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Abstract In this contribution, we discuss a facility location model to maximize
firms’ patronage, while demand is determined by a multinomial logit model (MNL).
We account for customer segmentation based on customer characteristics. Hence,
we are able to reduce the bias to the objective, which is due to constant substitution
patterns of the MNL. Numerical studies show that averaging customer character-
istics yield a bias of more than 15 % of the objective function value compared to
segmentation. Using GAMS/CPLEX, we are able to solve problem sets with 2
segments, 500 demand points and 10 potential locations to optimality in 1 h com-
putation time. If we consider 50 potential locations, the gap reported by CPLEX is
<8 % in 1 h. We present an illustrative case example of a furniture store company
in Germany (data are available as electronic supplementary material to this article).
The corresponding problem is solved to optimality in a few minutes.
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1 Introduction

In this paper, we consider a situation where companies (retail store chains, for
example) compete for their market share. Suppose for example that a firm wants to
locate new shops in a geographical market. The decision variable under control is
only where to locate the new facilities. The way customers make their choices is to
be taken into account, too (Serra and Colome 2001). The reaction of possible
competitors (price, locations) is not considered here.

We discuss a model—based on the maximum capture problem—for the optimal
location of K facilities. Customers’ choices are modeled according to a specific
discrete choice model, namely the multinomial logit model (MNL). Other demand
models (the Huff-model, for example) might be used instead of the MNL. Our
approach is valid for such kind of models as well. However, we do not consider this
here. In general, discrete choice models are the workhorse for the analysis of
individual choice behavior (McFadden 1973, 2001). In literature, we find several
applications of discrete choice models for spatial choice situations (Timmermans
et al. 1992; Dellaert et al. 1998). Inspite of their long-term and widespread use, we
find only few references in the operations research literature on facility location that
account for discrete choice models. One reason may be the mathematical
sophistication of the choice models. For example, de Palma et al. (1989), Benati
(1999) and Marianov et al. (2008) discuss non-linear model formulations for
discrete locational decisions. To the best of our knowledge, Benati and Hansen
(2002) are the first who proposed a linear reformulation of the non-linear MNL.
Their approach results in a hyperbolic sum integer problem. Haase (2009) uses
constant substitution patterns of the MNL to find a linear integer reformulation.
Aros-Vera et al. (2013) apply this approach to the planning of park-and-ride
facilities. Finally, Zhang et al. (2012) propose an alternative approach similar to
Benati and Hansen (2002). Haase and Miiller (2014a) show that a variant of the
model of Haase (2009) seems to be superior to the formulations of Benati and
Hansen (2002) and Zhang et al. (2012).

The MNL exhibits the well-known independence from irrelevant alternatives
property (ITA). Roughly speaking, this property implies that each choice alternative
(facility location) is an equal substitute to every other alternative. Unfortunately, it
is empirically evidenced that this core property is unlikely to hold in spatial choice
context (Bhat and Guo 2004; Hunt et al. 2004). The linear reformulations of the
MNL already introduced in the literature are all based on the assumption that
customers of a given demand point are homogenous in their observable charac-
teristics (age and income, for example). In this contribution, we show that, if
customers of a given demand point are portioned into homogenous subgroups
according to their characteristics, the predictive bias due to the IIA might be reduced
(Sect. 2). Of course, simply considering average characteristics are not sufficient as
the following illustrative example shows (see Fig. 1).

Consider a country with only two regions (1 and 2) and a firm selling rice seeds
to farmers. Farmers are assumed to bunker seeds at a facility of the firm. There are
two potential facility locations A and B (there are no competitors). Region 1
contains location A and region 2 contains location B. Farmers located in region 1
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Region 1 Region 2
Farmers: 49 Farmers: 50
Climate: hot and humid Climate: arid

(&)

Buying rice seeds | Region 1  Region 2 | Total
Yes 49 0 49

No 0 50 50

Total 49 50 99

Fig. 1 The rice seed example

buy rice seeds only in A, while those of region 2 buy only in B. Region 1 contains
49 farmers and region 2 contains 50 farmers. Now assume that the climate in region
1 is hot and humid, while the climate of region 2 is arid (both regions might be
separated by mountains). Since we expect that all of the farmers of region 1 buy rice
seeds, but none of the farmers of region 2 would do so, we end up with a choice
probability of buying rice seeds of 0.495 if we consider the population average.
Now, assume the task of the firm is to select the facility location that maximizes the
expected rice seed customers. Of course, we would select location B (in region 2),
because 0.495 x 50 > 0.495 x 49. However, the true sales are 0, because none of
the farmers located in region 2 buys rice seeds, while the farmers of region 1 would
only patronize a facility located in A. If the firm considers segment-specific choice
probabilities instead (1 for farmers of region 1 and O for farmers of region 2), the
optimal solution would be facility location A with an expected number of 49 rice
seed customers. As a result, the expected bias, i.e., the relative deviation between
the two solutions, is 100 %. Now, we learn from this example that simply
considering average customer characteristics (instead of proper segmentation) may
yield remarkably biased predictive outcomes. In other words, if customer
characteristics are considered, it is advisable to employ segmentation instead of
the averages of customer characteristics.

In this paper, we present an elucidating model formulation to account for
customer segmentation within a mixed-integer program that enables to consider
customer choice behavior by an MNL that accounts for customer characteristics
(Sect. 3.1). Moreover, we present a simple lower bound and objective cuts for our
problem (Sect. 3.2). We demonstrate the usefulness of our approach in extensive
numerical studies (Appendix). Finally, we present an illustrative case example to
show how our approach might be applied to support decision making for the
management of a globally operating furniture store retail chain (Sect. 4).
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2 A probabilistic choice model

Let us consider the following problem statement:

Find K facility locations from all potential locations J such that the total
patronage for the K facilities is maximized.

First, we define the sets

demand nodes representing zones, like census blocks etc., that contain the
customers,

locations (existing and potential ones) from which the customers located in
i € I choose exactly one location. M; may include a no-choice-alternative,
indicating that customers might not occupy any facility. Hence, the no-choice
alternative (a dummy facility, for example) reflects the proportion of customers
who do not consume (services or products) at any facility. We might consider a
special case such that M; =M Vil

potential locations for the facilities a decision maker (a firm, for example) has
to decide on: J C (J,g; M;. Note M;\J may include facility locations of
competitors and/or the no-choice-alternative. That is, {M;\J} comprises
locations that are not influenceable by the decision maker. Further,
Ji=M;NJ.

is a set of choice alternatives faced by the customers of i € I that denotes the
number, type, and/or the amount of purchases conducted by the customers.
Hence, the choice set faced by customers located in i € I is {M; X R;}.
Consider exemplarily a customer located in a given demand node i = 1 who
chooses to make a purchase of €10, €20, or €30 at any opened facility within a
given time period. So R; = {10,20,30}. Let us further assume there are only
two facilities, 1ie., M;={A,B}, then the choice set is
{(A,10),...,(B,10),...,(B,30)}. A choice of (A,20) means that the
customer chooses to make a purchase of €20 at facility A. Note, the choice
set must be exhaustive and the choice alternatives have to be mutually
exclusive. Roughly speaking, all alternatives the customers actually face have
to be included in the choice set. The generation of {M; x R;} is a sophisticated
issue. We refer to Swait (2001) for further details.

We consider the parameters

h;

Vijr

K

number of customers located in node i € I, and

as the deterministic utility of customers located in i € I patronizing j € M;
making a purchase denoted by r € R;. This could be a measure of generalized
cost etc.

number of facilities to be located, with 0 <K <|J]|.

Further, we define the binary decision variable

i

= 1, if location j € J provides a facility (0, otherwise), and

the non-negative variable
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x;i» as the choice probability of customers of node i € I who makes a purchase
denoted by r € R; at a facility located at j € J;. If we assume that the choice
probability is given by the MNL, x;; is defined as

Vijry/.
e YJ
Vi Vi
St (Somenrs € + Lines, €Y )

Note, if M; \ J # 0, then >, 3=, . x- <1 for all i € I. Now the problem can be
modeled as a mixed-integer non-linear program:

Maximize Z Z Z £(i, 1, j)xijr (2)

iel reR; jel;

Xijr = VieljeJ,reR,. (1)

subject to (1) and

D vi=K (3)

jel

yie {01} vjelJ (4)

Demand is determined by f(i,, r)x;, with f(i,j, r) as a function denoting the con-
sumption. We denote F as the objective function value of (2). In literature, we find
exact linear reformulations of (1) such that (2)—(4) can be modeled as a mixed-
integer program: Haase (2009) and Aros-Vera et al. (2013) employ specific prop-
erties of the MNL, while Zhang et al. (2012) propose an approach based on variable
substitution similar to Benati and Hansen (2002). In Sect. 3, we present a modified
reformulation of Haase (2009). At first, we focus on important properties of (1) in
the following subsequent sections.

We assume in the following that |R;| = 1 V i € I simplifying vy, (1), and (2) for
convenience reasons. Of course, all formulations of the subsequent sections are
valid for |[R;| > 1 Vi € I as well.

2.1 The independence from irrelevant alternatives property

The IIA property is well known in discrete (locational) choice literature (Ray
1973; Sheppard 1978; McFadden 2001; Sener et al. 2011). One outcome of the
ITA is that the ratio of choice probabilities of two alternatives (i.e., facility
locations) remains constant no matter whether other alternatives are available or
not (constant substitution pattern). That is, the probability of patronizing a facility
located in j relative to a facility located in m is independent of the existence and
attributes of any other facility. Consider two arbitrary but existing facility
locations j,m € M; to be given. Then, according to (1), the ratio of the choice
probabilities x; and x;, is

@ Springer
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T _ewve Yiel (5)

Xim eVim
The IIA property of (5) implies that a new facility or change in the attractiveness of
an existing facility other than m or j will draw patronage from competing facilities
in direct proportion to their choice probabilities. In contrast, in applications, it is
extremely unlikely that this property holds (Haynes and Fotheringham 1990; Miiller
et al. 2012; Hunt et al. 2004). In situations when the IIA property is not valid we
should consider discrete choice models other than MNL (mixed logit or nested logit,
for example). See Train (2009) for further reading. Miiller et al. (2009), Haase
(2009) and Haase and Miiller (2013) propose approximate approaches that are able
to incorporate a large class of discrete choice models into mathematical programs.

2.2 Aggregation issues

The MNL and hence (1) is based on the theory of utility maximization behavior of
individuals. That is, each individual chooses the location that maximizes its utility.
Given our problem statement of Sect. 2 and the corresponding model (2)-(4), we are
interested in aggregate measures (market shares, total patronage etc.) instead of
individual choice probabilities. Data on customer demand are usually given as an
aggregate measure (number of customers, for example). Now, the question arises
how we should compute the choice probability of all customers (individuals) located
in a given demand point i € /? The answer depends on the specification of the utility
vij. If v;; does not contain characteristics of the customers (age, income, and so forth)
then the choice probability x;; applies to all customers in i € I in the same way and
thus, (2) is a proper formulation. In contrast, the incorporation of customer
characteristics in v;; will improve the accurateness of x;; (Koppelman and Bhat 2006,
pp 21-23 and pp 41-46). However, aggregation is more tedious in such a case.

Example 1 For simplicity reasons, we consider only one demand node i =/
Consider J = My = {A, B, C}. Further, we assume i contains two customers
n € {1,2}. Let the deterministic utility function for customer n be given as

Vij = —8ij/qn Y JjEJ, (6)

with gy; as the cost for a trip from ¢ to j and g, is the income of customer n. The
higher the income the lesser the impact of travel cost (Casado and Ferrer 2013).
Now, there are basically two ways of computing x;;:

1. we use the average income of n =1 and n = 2 (i.e., the average income of
demand node i) denoted by g; = (g1 + ¢2)/2 to compute v;; and thus Xy, or

2. we first compute the choice probabilities for each customer x,; and then we
determine the average choice probability of customers located in i as
Xij = (Xn=1j + Xn=2,) /2.

In general, (1) is expected to be inaccurate compared to (2) because of the non-
linear relationship between x;; and vy; in (1). Consider the values given in Table 1.
As expected, Xy; determined by (1) and Xxy; determined by (2) are different. As
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Table 1 Aggregation, choice probabilities and the IIA property

j=A j=B i=C XiA[Xic
g,'fj 1 2 4
q 9 9 9
1) 1 1 1
Gy 5 5 5
Solution I: y; 1 1 1
Xy; using g 0.422 0.346 0.232 1.822
Xn=1 0.383 0.343 0.274 1.396
Xn=2,j 0.705 0.259 0.035 20.085
Xij 0.544 0.301 0.155 3.516
Solution II: y; 1 0 1
Xyj using g 0.646 0 0.354 1.822
Xp—1, 0.583 0 0.417 1.396
Xn=2,j 0.953 0 0.047 20.085
Xij 0.768 0 0.232 3.302

Of course, income g, as a characteristic of the customer is constant over alternatives. The choice
probabilities are computed using (1) and (6). The last column contains the ratio of choice probabilities of
facility locations A and C according to (5). We consider two solutions (i.e., I and II) to problem (2)—(4)

shown by Train (2009), pp 29-32 (2) should be preferred. In addition, we observe an
interesting pattern if we apply customer characteristics in an appropriate way: the
ratio of the average choice probabilities X4 /X7c depends on the existence of facility
location B (non-constant substitution pattern). Although the IIA property does apply
to each customer n, it does not apply to the population of i/ as a whole. The key
point is that there are two distinct segments of the population (high and low income)
with different choice probabilities: We compare two different solutions to (2)—(4),
namely solution I (all locations are selected) and solution II (location B is not
selected). The customer with low income (n = 2) considers location A to be a better
substitute to B than C. In contrast, for customer n = 1 (high income), locations A
and C are more or less equal substitutes to location B. This pattern is due to the
different evaluation of travel cost by the two segments (i.e., customers).

There are two lessons learned so far: First, the more customer characteristics are
included in v;; in an appropriate way, the better are the forecast properties of MNL,
x;;, respectively. Second, by applying segmentation to our model (2)—(4) as outlined
in (2), we are able to reduce the bias of x;; and F due to the IIA of (5) to some extent.
In applications, one would be interested in how to classify customers, and how
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many customer segments are appropriate for a given application. Of course,
segmentation makes sense only if the deterministic part of utility contains factors
that vary over choice makers. Usually, such factors are socio-economic factors like
age, gender, income, occupation, car ownership, and so forth. In empirical studies,
socio-economic factors that are continuous measures (age and income, for example)
are usually considered as categorical measures. For example, a proband is asked
whether his/her age is (a) below 20 years, (b) between 20 and 40 years, (c) between
40 and 60 years, or (d) older than 60 years. Now consider a deterministic utility
function with only two socio-economic factors: gender and age. Gender, of course,
consists of only two categories: female and male. So, we end up with eight customer
segments: the four age levels for each of the two genders. Considering many socio-
economic factors with many levels yields a large number of segments. How many
segments are appropriate and tractable could not be said in the abstract. It rather
depends on the application, in particular, the empirically specified choice model.
See Ben-Akiva and Lerman (1985), pp 131-153 for a detailed discussion of
aggregation and segmentation.

3 A probabilistic choice model with customer segmentation

In Sect. 2, we have demonstrated that the IIA may yield biased values of x;; of (1)
and hence a biased objective function value F' of (2). Moreover, a partition of the
population of a demand point i €/ into homogenous sub-populations (i.e.,
segmentation) enables us to reduce the bias due to the ITA. In this section, we
propose how to explicitly account for segments of customers (heterogeneous
customer demand) in a linear mixed-integer model formulation of (2)—(4).

3.1 Mathematical formulation

In addition to the definitions of Sect. 2, we consider the set

S; segments of the customers located in demand node i € I; for example high and
low income or male and female or a combination of income and gender.

Next, we denote the parameters

h;, number of customers according to segment s € §; located in node i € /,

Vi as the deterministic utility of customers of segment s € S; located in i € I
patronizing j € M;,

m;;  choice probability of customers of segment s € S; at node i € I who access
service at a facility located at j € J; given that all m € J are established, i.e.,
Tisj = €'/ > mem, €7

@i choice probability of customers of segment s € S; at node i € I who access

service at a facility located at j € J; given that j € J; is the only facility

location established, i.e., ¢;; = eV /(eVis 4 ZmeMi\J e¥sm), and

Cis
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cumulative choice probability of customers of segment s € S; at node i € /
who access service at competing facilities given that all potential facilities

Jj € J are located, i.e., {is = D ey g (€ Xmem, 67““‘). Therefore,

Cis_'_znisjzl VielseS;.

JeJi
Finally, we define the non-negative variables

Xis as the MNL choice probability of customers of segment s € S; at node i € /
who access service at a facility located at j € J;, and

Zis  as the cumulative choice probability of customers of segment s € S; at node
i € I who do not access any facility of the considered firm.

Then, our model according to the problem statement of Sect. 2 is

maximize Z Z his Z Xisj (7)

iel SGS; jEJi
subject to
Zi.§+2}i5j: 1 ViEI,SGSi (8)
JEJi
}ibj_(pisjng 0 VI'EI,SGS,‘,jGJi (9)
}iéj—ﬂ?iéjyjz 0 ViEI,SES,',jGJi (10)
}isj—%z,»sgo VielseSs,jel; (11)

dov=K (12)

jeJ
},‘sjzo ViEI,SESi,jGJ,‘ (13)

zis>0 Viel seSs; (14)
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yy€{0,1} Vjel. (15)

We denote F as the objective function value of (7). Let be given a combination of
i€l, s€s;, and j € J;. For convenience reasons, we assume for a moment that
M| =2 and |J| = 1 with M = {j, k} and J = {j}, accordingly M; = M and J; = J.
Now, if y; = 0, then X;; = O because of (9) and further z;; = 1 because of (8). If
yj=1, then according to (11), Xij =z - M/, because of (7) and
Zis * Tigj /Cis < Pisj- Due to (8) and substitution, we get the correct choice probabilities

Xig = eV / (evi»*‘i + e7i~k) with k indicating the facility location of the competitor. Of

course, these coherences are valid for |M|>2 and |J| > 1 as well. Therefore,
constraints (8)—(11) together with (7) yield the MNL choice probabilities. For more
details, we refer to Haase (2009) and Aros-Vera et al. (2013). Using ¢,; in (9) and
;s in (10) yields bounds on X;; that are tighter than simply using 0 <X;; <y;. In
contrast to Aros-Vera et al. (2013), we do not consider redundant constraints in our
model: Using (11) yields |/|-|S;|-|/;| constraints instead of |I]-|S;|- [Ji]?
constraints.

3.2 Lower bound and objective cuts

To derive an intelligible lower bound for F of (7), we consider the binary variable
w,,;. Further, we define the non-negative variable

0=>2>.> > M. (16)

icl seS; meJ jel\[m}

If we minimize Q subject to (16) and

> wwmj=K—1 YmelJ (17)
jen{m}
wi € {0,1} YmjeJ (18)

the quantity

7Il m
ZZh,s ;c,vw* VmelJ, (19)

i€l s€S; Jel mj

denotes the maximum attractiveness of facility location m € J with w,; indicating

that j belongs to the K — 1 most attractive facility locations compared to m. If we
maximize Q subject to (16)—(18), then the quantity

m = Z Z hls n;::jw* Vme J, (20)

i€l scS; 161 mj

denotes the minimum attractiveness of facility location m € J with w’ . indicating

mj

that j belongs to the K — 1 least attractive facility locations compared to m. To
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derive a lower bound, we choose the K-largest j € J according to b;. Denote this set
as J. Accordingly, J; = J N M;. Now compute the lower bound as:

LB=3 > hu) - : (21)

- = Vigm _ aVis
iel ses; jeJ; EmEM,-\Je o ZmGJ,- erem

Finally, we add

F<LB=Y bi(l—y)+ > ay (23)
jel jel\J
to our model (7)—(15) to account for a lower bound (LB) (22) and an objective cut
OCl1 (23). A lower bound for problems with capacities is presented in Haase and
Miiller (2014b). Now, we might define the quantities

y=—18 +3 S0y 3 < — vjes\J

" = Vism ~ Visi
i€l seSi 1efufj} ZmeM,-\Je + Zme]iu{j}e "

(24)
and
~ e,\\;isl ) N
h= ZZ’% Z o o —st/ Vjel.
icl seS; €N} ZmEM,\J eVism Zme]\{j} evim 43
(25)

Based on Benati and Hansen (2002), we can define a second objective cut OC2
alternatively to (23)

F <LB+ Z Oijj+ZVj(] - ¥)- (26)

jeINT jeJ

Note, y; in (25) is negative for all j € J by construction.

We are interested in the impact of the number of segments, the lower bound, the
objective cuts, the number of competitors on the solution and the solvability of our
approach. The corresponding numerical examples can be found in the Appendix.
The major findings of these numerical examples are that (1) segmentation has
significant impact on the computational effort, (2) the lower bound (22) provides a
quite good solution (it deviates <1 % from the optimal solution), and (3) the use of
the objective cut OC1 (23) is particularly appealing if we do not expect to find an
optimal solution within a given time. Further, we solve problem sets with 2
segments, 500 demand points and 10 potential locations to optimality in 1 h
computation time. If we consider 50 potential locations, the gap reported by CPLEX
is <8 % in 1 h.
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4 Tllustrative case example: furniture store location in Germany

In this section, we apply our model of Sect. 3.1 to a hypothetical—but still
realistic— branch-extension of a large furniture store company in Germany. Figure
2a shows the already existing facility locations and the potential facility locations of
the considered firm, as well as the locations of the main competitors in the market.
The firm already runs 46 stores in the year 2012 with a market share of 12.5 % and
46 million customers yielding 3.7 billion Euro revenue. The firm aims to massively
expand in the market in the near future. It is intended to establish 5—15 new facilities
until 2020. The task is to find out the optimal locations for a given number of new
facilities (K*) from 50 potential facility locations and the corresponding expected
market share of the firm.

We consider the centroids of the 415 German “Kreise” (municipalities) as
demand points. The locations of the facilities (existing, potential, and competitors)
are given by longitude and latitude coordinates. The euclidean distance in
kilometers between a demand point i € / and a facility location j € M is denoted
by dj;. The choice set for each demand node i € I is defined by

M; = {jeM|d;<s} (27)

with M as the set of all facility locations and ¢ as a threshold distance. If
7;5; <0.00001 then we remove j from M;. There exist 101 facility locations of the
competitors. Thus, |M| = 197. Customers do not consider facilities located more
distant than 6 as a conceivable alternative. Since, the main customers of the firm are

aged between 15 and 25, we consider two distinct segments of customers: 71,-73:1 as

the number of customers aged between 15 and 25 and E,-,szz as the number of
customers of all other ages. The deterministic part of utility (see Sects. 2, 3.1) is
given as

Visj—0 = f™-INC; Vielse€S, (28)

Vig =P dy Viel,s€S,jeM,j>0, (29)

with INC; as the average annual disposable income of the population located ini € 1
in 1,000 Euro. Total population and INC; are given in Fig. 2a. The ratio
> Zi,x:l /> Zm:z = 0.163. Coefficients ™ and ﬁfisr are the utility contribution
per unit of the corresponding attribute (distance and income). Equation 28 denotes
the utility for not choosing any of the facility locations of the firm (potential and
existing) or the competitors. Roughly speaking, j = 0 denotes a dummy facility
absorbing all demand not satisfied by the facilities of the firm or the competitor. The
dummy facility j = 0 comprises the utility of customers either to patronize a small,
local furniture store or not to consume furniture anyway. Note that (28) and (29) are
rather simplistic specifications of utility to make the application more
comprehensible.
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EZ=3 1 dot = 10 000 capita Annual diposable
income in Euro Expected customers

A Facility of competitor B 20 500 1030500 [ 17 000 to 18 500 in millions
®  Existing facility [ 195001020 500 114300 to 17 000
{ [T 18 500 to 19 500

O Potential location

(a) Data and Locations (b) Base Scenario

Fig. 2 Existing facilities and potential locations of the firm as well as facilities of the competitors (a).
Expected customers in base scenario (b)

In a real-world application, the coefficients ™, ﬁfi“ of (28) and (29) have to be
estimated using empirical choice data (i.e., discrete choice analysis). Large
companies can easily afford a comprehensive empirical study to appropriately
estimate the coefficients of the utility functions. Here, we cannot obtain such
estimates, hence we rely on parameter estimates from other empirical studies.
Suarez et al. (2004) provide coefficient estimates for a shopping center choice
model. They distinguish between two different segments of customers (target group
and others) and estimate coefficients of the distance between the customers location
and the shopping center for both customer segments. Here, we employ these
coefficient estimates, given as

di
B = —0.078
di
B, = —0.088.
This indicates that the main customers (s = 1, population aged between 15 and 25) are
less sensitive to distance than other customers. Goldman (1976) provides empirical

evidence on the coherence between income and the propensity of shopping at a specific
facility. Based on Fotheringham and Trew (1993), we might consider

B = —0.015.
Now, we are able to compute the expected patronage for each existing facility using

(21) and hence the total expected market share of the firm as
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(¢)5 =150 (d)s =200
----- Bdist = — 1125, gdist = — 1238, ginc = —.02 --- pdist = — 075, 8dist = — 0825, Binc = —.01
st = — 1125, pdist = — 1238, Binc = —.015 — pdist = — 05, gdist = —.055, ginc = —.02

----- pdist = — 1125, gdist = — 1238, ginc = — 01 —— pdist = _ 05, gdist = — 055, ginc = —.015
- - - pdist — _ 075, Bdist = — 0825, Binc = —.02 — pdist = — 05,341t = — 055, ginc = —.01
- - - st = —.075, Bl = —.0825, BinC = —.015 — pdist — _ 078, gdist — _.088, ginc = —.015

Fig. 3 Results of sensitivity analysis for &, f%, ", and market share (MS). K of (12) is given by
46 + K (46 facilities are already in the market)

MS :ﬁ/;g'ﬁis. (30)

We consider this as the base scenario. Figure 2b displays the result. We know that,
on average, a customer is assumed to make five shopping visits a year. This yields
41 million customers over all existing facilities and a total expected market share of
11.12 %. The expected market share is below the reference value of 12.5 %. This is
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Expected customers Expected customers
in millions. in millions
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N &i’ﬁ Ny
(@)K =51, ie. Kt =5 (b) K =56, ie. K+ =10
Fig. 4 Results for two possible scenarios. Parameter settings used: o6 = 150, /3:":“1 = —0.078,

B = —0.088, and ™ = —0.015. The newly located facilities are labeled, f.e. P16, P22, P25, P36,
and P50 in a—where “P” denotes that the corresponding location is selected from the set of potential
locations. Non-labeled locations are already existing facilities

reasonable, because we do not consider online purchases and there might be some
inconsistencies close to the border of Germany due to transnational purchases of
customers. On average, a customer spends 80 Euro per visit yielding an annual
revenue of 3.28 billion Euro. This is close to the reference value of 3.7 billion Euro.
We conclude that our demand model makes predictions fairly well.

Since our parameters do not stem from a unique study on furniture store customer
behavior in Germany, we first investigate the sensitivity of the solution to parameter
variations. The locational decision variables y; are fixed to one for the already
existing facility locations (i.e., j <47). We solve our model of Sect. 3 for various
parameter settings and for different distance thresholds ¢ of (27). We are interested
in MS’s dependence on K. We have implemented our model in GAMS 23.7 and
we use CPLEX 12.2 on a 64-bit Windows Server 2008 with 4 Intel Xeon 2.4 GHz
processors and 24 GB RAM for all studies. All problems considered in this section
are solved to optimality within minutes. The results of Fig. 3 show a piecewise
linear increase of the market share in K. The slope is nearly 0.35 indicating that
with each additional facility, the total market share of the firm increases by 0.35 %
points. Note, the underlying function is not necessarily concave. The sensitivity
analysis indicates that the market share is independent from the distance threshold

0 > 50 and the weight of the income ﬁinc. In contrast, the scale of the market share
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Fig. 5 Results of Example 2: bias of objective function due to neglected segmentation. “Kplus”

corresponds to K*. The values of F — F are given in million customers. The numerical values
corresponding to this figure are given in Appendix (see Table 2)

heavily depends on the distance parameters (ﬂfi“). This finding stresses the need for

firms to employ the estimates based on unique choice studies (see Street and
Burgess 2007; Miiller et al. 2008; Louviere et al. 2000 for how to design studies and
experiments for discrete choice analysis).
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Table 2 Results of Example 4

K M\ J| Market share CPU

5 5 0.525 65.028
10 0.353 40.164
15 0.269 33.077

10 5 0.683 730.747
10 0.520 190.007
15 0.415 131.345

15 5 0.762 115.467
10 0.606 88.412
15 0.512 76.692

For each problem set, we have computed ten instances. The numbers given are the averages over ten
instances. CPU denotes the time used by CPLEX. All instances are solved to optimality. |/| = 100 and
] =20

Based on the (linear) relationship between MS and K, the firm’s management is
enabled to identify a specific number of new facilities to be located. The optimal
locations and the expected (annual) patronage of the new facilities can be displayed
in maps and enhance the decision making of the firm’s management. Figure 4
exemplifies a market expansion with 5 and 10 new facilities. In a real-world
management application, one usually has to account for locally varying locational
(and maybe operational) cost. In such a situation, one would be interested in the
relationship between cost (or budget) and market share. The firm is further
interested in the impact of segmentation of their customers (see Sect. 2.2).
Therefore, we consider the following example that extends Example 1.

Example 2 We expect the more the two segments differ, the larger is the predictive
bias of the MNL and thus the larger is the bias of the objective function value if
segmentation is neglected. Due to the specification of the deterministic part of utility
in (29), the difference in choice probabilities between the two segments corresponds

to the difference between S and 9 .To evaluate the impact of neglected
segmentation, we first consider 9% = st — paist with plist — (pUst 4 pAisty /3 in

(29). This corresponds to a simple average of utilities as described in (1) of Sect.
2.2. The corresponding solution in terms of selected locations is denoted by

7= { jed
segmentation, i.e., we use [)’f‘:‘tl and [Sfig instead of ™ in (29). The corresponding
objective function value is denoted as F and the corresponding market share is given
by MS(F).

We consider % € { —1,-0.1,-0.01, —0.001, —0.0001}, ™ = —0.015, and
0 = 150. Further, we consider two scenarios: K+ = 5 and K™ = 10. The results are

Vi = 1}. Based on J, we compute the MNL choice probabilities using

dist

given in Fig. 5. The patterns for the total deviation F — F, relative deviation
100 x (F — F)/F, and the deviation of the market shares MS(F) — MS(F) are

dist — _1. Consider exemplarily

similar. The most eye-catching bias occurs if ) =
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dst — 1 and %, = —0.1, i.e., segment s = 1 evaluates each additional kilometer
ten times as negative as segment s =2 (ie., fU% /B = 10). In case that
segmentation is neglected, the corresponding distance-coefficient is f = —0.55.

As a consequence, a large part of customers (recall that, ), il,m:l /> il,-,s:z
= 0.163) evaluates distance more than five times as negative as this would be the
case with segmentation. Of course, the corresponding deviation is remarkable
(—8.9 % for K* =5 and —12.5 % for K* = 10). The asymmetric pattern in Fig. 5
is due to the uneven distribution of population over the two segments (the
population of segment 2 is larger than the population of segment 1): the more the
true coefficient of the large part of the population (segment 2) deviates from the
average coefficient the larger is the expected predictive error. In contrast, a large
deviation of the true coefficient of segment 1 has impact only on a small part of the
population and the corresponding expected predictive error is comparably small.

Obviously, the extent of the error heavily depends on the scale of the coefficients.

Consider, for example, /3?‘:1 = —1 and Bf:tz = —0.1. The corresponding ratio is 10

and the expected error for K* = 5 is —8.88 %. Now, for % = —0.1 and p% =
—0.01 the corresponding ratio is 10 again. However, the corresponding error is only
—0.18 %. This pattern is due to the non-linear relationship between distance
(deterministic utility) and the choice probabilities (i.e., a s-shaped probability
function). As the coefficients (weighting of travel distance) get larger (i.e.,
approaching 0) the probabilities of choosing to patronize a facility approach the
largest possible value. For these values of the deterministic utility the difference in
the corresponding choice probabilities between the two segments become small.

The bias found in our study is comparable to those reported in studies on spatial
aggregation (Andersson et al. 1998; Daskin et al. 1989; Current and Schilling 1987;
Murray and Gottsegen 1997). In literature, ratios of segment-specific coeffi-
cients larger than 50 are reported (Miiller et al. 2012; Koppelman and Bhat 2006,
pp 133-134). However, the difference between segment-specific distance-coeffi-
cients used in our application is small. We have considered parameter settings that
yield a ratio ,Bf‘:“l /,Bf‘jz = 0.91 (see Fig. 3). As a consequence, the expected bias is
below 1 % if we neglect segmentation in our application. Nevertheless, the
consideration of segments yields valuable insights, because the utility function (29)
and the corresponding coefficients are arbitrarily chosen. As stated before, for a real
application, the company is expected to specify utility functions and estimate the
corresponding coefficients on unique choice data. The firm may use such a
numerical study to make assumptions about worst-case scenarios.

5 Summary
By an intelligible example, we demonstrate that the independence from ITA of the

MNL may yield false predictions. This finding is well founded on empirical studies.
When the MNL is used in a mathematical program to incorporate customer choice

@ Springer



Business Research (2014) 7:235-261 253

behavior, the model outcomes are very likely to be biased as well. Although the
MNL is founded on individual choice behavior, in facility location planning we are
interested in the share of customers of a demand point patronizing a certain facility.
If we assume the customers of a demand point are homogenous, i.e., they exhibit the
same observable characteristics, then there is no need for segmentation. If we
assume the customers to be heterogeneous then segmentation of the customers
according to their characteristics (income and age, for example) should be
employed. By proper segmentation, we are able to reduce the predictive bias of the
MNL in terms of market shares.

In this contribution, we present a model formulation for the maximum capture
problem that explicitly allows for customer segmentation using the MNL to find
optimal shopping facility locations. Moreover, we propose an intelligible approach
to derive a lower bound for our model. Extensive computational studies show the
impact of proper segmentation as well as the efficiency of our approach: using
aggregate customer characteristics instead of proper segmentation may yield a
predictive bias of the objective function value of more than 15 % deviation from the
optimal objective function value. Our lower bound is found in <1 s and deviates
<1 % from the optimal solution. Problems with 2 segments, 50 potential locations
and 500 demand points can be solved to a gap <8 % within 1 h using GAMS/
CPLEX. Based on our numerical studies concerning the quality of the lower bound,
it is reasonable to assume that the true gap is remarkably smaller than 8 %. We
apply our approach in an illustrative case example of a globally operating furniture
store company that intends to increase its market share in Germany by branch
expansion. This problem can be solved to optimality within few minutes. Our
example shows how the novel approach can be used for management decision
support.

Based on our findings, several possible directions of future research appear. It is
of interest to find analytically bounds on the bias of the objective function value due
to missing segmentation under various segmentation patterns and specifications of
utility. Further, the explicit consideration of substitution patterns, i.e., correlation
between facility locations, is a very important issue to be analyzed. Efficient
solution methods are necessary to account for larger problem sets. Finally, our
approach is useful to other areas of operations research; assortment optimization, for
example Kok and Fisher (2007).
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Fig. 6 Example 3: |[M \ J| = K, |I| = 50 and |J| = 20. For each problem set, we consider ten randomly
generated instances. The values are the averages over ten instances

Appendix

In this section, we provide numerical examples to validate and test the mathematical
formulation of Sect. 3. We assume M; =M, S; = Sand J; =J Vi € I. For given I,
M, and J, we generate longitude and latitude coordinates using a random uniform
distribution in the interval [0, 100]. We set the maximum computational time to 1 h
if not stated otherwise. Further, we assume that demand is completely satisfied, i.e.,

a no-choice alternative does not exist. To generate the demand hig, we first generate
a population Pop; for each demand node i € I using a random uniform distribution
in the interval [0, 10] weighted by the ratio |M|/|I|. Further, we generate weights
;s Vi€l s €S using a random uniform distribution in the interval [0, 1]. Then,

his = Pop; - wis/ > g Wiy Let the utility function be
Vig =Pty VielseS,jeM, (31)

with #; as the travel-time between i € I and j € J; computed as the rectangular
distance between i € [ and j € J divided by 60. All other parameters of Sect. 3 can
be easily derived. In the following, we consider several numerical examples to test
our mathematical formulation.

Example 3 1In this study, we are interested in the additional burden due to the
number of segments. We set |I| = 50, |J| =20, K = {5,10,15}, |S| = {1,2,...,5},
M\ J| =K, and f, from a uniform distribution in the interval [—2, —0.5]. Note, in
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applications the number of segments will be small due to data availability. See Ben-
Akiva and Lerman (1985), pp 148-150 for an illustrative case study. For each
problem set K and S, we compute ten randomly generated instances. Figure 6
displays the results. We observe that the computational effort increases with the
number of segments. Seemingly, it depends on the ratio K/|J| how fast the
computational effort increases in |S|. If only a few locations have to be selected
(K = 5) or many locations have to be selected (K = 15), the computational effort is
small compared to the situation where 50 % of the potential locations have to be
selected (K = 10).

Example 4 In this example, we investigate the impact of the number of competing
facility locations |M \ J| and the number of facilities to be located K. We consider
|7] = 100, |J| = 20, |S| =2, f,_, = —1, and §,_, = —0.5 for nine different problem
sets with ten instances each. The results are given in Table 3. The market share of
the considered firm declines in the number of competing facilities. The smaller K
the more the decline of the market share in the number of competitors (nearly 50 %
decline for K =5 compared to somewhat more than 30 % for K = 15). If the
number of established facilities and the number of competing facilities are equal,
then market shares are nearly the same (especially, if many facilities are
established). This study confirms the findings of Example 3 concerning the ratio
K/|J| and the corresponding computational effort. Further, the study shows an
interesting pattern: there seems to be a positive relationship between the market
share and the computational effort (the larger the market share the more CPU time is
needed).

Example 5 Now we are interested in the efficiency of the lower bound described in
Sect. 3.2. We consider four problem sets with |J| = {20,30} and K = {5, 10}. For
each problem set, 10 randomly instances are generated. Further, we set |I| = 50,
[M\J|=K,|S| =2, f,_;, =—1, and f,_, = —0.5. For each instance, we solve our
model with and without the lower bound (22) and with and without the OC1 (23)
and OC2 (26). Table 4 displays the results. For all instances, CPLEX found the
optimal solution within 1 h computational time. However, for larger problem sets
(K > 5), we are able to prove optimality within 1 h only if we use the lower bound
LB. We are able to decrease the computational effort remarkably (at least 20 times
faster) using LB. The lower bound is found in <1 s and LB deviates <1 % from
the optimal solution. In a small numerical example Benati and Hansen (2002) show
that they find the optimal solution to their problem by variable neighborhood search
in <1 s for problem sets up to |/| = 50 and K < 10. Concerning the objective cuts
OC1 (23) and OC2 (26), we observe a benefit only for small problem sets (|J| = 20,
K =5). Unfortunately, for larger problem sets, the computational effort increases
(up to 2.5 times slower). Possibly, this is due to a degeneration of the LP relaxation
using the objective cuts. This finding is confirmed by the results of Benati and
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Table 4 Results of Example 6

1] /] LB and OC1 LB
Equations (22) and (23) Equation (22)
CPU GAP CPU GAP
100 10 5.70 0.00 4.60 0.00
25 2,931.03 0.74 2,377.71 0.19
50 3,600.00 5.88 3,600.00 7.20
7,200.00 7.10
250 10 27.84 0.00 20.89 0.00
25 3,600.00 3.65 3,600.00 3.70
7200.00 3.51
50 3,600.00 7.34 3,600.00 10.78
7,200.00 10.21
500 10 104.34 0.00 62.72 0.00
25 3,600.00 5.96 3,600.00 6.41
7,200.00 5.75
50 3,600.00 7.61 3,600.00 13.23
7,200.00 13.15

We consider model (7)—(15), (22). For each problem set, we have computed ten random instances. The
numbers are the averages over ten instances. CPU denotes the time in seconds used by CPLEX (maxi-
mum computation time 1 or 2 h). GAP denotes the solution gap in percent provided by CPLEX. We
consider |§| =2, K =|J|/2 and M\ J| =K

Hansen (2002). They report that their upper bound based on submodular
maximization—which is comparable to our objective cuts—performs not as good
as the bound provided by concave relaxation. In our study, we find no remarkable
difference in performance between OC1 and OC2.

Example 6 The objective of this numerical example is to figure out up to what
problem size we are able to solve our problem to (or close to) optimality. We
consider |I| € {100,250,500}, |J| € {10,25,50}, K = [|J|/2], |[M\J|=[2/3:
|71, Bs=y = —1, and f,_, = —0.5. For each of the nine problem sets, we solve ten
instances. The results are given in Table 5. Small-sized problem sets (|| = 10) can
be easily solved to optimality. Medium-sized problem sets (|J| = 25) can be solved
up to a gap of <6 % in 1 h. For large problem sets (|J| = 50), the gap becomes
disappointing if we only use the lower bound (22). In contrast, if we use the lower
bound (22) and the OC1 (23), we are able to reduce the gap to somewhat more than
7 % within 1 h. Taking into account the good quality of the lower bound (see
Example 5) and the observation that most of the time is needed to prove optimality,
we may assume that the “true” gap is even smaller. Note, Benati and Hansen (2002)
made the same observation.
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