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Abstract

Capital-labor substitution and TFP estimates are essential features of many

economic models. Such models typically embody a balanced growth path. This

often leads researchers to estimate models imposing stringent prior choices on

technical change. We demonstrate that estimation of the substitution elastic-

ity and TFP growth can be substantially biased if technical progress is thereby

mis-specified. We obtain analytical and simulation results in the context of a

model consistent with balanced and near-balanced growth (i.e., departures from

balanced growth but broadly stable factor shares). Given this evidence, a Con-

stant Elasticity of Substitution production function system is then estimated for

the US economy. Results show that the estimated substitution elasticity tends

to be significantly lower using a factor-augmenting specification (well below

one). We are also able to reject conventional neutrality forms in favor of gen-

eral factor augmentation with a non-negligible capital-augmenting component.

Our work thus provides insights into production and supply-side estimation in

balanced-growth frameworks.
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1 Introduction

A balanced growth path (BGP) defines an equilibrium in which macroeconomic vari-

ables such as output, consumption, etc., tend to a common growth rate, whilst key

underlying ratios (e.g., factor income shares, capital-output ratio, and the real inter-

est rate) are constant, Kaldor (1961). In terms of neoclassical growth theory, Uzawa

(1961), it requires that technical progress is labor-augmenting (i.e., Harrod Neutral)

or that production is Cobb Douglas (i.e., exhibits a unitary elasticity of substitution

between input factors).

Although balanced growth is a reasonable description (or “stylized fact”) of many

economies and is a common and tractable narrative in models, these two particu-

lar explanations are widely disputed.1 For instance, there is now mounting evidence

in favor of a below-unity aggregate substitution elasticity (e.g., Chirinko (2008)).

Likewise, that all technical change is labor augmenting appears unduly restrictive.2

Recent theoretical literature (Acemoglu (2003, 2007)) also argues that while tech-

nical progress is asymptotically labor-augmenting, it may become capital-biased in

transition reflecting incentives for factor-saving innovations.3 Despite these concerns,

guided by tractability and the apparent “stylized facts”, researchers invariably impose

BGP conditions for estimating key supply side parameters such as the elasticity of

capital-labor substitution and total factor productivity (TFP).4

Arguably, the costs of doing so are unknown. We hence analyze the potential con-

sequences of imposing a priori beliefs on the form of technical progress for estimates

of these crucial parameters. In particular, we study how estimates of the elasticity of

substitution and TFP are affected by imposing a priori restrictions on the direction

of technical change in a context where an economy may depart to a large or small

extent from BGP. We first uncover theoretically a set of potential pitfalls related to

parameter inference, TFP approximations, and issues of observational equivalence.

Then we analyze the practical importance of these biases in a simulation experiment.

1See Attfield and Temple (2010) for an empirical assessment of the BGP conditions and a dis-
cussion of previous studies of the empirical validity of the BGP.

2As Blanchard (2006) (p. 13) comments “Most of our intuition and most of our models are
based on the assumption that technological progress is Harrod-Neutral and that there is a balanced
growth path. What happens if it is not is largely unexplored, but may well be relevant.”Moreover,
the simulation evidence of Leung (2009) suggests that the attainment of the long run in growth
models could be exceptionally long.

3Other perspectives draw on the distributional form of technical change over time, Jones (2005),
Growiec (2008a,b) or the endogenous choice of production technology, León-Ledesma and Satchi
(2011).

4The difficulty in identifying parameters of highly nonlinear functional forms such as CES pro-
duction functions poses estimation problems that may also explain the choice of restricted forms of
technical progress.
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Finally, in light of these results, we estimate a production-technology system of the

US economy for the 1952-2009 period under different technical progress specifications

and compare the resulting estimates of the substitution elasticity and TFP. Our ref-

erence point is the flexible “factor-augmenting” Constant Elasticity of Substitution

(CES) production function.

Our analysis shows that, generally, when the true nature of technical progress is

factor-augmenting, imposing Hicks-neutrality leads to biases towards Cobb-Douglas

(unit elasticity). Imposing Harrod-neutrality would generally lead to upward biases

in the estimated elasticity if the true elasticity is below unity and downward biases

if it is above unity. We rationalize these various biases as attempts by the estimator

to control for trends in the data (e.g., in capital deepening) incompatible with the

presumed neutrality concept.

Imposing specific forms of technical progress can also risk a problem of identifi-

cation through observational equivalence. We also show that TFP growth approxi-

mations from CES estimates crucially depend on the elasticity of substitution, which

governs the transmission of capital deepening and technical progress components into

the evolution of TFP. Hence, biases in the estimated elasticity will be reflected in

biases in estimated TFP growth.

When we estimate the parameters using US data, we find that many of the pre-

vious lessons find an echo in empirical estimates. Although results yield different

values for the substitution elasticity for different a priori technical progress restric-

tions. In all cases, our tests support the general factor-augmenting specification with

a capital-labor substitution elasticity well below one. We also find a non-negligible

capital-augmenting technical progress component.

The paper is organized as follows. In section 2 we present some relevant back-

ground on the Constant Elasticity of Substitution (CES) production function and

in section 3 discuss the potential biases arising from mis-specification of technical

change. In Section 4 we present the simulation setup and discuss the results. Section

5 presents empirical results using US data. Finally, we conclude.

2 Theory Background

The CES production function was formally introduced in economics by Arrow et al.

(1961) and spawned a vast supporting literature (e.g., David and van de Klundert

(1965), Kmenta (1967), Berndt (1976), Klump et al. (2007)). Following the work of

La Grandville (1989) and Klump and de La Grandville (2000), the function is often

now expressed in “normalized” (or indexed) form since its parameters then have a
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direct economic interpretation:5

Yt = F
(
ΓK
t Kt, Γ

N
t Nt

)
= Y0

[
π0

(
ΓK
t Kt

ΓK
0 K0

)σ−1

σ

+ (1− π0)

(
ΓN
t Nt

ΓN
0 N0

)σ−1

σ

] σ
σ−1

(1)

where the point of time t = 0 represents the point of normalization, Yt represents real

output, Kt is the real capital stock and Nt is the labor input.

The terms ΓK
t and ΓN

t capture capital and labor-augmenting technical progress.

To circumvent problems related to the Diamond-McFadden impossibility theorem,

researchers usually assume specific functional forms for technical progress, e.g., ΓK
t =

ΓK
0 e

γK t and ΓN
t = ΓN

0 e
γN t where γi denotes growth in technical progress associated

to factor i, t represents a time trend. Technical progress can be Hicks neutral (γK =

γN > 0), Harrod neutral (γK = 0,γN > 0) or, more seldom, Solow-Neutral (γK >

0,γN = 0). A general factor-augmenting case (γK > 0 6= γN > 0), though, is typically

by-passed.

The capital income share at the point of normalization is π0 =
r0K0

Y0
(r denotes the

real user cost of capital) and the elasticity of substitution between capital and labor

inputs is given by the percentage change in factor proportions due to a change in the

factor price ratio along an isoquant:

σ ∈ [0,∞) =
d log (K/N)

d log (FN/FK)
(2)

CES production function (1) nests Cobb Douglas when σ = 1; the Leontief func-

tion (i.e., fixed factor proportions) when σ = 0; and a linear production function

(i.e., perfect factor substitutes) when σ → ∞.6 The higher is σ, the greater the

similarity between capital and labor: when σ < 1, factors are gross complements in

production and gross substitutes otherwise. It can be shown that with gross sub-

stitutes, substitutability between factors allows both the augmentation and bias of

technological change to “favor” the same factor.7 For gross complements, however,

a capital-augmenting technological change, to be specific, increases demand for labor

(the complementary input) more than it does capital, and vice versa. By contrast,

5See also Klump and Preissler (2000), Klump and de La Grandville (2000), Klump and Saam
(2008), La Grandville (2009), and Temple (2012) for an analysis of the relevance of normalized
production functions for growth theory.

6Since Hicks (1932), the value of the substitution elasticity has often been seen as reflecting
economic flexibility and thus deep institutional factors such as labor bargaining power, the taxation
burden, degree of economic openness, the characteristics of national education systems, etc.

7In other words, if σ < 1 and γi > γj this implies that Fi > Fj plus that there is a relative rise
in the income share of factor i . Hence we can say that technical change related to factor i “favors”
factor i in the gross complements case.
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when σ → 1 an increase in technology does not produce a bias towards either factor

(factor shares will always be constant since any change in factor proportions will be

offset by a change in factor prices). Thus, as we shall soon appreciate, the question

of whether σ is above or below unity is possibly as important as its numerical value.

3 BGP Pitfalls: Three Examples

We now discuss the general issues at stake and analytically derive some potential es-

timation problems. First, in sections 3.1 and 3.2, we consider the particular impact of

mis-specification of technical progress on the estimation of the elasticity of substitu-

tion, and then on TFP estimates and its decompositions. Second, in 3.3 we touch on

the possibility of observational equivalence: the properties of the CES function in ad-

mitting gross substitutes / complements in production can imply a similar evolution

of, for instance, factor income shares across otherwise distinct technical parameters.

These examples, note, are meant to be primarily motivational: they usefully high-

light many of the issues that will become apparent in both the simulation and data

estimation sections.

3.1 Mis-Specified Technical Change: Parameter Inference

The relative capital-to-labor income share, given a competitive goods market and

profit maximization, can be expressed as,

Θt =
rt
wt

Kt

Nt

=
π0

1− π0

(
ΓK
t Kt/K0

ΓN
t Nt/N0

)σ−1

σ

(3)

Whilst Θt is observed, neither the substitution elasticity nor technical change

are. For Θ to be constant requires the familiar balanced growth cases of σ = 1 or

Harrod neutrality. But can dΘ ≈ 0 (i.e., a near balanced growth path) arise when we

purposefully depart form these two restrictive assumptions? And what would be the

consequences?:

1. Equation (3) shows that if we assume Hicks neutrality, stable factor shares

require σ̂ → 1 to offset any trend in capital deepening. Antràs (2004) uses this

argument to rationalize Berndt (1976)’s widely-cited finding of Cobb-Douglas

for US manufacturing.

2. The same is true of Solow neutrality.

4



3. Another possibility, for factor-augmenting technical progress, is that stable fac-

tor shares hold if the bias in technical change exactly offsets that of capital

deepening. In this case, factor shares are stable independently of the value of

the substitution elasticity.

4. More intriguingly, however, and independent from the size of σ, Θ would remain

broadly constant outside the balanced growth path if rt somehow “absorbs”

some of the trend in capital augmentation. This, though, violates our priors

that the real interest rate is stable.8 However, we can show that this trend

absorption need only be modest. If the user cost only partially absorbs the

capital-augmenting technical progress, there will also be trends in the factor

income shares, but these may be weak when coupled with a moderate pace of

capital augmentation.9,10 Hence, the broad stability of factor income shares is

not a sufficient condition for the correctness of either Cobb-Douglas or Harrod

neutrality.

We have seen that the assumption of Hicks neutrality can bias σ towards unity.

Correspondingly, we can show that quite generally (although not universally) the

Harrod-neutral specification can result in σ estimates that are either upwards or

downwards biased when the true DGP contains capital-augmenting technical progress.

Assume the lhs of equation (4) below corresponds to the “true” DGP for the

observed capital income share and the rhs corresponds to the mis-specified Harrod-

neutral (h) version:

π0

(
ΓK
t Kt

K0Yt

)σ−1
σ

= π0

(
Kt

K0Yt

) σ̂h
−1

σ̂h

(4)

Taking logs and rearranging,

σ − 1

σ
log ΓK

t =
σ̂h−σ

σ̂hσ
log

(
Kt

K0Yt

)
(5)

In the true data, Kt

K0Yt
=
(
ΓK
t

)σ−1
(

r0
rt

)σ
. Assume rt = r0

(
ΓK
t

)α
, α ∈ (0, 1]

8However, rather than exhibiting global stability, real interest rates are commonly thought of as
regime-wise stationary, e.g., Rapach and Wohar (2005). Also, depreciation rates (another component
of the user cost) have trended upwards over this sample - see Whelan (2002). This is compatible
with the commonly-held view that the share of equipment in capital has increased while the share
of structures has decreased and hence investment is characterized by shorter mean lives.

9Assuming capital augmenting-technical progress is 0.5% annually and even where that is fully
absorbed by the real user cost, then the latter would rise from, for instance, 0.05 to 0.064 within 50
years.

10Jones (2003) also reports evidence showing capital shares for OECD countries frequently exhibit
large variation and medium-run trends. These trends are certainly relevant for typical sample sizes
available to researchers.

5



which implies that the real user cost partly absorbs the trend in capital-augmenting

technology. It can be shown that with values of α > σ−1
σ
, the negative trend in the

capital-output ratio corresponds to the positive trend of ΓK
t . When this condition

holds, then in the interval α ∈ (0, 1], σ̂h > σ and with σ > 1, in turn, σ̂h < σ.

However, when α = 0 and σ > 1, then the capital-output ratio has a positive trend

and σ̂h > σ > 1.

3.2 Mis-Specified Technical Change: TFP Calculations

Since Solow (1957) the calculation of TFP has been a key application of the production

function literature. Predicated on Cobb Douglas, TFP calculations are invariably

derived imposing Hicks Neutrality (the “Solow Residual”). However, even if estimates

of the size of TFP growth are robust to mis-specification, an accurate decomposition

of TFP growth offers insights on the mechanisms underlining economic performance

and may usefully inform policy.

An exact (or residual) method to calculate the contribution of log(TFP) to output

is given by,

log

[
F
(
ΓK
t Kt, Γ

N
t Nt

)

F (ΓK
0 Kt, ΓN

0 Nt)

]
=

σ

σ − 1
log



π0

(
ΓK
t Kt

ΓK
0
K0

)σ−1

σ

+ (1− π0)
(

ΓN
t Nt

ΓN
0
N0

)σ−1

σ

π0

(
Kt

K0

)σ−1

σ

+ (1− π0)
(

Nt

N0

)σ−1

σ


 (6)

For illustrative purposes, it is also useful to present a closed-form approximation

for log(TFP) separable from factor inputs. We follow Kmenta (1967) and Klump et al.

(2007), by applying an expansion of the normalized log CES production function (1)

around σ = 1:

yt = π0kt + ak2
t (7)

+ π0

[
1 +

2a

π0
kt

]
γK · t̃+ (1− π0)

[
1−

2a

(1− π0)
kt

]
γN · t̃+ a [γK − γN ]

2 · t̃2

︸ ︷︷ ︸
Φ=log (TFP )

where t̃ = t− t0, yt = log[(Yt/Y0) / (Nt/N0)], kt = log[(Kt/K0) / (Nt/N0)], and where

a = (σ−1)π0(1−π0)
2σ

and Γi
t = Γ0e

γi t̃.

Equation (7) shows that the output-labor ratio can be decomposed into (linear and

quadratic) capital deepening and technical change weighted by factor shares and the

substitution elasticity – where sgn (a) = sgn (σ − 1) and lim
σ∈[0,∞)

a ∈
[
−∞, 1

2
π0 (1− π0)

)
.

In addition, (7) shows that, when σ 6= 1 and γK 6= γN > 0, additional (quadratic)

curvature is introduced into the production function: viz, ak2
t ; a [γK − γN ]

2 · t̃2.
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The effect of capital deepening on log(TFP ) – given by 2at̃ (γK − γN) – switches

sign depending on whether factors are gross substitutes or complements. However,

although the transmission of individual technology changes to TFP is also a function

of σ, generally its sign (and, in particular, the importance of gross substitutes or

complements) is ambiguous.11

The effect of σ on TFP through capital deepening can be given an economic

interpretation, though. When σ 6= 1, capital deepening will be biased in favor of

one factor of production (changing its income share). Hence, with factor augmenting

technical change, an acceleration of capital deepening changes the estimated TFP

growth simply because technical progress is biased in favor of one of the factors. If, for

instance, σ < 1, capital deepening would increase the labor share. If (γK − γN) < 0,

capital deepening would lead to an acceleration of the estimated TFP growth.

The expressions for log(TFP) for the restricted neutrality cases are:12

Harrod : (1− π0)

[
1−

2a

(1− π0)
kt

]
γN · t̃+ aγ2

N · t̃2 (8)

Solow : π0

[
1 +

2a

π0

kt

]
γK · t̃+ aγ2

K · t̃2 (9)

Hicks : γ · t̃, where γ = γK = γN (10)

The comparisons of (7) with variants (8)-(10) are self evident. For instance, in the

Hicks case all improvements in TFP would be attributed to a single factor-neutral

component, γ, excluding also any role for capital deepening.

For values of Kt and Nt close to their normalization points, kt ≈ 0, one can also

obtain two simpler approximation for log(TFP):

ΦSimple = π0γK · t̃ + (1− π0) γN · t̃ + a [γK − γN ]
2 · t̃2 (11)

ΦLinearWeight = π0γK · t̃ + (1− π0) γN · t̃ (12)

The first abstracts from capital deepening. This may be considered informative re-

garding the contribution of capital deepening in TFP estimates based on (6) and (7)

- especially so given the rapid capital deepening in the US towards the end of our

sample. The second form, which is a simple linear weight of the two constant progress

terms, discards all nonlinearities in TFP.

Although all cases coincide at the point of normalization, equation (11) by exclud-

11Except in two cases, when γK − γN > 0:
∂Φ

∂γN |σ<1,t̃,k>0
= (1− π0) t̃

[{
1− ktπ0(σ−1)

σ

}
− (σ − 1) (γK − γN ) t̃

]
> 0,

∂Φ
∂γK |σ>1,t̃,k>0

= t̃
[
π0

{
1 + kt(1−π0)(σ−1)

σ

}
+ (1− π0) (σ − 1) (γK − γN ) t̃

]
> 0.

12Individual technical change cannot be identified in the Cobb-Douglas case.
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ing capital deepening, runs the risk that the nonlinearity in the TFP is not correctly

captured. For instance, if the economy is characterized by Harrod neutrality, ΦSimple

implies the wrong sign for the quadratic effect term (being positive rather than neg-

ative).13

3.3 Identification Aspects: Iso-Shares

LetKt = K0e
ηK t, Nt = N0e

ηN t, ΓK
t = ΓK

0 e
γK t and ΓN

t = ΓN
0 e

γN t. Assume further that

although the histories of Θ, ηK and ηN are observed, two separate estimation studies

by separate researchers arrive at the estimates: {σ2, γK,2, γN,2} /∈ {σ1, γK,1, γN,1}.

Given (3), we can derive the relationship between them as,

σ2 =
φ

1− σ1 (1− φ)
(13)

with φ =
γK,2−γN,2+ηK−ηN
γK,1−γN,1+ηK−ηN

, which we label the “bias ratio”.14 Expression (13) shows

the combinations of σ’s compatible with the same evolution of factor shares for given

assumptions about the relative bias in technical progress. Hence, for a given φ we

can derive a range of elasticities that generate the same factor income shares. For

example, if φ = 2 then, on a common dataset, σ1 = 0.25, would imply σ2 = 1.33, and

σ1 = 1.25 would imply σ2 = 0.95.15 We saw in section (2) how important the gross-

substitutes/gross-complements distinction is, and here is a case where researchers on

a common dataset would arrive at completely different conclusions.

In a system estimator with parameter restrictions, the estimated coefficients have

to be compatible with the evolution of both output and factor payments, so the

scope for this observational equivalence to affect estimation results is greatly reduced.

However, if we restrict technical progress to take a particular form of augmentation

such as Hicks- or Harrod-neutrality, then these identification issues become important.

The estimate of σ will then bear the burden of fitting the data for output and factor

payments, leading to estimation biases if the technical progress restriction is incorrect.

13In the Harrod neutral case kt = γN · t̃. Substituting this into (8) results in the following form of
the log(TFP): π0γK · t̃+ (1− π0) γN · t̃− aγ2

N · t̃2 and hence ΦSimple implies the wrong sign for the
quadratic term.

14Naturally, the trade off defined by (2), holds only exactly in a deterministic setting. However,
we believe it to be indicative of trends in stochastic environments.

15More generally, σ1 → ∞, σ2 → 0 and naturally they cross at σ2 = σ1 = 1∀φ where we have a
Cobb-Douglas technology with constant factor shares regardless of the direction or bias in absolute
or relative technical progress.
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4 The Specification Bias: Simulation Evidence

We now use a simulation exercise for a variety of parameter values of the supply side

to quantitatively analyze the potential bias arising from mis-specification of technical

progress discussed in the previous section. We first simulate a consistent DGP for fac-

tor inputs, output, and factor payments, and then estimate the relevant parameters

using the normalized system approach imposing particular forms of factor neutral-

ity. The simulation follows León-Ledesma et al. (2010), but differs in terms of the

stochastic process for factor inputs and, crucially, the way the growth of the capital

stock is specified. This will precisely allow us to focus on questions of whether the

simulated data is plausible in terms of balanced or near balanced growth trajectories,

which is of special relevance in our context.16

The normalized system estimator of the parameters consists of the joint estimation

of (log-version of) the CES function (1) and the first order conditions for K and N .

Normalization allows us to fix parameter π0 to its observed value (capital income share

in the baseline period 0) also simplifying the estimation problem. The 3-equation

system of equations is then jointly estimated using a Nonlinear SUR system estimator

(which we also use, among several alternative methods, for estimation with US data in

section 5).17 In this case, of course, within a system setting, consistent cross-equation

parameter restrictions are imposed.

4.1 The Simulation Experiment

We generate data in a consistent way corresponding to a particular evolution of factor

inputs, technical progress and output. This Monte Carlo (MC) data is estimated

under both correctly specified and mis-specified systems.

We draw M simulated stochastic processes of sample size T for labor (Nt), capital

(Kt), labor- (ΓN
t ) and capital-(ΓK

t ) augmenting technology. Using these, we then

derive “potential” or “equilibrium” output (Y∗

t ), observed output (Yt) and real factor

payments (wt and rt), for a range of parameter values and shock variances. The

simulated system is consistent with the normalized approach, so that we ensure our

parameters are deep, i.e. can be given an economic interpretation and are not the

result of a combination of other parameters.

We now describe the full DGP for the MC simulations. Capital and labor evolve

16We do not focus here on comparison of estimation methods as in León-Ledesma et al. (2010),
but on model (mis-) specification and in which direction it affects estimated parameters.

17We also considered GMM, 3SLS, and FIML estimators that take into account potential endo-
geneity bias, but the results remained very similar and are not reported here. In the more compact
empirical section, however, we show all these methods.
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as stationary stochastic processes around a deterministic trend:

Kt = K0e
(κt̃+εKt ) , Nt = N0e

(ηt̃+εNt ) (14)

where κ and η represent their respective mean growth rates, and t = 1, 2 . . . , T with

T being the sample size. The initial value for N was set to N0 = 1, and K0 = π0/r0,

with the real user cost at r0 = 0.05.18,19

The technical progress functions, as described before, are also assumed to be

exponential with a deterministic and stochastic component (around a suitable point

of normalization):

ΓK
t = ΓK

0 e

(
γ
K
t̃+εΓ

K

t

)

, ΓN
t = ΓN

0 e

(
γN t̃+εΓ

N

t

)

(15)

where ΓK
0 and ΓN

0 are initial values for technology which we also set to unity.

We then obtain equilibrium output from the normalized CES function:

Y ∗

t = Y ∗

0

[
π0

(
Kt

K0

e

(
γK t̃+εΓ

K

t

))σ−1

σ

+ (1− π0)

(
Nt

N0

e

(
γN t̃+εΓ

N

t

))σ−1

σ

] σ
σ−1

(16)

with Y ∗

0 = 1. This “equilibrium” output is then used to derive the real factor pay-

ments from the FOCs, to which we add a multiplicative shock.

rt =
∂Y ∗

t

∂Kt

= π0

(
Y ∗

0

K0
e

(
γK t̃+εΓ

K

t

))σ−1

σ
(
Y ∗

t

Kt

) 1

σ

eε
r
t (17)

wt =
∂Y ∗

t

∂Nt

= (1− π0)

(
Y ∗

0

N0
e

(
γN t̃+εΓ

N

t

))σ−1

σ
(
Y ∗

t

Nt

) 1

σ

eε
w
t (18)

Equations (17) and (18) imply that real factor returns equal their marginal product

times a multiplicative shock that temporarily deviate factor payments from equi-

librium. All shocks are assumed normally distributed iid: εΛt
iid
∼ N (0, σεΛ) ,Λ =

[K,N,ΓK ,ΓN , r, w].

Because we need to ensure that our artificial data is consistent with national

accounts identities, we then obtain the “observed” output series using the identity:

Yt ≡ rtKt + wtNt (19)

18For estimation, initial values for r0 and K0 do not affect the results if the system is appropriately
normalized.

19For all the experiments we also simulated Kt and Nt such that they displayed stochastic rather
than deterministic trends. We report here the case of deterministic trends because it makes the
discussion above about factor shares more transparent. However, the conclusions of the analysis did
not change. Results are available on request.
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We use the “observed” output series for estimation purposes. This ensures that,

regardless of the shocks, factor shares sum to unity, which has to be the case in this

artificial setting with absent markups.

Hence, the experiment consists of, first, simulating a time series of sample size

T for factor inputs, technical progress, and equilibrium output. Second, from these

we obtain factor payments and observed output. Finally, we estimate the normal-

ized system, (16)-(18), imposing Hicks-, Harrod- and Solow neutrality in technical

progress. We repeat these steps M times and analyze the possible biases arising from

mis-specification by looking at the difference between the true and estimated σ.

Table 1 lists the parameters used to generate the simulated series. We fixed the

distribution parameter to 0.4.20 The substitution elasticity is set to a neighborhood

around Cobb-Douglas (0.9) and 0.9±0.4 (thus accommodating gross substitute and

complements). Labor supply growth (η) is set to 1.5% per year. The values for

capital stock growth (κ) will be discussed below more in depth. We use a variety

of values for technical progress, assuming a plausible summation of 2% per year;

γN = 2% and γK = 0% (Harrod-neutral case); γN = 0%, γK = 2% (Solow neutral);

and γN = γK = γ = 1% (Hicks-neutral). Finally, we have two cases where technical

progress is of the general factor augmenting form.

The standard errors of the shocks are chosen so that they also generate series

with realistic behavior. We chose a value of 0.1 for the capital and labor stochastic

shocks.21 For the technical-progress parameters, we used a value of 0.01 when the

technical progress parameter is set to zero, so that the stochastic component of tech-

nical progress does not dominate. When technical progress exceeds zero we used a

value of 0.05 so when technical progress is present it is also subject to larger shocks.22

Finally, for shocks to factor payments, we used the standard deviation of the de-

trended real wages and the standard deviation of demeaned user cost of capital for

the US economy. These take values of 0.05 and 0.1 respectively, reflecting the larger

volatility of the real user cost.

We used a sample size T = 50 (years).23 Also, the nonlinear system estimator used

requires initial guesses for the parameters, which we set to their true value following

20In practice, setting different values for π0 did not affect the results.
21This is approximately the standard error of labor and capital equipment around a trend with

US data from 1950 to 2005. The results, however, remained invariant when we used values of 0.2
and 0.05.

22For robustness purposes, we also replicated the results assuming no shock when technical
progress is zero and also equal shocks for both components. The results were not affected by
these changes.

23Using values of 100 and 30 led to very similar results, although, as expected, the range of
estimated values for the parameters increased as we decreased the sample size.
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Thursby (1980).24

The choice of the average rate of growth of capital, κ, is important given our

emphasis on settings where the economy does not deviate in an evident way from

the case of stable factor income shares. Hence, κ is chosen such that we exclude

unrealistic income share trends. We can do this by looking again at the expression

for the capital-to-labor income share under competitive profit maximization,

Θt =
rtKt

wtNt

=
π0

1− π0

(
ΓK
t Kt/K0

ΓN
t Nt/N0

)σ−1

σ

Thus, if σ 6= 1, capital- and labor-augmenting technical change can lead to ever

increasing or decreasing factor shares for given factor proportions. Hence, for given

rates of technical progress, to obtain approximately constant shares, we set the rate

of growth of K in such a way that we avoid any counter-factual trends in shares.

One simple mechanism to achieve this, following our earlier discussion, is to allow

r to absorb some fraction, α, of the trend in capital augmentation (assuming ΓK
0 =

ΓN
0 = 1). Hence, we use the following deterministic rule for r:

rdett = r0e
α(γK ·t̃) (20)

Now with (20), the FOC of capital results in the following relation for the capital

income share,

rdett Kt

Yt

= π0e
(1−α)(σ−1)(γK ·t̃) (21)

Equation (21) shows that, with the constant user cost, i.e. when α = 0, the

capital augmenting technical change coupled with non-unitary substitution elasticity

results in continuously changing factor income shares. However, with α → 1 the

larger part of this trend is absorbed by the trend in the user cost. With α = 1 factor

income shares remain constant independently from the sizes of σ and γK . Hence, we

can choose α in the unit interval so that factor shares and the real user cost do not

display trends that are grossly counter factual.

Once α is chosen, for given technology parameters, we obtain rdett from (20).

Given an exogenous law of motion for N , the CES function and (21) solve for K

and Y . Using the value of K from this recursive system, we obtain the average rate

of growth of K that we then use as the value for κ in our stochastic DGP. This is

the value compatible with factor shares and real interest rates that do not display

24This facilitates comparisons across specifications and estimator types since we eliminate the
effect of arbitrary starting values on our results.
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counter-factual trends. Given that parameter α controls the rate of change of rdett , a

sufficiently small value can be set to mimic empirically-relevant paths for r and hence

K/Y and Θ. In our experiments, we set α = 0.5.

The functional construct of (20) is not without an empirical counterpart. As

we know, the real user cost comprises the nominal interest rate (i.e., the risk-free

government bond rate or firms’ market rates), inflation, capital depreciation, taxes,

capital gains etc. All these are time-varying (Figure 5 plots our measure of the user

cost series for the US). Thus, if there is technical change which is not solely Harrod

neutral alongside approximately constant factor shares, factor payments must be

compensating.

4.2 Simulation results

4.2.1 Median Estimates

Tables 2 to 4 report the Monte Carlo results when the data are generated according

to the {γK , γN } and {σ} combinations given in Table 1 but then estimated for the

respective cases of Hicks-, Harrod- and Solow neutrality. In the tables, we report

the median parameter estimates across the 5,000 draws for the substitution elasticity

(and its percentiles) and γi.

Where the imposed technical change corresponds to the true DGP (labeled “bench-

mark” in the tables), the parameters are very precisely estimated, reflecting the power

of the normalized system. However, in non-benchmark gross complements cases (i.e.,

the first two columns in each table), systematic upwards bias is almost always found,

i.e.,:

σm − σ {0.5, 0.9} > 0

The gross-substitute, non-benchmarks cases are less clear cut. Whilst, in all but

two cases (both relating to Harrod neutrality, Table 2) a gross substitutes production

function is correctly identified, almost in all cases there is a downward bias:

σm − σ {1.3} < 0, with σm ≈ 1

4.2.2 Distributions

The distribution of the substitution elasticities across the 5,000 draws shed further

light on these results (Figures 1, 2 and 3). Regarding the σ = 0.5 case, we see

that the general factor augmenting specification is always tightly distributed around

the true value of the substitution elasticity. The Solow neutral specification, though,
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yields a bimodal distribution for the two cases in which technical progress is net

labor-augmenting. To a smaller degree, the Harrod-neutral specification also shows

bimodality in two cases. The distributions also tend to be more skewed when the

specified model differs from the true DGP. To illustrate, under a Solow neutral DGP,

the Hicks neutral estimation has a median substitution elasticity at σm = 0.77 as well

as considerable positive skewness.

The σ = 0.9 case is interesting given its proximity to Cobb-Douglas, and thus

the heightened relevance of the issues raised in Section 3. Note that the densities

are now largely symmetric with little skew and limited dispersion, (σm | σ = 0.9 ∈

[0.89, 1.03])25 and most (12/15) detect gross complements at the median. Consistent

with the σ = 0.5 case above, almost all median estimates exhibit upward biases. In

this case, that bias is ostensibly to unity. As earlier discussed, a unitary substitution

elasticity is a strong attractor: pulling estimates to the log-linear form captures the

broadly balanced growth characteristics of the simulated data minimizing the cost

of the imprecise technical change component. Recalling approximation (7), σ̂ →

1, neutralizes the effect of quadratic curvature in capital deepening and technical

bias, and minimizes the weight given to the individual technical progress components.

Furthermore, bi- or multi-modality is more severe than in the σ = 0.5 (or indeed σ =

1.3) case, even so for the cases where both forms of technical change are permitted;

thus, even the factor-augmenting specification shows a (second) peak around unity in

all cases.

For σ = 1.3 the distributions are, by contrast, much flatter, except for the Solow

neutral specification. In the case where γN = 0 and γK = 0.02, the Hicks-neutral

specification is very flat, although the scale of the graph makes it difficult to show the

frequency variation. This explains the high values for the median σ reported in Table

2 for that case. This value, though, is hardly representative. The factor augmenting

specification, despite capturing very well the true values of σ, also tend to display a

small local maximum around a value of one.

Our simulation exercises were necessarily stylized. In particular, we analyzed an

environment of balanced or near balanced growth. This has several advantages. First,

it corresponds to situation common to many developed countries (over reasonably-

sized samples). Second, it places our exercises within a familiar context, making

the interpretation and motivation of results more transparent. However, third, it

in fact makes for a particularly challenging exercise since estimates – framed in the

neighborhood of a balanced growth path – may degenerate to unitary elasticities

and overlook or strongly bias the nature of technical change. Our next step is to

25For the 0.5 and 1.3, the substitution elasticity ranges are respectively, 0.52-1.07 and 0.85-1.53.
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analyze how these potential biases affect estimates of the supply-side parameters and

estimates of TFP growth for the US economy.

5 CES Estimation of the US Economy

5.1 Data

We use the U.S. annual national income and product accounts (NIPA) data released

by the Bureau of Economy analysis (BEA) for the private non-residential sector over

the period 1952 to 2009. Output (at current and constant prices) is evaluated at

factor cost, i.e. net of indirect taxes minus subsidies. Hence, current price private

non-residential output equals gross domestic product minus taxes on production and

imports less subsidies, general government value added and gross housing value added.

In calculating the (chained dollars) constant price output the constant price gross

domestic product is scaled down in proportion of to the base year’s (2005) indirect

tax content, of which constant price general government and gross housing value

added are subtracted.

Employment is defined as the sum of self-employed persons and the private sector

full-time equivalent employees (both from NIPA tables). NIPA tables do not re-

port the income of proprietors (self-employed) divided into labor and capital income.

Therefore, in calculating labor income we follow a common practice (e.g., Klump et al.

(2007)), use the private sector compensation of employees as a shadow price of labor

of self-employed workers. Accordingly, total labor income equals the private sector

compensation of employees scaled up by the labor share of self-employed workers.

As a capital stock series we use the quantity index of net stock of non-residential

private capital from the BEA fixed asset tables. Capital income and the implied

measure of the user cost are calculated from the accounting identity of non-residential

private sector conditional for an assumed 10% markup (this is a common benchmark

in macroeconomic models, e.g., Clarida et al. (1999)).26

Figures 4 present some variables of interest. Against the balanced-growth path

hypothesis the capital-output ratio appears to show a declining trend over the sample

period. An ADF test does not reject the null of non stationarity of the capital-output

ratio. This negative trend expresses itself also in a trend difference between average

labor productivity (output-labor ratio) and capital intensity (capital-labor ratio). The

26The benefit of this approach is that we do not have to explicitly calculate the user cost of capital,
which has long been recognized as being a complex exercise and with scope for large measurement
error. E.g., Jorgensen and Yun (1991). However, for robustness, we also used a user cost calculation
and let the average markup to be freely estimated. This did not change substantially the results.
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share of labor income shows sizeable annual variation. Although a sort of inverted

U (or double U) trend profile can be observed, an ADF test rejects the null of non

stationarity of the labor income share.

Figure 5 shows the evolution of real wages together with labor productivity (index

form) and the implied real user cost of capital. Over the whole sample, the trends of

these variables are quite close to each other although, most of the time, the real wage

index exceeds the labor productivity index. The real user cost looks stationary until

early 1990s but thereafter is shows a clear upward trend reflecting the return of the

labor (and capital) income share back to the level where it was in the early part of the

sample period. Hence, in terms of an ADF test the real user cost is not a stationary

variable in our sample. We also discover that, in line with our discussion in section

4.1, the actual data evolution of the real user cost contributes towards retaining the

stationarity of factor income shares.

5.2 Specification

Given the practical existence of a markup over factor costs in the data, the estimated

model includes an extra parameter µ = 0.1. This captures an average markup which,

consistent with our data construction, we restrict to a value of 10%.

Also, with real data, to diminish the size of stochastic component in the point of

normalization we prefer to define the normalization point in terms of sample averages

(geometric averages for growing variables and arithmetic ones otherwise). The non-

linearity of the CES function, in turn, implies that the sample average of production

need not exactly coincide with the level of production implied by the production func-

tion with sample averages of the right hand variables. Following Klump et al. (2007),

we therefore introduce an additional parameter ζ whose expected value is around

unity. Hence, we can define Y0 = ζȲ , K0 = K̄, N0 = N̄ ; t0 = t̄ and π0 = π where the

bar refers to the appropriate type of sample average. The estimated system, allowing

for factor augmentation, is then,

log r = log

(
π̄

1 + µ

ζȲ

K̄

)
+

1

σ
log

[
Y
/(

ζȲ
)

K
/
K̄

]
+

σ − 1

σ
γK(t− t̄) (22)

log (w) = log

(
(1− π̄)
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log
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σ

]
(24)

For the estimation of the system we fix parameter π̄ to its sample average, which
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is one of the empirical advantages of normalization. We also obtained the results

estimating π̄ freely, but it made no difference to the other relevant parameters.

The system is then estimated using a variety of methods to account for cross-

equation error correlation and regressor endogeneity. We used Nonlinear Seemingly

Unrelated Regression (NLSUR) methods, Nonlinear 3-Stage Least Squares (NL3SLS),

Fully Information Maximum Likelihood (FIML), and Generalized Method of Moments

(GMM) methods. The different methods and their advantages are explained in the

Appendix. Note, finally, that in our applications all of these four estimations are

implemented accounting for cross-equation parameter restrictions.

5.3 Estimation Results

The results of the four estimation methods for the factor augmenting specification

of the system are reported in Table 5.27 Table 6 reports the results of the Hicks-,

Harrod-, and Solow-neutral specifications for the case of the NLSUR estimator. We

report only this case to save space as the rest of the estimation methods encountered

essentially the same patterns.28 Table 5 also reports p-values for tests of the null

hypothesis of a unitary σ. The following rows display p-values for Wald tests of

restrictions on technical progress to statistically discriminate between the different

nested specifications. We also report ADF-type unit root residual tests. Given that

we do not know the distribution of the statistic under the null, we use bootstrapped p-

values following Park (2003) and Chang and Park (2003). For the instruments-based

estimators, we used first lags of the log of the user cost and real wage, normalized

employment, capital stock and log-output, and the time trend.

The results in Table 5 show similar results for the estimated value of σ that

ranges from 0.4 (FIML) to 0.7 (3SLS). Manifestly, these estimates are well below and

significantly different from unity. Estimates of technical progress coefficients are very

stable across estimation methods. Labor-augmenting technical progress is estimated

to be around 2% per year, whereas capital-augmenting technical progress is 0.4%

per year in most of the cases. However, we can appreciate the large value for the

Solow-augmenting specification: since capital attracts a below half weight in capital

share the value of γK must be suitably high to match movements in TFP. Overall,

technical progress is net labor-saving, but with non-negligible capital-augmenting

27Note we conducted a number of robustness and sensitivity exercises. Initial conditions of all
parameters were varied around plausible supports with practically no impact on final results in every
case. Plus, for the HAC standard errors we tried both Bartlett and Quadratic kernel options and
various choices for bandwidth selections, again with negligible difference on results. Details available
on request.

28Estimates for these other specifications using 3SLS, GMM, and FIML are available on request.
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technical progress. The scale parameter, ζ , is practically indistinguishable from unity

as expected. In all cases, the null of non-stationarity for the residuals of each equation

is rejected according to the bootstrapped p-values.

Regarding other specifications, we see that the σ estimates are substantially dif-

ferent from those obtained with general factor augmentation. The point estimate of

σ with Hicks and Solow neutrality is indistinguishable from one. The Harrod-neutral

specification also yields a higher estimate for σ, although still significantly below

unity. These findings are consistent with those from the simulation experiment and

our previous analytical results.

The Hicks specification biases the estimate of the substitution elasticity towards

one. The Solow neutral specification also leads to a sharp bias towards Cobb-Douglas.

Again, looking back at the results in Table 4 this is consistent with our simulations,

which showed that the more the DGP deviates from Solow neutrality, the stronger

the bias towards unity. In the case of the Harrod-neutral specification which, together

with Hicks-neutral, is most commonly used for estimation, we observe that the results

are biased upwards. This bias is consistent with that found in the simulation experi-

ment with positive values for capital-augmenting technical progress. As discussed in

section 3.1, the Harrod-neutral specification could results in upward biases if the true

σ is below one.

Finally, the Wald tests for the restrictions implied by specific forms of factor

augmentation, always reject the restrictions in favor of the general factor augmenting

specification. Hence, our results support the use of a more general specification for

technical progress and confirm our claim that mis-specification of technical progress

can lead to important biases in the estimated substitution elasticity.

Figure 6 plots the model residuals for the four specifications for the NLSUR

estimator. For the user cost, the four models yield similar fit except towards the end

of the sample where both the factor augmenting and the Harrod-neutral specifications

capture better the increase in the user cost. Importantly, the fit for output appears

to be almost identical for the four specifications. The main difference emerges in the

way the models fit wages, with the factor augmenting specification displaying larger

fluctuations.29 Of course, even if the three models yield similar fit for variables such

as output, the implications of the different estimates of the substitution elasticity and

technical progress to explain the evolution of factor shares are still different. As we

will now see this is also the case for estimates of TFP growth.

29Interestingly, this is a result that Fisher et al. (1977) also obtained in a simulation experiment
analyzing production function aggregation. Despite many specifications providing a good fit for
output, wages proved much more sensitive to the estimated values of σ.
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5.4 TFP Estimates

We obtained estimates of TFP growth arising from (6) and the simplified approxima-

tions (11) and (12).30 Figure 7 plots the NLSUR estimates of TFP separately for

each specification (alongside capital deepening).31 The Hicks-neutral specification,

necessarily yields constant growth of TFP and, hence, is not plotted separately. The

rest of specifications will always yield increasing or decreasing TFP growth (except

when linear weight, (12), is used). This can be seen in expressions (7) and (11), whose

rate of growth is going to be trended owing to the quadratic component. Whether

the trend is positive or negative depends on parameter “a”, whose sign is a function

of whether σ ≷ 1 (except in the Hicks case when the trend is zero).

The simple form excluding capital deepening applies wrong trends to the growth

rate in TFP in the context of factor-augmenting and Harrod-neutral specifications.

Under the Solow neutral specification, however, it works quite satisfactorily. We may

conclude that the inclusion of capital deepening is important to capture correctly

nonlinearities in TFP growth rates. It is interesting to see that especially our fa-

vored factor-augmenting case implies an acceleration in TFP growth from the second

half of the 1990s until the mid-2000s.32 This is compatible with the then observed

acceleration of productivity growth (e.g., Basu et al. (2003), Fernald and Ramnath

(2004) and Jorgenson (2001)). The TFP growth spike at the end of the sample simply

reflects the rapid cyclical drop in employment due to the financial crisis. Both the

factor augmenting and Harrod neutral specifications display very similar TFP growth

patterns. However, because of the lower estimate of σ, the residual based estimate

in the factor-augmenting case displays more pronounced fluctuations and a sharper

trend increase. From our perspective of specification bias, it is worth noting that the

differences in annualized TFP growth towards the end of the sample are substantial.

5.5 What Have We Learnt?

Pulling together the salient points arising from the analytical, simulation, and em-

pirical estimates, we can extract a series of important lessons about estimation and

analysis of supply-side systems:

30The Kmenta approximations (7)-(10) and the exact residual method (6) yield practically iden-
tical TFP and are not reported for visual ease.

31Again, results using the other estimators yielded similar conclusions.
32This is consistent with the idea that investment in IT led to an economy-wide productivity

increase. In our model, however, we do not separate types of capital and so cannot infer anything
about the specific source of this acceleration. However, as far as this capital deepening is related
with investment in new technologies, our results seem to support the contention that there was a
productivity acceleration in the US from the mid-1990s until the early 2000s.
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5.5.1 Implications of a priori choices on the nature of technical change

Estimation of the substitution elasticity can be substantially biased if the form of

technical progress is mis-specified. For some parameter values, when factor shares

are relatively constant, there could be an inherent bias towards the Cobb-Douglas

neighborhood, but this is not the only possible direction of bias.

Our empirical results show that the estimated substitution elasticity tends to be

significantly lower using a factor augmenting specification and is well below one. We

were able to reject Hicks-, Harrod- and Solow-neutral specifications in favor of general

factor augmentation with a non-negligible capital-augmenting component.

5.5.2 Beware Cobb-Douglas

Situations of near balanced growth may lead to estimation erroneously favoring the

unitary elasticity case. This is clear in some cases such as Hicks Neutrality where

a unitary bias shrinks the importance of trended capital deepening. Similarly, when

seen through the lens of the augmented Kmenta approximation, a unitary elasticity

shrinks the impact of quadratic curvature in capital deepening and biased technical

change. Furthermore, the MC distributions tended to show a separate mode for the

unitary elasticity case, particularly if initial conditions were set within that neighbor-

hood.

There is no simple solution to degenerate Cobb-Douglas estimates, other than

some of the practices followed here: discriminating on the basis of global statisti-

cal criterion among competing specifications; varying initial conditions and checking

for local maxima; inspecting the great ratios to check for stationarity; and hints in

the data for the potential presence of capital-augmenting or non-constant technical

progress components (e.g., see the discussion in Klump et al. (2007)).

Aggregate studies favoring Cobb-Douglas, though, are far rarer than its theoretical

dominance might suggest.33 But there is still arguably a tendency in the literature

to report high near-unity substitution elasticities and neglect the role of biases in

technical change. Given how useful the analysis of biased technical change has proved

(Acemoglu (2009)) in account for growth experiences, this is clearly an error of some

proportion.

5.5.3 The Fit of the Production Function vs. the Fit of Factor Returns

Our empirical results implicitly make an important, even startling, point. The quite

similar production-function residuals suggest that the goodness of fit of production

33See, for instance, Table 1 of León-Ledesma et al. (2010).
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functions appears relatively robust to mis-specified technical neutrality assumptions

(an early indication of this was given by Willman (2002)). The reason is that mis-

specification of technical change under a CES production function implies compen-

sating bias in the estimate of the elasticity of substitution.

However, an important qualification (echoing that of Fisher et al. (1977)) is that

using an “incorrect” production function may simply shift estimation failures else-

where. In our case, this arose most clearly in factor returns equations where there is

considerable variation in the fit across specifications.34

5.5.4 TFP Growth

The dispersion of TFP estimates mirrors that of the real wage. Monitoring the level

and sources of TFP growth is a key application of the production function literature

and a key input into policy debates. Recalling Figures 4 and 5, we see an acceleration

in US labor productivity from the mid-1990s until the mid-2000s driven by capital

deepening in combination with technical change. And yet (Figure 7) these patterns

are obscured under Harrod- and Solow-neutral specification – and disappear under

Hicks-neutrality –.

There is an important lesson to be drawn here. Given the discussions in Sections 2

and 5.4, we know that whether the substitution elasticity is above or below unity mat-

ters for the transmission of capital deepening and factor-augmenting technical change

for TFP’s evolution. Getting the substitution elasticity right is hence necessary to

correctly estimate TFP growth.

6 Conclusions

Balanced growth requires stringent conditions on the structural parameters driving

the production function and factor payments. Given that, we studied the effect of

imposing specific forms of technical progress neutrality for estimates of key supply

side parameters, such as the substitution elasticity.

Specifically, we studied how estimates of the elasticity of capital-labor substitution

and TFP growth are affected by imposing mis-specified a priori restrictions on the

factor saving nature of technical change in a context where an economy may depart

from a BGP.We showed analytically that, when the true nature of technical progress is

factor-augmenting, imposing Hicks-neutrality leads to biases towards Cobb-Douglas.

34Interestingly, this is exactly what Christoffel et al. (2011) report for their macro-econometric
forecasting and simulation model, the NAWM which employs an aggregate Cobb-Douglas production
function: good forecasting performance for many real variables (including the output gap) but large
and persistent errors in forecasting real wages and the labor share.
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Imposing Harrod-neutrality would generally lead to upward biases in the estimated

elasticity if the true elasticity is below unity and downward biases if it is above unity.

We also uncovered the problem of identification through observational equivalence.

Because TFP growth approximations from CES production function estimates depend

on the substitution elasticity, these biases will also be reflected in biases in estimated

TFP growth. We carried out an extensive simulation exercise that supports these

conclusions and showed that the biases can be substantial in terms of magnitude.

We then estimated a CES supply side system for the US economy and found that

many of the previous lessons found an echo in empirical estimates. Furthermore,

we could reject the Hicks-, Harrod- and Solow-neutral specifications in favor of a

general factor augmenting one. We found that capital-augmenting technical progress

is non-negligible (0.4% per year). Importantly, the substitution elasticity is found to

be substantially below one, emphatically rejecting Cobb Douglas. We also provide

evidence that the implied TFP growth estimates for the various specifications used is

substantially different. Our work thus provides insights into production and supply-

side estimation and design in balanced-growth based macroeconomic frameworks.
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A System Estimation Methods

If we consider a N set of equations with the ith equation given by, yi = Xiβi+εi, where

yi is the dependent-variable vector, Xi is a matrix of “exogenous” variables, βi is the

coefficient vector and ui is a vector of disturbances/residuals in the ith equation. The

stacked system of equations can be written as,




y1
y2
...

yN




︸ ︷︷ ︸
y

=




X1 0 · · · 0

0 X2 · · · 0
...

...
. . .

...

0 0 · · · XN







β1

β2

...

βN




︸ ︷︷ ︸
Xβ

+




u1

u2

...

uN




︸ ︷︷ ︸
u

If there is no correlation of the disturbance terms across observations, then, E [uit, ujs] =

0, i 6= j, t 6= s. If contemporaneous correlation exists, we have E [uit, ujt] = σij with

the covariance matrix,35

V = E [u, u⊺] = Ω = Σ⊗ IT , (25)

where IT is the identity matrix of dimension sample size T .

In its most general form V may contain errors that are heteroskedastic, contem-

poraneously correlated and/or auto-correlated:

V =




σ11Σ11 σ12Σ12 · · · σ1NΣ1N

σ21Σ21 σ22Σ22 · · ·
...

...
...

...
...

σN1ΣN1 · · · · · · σNNΣNN




where Σij is an auto-correlation matrix for the ithand jth equation.

A.1 Seemingly Unrelated Regression (SUR)

SUR is used when it is assumed that the variables in X are exogenous, for a given

assumption that the errors are potentially heteroskedastic and contemporaneously

related. Thus covariance matrix (25) is used:

β̂SUR =

(
X⊺
(
Σ̂⊗ IT

)
−1

X

)
−1

X
(
Σ̂⊗ IT

)
−1

y

35Note, given its near universal use, we felt obliged – with some overlapping notation – to use σ

as the relevant covariance symbol.
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SUR uses the OLS residuals (i.e., the unweighted system) to obtain a estimate of Σ̂,

but this is not consistent if any of the X variables are endogenous to the system.

A.2 Three-Stage Least Squares (SUR)

3SLS (like FIML and GMM) relaxes the assumption that the regressors are exogenous.

3SLS is the 2SLS version of SUR.

For a given set of instruments Zi (assuming E [u⊺
iZi] = 0), we obtain the fitted

regressors, X̂ i = Zi (Z
⊺
i Zi)

−1
Z⊺

i Xi and thus the estimator is analogously given by,

β̂3SLS =

(
X̂⊺
(
Σ̂⊗ IT

)
−1

X̂

)
−1

X̂
(
Σ̂⊗ IT

)
−1

y

where X̂ =




X̂1 0 · · · 0

0 X̂2 · · · 0
...

...
...

...

0 0 · · · X̂N


 . 3SLS uses the residuals of the 2SLS to obtain Σ̂.

A.3 Full Information Maximum Likelihood (FIML) and Gen-

eralized Method of Moments (GMM)

FIML estimates the system under the assumption that the contemporaneous errors

have a joint Normal distribution. GMM by contrast (and by design) does not require

information on the joint distribution of the disturbances. GMM selects parameters

to minimize the correlations between the instruments and the disturbances as defined

by a criterion function and a suitably-chosen weighting matrix.
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Tables and Figures

Table 1: Parameter values for the Monte Carlo

Parameter Description Values

π0 Distribution parameter 0.4
σ Substitution elasticity 0.5, 0.9, 1.3
γK K-Augmenting Technical Progress* 0.00, 0.005, 0.01, 0.015, 0.02
γN N-Augmenting Technical Progress* 0.02, 0.015, 0.01, 0.005, 0.00
η Labor growth rate 0.015
κ Capital growth rate See text

Y ∗

0 = N0 Normalization values for Y and N 1
K0 Normalization value for K π0/r0
r0 Normalization value for the user cost 0.05
α Capital Trend Absorption in r 0.5

σεNt
, σεKt

Standard Error, N and K DGP Shock 0.1

σ
εΓ

K,N

t

Standard Error, N and K-Augmenting 0.01 for γK,N = 0;

technical progress shock 0.05 for γK,N 6= 0
σεwt

Standard Error, Real Wage shock 0.05
σεrt

Standard Error, Real Interest Rate shock 0.1
T Sample Size 50
M Monte Carlo Draws 5,000

Notes: “*” γN + γK = 0.02.
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Table 2: Monte Carlo results. Hicks-neutral specification

σ = 0.5 σ = 0.9 σ = 1.3
γK = 0.00, γN = 0.02

σm 0.867 0.9893 1.0458
10% : 90% 0.7679 : 1.0078 0.9135 : 1.0850 0.9460 : 1.1467

γm 0.012 0.012 0.0121
γK = 0.005, γN = 0.015

σm 0.6966 0.9603 1.1442
10% : 90% 0.6151 : 0.8609 0.8617 : 1.0773 0.9989 : 1.3009

γm 0.0109 0.011 0.011
Benchmark γK = γN = 0.01

σm 0.5198 0.9144 1.3084
10% : 90% 0.4688 : 0.5940 0.8068 : 1.0550 1.1177 : 1.5612

γm 0.0101 0.01 0.01
γK = 0.015, γN = 0.005

σm 0.7257 0.8992 1.5341
10% : 90% 0.6009 : 0.9180 0.7921 : 1.0253 1.2407 : 2.0363

γm 0.0099 0.0092 0.009
γK = 0.02, γN = 0.00

σm 0.9597 0.9814 1.5198
10% : 90% 0.8060 : 1.4691 0.8617 : 1.1450 1.2185 : 2.1014

γm 0.0081 0.0082 0.0077

Note: Superscript m denotes median values.
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Table 3: Monte Carlo results. Harrod-neutral specification

σ = 0.5 σ = 0.9 σ = 1.3
Benchmark γK = 0.00, γN = 0.02

σm 0.5206 0.8998 1.2949
10% : 90% 0.4815 : 0.5568 0.8045 : 1.0183 1.0962 : 1.5780

γm 0.0198 0.0201 0.02
γK = 0.005, γN = 0.015

σm 0.5873 0.9155 1.2535
10% : 90% 0.5317 : 0.7315 0.8290 : 1.0276 1.0581 : 1.4891

γm 0.0163 0.0186 0.0177
γK = γN = 0.01

σm 0.8187 0.9726 1.1109
10% : 90% 0.7100 : 0.9642 0.8686 : 1.0889 0.9149 : 1.3236

γm 0.0171 0.0171 0.0158
γK = 0.015, γN = 0.005

σm 0.9503 1.0091 0.9299
10% : 90% 0.8517 : 1.1824 0.9196 : 1.1308 0.7776 : 1.1582

γm 0.0156 0.0153 0.0149
γK = 0.02, γN = 0.00

σm 1.067 1.0315 0.8504
10% : 90% 0.9370 : 1.3455 0.9469 : 1.1329 0.7213 : 0.9992

γm 0.0128 0.0134 0.014
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Table 4: Monte Carlo results. Solow-neutral specification

σ = 0.5 σ = 0.9 σ = 1.3
γK = 0.00, γN = 0.02

σm 0.7685 1.0049 1.0007
10% : 90% 0.7122 : 0.9988 0.9651 : 1.0431 0.9530 : 1.0403

γm 0.0212 0.0299 0.0301
γK = 0.005, γN = 0.015

σm 0.8946 0.9943 1.0338
10% : 90% 0.7220 : 0.9676 0.9483 : 1.0393 0.9794 : 1.0802

γm 0.0275 0.0276 0.0271
γK = γN = 0.01

σm 0.836 0.9808 1.0872
10% : 90% 0.7485 : 0.9258 0.9282 : 1.0348 1.0215 : 1.1465

γm 0.0262 0.998 0.0241
γK = 0.015, γN = 0.005

σm 0.6911 0.9561 1.1682
10% : 90% 0.5715 : 0.8117 0.8875 : 1.0263 1.0754 : 1.2556

γm 0.0217 0.0228 0.0219
Benchmark γK = 0.02, γN = 0.00

σm 0.5274 0.9138 1.308
10% : 90% 0.4764 : 0.5722 0.8332 : 1.0006 1.1809 : 1.4385

γm 0.0201 0.0201 0.0201
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Table 5: Estimates of Factor-Augmenting Production Technology System, 1952-2009

NLSUR FIML GMM 3SLS
ζ 1.001 (0.005) 0.999 (0.005) 1.003 (0.003) 0.999 (0.005)
σ 0.694 (0.001) 0.439 (0.018) 0.720 (0.000) 0.721 (0.002)
γK 0.004 (0.001) 0.005 (0.000) 0.004 (0.001) 0.002 (0.001)
γN 0.020 (0.000) 0.020 (0.000) 0.020 (0.000) 0.020 (0.000)

Tests & Restrictions
σ = 1 [0.000] [0.000] [0.000] [0.000]
Hicks : γK = γN [0.000] [0.000] [0.000] [0.000]
Harrod : γN = 0 [0.000] [0.000] [0.000] [0.030]
Solow : γK = 0 [0.000] [0.000] [0.000] [0.000]
J − test – – [0.239] [0.499]
ADFr [0.005] [0.006] [0.006] [0.004]
ADFw [0.006] [0.013] [0.008] [0.007]
ADFY [0.009] [0.010] [0.010] [0.012]

Notes: “–” denotes not applicable. p-values in squared parenthesis, auto-correlation
and heteroskedastic robust standard errors reported in normal parenthesis. The p-
values for the residual ADF tests were obtained from 2,500 bootstrap draws.

Table 6: Estimates by Neutrality Assumption, 1952-2009

Factor-Aug. Hicks Harrod Solow
ζ 1.001 (0.005) 1.001 (0.005) 1.001 (0.005) 1.000 (0.005)
σ 0.694 (0.001) 0.997 (0.003) 0.841 (0.002) 1.004 (0.003)
γ – 0.017 (0.000) – –
γK 0.004 (0.001) – – 0.087 (0.002)
γN 0.020 (0.000) – 0.021 (0.000) –

Tests & Restrictions
σ = 1 [0.000] [0.258] [0.000] [0.186]
ADFr [0.005] [0.005] [0.005] [0.004]
ADFw [0.006] [0.010] [0.004] [0.004]
ADFY [0.009] [0.013] [0.008] [0.014]

Notes: All estimations reported using NLSUR. See also notes to Table 1.

31



Figure 1: Distribution of estimated σ. True σ = 0.5.
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Figure 2: Distribution of estimated σ. True σ = 0.9.
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Figure 3: Distribution of estimated σ. True σ = 1.3.
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Figure 4: Great ratios for the US economy.

35



WAGES YL

Wages and labor productivity (1953=100)
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Figure 5: Real wages, productivity, and real user cost.
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Figure 6: Residuals for the user cost, w and Y equations: four specifications (NLSUR).
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Figure 7: Total Factor Productivity and K/N Ratio Growth (NLSUR).
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