.68 10.54 6.94 4.07 2.05 0.85 0.28 
-0.50 14.63 10.48 6.89 4.075 2.12 0.96 0.37 
-0.25 14.57 10.42 6.85 4.085 2.19 1.05 0.46 
0.00 14-52 10.35 6.80 4.093 2.25 1.14 0.54 
0.25 14.56 10.27 6.75 4.10 2.32 1.23 0.62 
0.50 14.40 10.19 6.60 4.11 2.38 1.31 0.70 
0.75 14.33 10.10 6.65 4.12 2.43 1.39 0.77 
1.00 14.26 10.00 6,59 4.125 2.49 1.46 0.85 

B: 9 = 0.1 K = 4, (T = 0.1, v = 0.2, T — t = 0.5,5= 100, r = 0.0953 
p K 90 95 100 105 110 115 120 
-1.00 16.36 12.85 9.78 7.186 5.08 3.45 2.24 
-0.75 16.30 12.80 9.75 7.198 5.13 3.53 2.34 
-0.50 16.24 12.75 9.73 7.210 5.18 3.61 2.44 
-0.25 16.17 12.70 9.71 7.223 5.23 3.69 2.54 
0.00 16.11 12.65 9.69 7.236 5.28 3.77 2.64 
0.25 16.04 12.60 9.66 7.251 5.33 3.84 2.73 
0.50 15.96 12.54 9.64 7.265 5.38 3.92 2.82 
0.75 15.85 12.49 9.62 7.280 5.43 3.99 2.91 
1.00 15.81 12.43 9.60 7.296 5.47 4.07 2.99 

C: 9 = 0.3,K = 4,a = 0.1,v = 0.2,T-t = 0.5,5 = 100,r = 0.0953 
The italic numbers correspond to the model of S&S. 
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Table 2. The impact of 9 on option prices. 

6 K 90 95 100 105 110 115 120 
BS 14.51 10.37 6.86 4.18 2.32 1.18 0.55 

0.0 14.19 9.46 5.14 2.17 0.76 0.24 0.075 
0.1 14.26 9.84 6.13 3.47 1.81 0.89 0.425 
0.2 14.72 10.80 7.55 5.04 3.24 2.01 1.22 
0.3 15.61 12.08 9.11 6.70 4.83 3.41 2.38 

D: p = 0.5,K = 4,g = 0.1,?; = 0.15,T - t = 0.5,5 = 100,r = 0.0953 
6 K 90 95 100 105 110 115 120 

0.0 14.20 9.53 5.27 2.17 0.65 0.15 0.030 
0.1 14.35 10.00 6.25 3.45 1.68 0.73 0.292 
0.2 14.87 10.95 7.63 5.02 3.12 1.84 1.04 
0.3 15.75 12.20 9.16 6.68 4.73 3.26 2.19 

E: p = 0.0, K = 4, ff = 0.1, v = 0.15, T - t = 0.5, S = 100, r = 0.0953 
9 K 90 95 100 105 110 115 120 

0.0 14.22 9.60 5.37 2.15 0.50 0.06 0.004 
0.1 14.44 10.13 6.36 3.44 1.53 0.54 0.155 
0.2 15.00 11.08 7.71 5.00 3.00 1.66 0.842 
0.3 15.89 12.31 9.21 6.65 j 4.63 3.09 1.99 

F: p= -0.5, K = 4,<T = 0.1, v = 0.15,T — £ = 0.5,5 = 100,r = 0.0953 
The italic numbers correspond to the restricted Heston model. 
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Table 3.The impact of p on Delta As-

p K 90 95 100 105 110 115 120 
BS 0.8755 0.7795 0.6582 0.5249 0.3950 0.2807 0.1890 

-1.00 0.8751 0.7949 0.6895 0.5644 0.4299 0.3002 0.1883 
-0.75 0.8708 0.7916 0.6825 0.5547 0.4204 0.2941 0.1881 
-0.50 0.8751 0.7881 0.6751 0.5449 0.4113 0.2889 0.1883 
-0.25 0.8752 0.7844 0.6673 0.5350 0.4027 0.2843 0.1887 
0.00 0.8754 0.7802 0.6591 0.5251 0.3945 0.2802 0.1891 
0.25 0.8756 0.7757 0.6504 0.5153 0.3868 0.2765 0.1896 
0.50 0.8759 0.7707 0.6413 0.5055 0.3795 0.2732 0.1899 
0.75 0.8761 0.7649 0.6317 0.4957 0.3725 0.2701 0.1904 
1.00 0.8761 0.7584 0.6216 0.4862 0.3659 0.2673 0.1907 

G: 6 = 0.2, K = 4, rr II I Ei ö
 II ö
 II 0.5,5 = 100, r = 0.0953 

p K 90 95 100 105 110 115 120 
-1.00 0.9246 0.8490 0.7302 0.5684 0.3816 0.2048 0.0763 
-0.75 0.9267 0.8479 0.7229 0.5554 0.3694 0.2025 0.0867 
-0.50 0.9293 0.8467 0.7151 0.5424 0.3584 0.2012 0.0947 
-0.25 0.9323 0.8456 0.7068 0.5293 0.3485 0.2003 0.1012 
0.00 0.9359 0.88445 0.6978 0.5163 0.3395 0.1996 0.1065 
0.25 0.9403 0.8433 0.6881 0.5033 0.3311 0.1989 0.1111 
0.50 0.9458 0.8421 0.6774 0.4903 0.3234 0.1982 0.1149 
0.75 0.9530 0.8404 0.6656 0.4773 0.3163 0.1975 0.1182 
1.00 0.9629 0.8379 0.6526 0.4645 0.3095 0.1967 0.1211 

b II S£ o
 II tü II P

 
CS 1 II

 0
 

\s
° 1 II 0.5,5= 100, r = 0.0953 

p K 90 95 100 105 110 115 120 
-1.00 0.8317 0.7552 0.6646 0.5644 0.4606 0.3599 0.2682 
-0.75 0.8300 0.7512 0.6584 0.5568 0.4532 0.3541 0.2652 
-0.50 0.8282 0.7469 0.6519 0.5492 0.4459 0.3487 0.2626 
-0.25 0.8264 0.7424 0.6452 0.5416 0.4389 0.3437 0.2604 
0.00 0.8243 0.7376 0.6383 0.5339 0.4322 0.3390 0.2584 
0.25 0.8221 0.7324 0.6311 0.5263 0.4256 0.3347 0.2566 
0.50 0.8196 0.7269 0.6237 0.5187 0.4193 0.3306 0.2550 
0.75 0.8169 0.7210 0.6162 0.5112 0.4133 0.3267 0.2536 
1.00 0.8137 0.7147 0.6084 0.5038 0.4074 0.3231 0.2522 

I: 9 — 0.3, K = 4,rr = 0.1, v = 0.2,T — t = 0.5,5 = 100, r = 0.0953 
The italic numbers correspond to the model of S&S. 

17 


