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Economic Explanation, Ordinality, and the 

Adequacy of Analytic Specification1

 

Analytical economics holds as its objective and province of argument the explanation of economic behavior, 

decision, and choice.  Analysis within its purview may or may not assume predictive competence as distinct 

from explanation; and it may or may not be readily adaptable to detailed empirical description and 

corroboration.  The methods employed can, among other things, be directed to questions of agent 

optimization and welfare, or to those that bear on wider issues of aggregative activity or social benefit.  In 

analyses of this sort, economists generally and typically construct models by postulating relational structures 

that have specific properties.  Those contemplated relations, which may or may not be well specified and 

written in (ordinally, cardinally, or ratio2) quantified functional form, are often reflective of deeper, or one-

stage-removed, determinant forces.  But in any case, it is well known that a number of difficulties stand in 

the way of such an approach. 

First, it is obvious that for an analysis based on relational structures to have sustainable meaning, the 

structures and their properties must remain fixed throughout the investigation and over all relevant, 

analytically manipulative procedures.  But second, questions of analytical legitimacy arise when one or more 

of the variables incorporated in the argument are only ordinally measured while all remaining variables are 

taken to be at least cardinally quantified.  In such a case, it is possible that the structures and properties 

assumed, if expressed only in the numerical terms of the quantified variables (ordinal, cardinal, and ratio), 

are dependent to a considerable extent on the scales on which the ordinal variables are measured.  It follows 

that in the presence of such ordinality, the properties can often be altered or entirely lost upon application of 

certain increasing transformations of scale with respect to the ordinal variables.  Thus, for example, the 

structure h(y) = -y2 , where -∞ ≤ y ≤∞ and y is only ordinally measured, has a unique maximum at y = 0.  

But with  λ > 1 a fixed number, applying the increasing transformation T(y) = -λ-y   to y and replacing y in h 
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by the ordinally equivalent transformed variable T(y), results in the structure h(T(y)) = -λ-2y   which has no 

maximum anywhere. 

 The problem of the preservation of structures and their properties across transformations of scale 

does not arise in certain well-known cases, like that of the utility function in the derivation of consumer 

demand functions, where ordinality appears with respect to a dependent variable.  Nor does it usually arise 

when cardinal or ratio scales are involved because, generally speaking, the transformations permitted in 

those circumstances are insufficient to cause significant alteration or loss of information pertaining to the 

postulated structures and their properties.  In the present paper, then, only scale changes with respect to 

ordinal scales are considered.  To the extent that variables measured on cardinal and ratio scales are 

introduced, those scales are assumed fixed and no modification in them is permitted.  With regard to 

dependent variables, only those situations in which scale changes have the potential to cause difficulties are 

discussed. 

More specifically, the paper begins with a general discussion of ordinality in reference to a single 

structural relation.  Three approaches to handling that ordinality are identified:  The first (Approach A) is to 

begin with the relation in an unquantified state and then employ specific ordinal scales to translate it into 

numerical form.  This procedure, which introduces at the start of the analysis the theoretical challenge of 

according meaning and manipulability to nonquantified variables according to the rules of “analysis without 

measurement,”3 ensures that the original structure and its properties do not modify with ordinal scale 

changes.  Indeed, they are independent of all ordinal measurement scales.  Approach A is illustrated in 

Katzner’s (1979: Chs. 5,6) implicit construction of numerical representations of individual “quality of life 

technologies” relating “career-living situations” to “qualities of life.” The two alternative approaches are, 

first, to postulate the existence of a numerical function that reflects a known but unspecified underlying, 

unquantified structure (Approach B) and, second, to assume that that underlying structure is not only 

unspecified, but also unknown (Approach C).  Both of these approaches, as will be argued, have serious 

weaknesses. 
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There are many studies in the Economics literature that, since their authors ignore underlying 

structures and do not specify how their questionably quantified variables are to be measured, can be taken to 

exemplify either Approach B or C.  To name three (more will be identified momentarily), Akerlof includes 

variables representing the “quality” of an automobile (1970: p. 490) and a person’s “reputation” (1980: p. 

754) in quantified mathematical equations, and Becker and Lewis (1973) derive the constrained 

maximization of a utility function with respect to “child quality” and other variables. 

After a general description and comparison of the three approaches, Approach C and one of its 

limitations is considered in greater detail.  The paper concludes by examining the special case in which the 

dependent variable of the single structural relation (with one independent, ordinally measured variable) is 

assumed to be measured on a ratio scale.  This discussion is taken up in reference to all three Approaches A, 

B, and C. 

The range of difficulties suggested in the foregoing have presented economists with problems that 

have seemed analytically intractable and have raised uncertainty regarding the use and manipulability of 

variables measured on differently specified scales (ordinal, cardinal, and ratio), quite apart from the knotty 

problem of nonquantifiabity.4  Such problems can be exemplified by reference to certain efficiency wage 

and other models.  There the issues involved have led to controversy over the viability of the internal logic 

of the particular models that have been employed.  For example, Currie and Steedman (1993) and Katzner 

(1998) have correctly argued (in part) that, taken on face value, efficiency wage models as presented in the 

Economics literature (e.g., Stiglitz (1987: 27, n. 47) are unsustainable:  Effort can only be ordinally 

measured, and the use in those models of some arbitrary ordinal representation of effort as an argument of 

the production function leaves that production function inadequately specified.  Skott (1997a), on the other 

hand, argues, also correctly, that introducing an implicit link between unquantified effort and (quantified) 

output pins down the quantified production function (relating ordinally measured effort to output) 

sufficiently to eliminate the problem.  More specifically, the stipulated production function in efficiency 

wage models is conditional on the particular choice of the ordinal representation of effort, and any change in 

that choice will necessitate a corresponding modification in the production function.  (A similar assertion is 
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latent in Leslie (1995).)  However, Skott provides no details concerning the relation of that link between 

unquantified effort and output to the quantified production function, although his suggested procedure will 

be seen in what follows to be an example of Approach B.  An associated controversy has arisen between 

Leslie (1995) and Skott (1997b) with the latter taking a position similar to his stance on the efficiency wage 

case in relation to ordinally measured “education” in a model of human capital theory.5  One of the purposes 

of this paper is to make explicit Skott s implicit Approach B links between such variables as unquantified 

effort and output, and to examine their relation to the functions, like the quantified production function, to 

which they correspond.  Implications are drawn not only for efficiency wage models, but also for a wider 

class of models in general.  It will emerge that analyses that fall in the category of Approach B, like those of 

Approach C, carry the potential of previously unsuspected and damaging problems.  

 

I  The Three Approaches 

I.A  Approach A -- Explicit Links 

To formally characterize what has been referred to as Approach A, focus attention on functions of a single 

variable (see Katzner (1983: 53-58)).  At the outset, let e and x denote unquantified or unmeasured variables6 

defined by the values or objects over which they are permitted to vary.  Were e, say, to represent effort, the 

objects over which e varies might be verbal descriptions, each depicting a manifestation of effort thought to 

be relevant to the issue at hand.  Denote the collections of objects that e and x may assume as values by, 

respectively, E and X.  Take f to be a function associating to each value of e in E a unique value of x in X, 

and write  

 

(1)  . )(efx =

                                                  

Suppose now that e and x are capable of ordinal measurement only.  Then, with respect to e, say, the objects 

of E are ordered according to some property such as longness, hotness, or pleasure, and that ordering, call it   
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<e, is fully represented on a numerical scale that is unique up to increasing (and continuous) 

transformations.  Moreover, the ordering <e is reflexive, transitive, and total on E.  Similar statements may 

be made in relation to x where, in this case, the underlying ordering is designated by <x.  Denote the 

measured values of e and x on the particular ordinal scales in use by, respectively, ε and χ.  Then with (1) 

specified, a numerical function relating ε and χ, namely   

 

          (2)   )(εχ F= ,   

                                                        

is implied.7  Clearly F depends on the choice of scales on which e and x are measured.  As long as (1) is to 

be maintained as an assumed structural relation, any alteration in one or both scales, unless, in the latter 

case, the two alterations exactly cancel each other out, necessarily modifies F. 

Suppose now that increasing transformations T and S are applied to the scales on which, 

respectively, e and x are measured.  Denote the new variables representing e and x by, respectively, ϕ and ξ 

so that 

                                                                  

          (3)   )(εϕ T=    and     )(χξ S=  . 

                                                                  

Then, as indicated above, F has to be altered to maintain (1).  Write the new representation of (1) as  

                                                        

          (4)  ξ = G(ϕ).   

                                                        

It is easy to see that, as long as appropriate inverses exist (S and T already have inverses since they are 

increasing), any one of F, G, S, and T can be secured from the remaining three.  For example, substituting 

(4) into the right-hand equation of (3), and using (2),  
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                                         G(ϕ) = S(F(ε)).   

                                                           

If G has an inverse, G -1 , then 

 

                                          ϕ = G -1(S(F(ε))),   

                                                            

so that T may be viewed as the composition of F, S, and G -1 .  That is, 

 

          (5)                            T = G -1◦ S ◦ F,   

                                                            

and specification of F, G, and S determines T.  Clearly, since S and T are increasing, implicit restrictions are 

imposed on F and G in this formulation.  Alternatively, combining the left-hand equation of (3) with (4) and 

(2) gives, if F has an inverse, 

 

                                          ξ = G(T(F -1(χ))),   

                                                            

whence 

 

          (6)                            S = G ◦ T ◦ F -1  .   

                                                            

Similarly, F = S -1 ◦ G ◦ T and G = S ◦ F ◦ T -1.  

Economists seem to prefer to deal with functions in numerical form rather than those in their 

underlying, unquantified state.  Moreover, the preceding analysis suggests that functions like F ought to be 

constructed by specifying f and numerical measures of the values of e and x.8  But this is not easy to do for at 
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least two reasons.  First, economists are neither familiar with nor comfortable dealing with the unquantified.  

Second, many of the techniques that they employ in their analyses render it necessary that the numerical 

functions under consideration be continuous or differentiable.  Continuity and differentiability as invoked by 

economists, however, usually require functions with nondenumerably infinite numbers of elements in their 

domains and ranges.  And, although it is possible to conceive of unquantified functions with 

nondenumerably infinite domains and ranges,9 because unquantified functions can be specified only by 

explicitly indicating which dependent variable values are identified with which independent variable values, 

the finiteness of our world does not permit the specification of more than a finite number of relational points 

under f.  Moreover, the arithmetic operation of subtraction needed to calculate a derivative as the limit of the 

slopes of straight-line segments is not available because numbers are not present.  Thus to employ the 

approach to F described above, a natural extension of Katzner (1998: 20-21) and already referred to as 

Approach A, means that economists would have to give up analytical techniques that have been quite useful 

and fruitful when all variables are measured on at least cardinal scales. 

There are, however, two alternative, if somewhat less satisfying, approaches.   

 

I.B  Approach B -- Unspecified Links   

What has been earlier identified as Approach B is to assume that there is an underlying function of the form 

of (1) that is known but unspecified (that is, the function is assumed to exist but its form is not articulated), 

that there are also known but unspecified ordinal scales on which e and x are measured, and that together 

they give rise to a function F in (2) that has certain known and fully specified properties.  From the 

perspective of Approach B, then, analysis begins by postulating the existence of a function F that represents 

f and that possesses certain numerical properties which may possibly include continuity or differentiability.  

But unlike Approach A, the process of specifying f and translating it into F is suppressed.  Clearly the 

properties of F are assumed to mirror those of f, and if the full force of the properties of F are to be 

maintained, then any changes in scale mean that F must be adjusted to preserve f as in (4).  Of course the 

previous mathematics relating F, G, T, and S remains intact.  (Were continuity or differentiability assumed 
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of F, then f must be thought of as having a nondenumerably infinite domain and range.)  This is the 

approach taken by Skott (1997a, 1997b) mentioned earlier.  In effect, the approach surmounts the problem of 

nonquantifiability by assuming it away and by resting its argument on assumed, even though unspecified, 

ordinality. 

Approach B is less satisfactory than Approach A for three reasons.  First it requires greater 

assumption content than approach A.  In effect, both (1) and (2) must be assumed instead of having the latter 

derived from the former.  Second, it is necessary to assume that certain things are known to exist without 

being able to specify what they are.  Third (this arises in part from the second reason), the precise 

relationship between the ordinal numbers and the variable values they represent cannot be stated, and 

exactly what is being assumed about f and its properties is not clear.  In short, a significant portion of the 

relationship to reality of the assumptions imposed in the model is hidden by the veil of ordinal numbers with 

respect to which those assumptions are expressed.   

 

I.C  Approach C -- Unknown Links 

 The third approach, previously called Approach C, is characterized as the same as Approach B except that 

both f and the ordinal scales on which e and x are measured are taken to be not only unspecified, but also 

unknown.  The analytical content of this approach, however, raises several conceptual issues that warrant 

consideration before proceeding.  First, it may be vaguely surmised or assumed in the explanation of certain 

economic conditions that an underlying, unquantified relationship exists and determines a particular 

outcome.  (For example, a firm’s reputation may influence the demand for its output.)  But secondly, it may 

also be reckoned in such a case that there is no way in which ordinal scales can be meaningfully employed 

to numerically quantify the strength of the forces inherent in that relationship.  (In the previous example, 

how might the quality of the firm’s reputation be measured?)  Thirdly, while the general nature of those 

forces is thereby recognized, residual uncertainty and lack of clarity exist as to the manner in which those 

forces transmit their impacts to the outcome that is in view.  (With respect to the example, in what precise 
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way does the quality of the firm’s reputation contribute to the demand for its output?)  This, then, is one 

illustration of the circumstances in which Approach C might be brought into play. 

It should be noted that Approach C does not suffer from the deficiencies associated with the second 

reason given above why Approach B is less satisfactory than Approach A.  But it is still less satisfactory 

than A for reasons one and three that were stated there.  Moreover, Approach C is subject to a certain kind of 

arbitrariness that will be explored in Section II below. 

  

I.D  Comparing the Three Approaches 

To further illuminate what is involved, it is worth summarizing and setting against each other the distinctives 

of the three approaches that have now been described.  In Approach A it is assumed that the relevant 

qualitative forces underlying and contributing to the statement of F in (2) as derived from the 

“ordinalization” of (1) are, for the purposes in hand, known and corralled with respect to the specific ordinal 

scales introduced.  In Approach B the possibility is contemplated that the underlying forces and their relation 

to ordinal scales, though still present, need not be expressed, and that analysis could begin by directly 

positing F in (2).  With regard to Approach C, however, a much higher degree of relative ignorance is 

assumed.  Not only are the underlying forces both vague and unfettered by ordinally specified scales, but 

now it is reckoned that no such underlying ordinal relations that might pin them down can be known. 

An alternative statement of Approach C and its relation to Approaches A and B is as follows:  In 

both Approaches A and B the relation f is in one way or another the starting point of the argument.  That is 

the case in Approach B because F is anchored to (the unspecified) f using the given (though unspecified) 

ordinal scales on which e and x are measured.  But, as has been explained, that f and those scales are 

suppressed and the assumption is made that it is not necessary to introduce them into the analysis.  In 

Approach C, on the other hand, F serves as its own anchor without any grounding in an underlying relation 

such as f and, as a result, the mathematics described earlier that relates F, G, T, and S is rendered irrelevant.  

Moreover, for F to remain a meaningful anchor as the scales on which the ordinal variables are measured 

modify (that is, to ensure the analytically relevant properties of F remain unchanged), the transformations of 
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scale permitted have, as will be shown, to be restricted.  Approach C is the focus of attention in the next 

section.  But first it is worth presenting an example to illustrate the issues and differences involved in the 

three Approaches A, B, and C. 

Let the variables e and x denote, respectively, unquantified effort and unquantified pleasure.  

Suppose there are two values of effort, e′  and e″, and  two values of pleasure, x′  and x″ .  Introduce 

orderings of the elements of each pair in such a manner that e″ is associated with “more” effort than is e′, 

and x″ is associated with “more” pleasure than is x′.  Assume f maps e′→ x′  and e″→  x″.  Then under f, 

more effort corresponds to more pleasure.  The latter characteristic of f, often referred to as order 

preservation, is the only structural property considered in this example. 

Now let e and x be measured on independent ordinal scales that preserve the ordering relations 

among, respectively, the values of e and x.  Suppose the measured values are e′ → ε′ = 2, e″ → ε″ = 3, 

x′→ χ′ = 4, and x″→ χ″ = 9.  Then more effort and more pleasure are identified with higher numbers.  (In 

the usual parlance, the values of χ are called utility values.)  Furthermore, according to (2),  f expressed in 

numerical form becomes, in this example,  

 

(7)  χ = F(ε) = ε 2 ,   

                                                           

on the two-element domain ε = ε′ and  ε = ε″.  Clearly, F(2) = 4 and F(3) = 9.  The order-preservation 

property of f is reflected in F: greater effort (a higher value of ε) is associated with greater pleasure or utility 

(a higher value of  χ).  It is evident that (7) can only preserve this underlying ordering relation when the 

domain of F is restricted to nonnegative numbers.  Any increasing transformation that would shift the 

domain to negative numbers will not leave that ordering relation unchanged.  From the perspective of 

Approach A, however, the way to ensure that, after such changes in scales are introduced, F still represents f 

and maintains its property of order preservation is to modify F so as to offset the scale modifications.  If, 

say, the increasing transformation 
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          (8)  ϕ = T(ε) = -2-ε ,   

                                                            

where ε > 0, were applied to the  ε-scale so that ϕ′ = T(2) = -1/4 and ϕ″ = T(3) = -1/8, and if S were the 

identity transformation (a special case of an increasing transformation), then solving (8) for ε and 

substituting the result into (7) gives the following expression for (4): 

 

    ξ = G(ϕ ) =    

2

2ln

)1ln(

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
ϕ    , 

 

where, like (7),  G(-1/4) = 4 and G(-1/8) = 9.  Clearly, the measured values of e′ and e″ have become e′→ 

ϕ′ = -1/4 and e″ → ϕ″ = -1/8, and G preserves the same order as f since greater effort (now a larger value 

of ϕ) still corresponds to greater pleasure or utility (a larger value of  ξ = χ).  Thus an appropriate 

modification of F has been made in response to the change in scale on which e is measured.  A similar 

argument without the explicit link to e′, e″, x′, x″, and f applies in the case of Approach B. 

However, if, as in Approach C, F serves as its own anchor in the sense previously explained (recall f 

is unknown), then, at least in so far as the ordinality of the measured variables is concerned, there is in that 

case no difference between (7) as above and (7) with ε replaced by the transformed variable -2-ε  .  That is, 

(7) and 

 

          (9)  χ = F(T(ε)) = (-2-ε )2    

                                                              

are equivalent formulations of the same relation in that they contain the same information.  But with respect 

to (9), F(T(2)) = 1/16 and F(T(3)) = 1/64.  Thus F◦T reverses order: greater effort as represented in a larger 



 12

value of ε corresponds to less pleasure or utility as indicated by a smaller value of χ .  Therefore, since F is 

the anchor and since its relevant property (order preservation) has to be preserved, application of the 

increasing transformation T(ε) = -2-ε , although perfectly legitimate in terms of the ordinality of the scales 

involved, has to be ruled out under the methodology of Approach C.  This illustrates a fundamental fact that 

ought to be kept in mind:  When F serves as the analytical anchor, certain scale transformations of the 

variables involved have to be excluded if the properties of F are to be maintained as components of the 

structural foundation of the analysis.  Part of the next section generalizes the argument and makes it more 

precise. 

 

II  Scale Transformations under Approach C 

When starting out to do an analysis, there are two basic steps that are relevant to present considerations -- 

first identify the variables to be accounted for, and second construct or assume relations among them.  If any 

of the variables are ordinal variables, problems relating to that ordinality may arise at both levels. 

In the process of identifying the ordinal variables, the scales on which they are measured have to be, 

at least implicitly, fixed.  That is, what version of the numbers should be used?  Should they be those that 

present themselves by some means to the investigation, or should they be transformed in one way or 

another?  Suppose these questions are answered first.  Now let the hypothesized relations of the analysis be 

introduced.  In the case of Approach B, these relations are reflections of known (but unspecified) underlying 

forces, and changes in ordinal scales cannot be permitted to destroy the representation of those forces in the 

hypothesized relations.  In this case, then, the relations have to modify as in (4) with any scale changes. 

Now assume, from the perspective of Approach C, that the hypothesized relations are thought to 

mirror unknown underlying forces.  These relations and their analytically significant properties have to be 

kept intact because they are the only representation of those forces in the analysis.  But it is still reasonable 

and appropriate to ask how changes in the initial choice of scales would affect the hypothesized relations, 

and, as described at the end of the preceding section, to rule out those scale changes that interfere with and 
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modify the analytically significant properties.  In the context of equation (2), say, before such interference is 

taken into account, all functions of the form 

 

          (10)  χ = S -1(F(T(ε))),   

 

where T(ε) and S(χ) are substituted in place of, respectively,  ε and χ in (2), and S and T are the increasing 

transformations of (3), are potentially equivalent starting points for the analysis.  Observe that (9) is a special 

case of (10).  However, as previously indicated, the only increasing scale transformations that can be 

permitted are those that preserve the analytically significant properties, and hence the only functions            

S -1◦F ◦T alternative to F that are pertinent to present discussion are those that exhibit them.10  Were 

increasing transformations applied that did not preserve those properties, then the relevant properties 

associated with S -1 ◦ F ◦T would deviate from those of F.  Such transformations, therefore, would have to 

be discarded.  But ordinality by itself means that no information in the ordinally measured variables is lost 

by administering increasing transformations of scale to them, and hence, from this perspective, that all 

increasing transformations should be permissible.  It follows that the more scales that have to be excluded to 

preserve the analytically relevant properties of F when that ordinality is imported to purported explanatory 

relations, the greater the arbitrariness introduced into the analysis.  That arbitrariness, which, as suggested 

earlier, is inherent in Approach C, is a serious drawback in the construction of economic explanation. 

The problem of arbitrariness arising from the necessity to discard legitimate transformations of scale 

in Approach C has already been illustrated in the example of Section I with respect to order preservation for 

functions of a single variable.  That argument, although easily generalized, is not developed further here. 

Similar considerations apply, and again point to the limitations of Approach C, to the circumstance 

in which F has a unique maximum (Katzner (1983: 107)).  For in the absence of any restrictions imposed by 

the necessity of preserving the properties of F, all increasing transformations of scale are permissible, and 

thus the possibility cannot be ruled out that maxima of F intended to be reflective of unknown underlying 
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forces might actually not exist under some transformations of scale.  An example has previously been 

provided in the introduction to this paper. 

Matters are further complicated when f is a function of more than one variable since, in that case, at 

least one additional issue arises.  To provide a simple illustration, suppose there are only two independent 

variables.  Let F be the Approach-C anchor of an analysis where 

 

          (11)  χ = F(ε1 ,ε2 )   

 

on a suitable domain, and where ε1 and ε2  are ordinally measured variables.  Then F induces an ordering 

relation f on its domain in the usual way: 

 

          (12)  (ε1 ′,ε2 ′)f (ε1 ″,ε2 ″)    if and only if    F(ε1 ′,ε2 ′) > F(ε1 ″,ε2 ″)  . 

 

In general, the ordering f generated by F is independent of those that define the ordinality of ε1 and ε2 . 

Now, in accordance with Approach C, replace ε1 and ε2 in (11) by ϕ1  and ϕ2, where 

 

          (13)  ϕ1 = T 1 (ε1 )    and   ϕ2  = T 2 (ε2 ),   

 

and T 1  and T 2 are arbitrary, increasing transformations.  Then F becomes 

 

(14) χ = F(ϕ1 , ϕ2 )   

 

on an appropriately altered domain.  Substituting (13) into (14), the original  F is modified to F ◦[T 1,T 2 ], 

that is, 
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χ = (F ◦[T 1,T 2 ]) (ε1 ,ε2 )  = F(T 1 (ε1 ) ,T 2 (ε2 )) , 

 

and F ◦[T 1,T 2 ]  induces a second ordering relation on the original domain of F as in (12).  Clearly, these 

ordering relations need not be the same.  To illustrate that possibility, consider the function  F(ε1 ,ε2 )  = ε1 

+ε2  and the vectors (ε1′,ε2′) = (2,0) and (ε1″,ε2″) = (0,1).  Then  F(ε1′,ε2′)  > F(ε1″,ε2″)  and (ε1′,ε2′)f

(ε

 

1″,ε2″). But with T 1(ε1) =ε1  and T 2(ε2 )= 3ε2 , the ordering of (ε1′,ε2′) and (ε1″,ε2″) under the original f 

is reversed since  F(T 1 (ε1′) ,T 2 (ε2′)) < F (T 1 (ε1″) ,T 2 (ε2″)).  Returning to the general situation, if the 

original ordering induced by F is to be preserved as an analytically significant property, then all 

transformations T 1   and T 2  that modify that ordering have to be excluded.  Thus possible instances of the 

kind of arbitrariness that damaged the analytical viability of Approach C with respect to functions of a single 

variable can also arise for functions of more than one variable, even if F is increasing everywhere in both of 

its arguments. 

Similar arbitrariness extends to attempts to preserve the solutions of systems of simultaneous 

equations involving ordinal variables under increasing transformations of scale.  Except for the following 

illustration, the details are not pursued here.11 The system  χ = F 1(ε) = ε  and   χ= F 2(ε) = 2 - ε , where ε 

and χ are ordinal scalars ranging over all real numbers, has the unique solution  χ =  ε = 1.  Applying the 

same increasing transformation T(ε) = -λ-ε   used earlier (where S in (10) remains the identity 

transformation) results in  χ = F 1(T(ε)) = -λ-ε    and   χ = F 2(T(ε)) = 2+λ-ε.  The latter system has no 

solution since there is no numerical value of ε  for which   λ-ε  = - 1. 

The general point is that an analysis employing structures containing variables that are only 

ordinally measured must, of necessity, be grounded in unmeasured relations that lie behind the quantified 

relations if the latter relations and their properties are to have any significance.  The most competent way of 

providing that grounding is with Approach A.  And, although subject to the difficulties described earlier, 

Approach B respects this grounding too, albeit in a weaker sense.  But when the underlying relations and 

scales on which the ordinal variables are measured are taken to be both unspecified and unknown as in 
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Approach C, the grounding in unmeasured relations becomes still weaker and more tenuous, and the analysis 

requires the imposition of additional restrictions on the transformations of scale that may be used beyond 

those conditions implied by the ordinality of the measures employed.  And the extent of those additional 

restrictions determines the degree of arbitrariness introduced into the analysis by the presence of the 

ordinally measured variables. 

 

III  Preserving Functional Forms 

It turns out that the arbitrariness inherent in Approach C, although coming from a different source, can also, 

under certain special conditions, extend to Approachs A and B.  An important example of this extension in 

the case of Approach B relates to the production function in what has become known as the efficiency wage 

model.  But before focusing attention on it, it is necessary to consider a more general instance that derives 

from (1) and (2). 

When x is already measured on a ratio scale, as in the case of the production function relating effort 

to output in the efficiency wage model, the discussion of Sections I and II applies with the obvious 

alterations.  Indeed, since the scale on which x, or output, is measured is taken to be fixed, it is only 

necessary in that discussion to restrict attention to the effect of applying increasing transformations to the 

measured values of the remaining ordinal variables.  To summarize previous argument with respect to 

Approaches A and B in such a context, observe that (2) may now be rewritten as 

 

          (2′)                              x = F(ε),   

 

where the values of  ε, that is, the measured values of e, are taken from an appropriate ordinal scale.  

Obviously, whenever the scale on which e is measured changes, the measured values of e in E change from ε  

to ϕ, where, in the notation of the left-hand equation of (3),  ϕ=T(ε), and T is an increasing transformation.  

But, as before, if (1) is to be preserved as in Approaches A and B, since any particular value of e underlying 
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the corresponding measured values ε  and ϕ  has not been altered by the transformation of scale, the function 

value x = f(e) cannot modify.  Hence F has to change to offset the modification of scale.  Moreover, 

assuming appropriate inverses exist, any two of F, G, and T determines the third.  That is, in particular, the 

reasoning behind equations (4) and (5) applies here except that now S is the identity transformation.  

Therefore 

 

          (15)   T = G -1 ◦ F,   

 

and, also as in Section I , F = G ◦ T and G = F ◦ T -1 . 

It should be noted that (maintaining the perspectives of Approach A or B) if T were the identity 

transformation, then (15) or either of the above two equations following it would imply that G = F.  

Moreover, with F increasing, F itself is an ordinal scale on which e is measured and F -1(x) provides the 

measured values of e = f -1(x) on that scale.  And this scale and the measured values on it are perfectly valid 

for use in analysis involving f or F. 

In the case of Approach C, equation (2′) assumes the role of anchor.  That, as has been emphasized 

in the foregoing argument, is the essence of Approach C.  Suppose the analytically relevant property to be 

preserved is the form of F itself.  Then changing the scale on which e is measured as in (10) gives (here S is 

the identity transformation 

 

x = F(T(ε)).   

 

Since the left-hand sides of this equation and (2′) are fixed and equal, 

 

F(ε) = F(T(ε)),   
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and, as long as F is one-to-one, it follows that 

 

T(ε ) = ε .   

 

Therefore, under these conditions, T is the identity transformation and no changes of scale in reference to ε  

can be permitted.  This is a rather extreme requirement that severely compromises the usefulness of analysis.  

Indeed, there is an overwhelming arbitrariness in the selection of F and the scale on which e is measured that 

cannot be mitigated by even the smallest variation in the latter scale. 

Return now to Approach B and consider, for illustrative purposes, the production function of the 

standard efficiency wage model, namely, 

 

          (16)                              x = F(εL),   

 

where x represents output,  ε  is effort provided per unit of labor input (assumed to be measured only 

ordinally), and L is the quantity of labor input employed.  In the formulation of (16) the underlying 

production function x = f(e,L) and the ordinal scale on which e is measured are known without specification 

and the values of x and L are taken to be measured on known and fixed ratio scales.  Furthermore, (16) 

represents x = f(e,L) given the unspecified scales of measurement. 

Of course, the assumption that x = F(εL) represents x = f(e,L) would not be permitted under 

Approach A without the specification of f and explicit relationships (detailed earlier) linking the former to 

the latter.  And such specifications have yet to be provided in the Economics literature.  Absent those 

specifications, the assumption content of the efficiency wage model in terms of the underlying reality to 

which it is addressed becomes murky, and questions concerning the relevance of the model to actual 

economic behavior come into play.  Moreover, under the assumptions set out above (and one more to be 

identified below), to preserve the multiplicative structure of (16) across increasing transformations of scale 
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applied to ε  requires, as in Approach C, restricting those transformations beyond that necessitated by dint of 

the ordinality of ε.  Of course, a similar conclusion would obtain were (16) to arise with respect to Approach 

A (where the underlying f and appropriate scales are fully specified) and were it desired to maintain the 

multiplicative form of the arguments of F. 

To see what is involved in this last claim, let an alternate scale, ϕ , on which effort is measured be 

given, where 

 

          (17)  ϕ = T(ε),   

 

and write the new production function implied by this scale change as in (4): 

 

          (18)   x = G(ϕL).   

 

Then combining (16)-(18) gives 

 

          (19)  F(εL) = G(T(ε)L).   

 

Since F is a production function, it may be assumed to be increasing (the additional assumption mentioned 

above). Combining this with the previously assumed increasingness of T, it follows that G is also increasing. 

The latter, in turn, implies that G has an inverse so that, from (19), 

 

          (20)   T(ε) L = G -1(F(εL)).   

 

Consider combinations of ε  and L such that 
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          (21)   εL = γ ,   

 

where γ  is an arbitrary constant.  Using (17), (20), and (21), 

 

          (22)  ϕ = ε
γ

γε
ε

ε ))(())(( 11 FG
L

LFG −−

=   .   

 

Since (22) holds for all values of ε independently of γ , 

 

          (23)  ϕ = k ε,   

 

where the constant k is given by 

 

          (24)   k =
γ

γ ))((1 FG−

  .      

 

Note that, in spite of (24), k must be independent of γ .  For if k1  and k2  were each associated with a 

different value of  γ, then from (23),  ϕ= k1ε  and   ϕ= k2ε.  Hence, because T has to remain dependent only 

on ε  as in (17),  k1 = k2 .  To show that transformations of the form of (23) are permissible in that they 

preserve the multiplicative form of F for any constant k > 0, observe that   ϕ= T(ε ) = kε  and (16) imply 

 

  x = F( L
k
ϕ1

 ).   

 

The function G may now be defined as 
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G(ϕL) = F( L
k
ϕ1

 ),   

 

thereby maintaining the required multiplicative form.  Thus the above assumptions reduce the admissible 

transformations of the effort scale to T(ε ) = kε .  This does not mean that effort is actually measured on a 

ratio scale.  But it does demonstrate that, to preserve the underlying structure of the standard efficiency wage 

production function with output determined by the product of effort and the amount of labor employed, the 

only ordinal scales that can be invoked as measures of effort are all multiples of each other.  Clearly, then, 

the standard specification of the production function in the efficiency wage model relies on significant 

assumption content in relation to both an appropriate underlying structure and the choice of scale.  That 

assumption content, moreover, injects an arbitrariness into this particular Approach-B-type analysis similar 

to that detailed more generally for Approach-C-type analyses above. 

 

IV  Conclusion 

It has been suggested here that, in constructing models to explain observed economic behavior, functions of 

the form   χ=F(ε), as in equation (2), where ε  and χ  are ordinally measured variables and where F is 

assumed to have appropriate properties, can be postulated as long as it is recognized that F actually 

represents some underlying, unquantified, and possibly unknown relation with corresponding properties.  

That is, the recognition of the existence of the underlying relation f without its precise specification or 

knowledge of it, and without precise specification or knowledge of the ordinal scales relating to it 

(Approaches B and C) is sufficient, if not fully satisfactory, for analysis to proceed.  But degrees of 

arbitrariness and ambiguity, as has been seen, are involved in Approach C which uses a function like F 

(rather than the underlying f) as the anchor of its analyses.  And, although not intrinsic to Approach B, a 

certain arbitrariness and restrictiveness also creeps in here when specific functional forms are imposed, as is 

the case with the multiplicative-argument specification of the efficiency wage production function.  Finally, 
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although better than Approaches B and C in principle, Approach A may not be possible to implement and, 

even when implementation is possible, use of the former may be analytically more tractable.12

Moreover, it should be pointed out that the deficiencies of Approaches B and C take on greater 

significance when explanation is the purpose of the analysis.  For explanation requires an elucidation of the 

reasons for the observed behavior and, for the most part, this means the setting out of the assumptions that 

are required for the explanation to be relevant and correct.  But it is clear in these cases that, because the 

relationship between f and F is contingent on the ordinal scales invoked, substantial information about f 

cannot be deduced from F and its properties alone.  Thus, to specify only the latter is to leave significant and 

fundamental assumptions of the model, and hence of the explanation, up in the air.  And therefore, what is 

purported to be an explanation of the observed behavior in question turns out to be, at best, rather 

incomplete and, at worst, no explanation at all. 
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Footnotes 
 
1. The authors would like to thank Derek Leslie, Ian Steedman, and especially Douglas Vickers for their 

help.  Thanks are also due to Aarhus Universitets Forskningsfond for partial funding. 
 
2. A ratio scale is a cardinal scale that is unique up to increasing, linear transformations that do not alter the 

zero value.  That is, with respect to cardinal scales in general, the zero on any one scale may be 
translated into any real number upon application of an appropriate increasing, linear transformation to 
that scale.  But for ratio scales, the zero is fixed and has the same magnitude, namely zero, on all 
permissibly transformed scales. 

 
3. See Katzner (1983, 2001). 
 
4. See, for example, Katzner (1998: 5,6). 
 
5. Leslie’s argument in this regard is not so far from that of Skott.  Gintis (1995) also hints at something 

comparable. 
 
6. The terms “unquantified” and “unmeasured” are used synonomously in this paper as are “quantified” 

and “measured.” 
 
7. It may be noted at this point that some of the analytical problems that will be clarified in what follows 

turn on the question of whether the model in view and its properites are assumed to be grounded in (2) 
as opposed to the further-stage-removed relation (1). 

 
8. The fact that utility functions are not usually constructed in this way is irrelevant.  For in that case, the 

variables with respect to which the domain of the utility function is characterized are ratio measured, 
and the application of increasing transformations to the ordinal scale on which utility is measured have 
no impact on the demand functions derived. 

 
9. Katzner (1983: Sect. 7.2). 
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10. Observe that S -1 ◦  F ◦ T of (10) is different from G = S◦ F◦ T -1   which, as indicated earlier 

(following equation (6)), always preserves the same underlying f. 
 
11. General discussion may be found in Katzner (1996: 46-50). 
 
12. Another option when Approach A cannot be implemented or is intractable is to discard all numerical 

measures of e and x and proceed with f in unquantified form along the analytic lines suggested by 
Katzner (1983, 2001).  

                       


