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Abstract

In this paper, we reexamine and extend the stochastic volatility model of Stein and
Stein (1991) where volatility follows a mean-reversion Ornstein-Uhlenbeck process.
Using Fourier inversion techniques we are able to allow for correlation between instan-
taneous volatilities and the underlying stock returns. A closed-form pricing solution
for European options is derived and some numerical examples are given.

1 Introduction

Modelling stochastic volatility is crucial to capture stock return variability. In or-
der to describe the empirical leptokurtic distributions of stock returns, a number of
different specifications of stochastic volatility have been suggested. Wiggins (1987)
considers a case where the log-volatility Inv(t) follows a mean-reversion Ornstein-
Uhlenbeck (O-U) process. Obviously, under this specification it is not guaranteed
that volatilities are stationary. Hull and White (1987) solve a special option pricing
problem with stochastic volatility by using a Taylor expansion technique. All models
before 1990 including Scott (1987) do not present closed-form solutions and require
an extensive use of numerical techniques. Stein and Stein (1991) (S&S) assume that
the volatility follows a mean reversion O-U process and develop the analytic den-
sity function of stock returns to evaluate option prices. But since volatilities are
uncorrelated with stock returns, their solution is not complete. Heston (1993) pro-
vides a new approach to derive a closed-form solution for options where the squared
volatility (variance rate) is specified as a square-root process. The idea is that while
the probability that the stock price is greater (less) than the strike price can not be
expressed analytically, the corresponding characteristic function can indeed be de-
scribed analytically in many cases, at least in the case of a square-root process for
the variance rate. The probability function is then obtained via inverse Fourier trans-
formation. Recently, using this approach, Bakshi, Cao and Chen (1997) develop and
test a comprehensive closed-form option pricing formula including jump components
of the stock price process, stochastic interest rates, and a square-root based stochastic
volatility. Stochastic volatility option pricing models with closed-form solutions in-
clude also Bates (1994), Bakshi and Chen (1997) and Scott (1997). The first two are
on currency options. The method used by Scott is somewhat different from the other



papers. Instead of deriving the characteristic functions from a fundamental partial
differential equation (PDE), he calculates them directly using martingale methods.

In this paper, we apply the method inspired by Scott (1997) to extend the model
of S&S (1991) to the correlation case. That is, we assume that the stochastic volatility
follows a mean-reversion O-U process and is possibly correlated with stock returns.
Closed-form solutions for option prices and price sensitivities are then obtained via
inverse Fourier transformation.

The remainder of the paper is organized as follows: Section 1 examines how
to construct characteristic functions (CF) in a European-style option pricing formula
and then develops a closed-form solution for our extension of S&S. Section 2 compares
our model with S&S as well as with Heston’s model. Section 3 concludes.

2 The Model

We consider that volatility follows a mean-reverting O-U process. As assumed by
S&S (1991), the stochastic processes of the log of the stock price z(t) = In S(t) and
its instantaneous volatility v(t) can be described by

dz(t) = (r — 10%(t)) dt + v(t)dws(t), (1)

and

dv(t) = k(0 —v(t)) dt + odw,(t), (2)

respectively. Here we suggest that dw, and dw, are possibly correlated, dw;dw,
= pdt which extends the S&S model. Both processes are interpreted under the risk-
neutralized probability measure.!

In order to get a closed-form solution using inverse Fourier transformation, we
have two methods available. The pure PDE approach used by Heston (1993), who
ends up with a system of ODEs, and the more elaborated approach used by Scott
(1997) who applies stochastic calculus to compute the characteristic functions (CF)
directly. Given the above processes (1) and (2), we find that the PDE-approach is
too cumbersome to get closed-form solutions for the CFs while the second method
turns out to be much more elegant and straightforward.? It has the advantage that
there is no need to guess a suitable form of the CFs. Instead these transformations
can be perceived easily in following the calculations.

We start from a fairly general representation of the pricing formula for European-
style (call) options with stock price S and strike price K. The value of a call option
is the expected terminal value of the option relative to the money market account



C(S,t,T) = [E9 [C_T(T—t)(S(T) - K) . 1{5(T)>K}] (3)

=EQ [eTOS(T) - Ligrysmiy) — € T OKE® (115 k3]

where @) denotes the risk-neutralized martingal measure. According to Geman, El
Karoui and Rochet (1995), Bjork (1996) and others, in order to simplify calculations,
we change numeraires. For the first term we choose the stock price S as numeraire
and switch from measure @ to Q. For the second term we use the T-forward measure
to switch from @ to J2. The Radon-Nikodym derivatives are then given by

T
%% = qi1(t,T) = exp {_./t r(s)ds} SS((T)) (4)
and
dQ " 1
o =@t =ep { - / t T(s)ds} B(t,T) %)

respectively, where (J; and ), are again two martingale measures. B(t,T) is the
price of a zero-bond maturing at time 7. Since the short rate of interest is constant
here, we have immediately

e—r(T—t)S(T)

50 and g2(t,T) = 1. (6)

gl<tv T) =

Under the new measures Q; and Q3,3 the option price (3) can be restated as

C(S,t,T) =SHE 1zrysmky) — e " T VKE? [151)>im k)]
(M)
=S@t)F? (S(T) > K) —e " T-UKF? (S(T) > K) .

A powerful way to get closed-form solutions for the probabilities F9! and F%2 is
to derive their corresponding CFs, which are defined by

fi(¢) = E% [exp {i¢z(T)}] j=1,2. (8)

Using the above two Radon-Nikodym derivatives, we obtain new expressions for
the CFs f;(¢) under the original martingale measure Q:
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e~ Tt 5(T)

f1(#) = B [exp {i¢z(T)}] = BQ O {iez(T)}|, (9)
and
fo(¢) = E? [exp {igz(T)}] = B [exp {i¢z(T)}}, (10)

where the interest rate here is specified as constant for simplicity.* With these
new expressions we start calculating the CFs f;(¢) under the martingale measure Q.
As shown in the Appendix, we obtain f;(¢) which has the following form 3

fi(¢) =Efexp {~ (T ~t) — z(t) + (1 +ip)z(T)}]

=exp {i¢ (r (T — t) + z(t)) — p(1 + ig) [07?(t) + o (T — )] } x

(EQ [exp {—sl /T u)du =52 [ ()t s3v2<T>}]

J ot

— exp {6 ( (T — ) + 2(2) ~ $p(1 + i6) [0~ 2(&) +0 (T — £)] } x
X exp {%D(t,T; s1,83)v2(t) + B(t,T; 81, 82,83)0(t) + C(t, T 51, 82, 33)}

(11)

with
1= =3 (L4800 (1= %) + } (14 16) (1 - 2000

so = (1 +1i¢)kbpo~1,

s3 = 3(1+1ig)po1.

The functions D(t,T), B(t,T) and C(¢,T) are also derived in the Appendix.
Similarily, f2(¢) is given by



fo(8) =E° [exp {ipz(T)}]

=exp {i¢(r (T —t) + z(t)) — $igp [o~ W2 (t) + 0 (T — 1)} } x

<EQ [exp {_31 | /T o (u)du — 52 /Tv(u)du . §3U2(T)H

t J ot

fo(d) =exp{ig(r (T —t) +z(t)) ~ Yidp [0 v (t) + o (T —t)] } x
x exp {$D(t,T; 31, 83)v%(t) + B(t, T 81, 82, 83)v(t) + C(¢,T; 51, 82, 83) }

(12)
with
5 = %(j)? (1 — p2) + %i(b (1 — 2/cp0_1) ,

8y = ipkBpot,

Given the CFs, the probability distribution functions F} and Fj can be calculated
using the Fourier inversion formula:

Fj= +1/'wRe<fj(¢)M)d¢, j=12. 13

1
2 wTJo Z¢
Finally, the call option pricing formula is given by

C(S,v,t,T) = St)F, — e " T-OKF,. (14)

The formula for European puts can easily be obtained by using put-call parity.
Formula (14) is more general than S&S since here the volatilities are correlated with
the stock prices. Furthermore, our closed-form solution has a clear structure and gives
the two probabilities F1 and F; explicitly. Hence, the hedge ratio A and other Greeks
can be given analytically. This is certainly a positive feature for the application of
the model. Some popular hedge ratios are:

15
As(S,0,1.T) = 52 = F, (15)



= —— = — —e 7 K
Bo(Sv,8,T) ov 5() v ov’
8°C _ oF (17)
Lg(S,v,t,T) = 352 = 35
2
Iy(S,v,t,T) = Zf =5(t)5 F e (T ”K%FQ (18)

where for h = S,v and j = 1,2

%_l/.wRe (8fj(d>) exp(—igban))dd), i=12.

8h—7r. 0 Gh ’L¢

and

O%F; 1 [ 0% f;(¢) exp(—~igIn K) .
6h2 ; / Re < ) d¢, 1,2

0 Oh? i -

Our results on hedge ratios are similar to those in Bakshi, Cao and Chen (1997).
While Heston (1993), and Bakshi, Cao and Chen (1997) got f;(¢) via two-dimensional
partial differential equations, as shown in the Appendix, we only need to solve a one
dimensional PDE using the Feynman-Ka¢ theorem after reducing the explicit form of
fi(#) to a one dimensional problem. In the next section, we will compare our model
with the S&S model and with Heston’s solution.

3 Comparison with Other Stochastic Volatility Models
Heston shows that if the volatility in his model follows an O-U process with mean-
reversion level equal to zero [Equation (2) in Heston (1993)], that is

dv(t) = —Bu(t)dt + bdw, (19)

then, from Itd’s Lemma, the squared volatility y(¢) = v(¢)?, namely the variance
of instantaneous stock returns, follows a square-root process

dy(t) = kn(Bh — y(1))dt + on~/y(t)dw, (20)

with
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Ky

Hence, the only difference between equation (2) and equation (19) is the mean-
reversion parameter #. While 6 in (2) generally differs from zero, in (19) it is always
nil. Since € gives the level of volatility in the long run, process (19) seems not very
reasonable. Therefore, this restricted Heston model can be considered as a special
case of our model in the sense of processes (19) and (20). Our model is reduced to
Heston’s model by setting the following parameters:

Kh Oh g
K: 2 b 0- 2 3 07 h Hh ( )

However, note that the parameters in (20) are overdetermined by (21). This means
that for a wide range of values for kp, 05 and 6y, the volatility process (20) can not
be derived from (19). Therefore the two processes (19) and (20) are not mutually
consistent for many parameter values. Hence, in this sense the Heston model is not a
special case of our model. A favorite property of our model is that both volatility and
the squared volatility perform mean-reversion, whereas in the Heston model, only the
squared volatility exhibits mean-reversion.®

Here we present some option prices based on formula (14). For comparison, we
calculate the Black-Scholes (BS) option prices according to the spot volatility v with
k,p and o nil. The calculated BS prices are identical to these prices by using the BS
formula. In Table 1, we choose the parameters suggested by S&S. In order to show
the impact of correlation on the option prices, let p range from -1.0 to 1.0. Some
observations are in order. First, options with different moneyness have different
sensitivity to the correlation p. Overall the values of at-the-money (ATM) options do
not change remarkably. However, the sensitivity of out-of-the-money (OTM) options
to p is more conspicuous than of in-the-money (ITM) options. For example, in Panel
C the relative changes of the OTM option prices due to the correlation p for K = 120
is about £14% of the S&S value which is here 2.64.

Second, a comparison of Panels A, B and C shows that the mean-reversion level
6 is important for the pricing of options. Keeping other parameters unchanged, the
differential 8 — v (mean-reversion level minus current volatility) has a great impact
on the option values. From Panel A to C, § —vis 0, -0.1 and 0.1 respectively, and the
differences in option prices across these panels are mostly between 0.60$ and 1.508.
Since the expectation of the future spot price volatility approaches 8, the prices of
options, especially the options with a long-term maturity, should be mainly affected
by 6. It is not surprising that the price differences between BS and our model are
the smallest for Panel A where § = v.

Finally, ITM options and OTM options react to correlation just oppositely. Whereas
ITM options (K = 90,95) decrease in value with increasing correlation p, OTM op-
tion prices (K = 105,110,115,120) go up. This finding is consistent with Hull’s



(1997, pages 492-500) excellent intuitive explanation of how correlation affects op-
tion prices. It is also empirically evident that stock returns are inversely correlated
with the underlying volatilities. Panels A to C show that a negative correlation p
leads to ITM (OTM) option prices in our model that are greater (less) than the
corresponding BS option prices. MacBeth and Merville (1979) found that the BS op-
tion prices undervalue (overvalue) on average market prices for ITM (OTM) options.
Hence. this indicates that option prices in our model should be closer to the actual
market prices. S&S report an overall overvaluation due to stochastic volatility. Our
numerical examples from Panel A to Panel C show that this upward pricing bias is
caused by the zero correlation assumption between volatility and its underlying asset
returns. For p = 0 the direction of the movement of S(t) is not affected by stochastic
volatility, and any stochastic volatility raises only the additional uncertainty of S(t).
Consequently, S&S overvalues option prices relative to BS. Therefore, this result of
S&S is no longer surprising. Ball and Roma (1994) found that the S&S misdiagnosis
of stochastic volatility effects is due to using an “inappropriate” value for variance
in the BS price. In context of our model, these arguments are not confirmed. The
volatility smile may be reasonably explained only in presence of correlation. If cor-
relation is different from zero, the direction of the movement of S(t) is influenced by
v(t). The correlation between volatility and spot returns is thus necessary to cre-
ate skewness and kurtosis in the distribution of spot returns. Not surprisingly, all
of these discussions are similarily true for the Heston model with and without zero
correlation. Bakshi, Cao and Chen (1997) reported that taking stochastic volatility
is of first-order importance in eliminating the volatility smile, but only in presence of
correlation. Their results should be also valid for our model.

(Insert Table 1)

In Table 2, we examine how the option prices vary with the mean-reversion level
6. The finding that option prices are very sensible to € is confirmed. Since 6 indicates
the long-run level of volatility, this sensitivity can be considered as the sensitivity of
option prices to their volatilities in the long run. Furthermore, it seems to be that
f is more important than the spot volatility v(¢) for the pricing of options in the
framework of a mean-reversion process. If the true process of volatility performs
mean-reversion, and option prices are evaluated using the spot volatility from the BS
formula, a significant pricing bias will occur. All prices in Panel E correspond to the
case of S&S. The numbers in italics in Panels D, E, and F are option prices under
the restricted Heston model in the sense of equations (19) and (20). The implied zero
level of the mean-reversion leads to an overall undervaluation of options compared
with BS.

(Insert Table 2)

Table 3 demonstrates the impact of p on Delta Ag which is of first-order im-
portance for hedging purposes whenever stochastic volatility models are used. First,
for the given parameters almost all of the Deltas are a decreasing with correlation
p except a few deep-ITM and deep-OTM options across the three Panels G, H and



I. Second, the changes of values of near-ATM options relative to the correlation p
are more sensitive than these of deep-ITM and deep-OTM options. The differences
between Ag in our model and the BS model for near-ATM options should not be ne-
glected. For a negative correlation, using Ag of the BS model seems to cause a severe
underhedging for near-ATM options. Furthermore, the long-term level of volatility 6
is also important for hedging. Keeping other parameters unchanged, the greater 8 is,
the smaller (greater) Ag will be for ITM (OTM) options. The sensitivity of Ag to
# is remarkable and can be studied more detailed by the second derivative Agy. We
conclude that an unbiased estimate of 4 is crucial for Delta-hedging.

(Insert Table 3)

4 Conclusions

Stochastic volatility option pricing models provide us with new insights into derivative
security markets. Generally stochastic volatilities have been specified at least by two
classes of stochastic processes. The first specification is the mean-reversion square-
root process in the line with the famous interest rate process of Cox, Ingersoil and
Ross (1985b). The closed-form pricing formula for options with squared volatility
(variance) following such a process is given by Heston (1993). The advantage of
square-root process might be obvious: Squared volatilities never become negative.

The second specification is a mean-reversion O-U process. In this paper, we have
derived a closed-form pricing formula for the general case where volatility is allowed
to display arbitrary correlation with the underlying stock price. Since in a diffusion
context negative volatilities only mean that upward moves of the driving Brownian
motion become downward moves of the stock price and vice versa, we believe that
this is not a severe theoretical restriction and suggest this new closed-form pricing
formula is an alternative to Heston’s solution: Not surprisingly, squared volatilities
never become negative here either.

Certainly it is interesting to study the empirical evidence of this second specifi-
cation and compare its performance with the Heston model and its generalizations.
This is left for future research.

Notes

! Because the volatility v is not a traded asset, this risk-adjusted martingale measure
is not unique but depends on the market price of volatility risk A which is (implicitly)
determined by the market participants. A common way to specify A is to assume
Adt = yCov[dv,dC/C] where v and C are the relative-risk aversion parameter and
consumption respectively. From the Cox, Ingersoll and Ross (1985a) equilibrium
model, one can get a consumption process [also see equation (8) in Heston (1993)}:

dC = pv(t)2Cdt + ov(t)Cdw,(t),

where the investor is assumed to have log-utility, i.e. v = 1. Consequently, the risk
premium is proportional to v, A(v) = Av with A a constant.



2 Heston (1993) wrote in the appendix of his paper: © Although Stein and Stein (1991)
assume the volatility process is uncorrelated with the spot asset, one can generalize
this to allow 21(t) and 2(t) to have constant correlation. - --- - ”. Following this sug-
gestion, we found that this leads to a rather cumbersome procedure. His method does
not lead to a decomposition of the PDE into several ordinary differential equations
which can be solved successively.

3 Our choice of probability measure to calculate the CFs corresponds with Scott
(1997). Depending on the two numeraires "stock price” and "default-free discount-
bond price” the two functions ¢; in (4) and g2 in (5) define two likelihood processes
which are martingales themselves. Therefore we can switch from one measure to the
other without violating the no arbitrage condition. For a constant interest rate, go
has a value of one. Thus in this case, the measure Q? is identical to the original
measure Q. See Geman, El Karoui and Rochet (1995) for details.

* In fact, we can embody stochastic interest rates into this option pricing model
by asssuming that stochastic interest rate and stochastic volatility are mutually in-
dependent. Interest rates can be specified either as a mean-reverting O-U process
(Vasicek, 1977) or as a mean-reverting square-root process (Cox, Ingersoll and Ross,
1985b). The derivation of the corresponding CFs follows the same lines as shown in
the Appendix.

5 In these calculations, two facts from stochastic calculus are employed. One is the
decomposition of a standard Brownian motion. If two standard Brownian motions
dw; and dwsg are correlated with dwidws = pdt, so dwy can be expressed as dw; =
pdws + /1 — p?dw where dwdws = 0 and dwdw; = /1 — p?dt. The second is the so-
ce(tlled It6 isometry which says var[fot v(u)dw(u)] = E[fot v?(u)du] for any Ito process
v(t).

6 Applying It6’s Lemma once again, we obtain the process of v(t) = \/y(t) :
dv(t) = [$(knbn — iaﬁ)v(t)“l — Lkpv(t)]dt + Jondw(t).

Obviously, if (21) is not satisfied, kpfn — L—lt(r,zl will not be zero. Hence the term
v(t)~! will appear in the volatility process. As a consequence, the specification of
y(t) = v(¢)? such as (20) should also be examined carefully. If the volatility follows a
mean-reversion O-U process as (2), the process for the squared volatility is

dy(t) = [0% + 260+/y(t) — 2ky(t)]dt + 20\/y(t)dw,(t).

This is also a mean reversion square-root process with an additional term 2x6./y(t).

Appendix

fi(#) can be calculated as follows (The expansion of f2(¢) follows the same way.):
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fi(o) = EQ [exp {—r (T = t) — x(t) + (1 + i6)x(T)}]

T T T
=E¥ liexp {—r (T —t)—x(t) + (1 + i) (:c(t) + / rdu - / v2(u)du + / 'u(u)dws(u)> }}

T

. T
t v?(u)du + ./z v(u)dws(u)> }}

= exp {16 (r (T — t) + z(t))} B9 {exp {(1 +19) <——§ /

J1(9) = exp{id (r (T — t) + x(t))} x

T T T
xE@ [exp {(1 +1i¢) (—% ./t v (u)du + p /t v(u)dwy,(u) + /1 — p? ./t v(u)dw(u)) H

Note that dw is uncorrelated with dw,:

f1(¢) = exp {id (r (T — t) + z(t))} x

T

T . T
xEQ {exp{(l%—w&) (——é—/t vz(u)du+p/t v(u)dwu(u)> (1 +19)%(1 - p?) /t v2(u)duH

= exp {ig (r (T = t) + (1))} x

T
xE9

T
v2(u)du + (1 +1i¢)p / v(u)dwv(u)}J

St

exp {%(1 +i9) (1 +ig)(1 ~ p?) = 1) /

Jot

T

=exp{i¢p (r(T —t) +z(t))} E? [exp{ (1+1i8) (1 +ig)(1 —p?) — 1) / v? (u)du+

Jot

7ot

+1+i0) L (ﬁ(T) —2(t) — 0X(T — t) — 248 /tT v(u)du + 26 /T v2(u)du> H

= exp {i¢ (r (T —t) + z(t))} E¥

exp{%(l-}-iqﬁ)((l-{-i(ﬁ)(l— 2) 14 250 ”)/ v?(u)du—

t

~(1+i9) 4 (V3() + 0T = 1)) + (1 +16) -vA(T) - (1+z¢)”””" /tv<u>du}]

= exp {z‘¢ [2(t) + (T = 8)] = (1 +16) £ (v2(t) +02(T - 0)} x

T T
exp {—31 /: v2(u)du — s9 /t v(u)du + 33v2(T)}

11
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Now we have to calculate the expectation

T

Y.t T) = ER [exp{—sl /T&(u)du—”/ v(u)du+53v2(T)H

Jot t

= 59 [enp | (o) - s2u(u)d ) exp(s20*(T)|

t

for arbitrary complex numbers s;, s and s3 and ~s1v?(u) — sov(u) is lower bounded.
According to the Feynman-Ka¢ formula, y satisfies the following differential equation
[see Karlin and Taylor (1975) and ©@ksendal (1995)]

L 20%

9y 2 Oy _
57 507 + k(0 —v) 5y (s1v* + sav)y + =0

ot
with boundary condition
y(v,T,T) = exp(szv?).
It can be shown that the above differential equation has a solution of the form
y(,t,T) = exp{3A(t, T)o(t) + B(t, T)v(t) + C(¢,T) + s30%(t)}
= exp {3(A(t,T) + 2s3)v*(t) + B(t, T)v(t) + C(t,T)}
= exp{3(D(¢t,T)v(t) + B(t,T)v(t) + C(t,T)}

with D(¢,T) = A(t,T)+2s3. Substituting this into the differential equation, we obtain
a system of three ordinary differential equations that determine D(¢,T'), B(¢,T) and
C(t,T).

D; = —0%D?+2kD + 25,

B, = (K—O’ZD)B — kBD + s9

C = —%02B2 — k0B — %02D
where D(T,T) = 2s3 and B(T,T) = C(T,T) = 0. Solving these equations is straight-
forward but tedious. We get

12



_ sinh {7 (T = t)} +y2cosh {m1(T - ¢)}
b.1T) = ) <R - cosh {71 (T — t)} + vasinh {m (T - t)})

1 [ (kv —v2v3) + 73 (sinh {y1(T = ¢)} + y2cosh {n1(T ~ t)})
B T) = o2y < cosh {71 (T = t)} + yesinh {y1(T - t)} - K071>

C(t,T) = —3%ln(cosh{i(T —¢t)} +yesinh {n(T —t)}) + %FL(T —t)+
(526°F — %) sinh {n (T ~ t)} i
202y} (cosh {Mm(T =)} +vasinh {(m (T - t)} n(T t)> *
(501 = 7273) 73 ( cosh{n (T -t)} -1 )
o2y} cosh {71 (T — t)} + e sinh {7 (T — t)}
with

M = V20%s1 + K2, Yo = ;1— (k — 20%s3) v3 = K20 — sq0?.
1
Using the time dependent functions D(¢,T), B(¢t,T) and C(t,T), we obtain closed-
form solutions for f;(¢).
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Table 1. The impact of p on option prices.

p K 90 95 100 105 110 115 120
BS 15.12 | 11.34 8.14 5.58 3.66 2.29 1.38
-1.00 | 1542 | 11.62 8.31 5.576 3.47 1.96 0.99
-0.75 | 15.35 | 11.56 8.28 5.58 3.53 2.06 1.11
-0.50 | 15.29 | 11.50 8.24 5.60 3.58 2.16 1.22
-0.25 | 1522 | 11.44 8.21 5.61 3.64 2.25 1.32
0.00 | 1516 | 11.38 8.18 5.62 3.69 2.38 1.42
025 | 15.08 | 11.31 8.14 5.63 3.75 2.42 1.51
0.50 | 15.00 | 11.24 8.11 5.64 3.80 2.50 1.61
0.75 | 14.92 | 11.17 8.07 5.65 3.86 2.58 1.70
1.00 | 14.83 | 11.09 8.03 5.66 3.91 2.65 1.77

A0=02r=40=01,0=027T—t=05,5 =100, = 0.0953

[p K1 9 95 [ 100 | 105 110 [ 115 [ 120

-1.00 14.73 10.60 6.98 4.06 1.98 0.74 0.18
-0.75 14.68 10.54 6.94 4.07 2.05 0.85 0.28
-0.50 14.63 10.48 6.89 4.075 2.12 0.96 0.37
-0.25 14.57 10.42 6.85 4.085 2.19 1.05 0.46
0.00 14.52 | 10.35 6.80 4.093 2.25 1.14 0.54
0.25 14.56 10.27 6.75 4.10 2.32 1.23 0.62
0.50 14.40 10.19 6.60 411 2.38 1.31 0.70
0.75 14.33 10.10 6.65 4.12 2.43 1.39 0.77
1.00 14.26 10.00 6,59 4.125 2.49 1.46 0.85

B =01,k=40=010=027T—t=05,8=100,r = 0.0953

p K1 90 95 100 | 105 110 | 115 ] 120 |

-1.00 16.36 12.85 9.78 7.186 5.08 3.45 2.24
-0.75 16.30 12.80 9.75 7.198 5.13 3.53 2.34
-0.50 16.24 12.75 9.73 7.210 5.18 3.61 2.44
-0.25 16.17 12.70 9.71 7.223 5.23 3.69 2.54
0.00 16.11 12.65 9.69 7.236 5.28 3.77 2.64
0.25 16.04 12.60 9.66 7.251 5.33 3.84 2.73
0.50 15.96 12.54 9.64 7.265 5.38 3.92 2.82
0.75 15.85 12.49 9.62 7.280 5.43 3.99 291
1.00 15.81 | 1243 9.60 7.296 5.47 4.07 2.99

C:0=03k=40=01,0=02T—t=05,8 = 100,r = 0.0953
The italic numbers correspond to the model of S&S.

15



Table 2. The impact of 8 on option prices.

g K 90 95 100 105 110 115 120
BS | 1451 | 1037 | 6.86 4.18 2.32 1.18 0.55
0.0 | 14.19 | 9.46 5.14 2.17 0.76 0.24 0.075
01 | 1426 | 9.84 6.13 3.47 1.81 0.89 0.425
02 | 1472 | 1080 | 7.55 5.04 3.24 2.01 1.22
03 | 1561 | 1208 | 911 6.70 4.83 341 2.38

D:p=05k=4,0=0.1,v=015T—-t=0.5,5 = 100,r = 0.0953
(0 7 90 [ 9 [ 10 [ 105 [ 110 | 115 120
0.0 [ 1420 | 953 | 527 2.17 0.65 0.15 | 0.030
0.1 | 14.35 | 10.00 | 6.25 3.45 1.68 0.73 0.292
0.2 | 14.87 | 1095 | 7.63 5.02 3.12 1.84 1.04
03 | 1575 | 1220 | 9.16 6.68 473 3.26 2.19
E:p=00,k=4,0=01v=015T -t =05,5 = 100, = 0.0953
|68 K] 90 95 | 100 [ 105 [ 110 | 115 120
0.0 | 14.22 | 9.60 5.87 2.15 0.50 0.06 0.004
01 | 1444 | 1013 | 6.36 3.44 1.53 0.54 0.155
02 | 15.00 | 1108 | 771 5.00 3.00 1.66 0.842
03 | 1589 | 1231 | 9.21 6.65 4.63 3.09 1.99

F:p=-05k=4,0 =01,v=0.15T -t =0.5,5 = 100, = 0.0953
The italic numbers correspond to the restricted Heston model.
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Table 3.The impact of p on Delta Ag.

p K 90 95 100 105 110 115 120
BS | 08755 ] 0.7795 | 0.6582 | 0.5249 | 0.3950 | 0.2807 | 0.1890
-1.00 | 0.8751 | 0.7949 | 0.6895 | 0.5644 | 0.4299 | 0.3002 | 0.1883
-0.75 | 0.8708 | 0.7916 | 0.6825 | 0.5547 | 0.4204 | 0.2941 | 0.1881
-0.50 | 0.8751 | 0.7881 | 0.6751 | 0.5449 | 0.4113 | 0.2889 | 0.1883
-0.25 | 0.8752 | 0.7844 | 0.6673 | 0.5350 | 0.4027 | 0.2843 | 0.1887
0.00 | 0.8754 | 0.7802 | 0.6591 | 0.5251 | 0.3945 | 0.2802 | 0.1891
0.25 | 0.8756 | 0.7757 | 0.6504 | 0.5153 | 0.3868 | 0.2765 | 0.1896
0.50 | 0.8759 | 0.7707 | 0.6413 | 0.5055 | 0.3795 | 0.2732 | 0.1899
0.75 | 0.8761 | 0.7649 | 0.6317 | 0.4957 | 0.3725 | 0.2701 | 0.1904
1.00 | 0.8761 | 0.7584 | 0.6216 | 0.4862 | 0.3659 | 0.2673 | 0.1907
G:0=02k=4,0=01v=02T~t=055=100,7 = 0.0953
[p K] 90 J 95 T 100 [ 105 [ 10 [ 115 | 120
-1.00 | 0.9246 [ 0.8490 | 0.7302 [ 0.5684 | 0.3816 | 0.2048 | 0.0763
-0.75 | 0.9267 | 0.8479 | 0.7229 | 05554 | 0.3694 | 0.2025 | 0.0867
-0.50 | 0.9293 | 0.8467 | 0.7151 | 05424 | 0.3584 | 0.2012 | 0.0947
-0.25 | 0.9323 | 0.8456 | 0.7068 | 0.5293 | 0.3485 | 0.2003 | 0.1012
0.00 | 0.9359 | 0.88445 | 0.6978 | 0.5163 | 0.3395 | 0.1996 | 0.1065
0.25 | 0.9403 | 0.8433 | 0.6881 | 05033 | 0.3311 | 0.1989 | 0.1111
0.50 | 0.9458 | 0.8421 | 0.6774 | 04903 | 0.3234 | 0.1982 | 0.1149
0.75 | 0.9530 | 0.8404 | 0.6656 | 04773 | 0.3163 | 0.1975 | 0.1182
1.00 | 0.9629 | 0.8379 | 0.6526 | 0.4645 | 0.3095 | 0.1967 | 0.1211
H: §=01,c=4,0=01,v=02T—t=055 = 100, = 0.0953
lp ¥ 90 | 95 100 105 [ 110 [ 115 | 120
-1.00 | 0.8317 [ 0.7552 | 0.6646 | 0.5644 | 0.4606 | 0.3599 | 0.2682
-0.75 | 0.8300 | 0.7512 | 0.6584 | 0.5568 | 0.4532 | 0.3541 | 0.2652
-0.50 | 0.8282 | 0.7469 | 0.6519 | 0.5492 | 0.4459 | 0.3487 | 0.2626
-0.25 | 0.8264 | 0.7424 | 0.6452 | 0.5416 | 0.4389 | 0.3437 | 0.2604
0.00 | 0.8243 | 0.7376 | 0.6383 | 0.5389 | 0.4322 | 0.8390 | 0.2584
0.25 | 0.8221 | 0.7324 | 0.6311 | 0.5263 | 0.4256 | 0.3347 | 0.2566
0.50 | 0.8196 | 0.7269 | 0.6237 | 0.5187 | 0.4193 | 0.3306 | 0.2550
0.75 | 0.8169 | 0.7210 | 0.6162 | 05112 | 0.4133 | 0.3267 | 0.2536
1.00 | 0.8137 | 0.7147 | 06084 | 05038 | 04074 | 0.3231 | 0.2522

.0=03,k=4,0=0.1,v=02,T -t = 05,5 =100, = 0.0953
The italic numbers correspond to the model of S&S.
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