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Abstract In this contribution, we discuss a facility location model to maximize

firms’ patronage, while demand is determined by a multinomial logit model (MNL).

We account for customer segmentation based on customer characteristics. Hence,

we are able to reduce the bias to the objective, which is due to constant substitution

patterns of the MNL. Numerical studies show that averaging customer character-

istics yield a bias of more than 15 % of the objective function value compared to

segmentation. Using GAMS/CPLEX, we are able to solve problem sets with 2

segments, 500 demand points and 10 potential locations to optimality in 1 h com-

putation time. If we consider 50 potential locations, the gap reported by CPLEX is

\8 % in 1 h. We present an illustrative case example of a furniture store company

in Germany (data are available as electronic supplementary material to this article).

The corresponding problem is solved to optimality in a few minutes.
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1 Introduction

In this paper, we consider a situation where companies (retail store chains, for

example) compete for their market share. Suppose for example that a firm wants to

locate new shops in a geographical market. The decision variable under control is

only where to locate the new facilities. The way customers make their choices is to

be taken into account, too (Serra and Colome 2001). The reaction of possible

competitors (price, locations) is not considered here.

We discuss a model—based on the maximum capture problem—for the optimal

location of K facilities. Customers’ choices are modeled according to a specific

discrete choice model, namely the multinomial logit model (MNL). Other demand

models (the Huff-model, for example) might be used instead of the MNL. Our

approach is valid for such kind of models as well. However, we do not consider this

here. In general, discrete choice models are the workhorse for the analysis of

individual choice behavior (McFadden 1973, 2001). In literature, we find several

applications of discrete choice models for spatial choice situations (Timmermans

et al. 1992; Dellaert et al. 1998). Inspite of their long-term and widespread use, we

find only few references in the operations research literature on facility location that

account for discrete choice models. One reason may be the mathematical

sophistication of the choice models. For example, de Palma et al. (1989), Benati

(1999) and Marianov et al. (2008) discuss non-linear model formulations for

discrete locational decisions. To the best of our knowledge, Benati and Hansen

(2002) are the first who proposed a linear reformulation of the non-linear MNL.

Their approach results in a hyperbolic sum integer problem. Haase (2009) uses

constant substitution patterns of the MNL to find a linear integer reformulation.

Aros-Vera et al. (2013) apply this approach to the planning of park-and-ride

facilities. Finally, Zhang et al. (2012) propose an alternative approach similar to

Benati and Hansen (2002). Haase and Müller (2014a) show that a variant of the

model of Haase (2009) seems to be superior to the formulations of Benati and

Hansen (2002) and Zhang et al. (2012).

The MNL exhibits the well-known independence from irrelevant alternatives

property (IIA). Roughly speaking, this property implies that each choice alternative

(facility location) is an equal substitute to every other alternative. Unfortunately, it

is empirically evidenced that this core property is unlikely to hold in spatial choice

context (Bhat and Guo 2004; Hunt et al. 2004). The linear reformulations of the

MNL already introduced in the literature are all based on the assumption that

customers of a given demand point are homogenous in their observable charac-

teristics (age and income, for example). In this contribution, we show that, if

customers of a given demand point are portioned into homogenous subgroups

according to their characteristics, the predictive bias due to the IIA might be reduced

(Sect. 2). Of course, simply considering average characteristics are not sufficient as

the following illustrative example shows (see Fig. 1).

Consider a country with only two regions (1 and 2) and a firm selling rice seeds

to farmers. Farmers are assumed to bunker seeds at a facility of the firm. There are

two potential facility locations A and B (there are no competitors). Region 1

contains location A and region 2 contains location B. Farmers located in region 1

236 Business Research (2014) 7:235–261

123



buy rice seeds only in A, while those of region 2 buy only in B. Region 1 contains

49 farmers and region 2 contains 50 farmers. Now assume that the climate in region

1 is hot and humid, while the climate of region 2 is arid (both regions might be

separated by mountains). Since we expect that all of the farmers of region 1 buy rice

seeds, but none of the farmers of region 2 would do so, we end up with a choice

probability of buying rice seeds of 0.495 if we consider the population average.

Now, assume the task of the firm is to select the facility location that maximizes the

expected rice seed customers. Of course, we would select location B (in region 2),

because 0.495 9 50 [ 0.495 9 49. However, the true sales are 0, because none of

the farmers located in region 2 buys rice seeds, while the farmers of region 1 would

only patronize a facility located in A. If the firm considers segment-specific choice

probabilities instead (1 for farmers of region 1 and 0 for farmers of region 2), the

optimal solution would be facility location A with an expected number of 49 rice

seed customers. As a result, the expected bias, i.e., the relative deviation between

the two solutions, is 100 %. Now, we learn from this example that simply

considering average customer characteristics (instead of proper segmentation) may

yield remarkably biased predictive outcomes. In other words, if customer

characteristics are considered, it is advisable to employ segmentation instead of

the averages of customer characteristics.

In this paper, we present an elucidating model formulation to account for

customer segmentation within a mixed-integer program that enables to consider

customer choice behavior by an MNL that accounts for customer characteristics

(Sect. 3.1). Moreover, we present a simple lower bound and objective cuts for our

problem (Sect. 3.2). We demonstrate the usefulness of our approach in extensive

numerical studies (Appendix). Finally, we present an illustrative case example to

show how our approach might be applied to support decision making for the

management of a globally operating furniture store retail chain (Sect. 4).

Fig. 1 The rice seed example
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2 A probabilistic choice model

Let us consider the following problem statement:

Find K facility locations from all potential locations J such that the total

patronage for the K facilities is maximized.

First, we define the sets

I demand nodes representing zones, like census blocks etc., that contain the

customers,

Mi locations (existing and potential ones) from which the customers located in

i 2 I choose exactly one location. Mi may include a no-choice-alternative,

indicating that customers might not occupy any facility. Hence, the no-choice

alternative (a dummy facility, for example) reflects the proportion of customers

who do not consume (services or products) at any facility. We might consider a

special case such that Mi ¼ M 8 i 2 I.

J potential locations for the facilities a decision maker (a firm, for example) has

to decide on: J �
S

i2I Mi. Note Mi n J may include facility locations of

competitors and/or the no-choice-alternative. That is, Mi n Jf g comprises

locations that are not influenceable by the decision maker. Further,

Ji ¼ Mi \ J.

Ri is a set of choice alternatives faced by the customers of i 2 I that denotes the

number, type, and/or the amount of purchases conducted by the customers.

Hence, the choice set faced by customers located in i 2 I is Mi � Rif g.
Consider exemplarily a customer located in a given demand node i ¼ 1 who

chooses to make a purchase of €10, €20, or €30 at any opened facility within a

given time period. So R1 ¼ 10; 20; 30f g. Let us further assume there are only

two facilities, i.e., M1 ¼ A;Bf g, then the choice set is

ðA; 10Þ; . . .; ðB; 10Þ; . . .; ðB; 30Þf g. A choice of ðA; 20Þ means that the

customer chooses to make a purchase of €20 at facility A. Note, the choice

set must be exhaustive and the choice alternatives have to be mutually

exclusive. Roughly speaking, all alternatives the customers actually face have

to be included in the choice set. The generation of Mi � Rif g is a sophisticated

issue. We refer to Swait (2001) for further details.

We consider the parameters

hi number of customers located in node i 2 I, and

vijr as the deterministic utility of customers located in i 2 I patronizing j 2 Mi

making a purchase denoted by r 2 Ri. This could be a measure of generalized

cost etc.

K number of facilities to be located, with 0\K\ Jj j.

Further, we define the binary decision variable

yj = 1, if location j 2 J provides a facility (0, otherwise), and

the non-negative variable
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xijr as the choice probability of customers of node i 2 I who makes a purchase

denoted by r 2 Ri at a facility located at j 2 Ji. If we assume that the choice

probability is given by the MNL, xijr is defined as

xijr ¼
evijr yj

P
o2Ri

P
m2MinJ evimo þ

P
m2Ji

evimo ym

� � 8 i 2 I; j 2 Ji; r 2 Ri: ð1Þ

Note, if Mi n J 6¼ ;, then
P

j2Ji

P
r2Ri

xijr\1 for all i 2 I. Now the problem can be

modeled as a mixed-integer non-linear program:

Maximize
X

i2I

X

r2Ri

X

j2Ji

fði; r; jÞxijr ð2Þ

subject to (1) and
X

j2J

yj ¼ K ð3Þ

yj 2 0; 1f g 8 j 2 J: ð4Þ

Demand is determined by f ði; j; rÞxijr with f ði; j; rÞ as a function denoting the con-

sumption. We denote F as the objective function value of (2). In literature, we find

exact linear reformulations of (1) such that (2)–(4) can be modeled as a mixed-

integer program: Haase (2009) and Aros-Vera et al. (2013) employ specific prop-

erties of the MNL, while Zhang et al. (2012) propose an approach based on variable

substitution similar to Benati and Hansen (2002). In Sect. 3, we present a modified

reformulation of Haase (2009). At first, we focus on important properties of (1) in

the following subsequent sections.

We assume in the following that Rij j ¼ 1 8 i 2 I simplifying vijr, (1), and (2) for

convenience reasons. Of course, all formulations of the subsequent sections are

valid for Rij j[ 1 8 i 2 I as well.

2.1 The independence from irrelevant alternatives property

The IIA property is well known in discrete (locational) choice literature (Ray

1973; Sheppard 1978; McFadden 2001; Sener et al. 2011). One outcome of the

IIA is that the ratio of choice probabilities of two alternatives (i.e., facility

locations) remains constant no matter whether other alternatives are available or

not (constant substitution pattern). That is, the probability of patronizing a facility

located in j relative to a facility located in m is independent of the existence and

attributes of any other facility. Consider two arbitrary but existing facility

locations j;m 2 Mi to be given. Then, according to (1), the ratio of the choice

probabilities xij and xim is
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xij

xim

¼ evij

evim
¼ evij�vim 8 i 2 I: ð5Þ

The IIA property of (5) implies that a new facility or change in the attractiveness of

an existing facility other than m or j will draw patronage from competing facilities

in direct proportion to their choice probabilities. In contrast, in applications, it is

extremely unlikely that this property holds (Haynes and Fotheringham 1990; Müller

et al. 2012; Hunt et al. 2004). In situations when the IIA property is not valid we

should consider discrete choice models other than MNL (mixed logit or nested logit,

for example). See Train (2009) for further reading. Müller et al. (2009), Haase

(2009) and Haase and Müller (2013) propose approximate approaches that are able

to incorporate a large class of discrete choice models into mathematical programs.

2.2 Aggregation issues

The MNL and hence (1) is based on the theory of utility maximization behavior of

individuals. That is, each individual chooses the location that maximizes its utility.

Given our problem statement of Sect. 2 and the corresponding model (2)–(4), we are

interested in aggregate measures (market shares, total patronage etc.) instead of

individual choice probabilities. Data on customer demand are usually given as an

aggregate measure (number of customers, for example). Now, the question arises

how we should compute the choice probability of all customers (individuals) located

in a given demand point i 2 I? The answer depends on the specification of the utility

vij. If vij does not contain characteristics of the customers (age, income, and so forth)

then the choice probability xij applies to all customers in i 2 I in the same way and

thus, (2) is a proper formulation. In contrast, the incorporation of customer

characteristics in vij will improve the accurateness of xij (Koppelman and Bhat 2006,

pp 21–23 and pp 41–46). However, aggregation is more tedious in such a case.

Example 1 For simplicity reasons, we consider only one demand node i ¼ i0.
Consider J ¼ Mi0 ¼ A;B;Cf g. Further, we assume i0 contains two customers

n 2 1; 2f g. Let the deterministic utility function for customer n be given as

vnj ¼ �gi0j=qn 8 j 2 J; ð6Þ

with gi0j as the cost for a trip from i0 to j and qn is the income of customer n. The

higher the income the lesser the impact of travel cost (Casado and Ferrer 2013).

Now, there are basically two ways of computing xi0j:

1. we use the average income of n ¼ 1 and n ¼ 2 (i.e., the average income of

demand node i0) denoted by qi0 ¼ ðq1 þ q2Þ=2 to compute vi0j and thus xi0j, or

2. we first compute the choice probabilities for each customer xnj and then we

determine the average choice probability of customers located in i0 as

~xi0j ¼ ðxn¼1;j þ xn¼2;jÞ=2.

In general, (1) is expected to be inaccurate compared to (2) because of the non-

linear relationship between xi0j and vi0j in (1). Consider the values given in Table 1.

As expected, xi0j determined by (1) and ~xi0j determined by (2) are different. As
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shown by Train (2009), pp 29–32 (2) should be preferred. In addition, we observe an

interesting pattern if we apply customer characteristics in an appropriate way: the

ratio of the average choice probabilities ~xi0A=~xi0C depends on the existence of facility

location B (non-constant substitution pattern). Although the IIA property does apply

to each customer n, it does not apply to the population of i0 as a whole. The key

point is that there are two distinct segments of the population (high and low income)

with different choice probabilities: We compare two different solutions to (2)–(4),

namely solution I (all locations are selected) and solution II (location B is not

selected). The customer with low income (n ¼ 2) considers location A to be a better

substitute to B than C. In contrast, for customer n ¼ 1 (high income), locations A

and C are more or less equal substitutes to location B. This pattern is due to the

different evaluation of travel cost by the two segments (i.e., customers).

There are two lessons learned so far: First, the more customer characteristics are

included in vij in an appropriate way, the better are the forecast properties of MNL,

xij, respectively. Second, by applying segmentation to our model (2)–(4) as outlined

in (2), we are able to reduce the bias of xij and F due to the IIA of (5) to some extent.

In applications, one would be interested in how to classify customers, and how

Table 1 Aggregation, choice probabilities and the IIA property

j ¼ A j ¼ B j ¼ C xi0A=xi0C

gi0 j 1 2 4

q1 9 9 9

q2 1 1 1

qi0 5 5 5

Solution I: yj 1 1 1

xi0 j using qi0 0.422 0.346 0.232 1.822

xn¼1;j 0.383 0.343 0.274 1.396

xn¼2;j 0.705 0.259 0.035 20.085

~xi0 j 0.544 0.301 0.155 3.516

Solution II: yj 1 0 1

xi0 j using qi0 0.646 0 0.354 1.822

xn¼1;j 0.583 0 0.417 1.396

xn¼2;j 0.953 0 0.047 20.085

~xi0 j 0.768 0 0.232 3.302

Of course, income qn as a characteristic of the customer is constant over alternatives. The choice

probabilities are computed using (1) and (6). The last column contains the ratio of choice probabilities of

facility locations A and C according to (5). We consider two solutions (i.e., I and II) to problem (2)–(4)
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many customer segments are appropriate for a given application. Of course,

segmentation makes sense only if the deterministic part of utility contains factors

that vary over choice makers. Usually, such factors are socio-economic factors like

age, gender, income, occupation, car ownership, and so forth. In empirical studies,

socio-economic factors that are continuous measures (age and income, for example)

are usually considered as categorical measures. For example, a proband is asked

whether his/her age is (a) below 20 years, (b) between 20 and 40 years, (c) between

40 and 60 years, or (d) older than 60 years. Now consider a deterministic utility

function with only two socio-economic factors: gender and age. Gender, of course,

consists of only two categories: female and male. So, we end up with eight customer

segments: the four age levels for each of the two genders. Considering many socio-

economic factors with many levels yields a large number of segments. How many

segments are appropriate and tractable could not be said in the abstract. It rather

depends on the application, in particular, the empirically specified choice model.

See Ben-Akiva and Lerman (1985), pp 131–153 for a detailed discussion of

aggregation and segmentation.

3 A probabilistic choice model with customer segmentation

In Sect. 2, we have demonstrated that the IIA may yield biased values of xij of (1)

and hence a biased objective function value F of (2). Moreover, a partition of the

population of a demand point i 2 I into homogenous sub-populations (i.e.,

segmentation) enables us to reduce the bias due to the IIA. In this section, we

propose how to explicitly account for segments of customers (heterogeneous

customer demand) in a linear mixed-integer model formulation of (2)–(4).

3.1 Mathematical formulation

In addition to the definitions of Sect. 2, we consider the set

Si segments of the customers located in demand node i 2 I; for example high and

low income or male and female or a combination of income and gender.

Next, we denote the parameters

ehis
number of customers according to segment s 2 Si located in node i 2 I,

evisj as the deterministic utility of customers of segment s 2 Si located in i 2 I

patronizing j 2 Mi,

pisj choice probability of customers of segment s 2 Si at node i 2 I who access

service at a facility located at j 2 Ji given that all m 2 J are established, i.e.,

pisj ¼ eevisj=
P

m2Mi
eevism ,

uisj choice probability of customers of segment s 2 Si at node i 2 I who access

service at a facility located at j 2 Ji given that j 2 Ji is the only facility

location established, i.e., uisj ¼ eevisj=ðeevisj þ
P

m2MinJ eevismÞ, and

fis
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cumulative choice probability of customers of segment s 2 Si at node i 2 I

who access service at competing facilities given that all potential facilities

j 2 J are located, i.e., fis ¼
P

l2MinJðe
evisl=

P
m2Mi

eevismÞ. Therefore,

fis þ
X

j2Ji

pisj ¼ 1 8 i 2 I; s 2 Si:

Finally, we define the non-negative variables

exisj as the MNL choice probability of customers of segment s 2 Si at node i 2 I

who access service at a facility located at j 2 Ji, and

zis as the cumulative choice probability of customers of segment s 2 Si at node

i 2 I who do not access any facility of the considered firm.

Then, our model according to the problem statement of Sect. 2 is

maximize
X

i2I

X

s2Si

ehis

X

j2Ji

exisj ð7Þ

subject to

zis þ
X

j2Ji

exisj ¼ 1 8 i 2 I; s 2 Si ð8Þ

exisj � uisjyj� 0 8 i 2 I; s 2 Si; j 2 Ji ð9Þ

exisj � pisjyj� 0 8 i 2 I; s 2 Si; j 2 Ji ð10Þ

exisj �
pisj

fis

zis� 0 8 i 2 I; s 2 Si; j 2 Ji ð11Þ

X

j2J

yj ¼ K ð12Þ

exisj� 0 8 i 2 I; s 2 Si; j 2 Ji ð13Þ

zis� 0 8i 2 I; s 2 Si ð14Þ
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yj 2 0; 1f g 8 j 2 J: ð15Þ

We denote eF as the objective function value of (7). Let be given a combination of

i 2 I; s 2 Si; and j 2 Ji. For convenience reasons, we assume for a moment that

Mj j ¼ 2 and Jj j ¼ 1 with M ¼ j; kf g and J ¼ jf g, accordingly Mi ¼ M and Ji ¼ J.

Now, if yj ¼ 0, then exisj ¼ 0 because of (9) and further zis ¼ 1 because of (8). If

yj ¼ 1, then according to (11), exisj ¼ zis � pisj=fis, because of (7) and

zis � pisj=fis�uisj. Due to (8) and substitution, we get the correct choice probabilities

exisj ¼ eevisj= eevisj þ eevisk

� �
with k indicating the facility location of the competitor. Of

course, these coherences are valid for Mj j[ 2 and Jj j[ 1 as well. Therefore,

constraints (8)–(11) together with (7) yield the MNL choice probabilities. For more

details, we refer to Haase (2009) and Aros-Vera et al. (2013). Using uisj in (9) and

pisj in (10) yields bounds on exisj that are tighter than simply using 0� exisj� yj. In

contrast to Aros-Vera et al. (2013), we do not consider redundant constraints in our

model: Using (11) yields Ij j � Sij j � Jij j constraints instead of Ij j � Sij j � Jij j2
constraints.

3.2 Lower bound and objective cuts

To derive an intelligible lower bound for eF of (7), we consider the binary variable

wmj. Further, we define the non-negative variable

Q ¼
X

i2I

X

s2Si

X

m2J

X

j2Jn mf g
pisjwmj: ð16Þ

If we minimize Q subject to (16) and
X

j2Jn mf g
wmj ¼ K � 1 8 m 2 J ð17Þ

wmj 2 0; 1f g 8 m; j 2 J ð18Þ

the quantity

am ¼
X

i2I

X

s2Si

ehis

pismP
j2J pisjw

�
mj

8 m 2 J; ð19Þ

denotes the maximum attractiveness of facility location m 2 J with w�mj indicating

that j belongs to the K � 1 most attractive facility locations compared to m. If we

maximize Q subject to (16)–(18), then the quantity

bm ¼
X

i2I

X

s2Si

ehis

pismP
j2J pisjw

�
mj

8 m 2 J; ð20Þ

denotes the minimum attractiveness of facility location m 2 J with w�mj indicating

that j belongs to the K � 1 least attractive facility locations compared to m. To
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derive a lower bound, we choose the K-largest j 2 J according to bj. Denote this set

as ~J. Accordingly, ~Ji ¼ ~J \Mi. Now compute the lower bound as:

LB ¼
X

i2I

X

s2Si

ehis

X

j2~Ji

eevisj

P
m2MinJ eevism þ

P
m2~Ji

eevism

: ð21Þ

Finally, we add

eF � LB ð22Þ

eF � LB�
X

j2~J

bj 1� yj

� �
þ
X

j2Jn~J

ajyj ð23Þ

to our model (7)–(15) to account for a lower bound (LB) (22) and an objective cut

OC1 (23). A lower bound for problems with capacities is presented in Haase and

Müller (2014b). Now, we might define the quantities

aj ¼ �LB þ
X

i2I

X

s2Si

ehis

X

l2~Ji[ jf g

eevisl

P
m2MinJ eevism þ

P
m2~Ji[ jf g eevism

8 j 2 J n ~J

ð24Þ

and

cj ¼
X

i2I

X

s2Si

ehis

X

l2Jn jf g

eevisl

P
m2MinJ eevism þ

P
m2Jn jf g eevism

�
X

l2J

pisj

0

@

1

A 8 j 2 ~J:

ð25Þ

Based on Benati and Hansen (2002), we can define a second objective cut OC2

alternatively to (23)

eF � LBþ
X

j2Jn~J

ajyj þ
X

j2~J

cj 1� yj

� �
: ð26Þ

Note, cj in (25) is negative for all j 2 ~J by construction.

We are interested in the impact of the number of segments, the lower bound, the

objective cuts, the number of competitors on the solution and the solvability of our

approach. The corresponding numerical examples can be found in the Appendix.

The major findings of these numerical examples are that (1) segmentation has

significant impact on the computational effort, (2) the lower bound (22) provides a

quite good solution (it deviates \1 % from the optimal solution), and (3) the use of

the objective cut OC1 (23) is particularly appealing if we do not expect to find an

optimal solution within a given time. Further, we solve problem sets with 2

segments, 500 demand points and 10 potential locations to optimality in 1 h

computation time. If we consider 50 potential locations, the gap reported by CPLEX

is \8 % in 1 h.
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4 Illustrative case example: furniture store location in Germany

In this section, we apply our model of Sect. 3.1 to a hypothetical—but still

realistic— branch-extension of a large furniture store company in Germany. Figure

2a shows the already existing facility locations and the potential facility locations of

the considered firm, as well as the locations of the main competitors in the market.

The firm already runs 46 stores in the year 2012 with a market share of 12.5 % and

46 million customers yielding 3.7 billion Euro revenue. The firm aims to massively

expand in the market in the near future. It is intended to establish 5–15 new facilities

until 2020. The task is to find out the optimal locations for a given number of new

facilities (Kþ) from 50 potential facility locations and the corresponding expected

market share of the firm.

We consider the centroids of the 415 German ‘‘Kreise’’ (municipalities) as

demand points. The locations of the facilities (existing, potential, and competitors)

are given by longitude and latitude coordinates. The euclidean distance in

kilometers between a demand point i 2 I and a facility location j 2 M is denoted

by dij. The choice set for each demand node i 2 I is defined by

Mi ¼ j 2 M dij� d
�
�

� �
ð27Þ

with M as the set of all facility locations and d as a threshold distance. If

pisj\0:00001 then we remove j from Mi. There exist 101 facility locations of the

competitors. Thus, Mj j ¼ 197. Customers do not consider facilities located more

distant than d as a conceivable alternative. Since, the main customers of the firm are

aged between 15 and 25, we consider two distinct segments of customers: ehi;s¼1 as

the number of customers aged between 15 and 25 and ehi;s¼2 as the number of

customers of all other ages. The deterministic part of utility (see Sects. 2, 3.1) is

given as

evis;j¼0 ¼ binc � INCi 8 i 2 I; s 2 S; ð28Þ

evisj ¼ bdist
s � dij 8i 2 I; s 2 S; j 2 Mi; j [ 0; ð29Þ

with INCi as the average annual disposable income of the population located in i 2 I

in 1,000 Euro. Total population and INCi are given in Fig. 2a. The ratio
P

i
ehi;s¼1=

P
i
ehi;s¼2 ¼ 0:163. Coefficients binc and bdist

s are the utility contribution

per unit of the corresponding attribute (distance and income). Equation 28 denotes

the utility for not choosing any of the facility locations of the firm (potential and

existing) or the competitors. Roughly speaking, j ¼ 0 denotes a dummy facility

absorbing all demand not satisfied by the facilities of the firm or the competitor. The

dummy facility j ¼ 0 comprises the utility of customers either to patronize a small,

local furniture store or not to consume furniture anyway. Note that (28) and (29) are

rather simplistic specifications of utility to make the application more

comprehensible.
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In a real-world application, the coefficients binc; bdist
s of (28) and (29) have to be

estimated using empirical choice data (i.e., discrete choice analysis). Large

companies can easily afford a comprehensive empirical study to appropriately

estimate the coefficients of the utility functions. Here, we cannot obtain such

estimates, hence we rely on parameter estimates from other empirical studies.

Suarez et al. (2004) provide coefficient estimates for a shopping center choice

model. They distinguish between two different segments of customers (target group

and others) and estimate coefficients of the distance between the customers location

and the shopping center for both customer segments. Here, we employ these

coefficient estimates, given as

bdist
s¼1 ¼ �0:078

bdist
s¼2 ¼ �0:088:

This indicates that the main customers (s ¼ 1, population aged between 15 and 25) are

less sensitive to distance than other customers. Goldman (1976) provides empirical

evidence on the coherence between income and the propensity of shopping at a specific

facility. Based on Fotheringham and Trew (1993), we might consider

binc ¼ �0:015:

Now, we are able to compute the expected patronage for each existing facility using

(21) and hence the total expected market share of the firm as

(a) (b)

Fig. 2 Existing facilities and potential locations of the firm as well as facilities of the competitors (a).
Expected customers in base scenario (b)
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MS ¼ eF=
X

i2I

X

s2Si

ehis: ð30Þ

We consider this as the base scenario. Figure 2b displays the result. We know that,

on average, a customer is assumed to make five shopping visits a year. This yields

41 million customers over all existing facilities and a total expected market share of

11.12 %. The expected market share is below the reference value of 12.5 %. This is

(a) (b)

(c) (d)

Fig. 3 Results of sensitivity analysis for d;bdist
s ; binc, and market share (MS). K of (12) is given by

46þ Kþ (46 facilities are already in the market)
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reasonable, because we do not consider online purchases and there might be some

inconsistencies close to the border of Germany due to transnational purchases of

customers. On average, a customer spends 80 Euro per visit yielding an annual

revenue of 3.28 billion Euro. This is close to the reference value of 3.7 billion Euro.

We conclude that our demand model makes predictions fairly well.

Since our parameters do not stem from a unique study on furniture store customer

behavior in Germany, we first investigate the sensitivity of the solution to parameter

variations. The locational decision variables yj are fixed to one for the already

existing facility locations (i.e., j\47). We solve our model of Sect. 3 for various

parameter settings and for different distance thresholds d of (27). We are interested

in MS’s dependence on Kþ. We have implemented our model in GAMS 23.7 and

we use CPLEX 12.2 on a 64-bit Windows Server 2008 with 4 Intel Xeon 2.4 GHz

processors and 24 GB RAM for all studies. All problems considered in this section

are solved to optimality within minutes. The results of Fig. 3 show a piecewise

linear increase of the market share in Kþ. The slope is nearly 0.35 indicating that

with each additional facility, the total market share of the firm increases by 0.35 %

points. Note, the underlying function is not necessarily concave. The sensitivity

analysis indicates that the market share is independent from the distance threshold

d[ 50 and the weight of the income binc. In contrast, the scale of the market share

(a) (b)

Fig. 4 Results for two possible scenarios. Parameter settings used: d ¼ 150, bdist
s¼1 ¼ �0:078,

bdist
s¼2 ¼ �0:088, and binc ¼ �0:015. The newly located facilities are labeled, f.e. P16, P22, P25, P36,

and P50 in a—where ‘‘P’’ denotes that the corresponding location is selected from the set of potential
locations. Non-labeled locations are already existing facilities
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heavily depends on the distance parameters (bdist
s ). This finding stresses the need for

firms to employ the estimates based on unique choice studies (see Street and

Burgess 2007; Müller et al. 2008; Louviere et al. 2000 for how to design studies and

experiments for discrete choice analysis).

Fig. 5 Results of Example 2: bias of objective function due to neglected segmentation. ‘‘Kplus’’

corresponds to Kþ. The values of F � eF are given in million customers. The numerical values
corresponding to this figure are given in Appendix (see Table 2)
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Based on the (linear) relationship between MS and Kþ, the firm’s management is

enabled to identify a specific number of new facilities to be located. The optimal

locations and the expected (annual) patronage of the new facilities can be displayed

in maps and enhance the decision making of the firm’s management. Figure 4

exemplifies a market expansion with 5 and 10 new facilities. In a real-world

management application, one usually has to account for locally varying locational

(and maybe operational) cost. In such a situation, one would be interested in the

relationship between cost (or budget) and market share. The firm is further

interested in the impact of segmentation of their customers (see Sect. 2.2).

Therefore, we consider the following example that extends Example 1.

Example 2 We expect the more the two segments differ, the larger is the predictive

bias of the MNL and thus the larger is the bias of the objective function value if

segmentation is neglected. Due to the specification of the deterministic part of utility

in (29), the difference in choice probabilities between the two segments corresponds

to the difference between bdist
s¼1 and bdist

s¼2.To evaluate the impact of neglected

segmentation, we first consider bdist
s¼1 ¼ bdist

s¼2 ¼ bdist with bdist ¼ ðbdist
s¼1 þ bdist

s¼2Þ=2 in

(29). This corresponds to a simple average of utilities as described in (1) of Sect.

2.2. The corresponding solution in terms of selected locations is denoted by

J ¼ j 2 J y�j ¼ 1
�
�
�

n o
. Based on J, we compute the MNL choice probabilities using

segmentation, i.e., we use bdist
s¼1 and bdist

s¼2 instead of bdist in (29). The corresponding

objective function value is denoted as F and the corresponding market share is given

by MS(F).

We consider bdist
s 2 f � 1;�0:1;�0:01;�0:001;�0:0001g, binc ¼ �0:015, and

d ¼ 150. Further, we consider two scenarios: Kþ ¼ 5 and Kþ ¼ 10. The results are

given in Fig. 5. The patterns for the total deviation F � eF , relative deviation

100� ðF � eFÞ=eF , and the deviation of the market shares MSðFÞ �MSðeFÞ are

similar. The most eye-catching bias occurs if bdist
s¼1 ¼ �1. Consider exemplarily

Table 2 Results of Example 4

K M n Jj j Market share CPU

5 5 0.525 65.028

10 0.353 40.164

15 0.269 33.077

10 5 0.683 730.747

10 0.520 190.007

15 0.415 131.345

15 5 0.762 115.467

10 0.606 88.412

15 0.512 76.692

For each problem set, we have computed ten instances. The numbers given are the averages over ten

instances. CPU denotes the time used by CPLEX. All instances are solved to optimality. Ij j ¼ 100 and

Jj j ¼ 20
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bdist
s¼1 ¼ �1 and bdist

s¼2 ¼ �0:1, i.e., segment s ¼ 1 evaluates each additional kilometer

ten times as negative as segment s ¼ 2 (i.e., bdist
s¼1=b

dist
s¼2 ¼ 10). In case that

segmentation is neglected, the corresponding distance-coefficient is bdist ¼ �0:55.

As a consequence, a large part of customers (recall that,
P

i
ehi;s¼1=

P
i
ehi;s¼2

¼ 0:163) evaluates distance more than five times as negative as this would be the

case with segmentation. Of course, the corresponding deviation is remarkable

(�8.9 % for Kþ ¼ 5 and �12.5 % for Kþ ¼ 10). The asymmetric pattern in Fig. 5

is due to the uneven distribution of population over the two segments (the

population of segment 2 is larger than the population of segment 1): the more the

true coefficient of the large part of the population (segment 2) deviates from the

average coefficient the larger is the expected predictive error. In contrast, a large

deviation of the true coefficient of segment 1 has impact only on a small part of the

population and the corresponding expected predictive error is comparably small.

Obviously, the extent of the error heavily depends on the scale of the coefficients.

Consider, for example, bdist
s¼1 ¼ �1 and bdist

s¼2 ¼ �0:1. The corresponding ratio is 10

and the expected error for Kþ ¼ 5 is �8.88 %. Now, for bdist
s¼1 ¼ �0:1 and bdist

s¼2 ¼
�0:01 the corresponding ratio is 10 again. However, the corresponding error is only

�0.18 %. This pattern is due to the non-linear relationship between distance

(deterministic utility) and the choice probabilities (i.e., a s-shaped probability

function). As the coefficients (weighting of travel distance) get larger (i.e.,

approaching 0) the probabilities of choosing to patronize a facility approach the

largest possible value. For these values of the deterministic utility the difference in

the corresponding choice probabilities between the two segments become small.

The bias found in our study is comparable to those reported in studies on spatial

aggregation (Andersson et al. 1998; Daskin et al. 1989; Current and Schilling 1987;

Murray and Gottsegen 1997). In literature, ratios of segment-specific coeffi-

cients larger than 50 are reported (Müller et al. 2012; Koppelman and Bhat 2006,

pp 133–134). However, the difference between segment-specific distance-coeffi-

cients used in our application is small. We have considered parameter settings that

yield a ratio bdist
s¼1=b

dist
s¼2 ¼ 0:91 (see Fig. 3). As a consequence, the expected bias is

below 1 % if we neglect segmentation in our application. Nevertheless, the

consideration of segments yields valuable insights, because the utility function (29)

and the corresponding coefficients are arbitrarily chosen. As stated before, for a real

application, the company is expected to specify utility functions and estimate the

corresponding coefficients on unique choice data. The firm may use such a

numerical study to make assumptions about worst-case scenarios.

5 Summary

By an intelligible example, we demonstrate that the independence from IIA of the

MNL may yield false predictions. This finding is well founded on empirical studies.

When the MNL is used in a mathematical program to incorporate customer choice
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behavior, the model outcomes are very likely to be biased as well. Although the

MNL is founded on individual choice behavior, in facility location planning we are

interested in the share of customers of a demand point patronizing a certain facility.

If we assume the customers of a demand point are homogenous, i.e., they exhibit the

same observable characteristics, then there is no need for segmentation. If we

assume the customers to be heterogeneous then segmentation of the customers

according to their characteristics (income and age, for example) should be

employed. By proper segmentation, we are able to reduce the predictive bias of the

MNL in terms of market shares.

In this contribution, we present a model formulation for the maximum capture

problem that explicitly allows for customer segmentation using the MNL to find

optimal shopping facility locations. Moreover, we propose an intelligible approach

to derive a lower bound for our model. Extensive computational studies show the

impact of proper segmentation as well as the efficiency of our approach: using

aggregate customer characteristics instead of proper segmentation may yield a

predictive bias of the objective function value of more than 15 % deviation from the

optimal objective function value. Our lower bound is found in \1 s and deviates

\1 % from the optimal solution. Problems with 2 segments, 50 potential locations

and 500 demand points can be solved to a gap \8 % within 1 h using GAMS/

CPLEX. Based on our numerical studies concerning the quality of the lower bound,

it is reasonable to assume that the true gap is remarkably smaller than 8 %. We

apply our approach in an illustrative case example of a globally operating furniture

store company that intends to increase its market share in Germany by branch

expansion. This problem can be solved to optimality within few minutes. Our

example shows how the novel approach can be used for management decision

support.

Based on our findings, several possible directions of future research appear. It is

of interest to find analytically bounds on the bias of the objective function value due

to missing segmentation under various segmentation patterns and specifications of

utility. Further, the explicit consideration of substitution patterns, i.e., correlation

between facility locations, is a very important issue to be analyzed. Efficient

solution methods are necessary to account for larger problem sets. Finally, our

approach is useful to other areas of operations research; assortment optimization, for

example Kök and Fisher (2007).
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Appendix

In this section, we provide numerical examples to validate and test the mathematical

formulation of Sect. 3. We assume Mi ¼ M, Si ¼ S and Ji ¼ J 8 i 2 I. For given I,

M, and J, we generate longitude and latitude coordinates using a random uniform

distribution in the interval 0; 100½ 	. We set the maximum computational time to 1 h

if not stated otherwise. Further, we assume that demand is completely satisfied, i.e.,

a no-choice alternative does not exist. To generate the demand ehis, we first generate

a population Popi for each demand node i 2 I using a random uniform distribution

in the interval 0; 10½ 	 weighted by the ratio Mj j= Ij j. Further, we generate weights

xis 8 i 2 I; s 2 S using a random uniform distribution in the interval 0; 1½ 	. Then,
ehis ¼ Popi � xis=

P
s02S xis0 . Let the utility function be

evisj ¼ bstij 8 i 2 I; s 2 S; j 2 M; ð31Þ

with tij as the travel-time between i 2 I and j 2 J; computed as the rectangular

distance between i 2 I and j 2 J divided by 60. All other parameters of Sect. 3 can

be easily derived. In the following, we consider several numerical examples to test

our mathematical formulation.

Example 3 In this study, we are interested in the additional burden due to the

number of segments. We set Ij j ¼ 50, Jj j ¼ 20, K ¼ 5; 10; 15f g, Sj j ¼ 1; 2; . . .; 5f g,
M n Jj j ¼ K, and bs from a uniform distribution in the interval �2;�0:5½ 	. Note, in

Fig. 6 Example 3: M n Jj j ¼ K, Ij j ¼ 50 and Jj j ¼ 20. For each problem set, we consider ten randomly
generated instances. The values are the averages over ten instances
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applications the number of segments will be small due to data availability. See Ben-

Akiva and Lerman (1985), pp 148–150 for an illustrative case study. For each

problem set K and S, we compute ten randomly generated instances. Figure 6

displays the results. We observe that the computational effort increases with the

number of segments. Seemingly, it depends on the ratio K=jJj how fast the

computational effort increases in jSj. If only a few locations have to be selected

(K ¼ 5) or many locations have to be selected (K ¼ 15), the computational effort is

small compared to the situation where 50 % of the potential locations have to be

selected (K ¼ 10).

Example 4 In this example, we investigate the impact of the number of competing

facility locations M n Jj j and the number of facilities to be located K. We consider

Ij j ¼ 100, Jj j ¼ 20, jSj ¼ 2, bs¼1 ¼ �1, and bs¼2 ¼ �0:5 for nine different problem

sets with ten instances each. The results are given in Table 3. The market share of

the considered firm declines in the number of competing facilities. The smaller K

the more the decline of the market share in the number of competitors (nearly 50 %

decline for K ¼ 5 compared to somewhat more than 30 % for K ¼ 15). If the

number of established facilities and the number of competing facilities are equal,

then market shares are nearly the same (especially, if many facilities are

established). This study confirms the findings of Example 3 concerning the ratio

K=jJj and the corresponding computational effort. Further, the study shows an

interesting pattern: there seems to be a positive relationship between the market

share and the computational effort (the larger the market share the more CPU time is

needed).

Example 5 Now we are interested in the efficiency of the lower bound described in

Sect. 3.2. We consider four problem sets with Jj j ¼ 20; 30f g and K ¼ 5; 10f g. For

each problem set, 10 randomly instances are generated. Further, we set Ij j ¼ 50,

M n Jj j ¼ K, jSj ¼ 2, bs¼1 ¼ �1, and bs¼2 ¼ �0:5. For each instance, we solve our

model with and without the lower bound (22) and with and without the OC1 (23)

and OC2 (26). Table 4 displays the results. For all instances, CPLEX found the

optimal solution within 1 h computational time. However, for larger problem sets

(K [ 5), we are able to prove optimality within 1 h only if we use the lower bound

LB. We are able to decrease the computational effort remarkably (at least 20 times

faster) using LB. The lower bound is found in \1 s and LB deviates \1 % from

the optimal solution. In a small numerical example Benati and Hansen (2002) show

that they find the optimal solution to their problem by variable neighborhood search

in \1 s for problem sets up to Jj j ¼ 50 and K\10. Concerning the objective cuts

OC1 (23) and OC2 (26), we observe a benefit only for small problem sets ( Jj j ¼ 20,

K ¼ 5). Unfortunately, for larger problem sets, the computational effort increases

(up to 2.5 times slower). Possibly, this is due to a degeneration of the LP relaxation

using the objective cuts. This finding is confirmed by the results of Benati and
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Hansen (2002). They report that their upper bound based on submodular

maximization—which is comparable to our objective cuts—performs not as good

as the bound provided by concave relaxation. In our study, we find no remarkable

difference in performance between OC1 and OC2.

Example 6 The objective of this numerical example is to figure out up to what

problem size we are able to solve our problem to (or close to) optimality. We

consider Ij j 2 100; 250; 500f g, Jj j 2 10; 25; 50f g, K ¼ Jj j=2d e, M n Jj j ¼ 2=3�d
Jj je, bs¼1 ¼ �1, and bs¼2 ¼ �0:5. For each of the nine problem sets, we solve ten

instances. The results are given in Table 5. Small-sized problem sets ( Jj j ¼ 10) can

be easily solved to optimality. Medium-sized problem sets ( Jj j ¼ 25) can be solved

up to a gap of \6 % in 1 h. For large problem sets ( Jj j ¼ 50), the gap becomes

disappointing if we only use the lower bound (22). In contrast, if we use the lower

bound (22) and the OC1 (23), we are able to reduce the gap to somewhat more than

7 % within 1 h. Taking into account the good quality of the lower bound (see

Example 5) and the observation that most of the time is needed to prove optimality,

we may assume that the ‘‘true’’ gap is even smaller. Note, Benati and Hansen (2002)

made the same observation.

Table 4 Results of Example 6

jIj jJj LB and OC1 LB

Equations (22) and (23) Equation (22)

CPU GAP CPU GAP

100 10 5.70 0.00 4.60 0.00

25 2,931.03 0.74 2,377.71 0.19

50 3,600.00 5.88 3,600.00 7.20

7,200.00 7.10

250 10 27.84 0.00 20.89 0.00

25 3,600.00 3.65 3,600.00 3.70

7200.00 3.51

50 3,600.00 7.34 3,600.00 10.78

7,200.00 10.21

500 10 104.34 0.00 62.72 0.00

25 3,600.00 5.96 3,600.00 6.41

7,200.00 5.75

50 3,600.00 7.61 3,600.00 13.23

7,200.00 13.15

We consider model (7)–(15), (22). For each problem set, we have computed ten random instances. The

numbers are the averages over ten instances. CPU denotes the time in seconds used by CPLEX (maxi-

mum computation time 1 or 2 h). GAP denotes the solution gap in percent provided by CPLEX. We

consider Sj j ¼ 2, K ¼ Jj j=2 and M n Jj j ¼ K
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