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Abstract

In this paper we introduce a calibration procedure suitable for
the validation of agent based models. Starting from the well-known
financial model of Brock and Hommes 1998, we show how an appro-
priate calibration technique makes the model able to describe price
time series.The calibration results show that the simplest version of
the Brock and Hommes model, with two trader types, fundamentalists
and trend-followers, well replicates the price series of four sub-sectoral
banking indexes, representing different geographical areas. Moreover,
we show how the parameter values of the calibrated model are im-
portant to analyse the trader behavior on the different investigated
markets.
JEL codes: C52; C63; G15.
Keywords: Validation, Agent-based models, Asset pricing,
Heterogeneous beliefs.
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1 Introduction

During the last decades the financial sector has shown a spectacular expan-
sion and a growing influence on the real economy. Banks are one of the main
actors in the phenomenon of the so called financialization of the economy, i.e
the extraordinary transfer of resources from the productive to the financial
sector. Most researchers and policy makers agree in in identifying the roots
the current global crisis into the strategic trading behaviour of the banking
sector .
Banks’ performances on financial markets are a powerful channel of predic-
tion and transmission of economic crises. Banks’ are key players in economic
systems because they provide financing to the private sector and because
their solidity and stability is a major concern for public authorities and
governments1. Several agent-based models have taken into account trader
strategies and their impact on macroeconomic variables. This literature has
highlighted how some important aggregate phenomena emerge from the in-
teraction at a micro and meso level.

The main literature on this topic has identified three different ways of vali-
dating computational models2 i) input validation, which focuses on the need
of a strict correspondence between the model and reality in terms of agents’
behaviour, institutional architecture and system organization; ii)descriptive
output validation, which is based on the matching between the output (com-
putationally) generated by the model and real data; iii) predictive output
validation, which matches computationally generated output against out-of-
the-sample real data.
As already underlined, only a few models (Alfarano et al., 2005, 2006a,b)
have an analytical solution that let the authors estimate their parameters
via maximum likelihood.
In this chapter we try to develop a strict calibration procedure that can help
in validation of agent-based models. In order to focus on the technical details
of the procedure, we take into consideration the very well known agent based
model developed by Brock and Hommes 1998 (BH in what follows), and we

1The expense of bail-outs both during the financial crisis of 2007-09 and the euro crisis
that followed has been immense. State-aid data from the European Commission show
that between October 2007 and the end of 2011, European governments injected 440
billion ($605 billion) into their teetering banks and also provided guarantees of 1.1 trillion.
Since then Spain has had to shore up its wobbly savings banks with 41 billion, which
the government itself had to borrow from the European Stability Mechanism (ESM), the
euro-zone’s rescue fund.

2For an exhaustive overview of this topic, an excellent source is the Leigh Tesfatsion’s
website: http://www2.econ.iastate.edu/tesfatsi/ace.htm
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try to estimate the model parameters using market data. We find this model
very suitable because it is simple3, analytically tractable and its structure is
based on a few parameters.
The calibration approach that we show belong to the family of least squares
calibration and identifies the optimal values of model parameters by mini-
mizing a loss function.4. Once obtainde this loss function, the minimization
problem is solved numerically via a gradient-based method (Recchioni and
Scoccia, 2000) .
The exercise proposed in this chapter let us show that a very simple hetero-
geneous agents model, which contemplates only fundamentalist and trend-
follower (or chartist) strategies, is able to reproduce the daily price time
series of three different banking sectoral indices (i.e. the S&P SmallCap 600
Financials Index , STOXX Europe 600 Banks and the STOXX Asia/Pacific
600 Banks). This is nothing new, as this model’s fine performance is very
well kwon. The interesting result here is the calibration power in grasping
some information on the behaviour. Differences and the similarities in the
behaviour of agents operating in the markets considered emerge from the
analysis of the parameters obtained via model calibration. The parameters
in this kind of behavioural asset pricing model allow the researcher to ex-
trapolate a lot of information about risk aversion, agents’ switching among
different strategies, herding behaviour in the investigated markets.
Other papers used nonlinear least squares to estimate the model parame-
ters, mainly to check for behavioral heterogeneity and time variation in the
predominance of different strategies (Boswijk et al., 2007).

In this chapter we are interested in analyzing the accuracy of our calibra-
tion procedure in reproducing real indexes price time series. We want to find
difference and similarities among financial markets that belong to different
geographical areas. We expect very similar parameters value despite this
geographical distance, due to the strong interconnections among financial
markets all over the world.

3We will briefly present the mathematical structure of the BH model into the appendix.
To have a general idea of it, we can anticipate that it is a behavioural asset pricing model
populated by heterogeneous agents that can choose among different trading strategies and
have an adaptive belief

4This function is the sum of the squared residuals which are computed as the difference
between the observed and simulated market price in each time step. This approach is
commonly used in asset and option pricing (Andersen and Andreasen, 2000; Avellaneda
et al., 2000) .
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2 The calibration technique

We want to introduce a calibration technique suitable to be applied to any
agent-based. As already stressed, we choose the Brock & Hommes model
because of its tractability and the immediate interpretation of the parame-
ters in terms behavioural attitudes. The simplicity of the model allow for an
effective comparison of difference and similarities among the analysed finan-
cial markets.
The model is calibrated using the deviation from fundamental as in Eq. (18).
We now introduce the main ingredients of the calibration procedure:

• pot , t = 0, 1, . . . , τ−1, τ > 1, where t = 0, t = τ−1 are, respectively, the
first and the last observation dates used in the calibration procedure5

• pz,t = Ez,t(p̄t+1), t > 0, z = 1, 2, the agents simulated expectation on
the spot price at time t, p̄t, t > 0

• p̄t, t > 0, the simulated equilibrium market price at time t

• p∗t the fundamental price

• x̄t = p̄t − p∗t , t > 0, the deviation from the fundamental price

The calibration technique is composed by the following time steps6

Step i1): compute the agents’ expectation on the spot price:

ffund,t = 0 (1)

fchart,t = g x̄t−1, (2)

Step i2): compute fitness measures of fundamentalists and chartists:

Ufund,t−1 = [x̄t−1 −Rx̄t−2]
(−Rx̄t−2)

ασ2
+ ω Ufund,t−2, (3)

Uchart,t−1 = [x̄t−1 −R x̄t−2]
gx̄t−3 −R x̄t−2

ασ2
+ ω Uchart,t−2. (4)

5We take the daily closing index value.
6For the mathematical details of the Brock & Hommes model we refer the reader to the

Appendix. We just introduce, for the sake of clarity, some essential elements to understand
the calibration steps. R = (1 + r) > 1 is the gross return on risk free asset, g is the trend
parameter in the chartist strategy, nz,t denotes the fraction of agents z at time t and
ω ∈ [0, 1] is an agents’ memory parameter.
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Step i3): compute the simulated equilibrium market price and its deviation
from fundamental:

x̄t = (nfund,t−1ffund,t + nchart,t−1fchart,t)/(1 + r),

p̄t = p∗t + x̄t, (5)

where n1, n2 are given by:

nh,t−1 =
exp(β Uh,t−1)∑2
h=1 exp(βUh,t−1)

, h = 1, 2. (6)

Step i4) if t ≤ τ go to Step i1 else stop.

Some assumptions make the calibration procedure deterministic because
they eliminate any noise7. We choose a deterministic estimation because in
this case the metric variable steepest descent method is much more robust.

Let pot be the observed spot price and p̄t the simulated equilibrium mar-
ket price obtained using the Brock & Hommes model.
In the following presentation of the mathematical details of the calibra-
tion procedure we explicitly refer to Recchioni and Scoccia (2000). Let
R4 be the four-dimensional real Euclidean space and Φ ∈ R4 be the vec-
tor containing the model parameters whose values have to be computed
Φ = (α, p∗, β, g) ∈ R4, and let M ⊂ R4 be the set of the feasible param-
eter vectors defined as follows:

M =
{

Φ = (α, p∗, β, g) ∈ R4 , alpha ≥ 0, β ≥ 0
}

(7)

The calibration problems considered are formulated as follows:

min
Φ∈M

FBH(Φ) (8)

where the objective function FBH(Φ) is given by:

FBH(Φ) =
τ∑
t=1

(
p̄L,t − pot

pot

)2

, Φ ∈M (9)

The constrained optimization problem is solved via a metric variable
steepest descent method (see Recchioni and Scoccia 2000). This method

7In particular we assume a constant dividend process which implies a constant funda-
mental price and, therefore, the martingale difference sequence δt into the agents’ utility
function equals zero.
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We use a variable metric steepest descent method (see Recchioni and Scoc-
cia 2000), which belongs to the family of the nonlinear constrained least
squares problems, and we solve it via a local minimization algorithm. It is
an iterative procedure that, making a step in the direction of minus the gra-
dient of FBH with respect to Φ, generates a sequence {Φk}, k = 0, 1, . . ., of
feasible vectors (i.e.: Φk ∈ M, k = 0, 1, . . .), given an initial point Φ0 ∈ M.
The gradient is computed in a suitable metric which is defined according to
the constraints defined inM and rescaled in order to ensure the convergence
of the iterative process.
The optimization algorithm used to solve problem (8) consists of the follow-
ing steps:

1 set k = 0 and initialize Φ0 = Φ̃
0
;

2 compute the value of FBH(Φk), if k > 0 and |FBH(Φk)−FBH(Φk−1)| <
ε |FBH(Φk)|, where | · | denotes the absolute value of ·, go to item 7;

3 evaluate the gradient (in cartesian coordinates) of the function∇FBH(Φk);

4 implement the steepest descent step evaluating Φk+1 =Φk−ηkD(Φk)∇FBH(Φk),
where ηk is a positive real number that determines the length of the
step in the direction D(Φk)∇FBH(Φk) and guarantees that FBH(Φk) is
a non-increasing function of k and D(Φk) is a diagonal matrix related
to the use of the “variable metric”;

5 if ||Φk+1 − Φk|| < ε, go to item 7;

6 set k = k + 1, if k < Miter go to item 2;

7 approximate Φ∗ with Φk+1 and stop,

where Miter is the maximum number of iterations of the optimization
procedure and φ > 0 is a chosen tolerance value.

The identification of the initial point Φ̃
0

is a crucial problem that is here
solved calculating the best value of the objective function on a set of random
points belonging the feasible region M8.

8As the starting points lies in the feasible region, this method ensures that also the
identified points belong to this region.
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Figure 1: Re-scaled index values from September 12st 2006 (t = 1) to Septem-
ber 16st 2010 . Data are taken from the database 2014 Thomson Reuters-
Datastream

3 The calibration procedure at work

3.1 Data Description

We test the calibration procedure using the daily closing values of three
banking sectoral indices: the S&P SmallCap 600 Financials Index , STOXX
Europe 600 Banks and the STOXX Asia/Pacific 600 Banks, in order to rep-
resent three different geographical areas (i.e. USA, Europe, Pacific area9).
The times series start on January 1st 2005 to December 31st 2013.
Figure 1 shows the re-scaled observed the re-scaled index values used in the
calibration exercise. The figure shows a strong similarity in the time series
behaviour. This confirms the strongly interconnected nature of the finan-
cial/banking system. A strong break in the times series trend starts during
summer 2007, with the burst of the The bursting of the U.S. housing bub-
ble, which caused the values of securities tied to U.S. real estate pricing to
plummet, damaging financial institutions globally.

9The S&P SmallCap 600 Financials Index is comprised of common stocks of U.S. finan-
cial service companies that are principally engaged in the business of providing services
and products, including banking, investment services, insurance and real estate finance ser-
vices. The STOXX Sector indices are available for global markets as well as for Europe,
the Eurozone and Eastern Europe.
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As underlined in the previous section, in order to calibrate our model, a deli-
cate issue is the choice of the initial point of the iterative algorithm described

in Steps [1]-[7], i.e. Φ̃
0
. To cope with this problem we solve the same min-

imization problem (8) starting from different initial points. Specifically, we
generate 300000 initial points uniformly distributed in the following set10:

S =
{

Φ= (α, p∗, β, g) ∈ R4 , 0 ≤ β ≤ 4, 0 ≤ g ≤ 3, 0 ≤ p∗ ≤ 1,

5 ≤ α ≤ 20} . (10)

The parameter values are chosen as follows:

• αi = 5 + 2 (i− 1), i = 1, 2, . . . , 10

• βi = 0.5(i− 1), i = 1, 2, . . . , 20

• gi = 0.2 i, i = 1, 2, . . . , 20

• p∗i = 0.1 i, i = 1, 2, . . . , 10

We evaluate the objective function FBH on 300000 points, Φi = (βε, gn, p
∗
k, αm),

ε = 1, 2, . . . , 20, n = 1, 2, . . . , 20, k = 1, 2, . . . , 10, m = 1, 2, . . . , 10, i =
1, 2, . . . , 300000. We choose the starting values of the parameters in corre-
spondence of the objective function FBH(Φi) with the smallest value among
the whole set previous calculated. Table 1 shows the starting points used in
the model calibration procedures.

Table 1: Initial points BH calibration procedure.

Parameters US Europe Asia/Pacific

β 0.6 1.5 0.6
g 2.0 2.0 2.0
p∗S 0.45 0.63 0.47
α 19.2 19.2 18.2
ω 1 1 1

Table 1 shows the value of the starting points, i.e. the parameters corre-
sponding to the smallest value of the objective functions. The analysis of the
figures suggests some preliminary interest insights. The objective functions
shows negligible variations and the same very small fluctuations are found

10Initial points of each market index have been selected by using the set S.
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for parameter g. Differently, parameters β, α and p∗ show large variations of
these two parameters.
The fact that the objective functions are plateaux despite this conspicuous
variation has important consequences because it implies that the initial value
of these parameters does not significantly influence the objective functions.
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Figure 2: The first ten values of the BH model parameters corresponding
to the ten smallest values of the objective function FBH evaluated at the
initial points Φi of the set S ( STOXX Asia/Pacific 600 Banks (black line),
STOXX Europe 600 Banks (red line), S&P SmallCap 600 Financials Index
(green dashed line))

In our experiment, we test our calibration process in order to verify its
efficacy in replicating daily indexes price time series on two different time
windows. We want to analyse the calibration performance on the period
preceding the default of Lehman Brothers Holdings Inc. and on the period
that follows the failure. The firm filed for Chapter 11 bankruptcy protection
following the massive exodus of most of its clients, drastic losses in its stock,

9



and devaluation of its assets by credit rating agencies on September 15th
2008. We solve the problem for τ = 1000 (i.e. from September 1st 2006 to
September 15th 2008 and from September 15th 2008 to August 16th 2010).
In Fig. 3 we compare, for the three market indices and the two periods, the
time series of the observed market price, pot , with the simulated equilibrium
market price, p̄t, (i.e. the simulated prices we obtain as the result of the
procedure). After the first round of the calibration procedure in which we use
the computed starting point, we run another round of the calibration so that
all simulated time series use, as input, the calibrated parameters obtained
at the final iteration step of the previous round. The model simulated series
can be considered as regression of the real data, following the same dynamics
of the observed index value. The figure shows the reliability of the calibrated
parameters, which is sustained by the correspondence between simulated and
observed prices.

We chose these two periods for two main reasons. From an analytical
point of view, we want to analyse whether our calibration procedure is a
good instrument also in a period characterized by strong turbulence; from
an economic point of view, we are interested in exploring possible changes in
traders’ behaviour through the analysis of changes in model’s parameters.
We fix the parameters r = 0.01/250 (daily risk free return), σ = 0.1 and
ω = 1. Initially, the traders population is equally divided so nk,0 = 1/2.
In the calibration procedure set ω = 1, the so called infinity memory case.
We believe there are some good reasons to adopt this strategy. From an
empirical point of view the BH model has only been estimated in the case of
zero memory (see Boswijk et al. 2007). Furthermore, the fundamentalists’
capacity to drive back the market price to its fundamental value is an open
question in the literature in the infinity memory case. In order to shed
some light on this issues, we have decided to focus on the case of infinite
memory, i.e. ω = 1. Tables 2-3 show the optimal parameters obtained by
the calibration procedures.

To check for the robustness of this technique, the calibration procedure is
repeated on 100 trajectories for each index. In this way we are able to obtain
the interval of confidence. The different trajectories are obtained applying
the maximum entropy bootstrap algorithm (see Vinod and Lòpez-de-Lacalle
2009).
Comparing the two tables, we observe that for both samples the optimal
values of the investigated parameters are quite similar for the three markets.
Similarities between the optimal values reinforce our belief of the ability of the
model to accurately reproduce the dataset, well describing market behaviors.

The most relevant aspect we want to emphasize is the difference in the values
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Figure 3: Time series of the observed market price pot (black line) and the
simulated equilibrium market price p̄t (blue line) for the pre-Lehman Broth-
ers’ default period (left) and for the post-Lehman Brothers’ default period
(right), for the S&P SmallCap 600 Financials Index(up), the STOXX Eu-
rope 600 Banks (centre) and the and the STOXX Asia/Pacific 600 Banks
(bottom).

of the objective function in the two samples. For all the markets the objec-
tive function value is sensibly higher in the post-Lehman Brothers’ default
period (at least one order of magnitude); this means that the model is able
to reproduce the real data worse in this period, due to the fact the financial
market turmoil strongly grew in the aftermaths of the failure.
The analysis of the calibrated parameters of the three indices shows there
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Table 2: Model parameters and objective function values obtained for the pre-Lehman
Brothers’ default period.

Parameters S&P Financials Index STOXX Europe STOXX Asia/Pacific

β 0.4999 0.4997 0.501
St. Dev (7.500·10−4) (3.682·10−4) (1.304·10−3)

Rel. Err. (1.457·10−3) (4.478·10−2) (9.778·10−1)

Bias (6.645·10−3) (2.333·10−3) (7.278·10−3)

g 2.009 1.988 2.003
St. Dev (3.759·10−4) (8.496·10−3) (5.556·10−2)

Rel. Err. (3.721·10−3) (1.991·10−3) (2.147·10−3)

Bias (2.670·10−3) (4.483·10−4) (-4.567·10−4)

α 20.331 19.353 17.498
St. Dev (1.413·10−1) (5.54·10−1) (1.167·10−1

Rel. Err. (1.875·10−2) (2.719·10−4) (4.986·10−5)

Bias (-6.178·10−2) (2.743·10−3) (-4.676·10−4)

p∗S 459.2403 (0.999) 537,725 (0.998) 104.024 (1.004)
St. Dev (3.266·10−3) (7.913·10−3) (6.957·10−3)

Rel. Err. (4.970·10−3) (1.121·10−2) (1.987·10−3)

Bias (5.327·10−3) (7.028·10−3) (1.216·10−3)

FBH(Φ∗) 0.00176 0.0032 0.0022
St. Dev (6.956·10−5) (1.878·10−4) (1.492·10−4)

Rel. Err. (4.738·10−2) (6.435·10−2) (1.986·10−2)

Bias (2.432·10−4) (3.784·10−4) (1.061·10−4)

are strong similarities in the behavior of traders operating on sub-sectoral
financial indexes in different geographical areas. An important result we
want to emphasize is that the value of the parameter g is approximately 2.
This imply a predominance of the trend follower behavior in all the analysed
fi. As found in the literature, trend-followers can destabilize the system and
prices may not converge to the fundamental when we have a sufficiently large
value of the trend parameter g11. In the aforementioned paper, Boswijk et al.
(2007), found a similar value for g. This suggests that, despite the differences
in terms of geographical localizations, time horizon and agents’ memory, the
persistence of the trend-following strategy and its ability to deviate prices
from the fundamental is a constant feature in financial markets. The value
of the risk aversion parameter α is also very large in all considered markets.
This finding can be explained by the presence of anticipating signals of the

11For example, Hommes (2001) finds that this happens for g > 1 + r.
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Table 3: Model parameters and objective function values obtained for the post-Lehman
Brothers’ default period.

Parameters S&P Financials Index STOXX Europe STOXX Asia/Pacific

β 0.4997 0.4999 0.502
St. Dev (1.382·10−4) (3.968·10−4) (2.480·10−2)

Rel. Err. (2.761·10−1) (3.358·10−1) (6.778·10−1)

Bias (7.342·10−3) (-1.541·10−3) (8.213·10−3)

g 1.9928 2.001 1.847
St. Dev (3.663·10−1) (7.430·10−3) (2.986·10−1)

Rel. Err. (5.872·10−3) (3.041·10−3) (2.447·10−3)

Bias (3.913·10−3) (2.563·10−2) (-3.654·10−3)

α 22.671 18.974 21.787
St. Dev (2.278·100) (0.52) (1.228·10−1

Rel. Err. (2.028·10−1) (2.328·10−4) (5.445·10−3)

Bias (-8.092·10−2) (2.143·10−3) (-3.596·10−4)

p∗S 185.259 (0.403) 538.264 (0.999) 95.839 (0.925)
St. Dev (5.678·10−3) (6.494·10−4) (1.158·10−1)

Rel. Err. (7.650·10−2) (2.321·10−2) (3.127·10−2)

Bias (2.987·10−3) (4.438·10−3) (6.756·10−3)

FBH(Φ∗) 0.0023 0.0402 0.0032
St. Dev (3.301·10−2) (1.036·10−2) (9.571·10−3)

Rel. Err. (6.549·10−2) (7.788·10−2) (4.213·10−2)

Bias (2.738·10−4) (2.454·10−3) (1.265·10−4)

financial crisis in the first period which induces agents to be more cautious.
Obviously, this parameters grows in the second period, due to the effect of
the Lehman Brothers’ default.
We conclude the parameter analysis taking into consideration β. Agent-based
literature has often stressed that in financial markets there is a stronger col-
lective behavior, which is at the root of many important phenomena such
as asset prices bubbles. The high value of the intensity of choice β confirm
this feature. When β = 0, we obtain the same fraction of fundamentalists
and trend followers, because this implies that nz,t = 0.5 for any value of
the fitness measure Uz,t. In this case the trader decision making process is
independent of the fitness measure. An important consequence of this re-
sult is that it is not possible to observe a strong switching between traders
strategies. Traders’ adapt their strategies only slowly, and we use a dataset
based on daily observation which is less suitable in capturing wide switching
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phenomena12.

12Boswijk et al. 2007 find a substantial time variation and switching between strategies
using annual stock price data.
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4 Conclusion

In this work we present a calibration technique and we test it using a behav-
ioral asset pricing model in which traders follow different forecasting strate-
gies according to their relative past performances. We calibrate the model on
daily data for different indexes, i.e. STOXX Asia/Pacific 600 Banks, STOXX
Europe 600 Banks and S&P SmallCap 600 Financials Index data from 2006-
2010. In particular, we focus on two periods, the one preceding the Lehman
Brothers’ default (September 15th 2008) and the one following its failure.
In the model fundamentalist agents, while trend followers extrapolate that if
a recent increase in stock prices is observed, the mispricing will increase even
further. We have shown that the simulated times series closely reproduce
the observed one. Our estimation results show significant similarities among
different financial markets for all the parameters. A statistically significant
behavioral heterogeneity emerges together with a substantial time variation
in the risk aversion parameter of investors between the two different periods.
Through the calibration technique we have introduced we improved the val-
idation procedure proposed by Hommes (2001) on the Brock & Hommes
(1998) model. The price time series obtained by the model simulation closely
replicate those observed in different stock markets. This exercise shows that
well calibrated agent-based models are powerful descriptive tools. A good
calibration of the parameter values shed light on behaviors and strategies of
traders operating in the different financial markets.
Although our calibration process has been applied to validate the a particu-
lar, simple model, it is easily applicable to the validation of any agent-based
model. It is a well recognized fact that accurately designed agent-based mod-
els are powerful descriptive tools. Anyway we firmly believe they can be also
extraordinary predictive tools, very suitable for the identification of early
warning signals in economic and financial frameworks. But in order to rely
on this kind of models also for forecasting aims, we need the development
of rigorous calibration procedures. Not so much effort has been done in this
direction so far, and a lot of energies should be directed in this field to fuel
further investigation.

15



Acknowledgements

The research leading to these results has received funding from the European
Union, Seventh Framework Programme FP7, under grant agreement FinMaP
n0 : 612955.

16



References

[1] Adam, K., 2007. Experimental evidence on the persistence of output and
inflation. Economic Journal vol. 117(520): 603-636.

[2] Axtell, R.L., 2001. Zipf Distribution of U.S Firms Sizes. Science 293 :
1818-1820.

[3] Bannerjee, AV., 1992. A Simple Model of Herd Behavior.Quarterly Jour-
nal of Economics 107 : 797-817.

[4] Bannerjee, AV., 1993. The economics of rumors. Review of Economic
Studies 60.

[5] Barabási, A.-L., Albert, R., 1999. Emergence of scaling in random net-
works, Science 286 : 509-512.

[6] Becker. G., 1962. Irrational Behavior and Economic Theory. The Journal
of Political Economy, Vol. 70, No. 1 : 1-13.

[7] Black, F., 1986. Noise. J. Finance 41 : 529-543.

[8] Campbell, J.,Y., Kyle, A.S., 1987. Smart Money, Noise Trading, and
Stock Price Behavior. Mimeographed. Princeton, NJ: Princeton University.

[9] Chiarella, C., Iori, G., 2002. A Simulation Analysis of the Microstructure
of Double Auction Markets. Quantitative Finance, Vol. 2, No 5 : 346-353.

[10] Chiarella, C., Iori, G., Perello. J., 2009. The impact of heterogeneous
trading rules on the limit order book and order flows. Journal of Economic
Dynamics and Control, Volume 33, Issue 3 : 525-53.

[11] Cont, R., 2001. Empirical properties of asset returns: stylized facts and
statistical issues. Quantitative Finance, Vol 1, pp 223-236.

[12] Cont, R., Bouchaud, J.P., 2000. Herd behavior and aggregate fluctua-
tions in financial market. Macroeconomic Dynamics 4, 170-196.

[13] De Long, J.B., Shleifer A., Summers, L., Waldmann, R., 1990b. Positive
Feedback Investment Strategies and Destabilizing Rational Speculation.
Journal of Finance, vol. 45, no.2.
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5 Appendix

5.1 The Brock & Hommes (1998) model

In this appendix we briefly the structure of the Brock & Hommes model and
its mathematical details.
Traders have two investment possibilities: a risky one with a price of p̄, which
pays an uncertain dividend y, or a risk free one, supplied at a gross return
R = (1 + r) > 1 with perfect elasticity.
Each investor maximizes a mean-variance utility function

Maxz,t[Eh,t(Wt+1)− α

2
Vh,t(Wt+1)], (11)

This maximization gives the agent’s demand zh,t for the risk asset, i.e.

zh,t = Eh,t(p̄t+1 + yt+1 −Rp̄t)/ασ2, (12)

where α is the risk aversion parameter and σ2. Wealth evolves with the
following law of motion

Wt+1 = RWt + (p̄t+1 + yt+1 −Rp̄t)zt, (13)

where Wt+1, p̄t+1 and yt+1 are random variables and zt the number of the
risky asset shares purchased at time t.
In this model, heterogeneity come from the different agents’ beliefs about
conditional expectation, Et, and variance Vt. The information set on past
prices and dividends, It = [p̄t−1, p̄t−2, ...; yt−1, yt−2, ...], is common and public
knowledge.
The market equilibrium equation can be written as13

Rp̄t =
H∑
h=1

nh,tEh,t(p̄t+1 + yt+1), (14)

where nh,t denotes the fraction of agents h at time t.
In a world with identical and homogeneous traders,i.e. in absence of het-
erogeneity, from eq. (14), we can obtain the arbitrage market equilibrium
equation with rational expectations14:

Rp∗t = Et(p
∗
t+1 + yt+1), (15)

13in absence of risky assets supply from the outside
14We prefer not to go too deeply into the mathematical details of the model so we refer

the reader to Brock and Hommes (1998) p.1239 for the solution of the fundamental price.
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where p∗t is the fundamental price.
At the beginning of each trading period t = 1, ..., T ., agents make expecta-
tions about future prices and dividends. Agents’ heterogeneity derives from
their different forecasts of p̄t+1 and yt+1. Agents’ beliefs read as follows:

Eh,t(p̄t+1 + yt+1) = Et(p
∗
t+1 + yt+1) + fh(x̄t−1, ..., x̄t−L), ∀h, t. (16)

For the sake of convenience we define the price deviation from the fundamen-
tal:

x̄t = p̄t − p∗t . (17)

It is evident that investors believe that market and fundamental prices may
not coincide due to some function fh depending upon past deviation from p∗t .
In this version of the Brock & Hommes model, as in the previous chapter,
there are two simple linear trading rules with only one lag. Fundamentalists
believe that market price will be equal to fundamental price, so fh,t ≡ 0. For
chartists, fh,t = gx̄t−1, where g is the trend parameter.

The market equilibrium equation (14) can be rearranged in terms of de-
viation from the fundamental. The equilibrium equation in deviations from
fundamental is obtained substituting the price forecast (see eq. 16) in the
market equilibrium equation (14):

Rx̄t =
H∑
h=1

nh,tfh,t. (18)

and in the end
Rx̄t = n1,tf1,t + n2,tf2,t, (19)

where f1,t is the fundamentalist strategy, n1,t the fraction of these traders at
time t, and f2,t and n2,t are the same variables for chartists.
Traders can update their strategies over time so the fractions nh,t of investor
types in eq. (18) evolves over time. This dynamics is governed by an endoge-
nous mechanism based on a fitness parameter given by the past performances
in terms of traders’ profits:

Uh,t = (p̄t + yt −Rp̄t−1)zh,t + ωUh,t−1, (20)

where zh,t is defined in eq.(12) and ω ∈ [0, 1] is a memory parameter15.
We can reformulate the fitness measure in deviations from the fundamental

15In a more complete version of the model there is also a the cost of obtaining a “good”
forecasting strategy, but we neglect it for the sake of simplicity
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for fundamentalists (h = 1) and chartists(h = 2)16:

U1,t = (x̄t −Rx̄t−1 + δt)
(−Rx̄t−1)

ασ2
+ ω U1,t−1,

U2,t = (x̄t −Rx̄t−1 + δt)
(gx̄t−2 −Rx̄t−1)

ασ2
+ ω U2,t−1. (21)

A strategy’s fitness evolves over time.
Each agent h starts with her own strategy. In each trading period investors
compute their own strategy profitability with respect to the other. A ’Gibbs’
probability determines the probability that a trader chooses the strategy h :

nh,t =
exp(β Uh,t)∑H
h=1 exp(βUh,t)

. (22)

This mechanism allows successful strategy to gain a higher number of fol-
lowers nh so giving life to a self reinforcing mechanism. Nonetheless the less
successful belief has a positive probability to be followed due to the ran-
domness effect present into the algorithm. The reason for designing such a
rewiring mechanism is twofold: i) it introduces bounded rationality and im-
perfect information; ii) it helps the system to avoid the situation in which all
traders synchronize on the same belief. The parameter β ∈ [0,∞) in Eq.(22)
measures the “imitative behavior” and symbolize how much investors trust
on the information (expectation) about other agents’ performances.
Specifically, when β is zero, agents act independently from each other and
synchronization increases as β grows17.

16In order to obtain this result we need the realized excess returns Rt in deviation from
fundamental: Rt = p̄t +yt−Rp̄t−1 = x̄t +p∗t +yt−Rx̄t−1−Rp∗t−1 = x̄t +p∗t +yt−Rx̄t−1−
Rp∗t−1−Et−1(p∗t + yt) +Et−1(p∗t + yt) ≡ x̄t−Rx̄t−1 + δt, where Et−1(p∗t + yt)−Rp∗t−1 = 0
(for the arbitrage market equilibrium equation with rational expectations (see eq. 15))
and δt ≡ p∗t + yt − Et−1(p∗t + yt) is a martingale difference sequence.

17The control parameter β has also a physical meaning of 1/β where β is the temperature
(i.e. the measure of random fluctuations in the system). Following this interpretation, the
different level of coordination can be interpreted as a phases transition of the model due
to the decreasing of the temperature.
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