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Abstract 1 

In this paper we examine small sample properties of a generalized method of moments (GMM) 

estimation using Monte Carlo simulations. We assume that the generated time series describe the 

stochastic variance rate of a stock index. We use a mean reverting square-root prooess to simulate 

the dynamics of this instantaneous variance rate. The generated time series consist of 63, 250, and 

1000 data points, respectively. They are used to estimate the Parameters of the assumed variance 

rate process by applying GMM. The results obtained are described and compared to our estimates 

from empirical volatility data. We use the German volatility index VDAX, historical volatilities of 

the German stock index DAX over 10, 22 and 33 trading days as well as daily volume data of the 

German stock market. 

1 We wis h to acknowlege helpful comments of Robert Jung and Roman Liesenfeld. Special thanks to Roman 

Liesenfeld for his support with the Computer programs. We thank the Deutsche Börse AG for providing us with the 

data. Financial support from the Deutsche Forschungsgemeinschaft is also gratefully acknowledged. 
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1. Introduction 

Since empirical studies indicate a mean reverting behavior of the volatility of the returns of stocks 

or stock indices, 2 it has become populär to model stochastic volatility as a continuous-time 

square-root process. This results in a system of two stochastic variables, where the stock price or 

stock price index is denoted by S(t), and its instantaneous variance rate v(t) serves as a second 

State variable. Following Heston (1993), the dynamics of such a system can be specified as 

dS(t) = fiS(t)dt + y/v(t)S(t)dwi(t) (1-1) 

dv(t) — K[0 — v(t)] dt + er y/v{t)dwz{t). (1-2) 

In equation (1.1), the parameter /x is the expected instantaneous rate of return of S(t), and yjv(t) 

is its instantaneous stochastic volatility. The corresponding instantaneous variance rate v(t), de-

scribed by equation (1.2), follows a square-root process with mean reversion parameter K, a long-run 

target variance 9, and volatility parameter er. (Hence, er can be thought of as the "volatility of 

volatility.") The system is driven by a two-dimensional Brownian motion [w\{t), W2(t)} with corre-

lation parameter p. 

One advantage of this specification is the fact that v(t), once started from the positive half of the 

real axis, subsequently never becomes negative. 3 Actually, equation (1.2) implies that v(t) can 

reach zero if er2 > 2K9, in which case the boundary at v(t) = 0 is of the reflecting type. Otherwise 

v{t) = 0 is a natural boundary. 4 

In this paper we restrict ourselves to the estimation of the three parameters K, 8 and a of equation 

(1.2). Using this simplified setting, our objective is twofold: First, we want to examine the small 

sample properties of the GMM estimation procedure using Monte Carlo Simulation techniques. 

Second, we want to compare these results with those we get when using empirical volatility data 

for parameter estimation. 

We assume that not the stock price movements but the dynamics of the stock index itself can be 

described according to equations (1.1) and (1.2). To measure volatility empirically, we choose the 

2 See Bühler/Grünbichler. 
3 An alte rnative specification is given in Stei n/Stein (1991), where the instantaneous volatility, not the variance 

rate, can become negative. 
4 For details see C ox/Ingersoll/Ross (1985). 
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VDAX, 5 some historical volatility estimates of daily DAX returns, or data for the daily trading 

volume of German stocks. 

2. The GMM estimation procedure 

Our estimation procedure for the parameters of the volatility process (1.2) utilizes the generalized 

method of moments (GMM) developed by Hansen (1982). 6 We estimate the parameters of the 

continuous-time model (1.2) using the discrete-time Euler approximation 7 

vt — vt-i = nOAt — KV t-iAt + et, (2.1) 

with 

This leads to 

E[et] = 0, E [efj = <r2Atvt-\ = <r*2vt-i- (2.2) 

et = vt — vt-1 — udAt + KVt-iAt 

= Vt — Vt-l - K*9 + 

We define <p to be the parameter vector with elements K*, 9 and <r*. 8 Let the vector ft (f) be 

(2.3) 

ft (<p) = 

et 

EtVt-1 
2 *2 

et ~ a vt-1 

(el - <r*2vt-1 j vt-i _ 

(2.4) 

0 The VDAX is a volatility index for the Ge rman stock index DAX. I t is computed implicitely using DAX -option 

prices. The procedure is similar to the one used by the CBOE to calculate the VIX. For a detailed description see 

Redelberger (1994). 
6 Chan/Karolyi/Longstaff/Sanders (1992) use a similar specification to compare a variety of continuous-time 

models of the sho rt-term interest rate. 
7 If changes of the volatility process are measured over short periods of time, the approximation error is known 

to be of second-order importanc e. See Duffie (199 2), p. 200. 
8 We estimate K* , 0 and er* instead of «, \fÖ and <r, since more accura te results are obtained if paramete r values 

have about the same magnitude. 
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Under the null hypothesis that the model described by (2.1) and (2.2) is true, E[ft (</?)] h as to be 

zero. Replacing E[ft (</?)] b y its sample counterpart QT (y?), t hat is 

gr{y) = ^ E W, t = l,...,T, (2.5) 
(=1 

we get parameter estimates of K*, 6 and er*, by minimizing the quadratic form 

JT{V) = g'T (W WT {<p) 9T (</?), (2-6) 

where WT {f) is a positive-definite Symmetrie weighting matrix. In general, the GMM estimates 

of the parameter vector (p do depend on the choice of WT (<p) • However, due to a result by Hansen 

(1982), the weighting matrix WT(<P) = S~l (y), where 

SM = (2.7) 

gives us the GMM estimator of ip with the smallest asymptotic covariance matrix. Using an ap-

proach developed by Newey and West (1987), we replace S(ip) by its estimator S(ip) and get for 

the asymptotic covariance matrix for the GMM estimate of <p th e expression 

T (%,))""' (y) 
-1 

A <?=<<> 

(2.8) 

(2.9) 

To get a first estimation of ip, we choose WT (<p) = I• This leads to a consistent but inefficient 

estimate <p\. With this first estimation of tp we can proeeed as previously described to get a second 

and efficient estimate However, this second estimate still depends on the value of ip\, because 

of its use in calculating WT(<P\)- Therefore, we also carry out a third run of the GMM procedure. 

This time we are able to use the efficient estimate in calculating WT(JP2)- Especially for short 

time series, this leads to a distinet increase in the accuracy of our estimations. 
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The number of sample autocovariances used in the calculation of WT (<p) = [S(tp)J are chosen to 

be either l = 1, l = 9, or the automatic lag-truncation parameter for the Bartlett kernel (l = auto) 

as described in Andrews (1991). 

The minimized value of JT(*P) us ing (2.6) is distributed x2 under the null hypothesis that the model 

is true with degrees of freedom equal to the number of orthogonality conditions minus the number 

of parameters to be estimated. This x2 measure is used in the Hansen specification test. A high 

value of this test statistic means that the model is misspecified. 

The calculations are done with GAUSS. We use the Davidon-Fletcher-Powell (DFP) optimization 

algorithm with a maximum of 2000 iterations. 

3. Monte Carlo simulations 

3.1. The data-generating process 

Uhfortunately, Statistical properties of GMM estimators are known only asymptotically. Thus, in 

practice, exact finite-sample theory cannot be used to Interpret these estimates or test statistics. 

Unless the sample size is sufficiently large, it is difficult to know whether asymptotic approximations 

are misleading or not. In this Situation, Monte Carlo simulations allow us to check the validity of 

estimators and test statistics for finite samples. To investigate the finite-sample properties of the 

GMM estimators of our econometric model (2.1) and (2.2), we specify a data-generating process of 

the following form: 

vt = vt-i + nOAt - KVt-iAt + (Ty/vt-iUt 

= K&At + (1 — K,At)vt-l + CTy/Vt-lUJt (3.1) 

= K*9 + (1 - K*)vt-\ + (Ty/vt-iüJt, with ut ~ N(0, At), t = l,...,T 

Hence, the error term uJt has a normal distribution with mean 0 and variance At. The starting 

value VQ is c hosen to be equal to 0. In other words, it is assumed that the volatility at the beginning 

of the Simulation is exactly at its long-run level. The length of the simulated time series are T = 63, 

T = 250, or T = 1000 trading days, respectively. This corresponds to Observation periods of three 

months, one year, or four years. Each Monte Carlo experiment has been replicated n = 5000 
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times for each T. Parameter estimates and test statistics are calculated for each Single replication 

according to the GMM procedure described in the preceding section. To preserve comparability, 

all calculations within one group (T = 63, T = 250 and T = 1000) were done by using the same n 

simulated time series. Hence, all GMM estimates for different lags within one group are based on 

identical data sets. The "true" parameter values used for all Monte Carlo simulations are given in 

Table 3.1. 

Parameter Value 
9 0.0225 
K* 0.0160 
er* 0.0126 
Ve 0.1500 
K 4.0000 
<T 0.2000 
A t 0.0040 

Table 3.1.: True parameter values for Monte Carlo simulations. 

It should be noted that the results of a Monte Carlo experiment are themseives estimates, and 

therefore subject to experimental error. However, using a sufficiently large number of replications, 

this error can be made arbitrarily small. 

3.2. Parameter estimates 

The resulting parameter estimates due to our GMM estimation procedure are given in Table 3.2 

and Figur es 3.1a, 3.1b and 3.1c. 9 As expected, the estimates for T = 1000 are more precise than 

for T = 250, which also outperform those for T = 63. Not only the Standard deviations of the 

estimated values are lower, but the sample means of 9, K* a nd a* are also closer to their true values, 

or at least at the same level. The same can be observed for the means of Vö, K a nd d. 10 When 

looking at the medians, all results for T = 1000 strictly dominate those for T = 250. On the other 

9 The figures only show the distributions for l = 1, since the results for l = 9 and l = auto are almost identical. 
10 A better mean of the estimated values for the target variance 0 does not necessarily imply a be tter mean for the 

target volatility \J~6, too. This is because \fÖ is not just the Square root of 0, but is calculated as ^ ^ which 
i—1 

/ 
is not equal t o < / ^ #«-
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hand T = 250, also leads to better results compared to T = 63, except for the medians for 9 and 

\fö, respectively, which are closer to the true values for T = 63. 

The precision of the estimated parameter values differs significantly. For 9 the Standard deviations 

of the estimates are considerably larger than for a*, not only in absolute terms, but also relative 

to their means. However, compared with /?, the precision of these two parameter estimates is 

? K* <T* vf K <7 
(.0225/ (.0160/ (.0126/ (.1500/ (4.0000/ (.2000/ 

1 = 1° 

mean .0232 .1033 .0120 .1485 25.8137 .1894 
T = 63 std.dev. .0120 .0690 .0012 .0331 17.2455 .0187 

median .0216 .0876 .0120 .1470 21.8957 .1896 
mean .0230 .0366 .0125 .1495 9.1513 .1976 

T = 250 std.dev. .0092 .0208 .0006 .0253 5.1947 .0093 
median .0215 .0328 .0125 .1467 8.1944 .1977 
mean .0225 .0210 .0126 .1494 5.2537 .1994 

T = 1000 std.dev. .0038 .0075 .0003 .0123 1.8850 .0046 
median .0222 .0201 .0126 .1489 5.0237 .1994 

1 = 9® 

mean .0231 .1034 .0121 .1480 25.8452 .1909 
T = 63 std.dev. .0148 .0677 .0012 .0346 16.9265 .0182 

median .0215 .0887 .0121 .1466 22.1714 .1906 
mean .0228 .0380 .0125 .1488 9.4936 .1977 

T = 250 std.dev. .0086 .0213 .0006 .0250 5.3242 .0092 
median .0213 .0339 .0125 .1458 8.4775 .1977 
mean .0224 .0214 .0126 .1490 5.3604 .1994 

T = 1000 std.dev. .0037 .0077 .0003 .0123 1.9181 .0046 
median .0221 .0206 .0126 .1486 5.1416 .1994 

1 = auto a 

T = 63 mean .0232 .1036 .0120 .1485 25.9074 .1895 
l = 1.43 a-b std.dev. .0122 .0692 .0012 .0333 17.2951 .0187 

(.78)" median .0216 .0879 .0120 .1469 21.9640 .1896 
T = 250 mean .0230 .0367 .0125 .1495 9.1813 .1976 
l = 1.48 a'b std.dev. .0086 .0208 .0006 .0250 5.2070 .0093 

(.81)' median .0215 .0327 .0125 .1466 8.1853 .1977 
T = = 1000 mean .0225 .0210 .0126 .1494 5.2619 .1994 
l = 1.53 std.dev. .0038 .0075 .0003 .0123 1.8861 .0046 

(.83)" median .0222 .0201 .0126 .1489 5.0373 .1994 

Table 3.2: Parameters estimated from time series generated by Monte Carlo simulations. 
° l: lag 
b mean of the lag values when using auto matic bandwith 
0 Standard deviation of the distribution of the lag values when usin g automatic bandwith 
d true values 
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acceptable. This confirms common knowledge, that it is in general very difficult to estimate the 

mean reversion parameter K w ith sufficient precision. Fortunately, this finding is counterbalanced 

by the fact that the sensitivity of valuation models often is low with respect to variations in the 

mean reversion parameter K. 

A closer look at the GMM estimators from our simulated data in Table 3.2 shows that the number 

of autocovariances used to calculate WT (y) does not affect the results in a significant way. If 

we compare the results for the cases 1 = 1 and Z = 9, we see that they are almost identical. 

Assuming our model is a correct description of reality, we can conclude from the similarity of 

the results that the value for vt-\ seems to be the most relevant one, when dealing with daily 

autocorrelations. The one-day-autocorrelation is decisive for parameter estimation. To check for 

this, we also use a Bartlett kernel with automatic bandwidth, i.e. the number of autocorrelations 

considered was chosen dependent on the data of the time series. The lags for l = auto are within 

a ränge from 0.0081 to 4.5844 for T = 63, 0.0082 to 4.8017 for T = 250, and from 0.0099 to 

4.6405 for T = 1000. The associated Standard deviations of the distributions of the lag values 

are 0.78, 0.81 and 0.83, respectively. That is, the distributions of the lag values are very similar. 

The same can be said about the quality of the estimates, when we compare them to those for 

l = 1. The results documented in panels l = 1 and l = auto are almost identical. Therefore, 

using simulated data, we can conclude that the number of data points per time series is not an 

350 

T = 1000 

T = 250 

fr-r*| 
Ä o 

& a> y— CM CO 
O Ö 

8 Ä 
Ö 

s 
ö 

cn •»- co in co ^ 
ö o ö ö 

Figure 3.1a: Distributions of \fü for T = 63, T = 250, and T = 1000 with l = 1. The numbers on the Ordinate 
correspond to the total number of observations out of samples of n = 5000. 
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Figure 3.1b: Distributions of K for T = 63, T = 250, and T = 1000 with Z = 1. The numbers on the ordinate cor-
respond to the total number of observations out of samples of n = 5000. 
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Figure 3.1c: Distributions of a for T = 63, T = 250, and T = 1000 with l = 1. The numbers on the ordinate cor-
respond to the total number of observations out of samples of n = 5000. 

important factor when choosing the number of autocorrelations. On the other hand, including 

more than one autocorrelation does not considerably improve the quality of the GMM estimates of 

our simulated data. However, using real world data, this pattern may be different. 
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3.3. t statistics 

Every Single estimation produces not only an estimate for each parameter, but also one for the 

corresponding Standard deviation of the estimation. Hence, it is a common proceeding to calculate 

t statistics for GMM estimates. Usually one favors estimates which are significantly different 

from zero at a certain level, e.g. the 5%-level. Those who fulfill this criterion are regarded as 

good estimates, otherwise they rise doubts in regard to the specification of the underlying model. 

Therefore, we examine the t statistics of all GMM estimates to check for the accuracy of this 

procedure in the context of our Monte Carlo Simulation. Table 3.3 shows the results. 

Since the Standard deviations of our estimates decrease with longer time series, one must expect 

decreasing proportions of insignificance across the different time series. This is exactly what we 

observe. Longer time series lead in general to fewer rejections of the null hypothesis. 

The ranges of the t statistics of 6 are smaller for longer time series, which is mainly due to a 

decrease in the maximum values of the statistics. As mentioned above, one is usually interested 

in estimates which have t statistics significantly different from zero. In our case the estimates are 

significant at a 5%-level, if they have a t statistic of at least 1.646 for T = 1000, 1.651 for T = 250, 

and 1.670 for T = 63 11. This is given for the large majority of our estimates. But looking at 

Figure 3.2a 12, we see that we have estimations of up to 0.52 for \fö. These extreme estimations 

are clearly far from the true value, but all are not significant. That is, by applying the significance 

criterion we can exclude all estimations that are extremely far away from the true value. On the 

other hand, there seems to be a tendency for larger t statistics to correspond to better estimations. 

This phenomenon can be seen best for T = 63 where we also have the largest t statistics. Since the 

estimates of \/6 are very good for these cases, the only explanation can be found in small Standard 

deviations, which obviously are much smaller than for comparable estimation results for longer 

time series. 

In the case of K*, the mean values of the t statistics given in Table 3.3 show, that depending 

on the length of the time series, up to 42.1% of the estimates are not significantly different from 

zero according to their individual t statistic. As Figure 3.2b shows, the estimations with smaller t 

statistics are often better than those with larger t statistics compared with the true value. This is 

11 We apply one-sided t tests, since our estimates cannot become negative. 
12 The t statistics are calculated using the actually estimated parameter values, i.e. in our case 0, n* and er* . But 

to keep all figures comparable, we sh ow the relation between the t statistics and the estimates \Zö, K and er. 

10 



6 K* (T* 
1 = 1° 

T = = 63 

£ (mean) 
t (median) 
t (min) 

9.7 
7.9 
.0 

1.9 
1.8 
.1 

12.0 
11.9 
6.3 

t (max) 54.0 7.6 20.0 
not significant (%)b 7.8 42.1 .0 

T = 250 

t (mean) 
t (median) 
t (min) 

6.7 
5.9 
.1 

2.0 
2.0 
.0 

22.6 
22.6 
15.3 

t (max) 36.5 5.3 30.5 
not significant (%)b 3.5 32.6 .0 

T = 1000 

t (mean) 
t (median) 
t (min) 

7.8 
7.5 
.4 

2.9 
2.9 
.3 

44.1 
44.1 
35.2 

t (max) 20.3 5.4 51.2 
not significant (%)6 .1 3.3 .0 

1 = 9" 

r = 63 

t (mean) 
t (median) 
t (min) 

10.8 
8.4 
.0 

2.6 
2.4 
.0 

14.5 
14.0 

5.8 
t (max) 84.9 9.9 35.5 
not significant (%)b 6.8 25.7 .0 
t (mean) 
t (median) 

6.9 
6.1 

2.3 
2.2 

23.7 
23.5 

T = 250 t (min) .0 .0 14.4 
t (max) 40.1 6.4 38.7 
not significant (%)b 3.3 23.8 .0 
t (mean) 7.9 3.1 44.7 

T = 1000 
t (median) 
t (min) 

7.6 
.5 

3.1 
.3 

44.6 
32.6 

t (max) 22.5 6.7 55.8 
not significant (%)b .1 3.0 .0 

1 — auto 
t (mean) 9.7 2.0 12.1 
t (median) 7.9 1.9 12.0 

r = 63 t (min) .0 .1 6.5 
t (max) 54.0 7.6 21.9 
not significant (%)b 7.5 41.2 .0 
t (mean) 6.7 2.0 22.6 

T = 250 
t (median) 
t (min) 

5.9 
.1 

2.0 
.1 

22.6 
15.3 

t (max) 36.8 5.4 30.7 
not significant (%)6 3.4 32.0 .0 
r(mean) 7.8 2.9 44.1 
t (median) 7.5 2.9 44.2 

T = 1000 t (min) .3 .2 36.0 
t (max) 20.0 5.9 51.7 
not significant (%)6 .1 3.2 .0 

Table 3.3: t statistics of the estimations from time series generated by Monte Carlo simulations. 
° l- lag 
b at a 5%-level for a one-side d t test 
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especially obvious for small and medium sized time series, i.e. T = 63 and T = 250. But even for 

T = 1000 we have similar behavior in the t statistics, i.e. they increase with an increase in K. In 

contrast to \J~Q, the ranges of the t statistics do not change much across different time series. For 

GMM estimations from empirical data this implies that a small t statistic for K is not necessarily 

a problem of the model specification. 

X T = 63 
X T = 250 

T = 1000 
— true value 

(=1.646 

XX '%XBK X *t-
0,45 0,60 

Figure 3.2a: Relationships of the e stimated parameters V ö to the corresponding t statistics for all time series 
and l = 1. 

* 

X T = 63 
X T = 250 

T= 1000 
— true value 

t = 1.646 

100 120 

Figure 3.2b: Relationships of the es timated parameters K to the corresponding t statistics for all t ime series 
and 1=1. 
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Figure 3.2c: Relationships of the estimated parameters d to the corresponding t statistics for all time series 
and l = 1. 

This finding is in contrast with Chan/Karolyi/Longstaff/Sanders (1992). They conclude from the 

insignificance of their parameter ß, which corresponds to our K, that allowing their State variable to 

be mean reverting can lead to unnecessarily complex models. As we show above, this is a conclusion 

that cannot be drawn based on the insignificance of the mean reversion parameter, especially since 

the time series observed in their paper has some 300 data points, i.e. it is of comparable size as 

our time series for T = 250. A further problem arises from the length of their Observation period 

which covers more than 25 years. As we will show later, this leads to problems in regard to the 

stability of the parameters which is reflected in lower t statistics. 

The t statistics for <T* in Table 3.3 indicate that all GMM estimates are significantly different from 

zero. Furthermore, the differences between the extreme values of the t statistics are very similar, 

whereas the means increase for longer time series. These results are depicted in Figure 3.2c, where 

we can also see that the Standard deviations of the estimates must be approximately proportional 

to the estimated values of o*. Otherwise we should have more Variation within the values of the 

t statistics within each group. er* i s obviously the only parameter where the quality of the GMM 

estimations is reflected in the size of the t statistics, i.e. better estimations on the average lead to 

larger t statistics. It seems that the size of the t statistics for <T* ca n indeed be used as a measure 

of the accuracy of the estimations. 
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4. Volatility estimates using empirical time series 

4.1. The data 

The data for the German stock index (DAX) and its volatility index (VDAX) used in our study 

are supplied by the Deutsche Börse AG. The data for the DAX contain 9068 observations for the 

period October 1, 1959 until December 29, 1995. The VDAX data were available for the period 

January 2, 1992 until December 29, 1995, consisting of 1006 observations. The volume data used 

in the study are taken from the Handelsblatt, the leading German financial newspaper, for the 

same period as the VDAX. If not otherwise stated, time is measured in trading days rather than 

calendar days. We assume an average of 250 trading days per year. That is, our basic Observation 

interval is At = 0.004 years or one trading day. 

In principle, the instantaneous volatility is unobservable. Therefore, the raw data were used to 

generate the following time series as possible measures of instantaneous volatility: 

1. Series VDAX: 

We use the original time series provided by the Deutsche Börse AG. 

2. Series st dl 0, std22 and stdS3: 

These are historical Standard deviations calculated over moving intervals for the last 10, 22 

or 33 trading days for the day-to-day log-returns of the DAX. This enables us to examine the 

behavior of the DAX for periods of two weeks, one month and 45 calendar days. The latter 

is the hypothetical time to expiration used in the evaluation of the VDAX. 

3. Series NoT: 

We use the number of daily transactions (NoT) in German stocks. This is the only volatility 

measure in our study which is not an average of subsequent daily volatilities. 13 

Estimations based on these time series are for Observation periods that are of comparable size as 

those used for the Monte Carlo simulations. Hence, we choose time series that consist of T = 68, 

T = 251 and T = 1006 datapoints. All time periods end on December 29, 1995. An additional 

13 According to Jones/Kaul/Lipson (1994), it is the occurence of tr ansactions per se rather than the size of the 

transactions that generates volatility. 
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Observation period is used for stdlO, std22 and std33, which covers the period from November 20, 

1959 until December 29, 1995 (9034 observations). 14 

4.2. Empirical results 

In this section we want to compare the GMM results from simulated data with those from empirical 

data. The latter are reported in Tables 4.1 through 4.4. The Monte Carlo simulations show that the 

precision of the estimated parameter values differs significantly. The parameter with the highest 

precision is er* fo llowed by 9 and K*. This is reflected in the values of the corresponding t statistics. 

The t statistics for er* are much larger than those for 9, and both are considerably larger, on the 

average, than the t statistics for K*. The empirical time series stdlO, std22 and std33 show the 

same behavior. For each time series the t statistics for er*, 9 and K* display the same kind of 

ordering. The results for VDAX are ambiguous. For T = 68 and T — 251 the t statistics for 9 are 

larger than those for er* w hereas for T = 1006 the opposite applies. Concerning the series NoT, 

the t statistics for er* a re smaller than those for 9. But obviously they are much larger than those 

for the other time series. 

Again, we examine the impact of the length of the empirical time series on the estimated values. 

In the case of the Monte Carlo simulations, the estimated parameter values are closer to the true 

values, and the Standard deviations are smaller for longer time series. These results do not always 

hold for the empirical data. This can be seen best for the estimates of a*. As we know from 

simulated data, er* c an be estimated very accurately, whereby the t statistics can be used as a 

relative measure of accuracy. Since longer simulated time series lead to better estimations of er*, 

we get larger t statistics for longer time series. The results for the empirical time series T = 68, 

T = 251 and T = 1006 seem to confirm this finding. Here we have a distinet increase in the t 

statistics of er*. Hence, the accuracy of the estimates obviously increases. Therefore one should 

expect a further increase in the t statistics for time series containing even more data points. But 

for T — 903 4 we have t statistics that are significantly smaller than those for T = 1006. Moreover, 

the parameter estimates also differ significantly from those for T = 1006. One explanation for this 

Observation could be the instability of the parameters over time. Since the 9034 observations cover 

a period of more than 36 years, it would be unlikely to have constant parameter values during 

H The data from O ctober 1, 1959 until November 19, 195 9 are used to estimate the first value of th e time series 

std33. 
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the entire time period. This assertion is supported by the smaller t statistics for T = 9034. This 

implies that it is much more difficult for our GMM procedure to find specific parameter values. This 

fact can be explained by unstable parameter values. Hence, when estimating the parameters for 

empirical time series and faced with instabilities in the data, shorter time series are more reliable. 

Having this in mind we see that NoT is a very interesting time series in this regard. Its t statistics 

are the highest, which could be a sign of good stability in the parameters. At first glance the t 

statistics seem to be too high compared to the other results. But we have to consider that NoT 

is not a moving average, as are the series stdlO, std22 and stdSS. As can be seen in Tables 4.1 

through 4.4, a decrease in the number of trading days used for generating a Single data point leads 

to an increase in K* and a decrease in er*. 15 To get parameter estimates that can be compared in 

magnitude with the other series, NoT was transformed, such that the sample mean of NoT would 

equal the Standard deviation of the daily log-returns of the DAX for the same period. Therefore, 

it is not a big surprise that the estimates 0 for the series stdlO, std22, stdSS and NoT are similar 

in magnitude. 

What is the impact of the number of autocovariances used in the calculation of WT (</?)? T he results 

of the Monte Carlo simulations lead us to the conclusion that the size of l is rather unimportant for 

these estimations. When looking at the ranges of the estimates obtained for different values of /, 

we see that the results do not differ much. Compared to the differences in the parameter estimates 

when using different sizes for the time series, the length of the time series has a much bigger impact 

on the results than the choice of l. Therefore we can conclude from this that the size of l is not 

very important for the estimation of the parameters. 

The results stated thus far in this section seem to favor "medium-sized" time series compared 

to long time series. This conclusion is supported by the p-values of the Hansen specification 

test, which tests for the correctness of the underlying model. That is, a large test statistic 

leads to a small value of p, which is a measure for the positive probability that the underly

ing model is correctly speeified for a given time series. For the historical volatility data stdlO, 

std22 and std33, the values of p are significantly larger for time series of up to 4 years than for 

T = 9034. Hence, the shorter time series are much better described by our model than the long ones. 

15 This does not hold for std.33 and std.22 in the case of T = 68. But here we also have the only case where the 

estimate of 9 is not significant. Hence, this time series obviously is too short when it comes down t o the estimation 

of the para meters. 
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0 K" <J* \fd K d P c 

1 = la 

VDAX 
(T = 68)* 

.0215*** .0838"* .0110*** 
(.0022) (.0380) (.0018) 

[9.7] [2.2] [6.1] 

.1465 20.9584 .1737 
.870 

std33 
(T = 68)* 

.0207** .0260 .0128*** 
(.0097) (.0365) (.0021) 

[2.1] [.7] [6.1] 

.1438 6.5017 .2022 
.388 

std,22 
(T = 68)* 

.0175 .0201 .0156*** 
(.0137) (.0269) (.0027) 

[1.3] [.71 [5.8] 

.1324 5.0326 .2471 
.353 

stdlO 
(T = 68)* 

.0196*** .0994* .0416*** 
(.0050) (.0629) (.0061) 

[3.9] [1.6] [6.8] 

.1399 24.8455 .6585 
.535 

NoT 
(:T = 68)* 

.0265*** .6191*** .0333"* 
(.0011) (.0821) (.0032) 

[23.0] [7.5] [10.6] 

.1627 154.7815 .5266 
.016 

1 = 9° 

VDAX 
(T = 68)* 

.0213*** .0843*** .0110*** 
(.0022) (.0261) (.0019) 

[9.6] [3.2] [5.7] 

.1460 21.0670 .1747 
.870 

std33 
(T = 68)* 

.0196 .0211 .0123*** 
(.0176) (.0379) (.0014) 

[1.1] [.6] [8.8] 

.1399 5.2765 .1943 
.347 

std22 
(T = 68)* 

.0125 .0158 .0157*** 
(.0239) (.0162) (.0027) 

[.5] [1.0] [5.8] 

.1119 3.9478 .2486 
.349 

stdlO 
(T = 68)* 

.0180*" .1005"" .0418"* 
(.0051) (.0403) (.0020) 

[3.6] [2.5] [20.8] 

.1342 25.1297 .6612 
.544 

NoT 
(T = 68)* 

.0271*** .5890*** .0297*** 
(.0011) (.0922) (.0030) 

[24.5] [6.4] [9.8] 

.1646 147.2429 .4688 
.058 

1= auto" 
VDAX 

(T = 68)* 
(l = 2.00)' 

.0214*** .0848*** .0110*** 
(.0021) (.0332) (.0018) 

[10.3] [2.6] [6.1] 

.1463 21.1998 .1734 
.873 

std33 
(T = 68)* 
(l = 1.00)" 

.0207" .0260 .0128"* 
(.0097) (.0365) (.0021) 

[2.1] [.7] [6.1] 

.1438 6.5017 .2022 
.388 

std22 
(T = 68)* 
(i = .52)= 

.0175 .0201 .0156*** 
(.0137) (.0269) (.0027) 

[1.3] [.7] [5.8] 

.1324 5.0326 .2471 
.353 

stdlO 
(T = 68)* 
(l = 1.08)" 

.0196*** .0994* .0416"* 
(.0050) (.0629) (.0061) 

[3.9] [1.6] [6.8] 

.1399 24.8455 .6585 
.535 

NoT 
(T = 68)* 
(l = 2.05)" 

.0268*" .6191*** .0323*" 
(.0012) (.0879) (.0030) 

[23.2] [7.0] [10.8] 

.1637 154.7769 .5104 
.018 

Table 4.1: Parameters estimated from empirical time series. 
The numbers in parenthesis give the estimated Standard deviations of the 
estimated values, and the numbers in brackets a re the t statistics. 
*/"/*": significant at a 10%/5%/1%-level for a one-sided t test 
° l: lag 
b T: # of data points 
c p-value of Hansen's x2 test statistic 
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0 K" a* Ve K a Pc 

1 = 1" 

VDAX 
(T = 251)6 

.0206*** .0698*** .0093*** 
(.0012) (.0223) (.0008) 

[17.1] [3.1] [11.4] 

.1434 17.4543 .1471 
.020 

std33 
(T = 251)" 

.0161*** .0172 .0100*** 
(.0042) (.0201) (.0012) 

[3.9] [.9] [8.1] 

.1270 4.3057 .1577 
.678 

std22 
(T = 251)" 

.0157*** .0285* .0141"* 
(.0033) (.0204) (.0016) 

[4.7] [1.4] [8.91 

.1252 7.1223 .2236 
.915 

stdlO 
(T = 251)" 

.0170*** .0705** .0333*** 
(.0034) (.0402) (.0037) 

[4.9] [1.8] [9.0] 

.1306 17.6331 .5268 
.451 

NoT 
(T = 251)" 

.0228"" .3679*** .0435*** 
(.0011) (.0586) (.0025) 

[20.8] [6.3] [17.3] 

.1511 91.9843 .6880 
.542 

1 = 9" 

VDAX 
{T = 251)" 

.0201*** .0739*** .0089"" 
(.0013) (.0194) (.0010) 

[15.6] [3.8] [9.2] 

.1419 18.4777 .1413 
.143 

std33 
(T = 251)" 

.0166*** .0200 .0102*** 
(.0046) (.0233) (.0010) 

[3.6] [.9] [9.31 

.1287 5.0024 .1605 
.604 

std22 
(T = 251)" 

.0156*** .0285* .0141*** 
(.0035) (.0174) (.0016) 

[4.4] [1.6] [9.01 

.1248 7.1183 .2236 
.914 

stdlO 
(T = 251)" 

.0176*** .0754" .0342*** 
(.0036) (.0323) (.0030) 

[4.9] [2.3] [11.6] 

.1326 18.8417 .5404 
.385 

NoT 
{T = 251)" 

.0228*** .3665*** .0433*** 
(.0012) (.0517) (.0025) 

[18.5] [7.1] [17.2] 

.1509 91.6358 .6844 
.623 

1= auto" 
VDAX 

(T = 251)" 
{l = 2.42)" 

.0205*** .0721*** .0092*** 
(.0012) (.0197) (.0009) 

[17.1] [3.7] [10.8] 

.1431 18.0126 .1459 
.041 

std33 
(T = 251)" 
(l = 1.20)" 

.0161*** .0172 .0100*** 
(.0042) (.0201) (.0012) 

[3.9] [.9] [8.1] 

.1270 4.3057 .1577 
.678 

stdSS 
(T = 251)" 
{l = .31)" 

.0157*** .0286* .0141*** 
(.0033) (.0209) (.0016) 

[4.7] [1.4] [8.6] 

.1252 7.1418 .2237 
.917 

stdlO 
(T = 251)" 
(/ = 1.51)" 

.0173*** .0700" .0335*** 
(.0035) (.0395) (.0035) 

[5.0] [1.8] [9.6] 

.1314 17.4998 .5303 
.429 

NoT 
(T = 251)" 
(Z = 2.43)" 

.0228'" .3670*** .0435*** 
(.0011) (.0535) (.0025) 

[20.9] [6.9] [17.4] 

.1511 91.7618 .6879 
.566 

Table 4.2: Parameters estimated from empirical time series. 
The numbers in parenthesis give the estimated Standard deviations of the 
estimated values, and the numbers in brackets are the t statistics. 
*/**/*": significant at a 10%/5%/1%-level for a one-sided t test 
" 1-- lag 
6 T: # of data points 
c p-value of Hansen's x 2 test statistic 
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9 K." a* \fÖ K a P c 

1 = 1" 

VDAX 
(T = 1006)* 

.0278*** .0155* .0120*** 
(.0051) (.0102) (.0007) 

[5.5] [1.5] [17.1] 

.1666 3.8721 .1892 
.007 

std33 
(T = 1006)6 

.0221*** .0097* .0112*** 
(.0057) (.0065) (.0008) 

[3.9] [1.5] [14.0] 

.1486 2.4366 .1772 
.263 

std.22 
(T = 1006)* 

.0213*** .0175** .0165*** 
(.0044) (.0087) (.0012) 

[4.8] [2.0] [13.8] 

.1460 4.3848 .2605 
.343 

stdlO 
(T = 1006)* 

.0207*** .0589*** .0357*** 
(.0025) (.0145) (.0023) 

[8.3] [4.1] [15.5] 

.1438 14.7321 .5640 
.188 

NoT 
(T = 1006)* 

.0213**" .2677*" .0424*** 
(.0007) (.0272) (.0018) 

[30.4] [9.8] [23.6] 

.1458 66.9245 . 6704 
.244 

1 = 9° 

VDAX 
(T = 1006)* 

.0255"* .0209*** .0118*** 
(.0029) (.0080) (.0008) 

[8.8] [2.6] [14.8] 

.1597 5.2169 .1859 
.035 

stdSS 
(T = 1006)* 

.0228*** .0102* .0114*" 
(.0064) (.0070) (.0007) 

[3.6] [1.51 [16.3] 

.1509 2.5584 .1798 
.198 

std22 
(T = 1006)* 

.0204*** .0210*** .0165*** 
(.0038) (.0084) (.0011) 

[5.4] [2.5] [15.0] 

.1428 5.2399 .2605 
.358 

stdlO 
(T = 1006)* 

.0198*** .0654*** .0352*** 
(.0022) (.0119) (.0027) 

[9.0] [5.5] [13.0] 

.1406 16.3570 .5567 
.216 

NoT 
(T = 1006)* 

.0212*** .2694*** .0421*" 
(.0007) (.0236) (.0020) 

[30.3] [11.4] [21.1] 

.1455 66.3527 .6651 
.282 

1= auto" 
VDAX 

(r = 1006)* 
(l = 3.49)" 

.0266"* .0186" .0119*** 
(.0037) (.0094) (.0007) 

[7.1] [2.0] [17.0] 

.1632 4.6389 .1881 
.013 

std33 
(T = 1006)* 
(l = 2.13)" 

.0221*** .0099* .0112*** 
(.0057) (.0066) (.0008) 

[3.9] [1.5] [14.0] 

.1485 2.4867 .1774 
.257 

std22 
(T = 1006)* 

{l = .34)" 

.0217*** .0163* .0165*** 
(.0047) (.0088) (.0012) 

[4.6] [1.9] [13.8] 

.1473 4.0792 .2605 
.325 

stdlO 
(T = 1006)* 
(* = 3.60)" 

.0203*** .0620"* .0355"* 
(.0023) (.0137) (.0024) 

[8.8] [4.5] [14.8] 

.1424 15.5076 .5617 
.202 

NoT 
{T = 1006)* 
(/ = 5.44)" 

.0212"* .2692"* .0422*" 
(.0007) (.0235) (.0019) 

[30.3] [11.4] [22.2] 

.1455 67.3049 .6665 
.265 

Table 4.3: Parameters estimated from empirical time series. 
The numbers in parenthesis give the estimated Standard deviations of the 
estimated values, and the numbers in brackets are the t statistics. 
•/"/*"-. significant at a 10%/5%/1%-level for a one-sided t test 
° l: lag 
6 T: of data points 
c p-value of Hansen's x2 test statistic 
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1 = 1° 

std33 
(T = 9034)6 

.0325" .0049 .0230*" 
(.0161) (.0061) (.0030) 

[2.0] [.8] [7.7] 

.1803 1.2219 .3630 
.044 

std22 
(T = 9034)6 

.0308" .0087 .0341*** 
(.0125) (.0093) (.0044) 

[2.5] [.91 [7.8] 

.1755 2.1713 .5392 
.042 

stdlO 
(T = 9034)" 

.0301"* .0193 .0744*** 
(.0109) (.0154) (.0097) 

[2.8] [1.3] [7.7] 

.1735 4.8223 1.1767 
.067 

1 = 9° 

std33 
(T = 9034)" 

.0269*" .0097 .0228*** 
(.0078) (.0098) (.0031) 

[3.4] [1.01 [7-4] 

.1641 2.4248 .3611 
.067 

std22 
(T = 9034)6 

.0265*" .0148 .0340*** 
(.0070) (.0126) (.0046) 

[3.8] [1.21 [7-4] 

.1627 3.7067 .5376 
.073 

stdlO 
(T = 9034)" 

.0274*** .0252* .0732*** 
(.0086) (.0165) (.0101) 

[3.2] [1.5] [7.2] 

.1656 6.2981 1.1572 
.090 

1= auto" 
std33 

(T = 9034)" 
(/ = 14.41)" 

.0257*** .0122 .0228"" 
(.0060) (.0108) (.0031) 

[4.3] [1.1] [7.4] 

.1603 3.0586 .3608 
.080 

std22 
(T = 9034)" 
(l = 13.75)° 

.0256*** .0170* .0340*** 
(.0060) (.0131) (.0046) 

[4.3] [1.3] [7.4] 

.1600 4.2500 .5373 
.089 

stdlO 
(T = 9034)" 
(* = 11.06)° 

.0262*** .0271" .0707*" 
(.0070) (.0157) (.0105) 

[3.7] [1.7] [6.7] 

.1617 6.7821 1.1183 
.091 

Table 4.4: Parameters estimated from empirical time series. 
The numbers in parenthesis give the e stimated Standard deviations of the 
estimated values, and the numbers in brackets a re the t statistics. 
*/**/***: signifi cant at a 10%/5%/1%-level for a one-sided t te st 
° *: lag 
6 T: # of data points 
c p-value of Hansen's x 2 test statistic 

In the case of the VDAX, shorter time series lead to larger significance. This is in contrast with 

the time series NoT. Here, we get the largest p-values for T = 251. 

5. Conclusions 

In this paper we examine whether it is possible to estimate the three parameters of the square-root 

process for the instantaneous variance rate of Heston's model using the GMM approach. We use 

Monte Carlo simulations and empirical data to address this question. The use of simulated time 
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series shows that the estimations of the parameters produce reliable results, although their quality 

depends heavily on the length of the time series. In general, the estimates of all three parameters, 

but especially those for K*, are better for longer time series. This result is not confirmed by long 

empirical time series. Compared with T = 1006, not only the estimated Standard deviations are 

larger for T = 9034, but also the values of the estimates themselves differ across the samples. 

An indication for the stabil!ty of the parameters could be the corresponding t statistics, since 

the estimations should be easier for stable parameters, leading to smaller variances of the GMM 

estimators. Hence, a further examination of the time series NoT with its very high t statistics 

could be interesting with regard to the accuracy of the results. 

It can be shown that good estimates of K* h ave small t statistics whereas large t statistics indicate 

estimated values that are far away from their true value. For er* and 0 the opposite applies. 

We do not find significant differences in the estimates, when changing the number of autocorrela-

tions used in the estimation of the positive-definite Symmetrie weighting matrix WT (<p)- Hence, in 

our opinion, it is of secondary Importance to find an "optimal" lag-truncation parameter for this 

model. 

Almost all empirical time series show p-values which support the hypothesis that the given square-

root process can be used as a parsimonious specification. The only exceptions are the series NoT 

for T = 68 and VDAX for T = 251 and T = 1006. One reason for the specification problem with 

regard to the VDAX could be its calculation using implicit volatilities of the Black-Scholes formula. 

The values of the estimated parameters are all reasonable for our empirical data. That includes 

the results for the daily number of transactions in German stocks. In contrast to all other time 

series used in this study, the NoT series is the only one that is calculated using neither a window of 

historical data nor implicit volatilities. Hence, it is a good candidate when looking for a variable that 

includes volatility Information of just one trading day. In contrast to the VDAX, it thereby Covers 

the entire trading activities of a trading day, whereas the VDAX merely includes the Information 

of one single moment of the trading day 16. 

Based on these findings, our further research will be directed toward the reliable estimation of the 

complete parameter set of the model (1.1) and (1.2) using historical price and volume data. 

The VDAX is calculated using prices that are quoted at 1.30 p.m. 
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