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Abstract

We present a simple new methodology to allow for time variation in volatilities using a recursive
updating scheme similar to the familiar RiskMetricsTM approach. We update parameters using
the score of the forecasting distribution rather than squared lagged observations. This allows the
parameter dynamics to adapt automatically to any non-normal data features and robustifies the
subsequent volatility estimates. Our new approach nests several extensions to the exponentially
weighted moving average (EWMA) scheme as proposed earlier. Our approach also easily han-
dles extensions to dynamic higher-order moments or other choices of the preferred forecasting
distribution. We apply our method to Value-at-Risk forecasting with Student’s t distributions and
a time varying degrees of freedom parameter and show that the new method is competitive to
or better than earlier methods for volatility forecasting of individual stock returns and exchange
rates.
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1. Introduction

Time variation in second and higher order moments is important for assessing (tail)

risk, constructing hedge strategies, and asset pricing. We develop a new empirical method-

ology to improve the performance of Exponentially Weighted Moving Average (EWMA)

methods. Our framework exploits the higher moment properties of the forecasting dis-

tribution to drive the dynamics of volatilities. By doing so, the new method is robust

to outliers if we use a non-normal forecasting distribution, as is typical for forecasting

financial returns. Moreover, the method is easy to implement and remains close in spirit

to the highly familiar RiskMetricsTM approach. It also serves as a natural framework to

introduce time variation in higher order moments.

As our main contribution, we introduce the score driven EWMA (SD-EWMA) model,

which is built on the generalized autoregressive score (GAS) dynamics in Creal et al.

[2011, 2013] and Harvey [2013]. We consider an integrated version of the GAS dynamics.

The analogy is simple: the RiskMetricsTM approach is a special case of the IGARCH(1,1)

model of Engle [1982] and Bollerslev [1986], which are special cases of the IGAS(1,1)

model of Creal et al. [2013]. The key feature of this approach is that the volatility dy-

namics are driven by the score of the forecasting distribution. Empirical evidence of the

usefulness of score driven dynamics is provided in for example Creal et al. [2014], Lucas

et al. [2014], and Harvey and Luati [2014]. Blasques et al. [2014a] show that score driven

updates are optimal from a local information theoretic point of view.

A typical example is the case of forecasting the time varying variance of a fat-tailed

distribution. If one uses the standard RiskMetricsTMapproach, a large absolute return

has a major impact on next period’s estimated variance. Given the integrated nature

of the RiskMetricsTM dynamics, this impact also affects a large number of subsequent

volatility estimates. If one accounts for the fat-tailedness of the return distribution by

using a score driven propagation mechanism for the volatilities, the impact of incidental

tail observations is substantially mitigated; see the discussions in Creal et al. [2011] and
1



Harvey [2013]. This mitigation or robustifying mechanism is particularly important in

our current context with integrated (infinite memory) dynamics.

Our methodology is computationally simple and very close in spirit to the well-known

standard EWMA approach. We also show that the SD-EWMA approach encompasses

other proposals from the literature, such as the normal based standard EWMA, the ro-

bust EWMA of Guermat and Harris [2002] based on the Laplace distribution, and the

skewed EWMA of Gerlach et al. [2013] based on the asymmetric Laplace distribution.

Given that we are interested in modeling the time variation in financial risk measures,

we explicitly develop an SD-EWMA model based on the fat-tailed Student’s t distribu-

tion; see for example Poon and Granger [2003] for stylized facts about financial returns. It

is clear, however, that the modeler can easily substitute his/her own favorite forecasting

distribution instead, such as the skewed Student’s t, the normal inverse Gaussian (NIG),

or the generalized hyperbolic (GH) distribution.

We apply our approach to forecasting Value-at-Risk (VaR) for individual stock re-

turns and foreign exchange rate returns. It turns out that the Student’s t based SD-

EWMA schemes work better for most of the series considered. For some series with

heavy rather than fat tails, the SD-EWMA scheme based on the heavy-tailed Laplace dis-

tribution works better. All SD-EWMA methods improve uniformly on the normal based

EWMA method.

Compared to previous methods, such as Jensen and Lunde [2001] and Wilhelmsson

[2009], the SD-EWMA approach provides a unifying framework that embeds previous

proposals from the literature, such as Guermat and Harris [2002] and Gerlach et al. [2013].

In addition, the generality of the SD-EWMA approach also allows for a straightforward

generalization to higher dimensions, estimating score driven versions of both volatilities,

covariances and correlations, or even higher order moments. To illustrate this, we also

provide an explicit SD-EWMA scheme for a Student’s t time varying volatility model

with a time varying degrees of freedom parameter.
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The remainder of the paper is set up as follows. In Section 2, we introduce the basic

methodology and convey the main intuition using the Student’s t distribution as a lead-

ing example. In Section 3, we briefly review the tests used in our forecasting experiment

to assess the performance of quantile forecasts. In Section 4, we provide our empirical

application to Value-at-Risk forecasting. Section 5 concludes.

2. Score Driven Exponentially Weighted Moving Averages

2.1. Standard RiskMetricsTM approach

Consider a time series yt ∈ R observed over the sample period t = 1, . . . , T. In our

setting, yt typically holds financial returns, such as stock returns or foreign exchange rate

returns. We assume that yt has a time varying conditional distribution p(yt|Ft−1; ft, θ),

where Ft−1 is the information set available at time t − 1, ft is a vector of time varying

parameters, and θ is a vector of static parameters. For example, Ft−1 may include lags of

yt and of exogenous variables, and ft may include time varying means and/or volatili-

ties, while θ may hold the remaining parameters characterizing the distribution, such as

skewness and excess kurtosis parameters.

In the RiskMetricsTM approach, ft takes the form of the time varying daily variance

of yt, denoted as ft = σ2
t . This is a key variable in determining the Value-at-Risk; see

also the application in Section 4. RiskMetricsTM uses a standard exponentially weighted

moving average (EWMA) scheme to determine the time varying volatility. The scheme is

based on a conditional Gaussian distribution and given by

σ2
t+1 = λσ2

t + (1− λ)y2
t , 0 < λ < 1. (1)

The EWMA scheme in (1) corresponds to a zero-intercept IGARCH model,

σ2
t+1 = ω + αy2

t + βσ2
t = ω + α(y2

t − σ2
t ) + (α + β)σ2

t , (2)

3



with ω = 0, β = λ, and α = 1 − β, such that α + β = 1. The volatility is thus a

weighted sum of past squared observations, σ2
t+1 = (1 − λ)∑∞

i=0 λiy2
t−i. The intuition

for the precise form of (1) derives directly from the Gaussian distribution: large squared

realizations indicate a recent increase in volatility. If the observations yt are conditionally

fat-tailed, however, using squared observations may not be optimal as large realizations

of yt may occur regularly due to the fat-tailedness of the data, even though the variance

has not changed substantially. If not properly accounted for, large realizations due to

fat-tailedness may bias the estimates of the true underlying volatility. Due to the long

memory of the integrated GARCH model (2), the bias may persist for a long time and

affect a large number of subsequent volatility estimates.

2.2. Score Driven EWMA

To account for the shape of the conditional distribution in constructing a sensible

EWMA scheme, we use the Generalized Autoregressive Score (GAS) framework of Creal

et al. [2011, 2013]; see also Harvey [2013]. The theoretical results in Blasques et al. [2014b]

show that time variation driven by the score of the conditional distribution results in lo-

cally optimal improvements from a Kullback-Leibler information theoretic perspective.

The GAS(1,1) dynamics for the time varying parameter ft are given by

ft+1 = ω + Ast + B ft, st = St · ∂`t/∂ ft, `t = ln p(yt|Ft−1; ft, θ), (3)

where St = S( ft,Ft−1; θ) is an Ft−1-measurable scaling function. Note that the scaled

score st is a function of yt, ft, and Ft−1. The time varying parameter ft as specified

in (3) is thus observation driven in the classification of Cox [1981]. More complicated

dynamics than the one specified in equation (3) can be added to the specification; see

for example Janus et al. [2011], Creal et al. [2013], and Harvey and Luati [2014]. For

our current purposes, however, the GAS(1,1) dynamics suffice. For the scaling matrix,

we propose the inverse Fisher conditional information matrix to account for the local
4



curvature of the score,

St = I−1
t|t−1 = Et−1

[
(`t/∂ ft) (`t/∂ ft)

′ ]−1 .

For this form of scaling, the GAS dynamics embed the standard GARCH dynamics; see

Creal et al. [2013] for more details. Though other forms of scaling are possible as well,

the link to the GARCH dynamics enables us to construct a GAS or Score Driven EWMA

(SD-EWMA) scheme by building on the analogy of the EWMA scheme in equation (1)

and the IGARCH specification in (2). In particular, similar to (2) our SD-EWMA uses the

integrated GAS dynamics

ft+1 = Ast + ft. (4)

This corresponds to an integrated GAS specification as in equation (3) with ω = 0 and

B = 1. For example, if p(yt|Ft−1; ft, θ) is the Gaussian distribution with zero mean and

variance ft = σ2
t , Creal et al. [2013] show that (4) reduces precisely to the standard EWMA

scheme in (1) if we set A = 1− λ.

There is, however, no particular need to restrict oneself to the normal distribution. As

it is well established that financial returns are typically fat-tailed, it makes much more

sense to use an SD-EWMA scheme based upon a fat-tailed distribution. In this paper

we follow Creal et al. [2011, 2013] and Harvey [2013] and use the Student’s t distribution

with ν degrees of freedom,

p(yt|Ft−1; ft, θ) =
Γ( ν+1

2 )

Γ( ν
2 )
√
(ν− 2)πσ2

t

(
1 +

y2
t

(ν− 2)σ2
t

)− ν+1
2

, (5)

with ft = σ2
t and θ = ν > 2. The corresponding SD-EWMA scheme is given by

σ2
t+1 = σ2

t + A · (1+ 3ν−1) ·
(

ν + 1
ν− 2 + y2

t / ft
· y2

t − ft

)
= (1− λ)σ2

t + λ · ν + 1
ν− 2 + y2

t / ft
· y2

t ,

(6)
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with λ = A · (1 + 3ν−1). One can either fix ν at a predetermined value such as 5 for

robustness purposes, or estimate it using an initial estimation sample.

As discussed in Creal et al. [2013] and Harvey [2013], the weight factor in front of y2
t

in equation (6) has a robustifying effect on the volatility dynamics. If yt lies in the tails of

the conditional distribution at time t, the volatility is increased, but not by the full y2
t . Part

of the effect is attributed to the fat-tailedness of the Student’s t distribution as can be seen

from the division by (ν− 2 + y2
t /σ2

t ). As the SD-EWMA scheme has the same integrated

dynamics as the original EWMA scheme, a more robust estimate of the volatility at time

t has a persistent effect on subsequent volatility estimates as well.

Interestingly, the SD-EWMA approach also encompasses previous adaptations of the

EWMA scheme proposed in the literature. For example, Guermat and Harris [2002] in-

troduce a robust-EWMA scheme

σt+1 = λσt + (1− λ)
√

2|yt|, (7)

which is driven by absolute rather than squared observations. The authors relate their

model to the GARCH type models of Taylor [1986] and Schwert [1990]. However, (7) can

also be seen as a special case of the SD-EWMA scheme in (4). To see this, consider the

Laplace density

p(yt|Ft−1; ft, θ) =
1√
2σt

exp(−
√

2 |yt|/σt). (8)

As for the standard EWMA, we set ft = σ2
t . The IGAS(1,1) for the Laplace distribution is

ft+1 = ω + 2A ·
√

2|yt|σt + (B− 2A) ft ⇔ σ2
t+1 = λσ2

t + σt · (1− λ)
√

2|yt|, (9)

if we set ω = 0, A = (1− λ)/2, and B = 1. Except for the multiplication by σt, which is

due to the parameterization ft = σ2
t rather than ft = σt, (9) is the same as (7).1 The robust-

1The robust-EWMA and Laplace based SD-EWMA model would be exactly identical if we set ft = σt.
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EWMA or Laplace based SD-EWMA model produces a modest increase in volatility for

large values of |yt| compared to the standard EWMA (1). The derivation above reveals

that the scheme can be motivated as a score driven approach based on the heavy-tailed

Laplace distribution rather than the fat-tailed Student’s t distribution in (6).

2.3. Further extensions

The SD-EWMA scheme introduced in Section 2.2 is very flexible. We can use it to ac-

commodate the forecaster’s favorite conditional distribution p(yt|Ft−1; ft, θ). As long as

the conditional density has a parametric form, we can compute the score and construct

the SD-EWMA scheme. The scheme also works for asymmetric distributions. For exam-

ple, Gerlach et al. [2013] introduces an EWMA scheme based on the asymmetric Laplace

distribution

p(yt|Ft−1; ft, θ) =
kt

σt
exp

(
−
(

1
1− pt

1[yt > 0] +
1
pt

1[yt < 0]
)

kt |yt|
σt

)
, (10)

with ft = (σt, pt), and kt = (p2
t + (1− pt)2)1/2. Gerlach et al. [2013] introduce EWMA

type time variation in both σt and pt, specified by the recursions

σt+1 = λσt + (1− λ)

(
kt

1− pt
1[yt > 0] +

kt

pt
1[yt < 0]

)
|yt|, (11)

ut+1 = βuut + (1− βu)|yt|1[yt > 0],

vt+1 = βvvt + (1− βv)|yt|1[yt < 0],

pt+1 =
(

1 +
√

ut+1/vt+1

)−1
. (12)

We can also derive the IGAS(1,1) dynamics for σ2
t using ft = σ2

t directly from (10) and

obtain

σ2
t+1 = λσ2

t + σt · (1− λ)

(
kt

1− pt
1[yt > 0] +

kt

pt
1[yt < 0]

)
|yt|, (13)
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with λ = 1− 2 A. Again we notice from (13) that the original robust and asymmetric

EWMA scheme of Gerlach et al. [2013] can be interpreted as an SD-EWMA update if we

set ft = σt rather than ft = σ2
t as in the original EWMA.

Though the SD-EWMA approach adapts itself to any parametric distribution, there

is a trade-off to be considered. If the conditional distribution depends on more parame-

ters than the time varying parameter ft only, e.g., the degrees of freedom parameter ν or

the skewness parameter p, these parameters need to be estimated before the SD-EWMA

scheme can be operationalized. An attractive feature of the EWMA approach for volatil-

ity filtering and forecasting is precisely that no off-line estimation is needed. One way to

achieve this is to estimate the auxiliary parameters on an estimation sample and to up-

date them only infrequently. For the Student’s t SD-EWMA scheme this approach works

well and better than a number of competing schemes for a range of foreign exchange rate

and stock returns; see the application in Section 4. For other distributions, however, more

care may be needed.

Finally, we note the flexibility of the SD-EWMA approach to account for other dy-

namic parameters beyond the volatility context. For example, the model can easily be

extended to handle both volatilities and covariances, or volatilities and correlations, us-

ing the recursions in Creal et al. [2011] and the integrated GAS(1,1) specification in (4). In

addition, the approach can be further generalized to handle time variation in higher or-

der moments, such as skewness and kurtosis, by putting the appropriate parameters into

ft rather than θ. An example that we use in our subsequent empirical analysis is a new

SD-EWMA model with a time varying degrees of freedom parameter. For this, we take

the likelihood in equation (5) and set f ′t = ( f1,t, f2,t) with σ2
t = f1,t and νt = 2 + exp( f2,t).

8



Using inverse Fisher information scaling, we obtain the following recursion for νt,

f2,t+1 = f2,t − Aν
2

νt − 2

[
γ′′
(

νt + 1
2

)
− γ′′

(νt

2

)
+

2(νt + 4)(νt − 3)
(νt + 1)(νt + 3)(νt − 2)2

]−1

[
γ′
(

νt + 1
2

)
− γ′

(νt

2

)
− 1

νt − 2
− ln

(
1 +

y2
t

(νt − 2) σ2
t

)

+
νt + 1
νt − 2

· y2
t

(νt − 2)σ2
t + y2

t

]
, (14)

where Aν > 0 is a scalar tuning parameter similar to the parameter A used for the volatil-

ity dynamics in (6), and γ′(·) and γ′′(·) are the first and second order derivatives of

γ(·) = ln Γ(·). The derivation of this result is provided in the appendix. The reparame-

terization νt = 2+ exp( f2,t) automatically ensures that the degrees of freedom parameter

νt is always larger than 2, such that the variance of the Student’s t distribution always

exists. The score based recursions automatically account for this reparameterization via

the chain rule used in the score calculations; see the appendix for further details.

Though the shape of the recursion for νt in (14) may look complicated at first sight, it is

actually easy to implement. Interestingly, it does not directly use fourth order moments

as one may have expected for the dynamics of a tail-shape parameter. Rather, it only

uses second order moments combined with the explicit information embedded in the

tail shape of the Student’s t distribution. An advantage of using the recursion in (14) is

that it typically results in a much more stable path of the degrees of freedom parameter.

Fourth order moments of the data, by contrast, are notoriously unstable. The composition

of squared data and the gamma functions and their derivatives in (14) circumvent this

problem of instability. We provide some typical shapes of the news impact curves related

to equation (14) for several values of νt in Figure 1. The curves are re-centered and re-

scaled to be comparable within one figure. We also plot a fourth order polynomial −z4
t

as a benchmark.
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Figure 1: News impact curves for the time varying degrees of freedom recursion (14)

Scaled and recentered news impact curves (14) as a function of zt = y2
t /((νt − 2)σ2

t ) for different values of
νt. The (rescaled and recentered) curve of fourth order powers −z4

t is also shown as a benchmark.

Figure 1 shows that large values of |zt| result in a downward adjustment of νt+1 for

all curves considered. This is intuitive, as large values of |zt| can be associated with tails

being fat. The decline in (14) for large values of zt is comparable for different values of

νt. Interestingly, the sensitivity of the GAS based news impact curves for νt+1 is much

lower than that of the fourth order polynomial curve −z4
t . This provides the SD-EWMA

recursion for νt with its robustness feature. Also note that for fatter tailed distributions

such as νt = 3, values zt near zero also result in smaller values of νt+1. This is a con-

sequence of the fact that fat-tails for the Student’s t distribution go hand in hand with

leptokurtosis, i.e., ‘peaked-ness’ at the center of the distribution. The less leptokurtic

the distribution, the smaller the downward effect of observations near zero compared to

near, say, −1 or −2. The informativeness of observations in the center compared to tail

observations only really becomes clear if the distribution is already fat-tailed, i.e., if νt is

low. For higher values of νt, downward signals for νt+1 predominantly must come from

10



tail observations.

As a final remark, we note that the smoothing parameter Aν for the νt recursion is

typically smaller than that of the volatility recursion. Starting values for the estimation

of Aν for empirical data in the range of 0.001 work quite well. The low values of Aν

underline the stable path dynamics for νt described by (14). We show in Section 4 that

allowing for a time varying degrees of freedom parameter helps to further improve the

accuracy of tail probability estimates for fat-tailed data.

3. Value-at-Risk and backtesting

We evaluate the performance of the SD-EWMA scheme for forecasting Value-at-Risk

(VaR). VaR is a classical risk management tool in the finance industry. It is defined as the

quantile of the profit and loss distribution of the bank. In terms of returns we obtain the

VaR = −Ya at confidence level (1− a) as

Ya = sup
{

Y∗
∣∣ P[Y < Y∗] ≤ a

}
.

The value of Ya hinges tightly together with the distributional assumptions for Y; see

Chen and Lu [2012] for a recent survey. There is a trade-off between the fat-tailness of

the distribution of Y, and the transition dynamics of the volatility updating mechanism.

In the Student’s t based SD-EWMA framework, the volatility updates are less responsive

to extreme realized returns compared to the standard Gaussian EWMA scheme. This

makes the computed VaR less responsive to abrupt volatility changes. By contrast, if

there are incidental tail observations, the Student’s t based SD-EWMA scheme provides

a much better and robust estimate of the volatility at time t. Moreover, the fat-tailedness

of the conditional Student’s t distrubution pushes the VaR levels farther out into the tails

compared to the Gaussian distribution for a fixed confidence level (1− a). The trade-off

between all these forces results in the relative performance of the different methods for

11



forecasting, which can only be investigated empirically across different confidence levels

(1− a) and different datasets.

To assess the performance of alternative (SD)-EWMA methods, we consider a number

of standard tests for the quality of tail probability forecasts: the Unconditional Coverage

test, the Independence test, the Conditional Coverage test, the Dynamic Quantile test,

and the tail shape test of Berkowitz [2001]. The first three tests and the last test are Likeli-

hood Ratio (LR) based tests, whereas the Dynamic Quantile test is a regression-based test.

A good VaR model should be consistent in that the fraction of VaR violations, i.e. events

{yt < −VaRt}, should equal a in large samples. Define the violation indicator

It = 1{yt < −VaRt},

and the number of violation N = ∑T
t=1 It out of T time periods. Following Christoffersen

[1998], good VaR models produce serially independent Its. Our backtesting methods are

all related to good coverage, serial independence, or both.

Kupiec [1995] tests the Unconditional Coverage (UC) of the VaR model using

LRu = 2(ln LN − ln Lα) ∼ χ2(1), T → ∞; (15)

where LN = (1 − N/T)T−N(N/T)N, and Lα = (1 − α)T−NαN. Christoffersen [1998]

proposes the Independence (IN) test for the VaR violation indicators It. The transition

matrix of the corresponding first-order Markov Chain is

Π =

π00 π01

π10 π11

 , πij = P(It = j | It−1 = i) = Tij/(Ti0 + Ti1),

with Tij recording the times of transition from state i to j, where i, j ∈ {0, 1}. The LR test

12



for independence is

LRin = 2(ln LA − ln L0) ∼ χ2(1), T → ∞, (16)

where LA = πT00
00 πT01

01 πT10
10 πT11

11 and Lα = (1− α)T01+T11αT00+T10 . The simultaneous test for

Unconditional Coverage and Independence, namely the correct Conditional Coverage

(CC) test, is

LRc = LRu + LRin ∼ χ2(2), T → ∞. (17)

Finally, Engle and Manganelli [2004] proposed the Dynamic Quantile (DQ) test. This is

a regression based joint test for correct coverage and independence. Let Ht = It − a.

Then the DQ test regresses Ht on its own lags Ht−j, lagged VaR forecasts, and some other

regressors. The test statistic is the regression’s standard F-test, which is asymptotically

χ2(c) distributed, where c is the number of (non-constant) regressors. Following Engle

and Manganelli [2004], we select lagged Ht−j with j = 1, 2, 3, 4 and the VaRt as the regres-

sors.

In practice, risk managers are not only concerned with the number of VaR failures,

but also with the accuracy of the model for the tail shape beyond the VaR. This is rele-

vant for assessing the potential magnitude of losses in the tail, and relates to the general

shift in the industry and in regulation from VaR to Expected Loss (or Conditional VaR)

computations. To test for the general tail shape, we adopt the test proposed by Berkowitz

[2001]. The test operates on an inverse standard normal transformation of the probability

integral transforms of the data, i.e.,

zt = Φ−1(F̂t(yt)
)
, (18)

where F̂t(·) denotes the estimated cumulative distribution function applicable at time t

using the postulated VaR model, such as the Laplace, Asymmetric Laplace, or Student’s t
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distribution, and Φ−1(·) denotes the inverse standard normal distribution function. The

variable of interest is constructed by truncating the variable zt at the threshold Φ−1(a) =

−VaR, such that zt = −VaR if zt ≥ −VaR. Estimating the mean and variance for a

censored normal random variable can be achieved by maximizing the likelihood function

L(µ, σ2) = ∑
zt<−VaR

(
−1

2
ln(2πσ2)− 1

2σ2 (zt − µ)2
)
+ ∑

zt≥−VaR
ln
(

1−Φ
(
−VaR− µ

σ

))
.

(19)

The Berkowitz [2001] test uses the maximum likelihood estimates to compute a likelihood

ratio (LR) test for the null hypothesis µ = 0 and σ2 = 1. The corresponding LR test is

LR = −2(L(0, 1)− L(µ̂, σ̂2)),

which is asymptotically χ2(2) distributed.

4. Empirical results

4.1. Data and descriptive statistics

In this section, we compare the performance of different SD-EWMA schemes. Note

that for the normal distribution, the SD-EWMA scheme coincides with the standard

EWMA for volatility modeling. As explained in Section 2, the SD-EWMA updating

schemes (9) and (13) based on the Laplace and asymmetric Laplace distribution, respec-

tively, are very close to the robust EWMA scheme (7) of Guermat and Harris [2002], and

the skewed EWMA scheme(11) of Gerlach et al. [2013], respectively. For the dynamic

asymmetric Laplace, we use the same dynamics for pt in (12) as used in Gerlach et al.

[2013]. As Gerlach et al. [2013] show that the GARCH and GJR-GARCH based on a nor-

mal or Student’s t distribution do not outperform the skewed EWMA models, we do not

include them in our current study.

We use 12 financial time series over the period January 5, 1999 to November 1, 2013.
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Table 1: Summary Statistics
The descriptive statistics present the centered moments of the financial time series considered. The sample
period is January 5, 1999 to November 1, 2013. We split the sample into an in-sample estimation period
and out-of-sample forecasting period. The sample mean is multiplied with 100. A standard deviation (SD)
of 1.28 denotes 1.28% per day. SK and KT denote skewness and kurtosis, respectively.

Data In-sample: 1999-2006 Out-of-sample: 2007-2013
Mean SD KT SK Mean SD KT SK

exchange rate returns
GBP 0.010 0.51 0.41 0.00 -0.007 0.64 3.21 -0.47

AUD 0.013 0.68 1.22 -0.29 0.011 1.06 10.55 -0.47
JPY -0.002 0.62 1.94 0.11 0.010 0.74 5.29 -0.14

CAD 0.014 0.44 0.65 0.01 0.008 0.70 2.54 -0.20
SEK 0.011 0.68 0.46 -0.04 0.006 0.93 2.52 -0.04
EUR 0.007 0.64 0.51 -0.01 0.004 0.68 1.85 0.06

equity returns
AA 0.032 2.34 2.50 0.22 -0.061 3.19 6.99 -0.18
BA 0.056 2.07 5.85 -0.41 0.033 2.00 4.23 0.10
GE 0.014 1.86 4.07 0.06 -0.005 2.27 8.50 0.00

IBM 0.006 2.06 7.83 -0.15 0.042 1.50 5.15 -0.04
KO -0.009 1.60 5.22 -0.10 0.040 1.29 11.78 0.60

T -0.004 2.02 3.46 -0.06 0.022 1.56 10.68 0.58

The dataset contains 6 exchange rate log returns and 6 equity log returns. The exchange

rates are always vis-à-vis the US Dollar. We consider the Australian Dollar, the Canadian

Dollar, the Euro, British Pound, Japanese Yen, and Swedish Kroner, denoted as AUD,

CAD, EUR, GBP, JPY, and SEK, respectively. The stocks considered represent different

industries and are all listed at the New York Stock Exchange: Alcoa Inc., Boeing Co.,

General Electric, IBM, Coca-Cola and AT&T, denoted as AA, BA, GE, IBM, KO, and T.

The number of observations for different time series can differ due to the variation of

national holidays.

From the descriptive statistics in Table 1, it is obvious that all series exhibit non-normal
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features such as non-zero skewness and excess kurtosis. We thus expect the robust

(Laplace based) SD-EWMA and Student’s t SD-EWMA schemes to provide particular

advantages compared to the standard EWMA scheme. We use the same distributional

assumptions to set up the SD-EWMA recursions and to compute the VaR.

We split the sample into two subsamples. We use the sample from January 5, 1999 to

December 29, 2006 (in-sample) for estimation of the static parameters. In particular, for

all models we estimate the optimal smoothing parameter A using the estimation sample.

We also estimate any remaining static parameters needed, such as the degrees of free-

dom parameter ν for the Student’s t distribution, or the skewness parameter p for the

asymmetric Laplace distribution if the skewness is not time varying. For the asymmet-

ric Laplace with time varying skewness, we estimate an additional separate smoothing

parameter λp. Also for the SD-EWMA scheme with time varying degrees of freedom,

we estimate the additional parameter Aν. In all cases, the estimated parameters are kept

fixed over the entire forecasting period. This results in a computationally fast procedure.

We also carry out a robustness check by recursively updating all tuning parameters over

the entire forecasting sample; see the discussion in Ardia and Hoogerheide [2014] for the

potential benefits of such an approach.

4.2. Full results for the Euro-Dollar rate

For the Euro-Dollar exchange rate, we report the full results for all tests in Table 2.

The bad performance of the normal based standard EWMA scheme is not surprising. We

also confirm the results of Gerlach et al. [2013] that there appears to be little evidence for

skewness: the results for p = 0.5 and p estimated are quite similar. The models based on

the Laplace distribution result in acceptable diagnostics in terms of UC, ID, CC, and DQ

statistics, especially considering VaR at 5% level. The Berkowitz test, however, strongly

rejects the Laplace based model in that it fails to provide an adequate description of the

tail shape beyond the VaR level.
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Table 2: Full SD-EWMA Results for the Euro-Dollar Exchange Rate
The test statistics correspond to the unconditional coverage (UC) test of Kupiec [1995], the independence
(ID) and Conditional Coverage (CC) test of Christoffersen [1998], the Dynamic Quantile (DQ) regression
test of Engle and Manganelli [2004], and the the Berkowitz [2001] test (BE). We use a confidence level for the
VaR equal to 1− a = 0.995/0.99/0.95. Critical values (χ2

cv) at a 1% significance level are also displayed, as
are the Hit Rate (HR) N/T of N VaR violations out of T observations, multiplied with 100. Static parameters
are estimated over Jan 5, 1999 to Dec 29, 2006, and held fixed over the forecast evaluation period Jan 3, 2007
to Nov 1, 2013. The SD-EWMA schemes use the normal distribution (N), Laplace distribution (L) with
skewness parameter 0.5, p, or pt, and Student’s and distribution (t) with degrees of freedom parameter ν,
νt, or 5. We separate the results for models with and without updated parameters in two different panels.

No parameter updating With parameter updating
CC UC IN DQ HR BE CC UC IN DQ HR BE

a = 0.5%
N 3.1 2.8 0.2 5.3 0.81 9.4 3.1 2.8 0.2 5.5 0.81 6.7

L(0.5) 7.4 7.4 0.0 5.1 0.12 27.7 7.4 7.4 0.0 5.1 0.12 26.5
L(pt) 11.0 11.0 0.0 6.8 0.06 25.3 11.0 11.0 0.0 6.8 0.06 25.2
L(p) 7.4 7.4 0.0 5.1 0.12 24.8 7.4 7.4 0.0 5.1 0.12 26.2
t(νt) 0.4 0.3 0.1 0.4 0.41 1.8 0.1 0.0 0.1 0.6 0.52 1.0
t(ν) 0.3 0.2 0.1 1.2 0.58 1.3 0.8 0.6 0.1 2.4 0.64 1.4
t(5) 7.4 7.4 0.0 5.1 0.12 21.4 7.4 7.4 0.0 5.1 0.12 21.0

χ2
cv/true 9.2 6.6 6.6 16.8 0.50 9.2 9.2 6.6 6.6 16.8 0.50 9.2

a = 1%
N 7.2 6.7 0.4 13.5 1.68 9.6 9.3 9.0 0.3 16.8 1.80 9.6

L(0.5) 9.9 9.9 0.0 7.4 0.35 33.3 12.2 12.2 0.0 9.1 0.29 32.2
L(pt) 12.2 12.2 0.0 9.1 0.29 33.9 12.2 12.2 0.0 9.1 0.29 33.1
L(p) 14.9 14.9 0.0 10.4 0.23 34.1 12.2 12.2 0.0 9.1 0.29 32.0
t(νt) 1.3 0.8 0.5 11.6 1.22 2.1 3.1 2.4 0.7 10.7 1.39 2.3
t(ν) 3.1 2.4 0.7 10.5 1.39 1.7 4.6 3.9 0.7 11.7 1.51 2.3
t(5) 6.3 6.2 0.1 5.1 0.46 21.2 4.9 4.8 0.1 4.3 0.52 20.3

χ2
cv/true 9.2 6.6 6.6 16.8 1.00 9.2 9.2 6.6 6.6 16.8 1.00 9.2

a = 5%
N 2.8 1.6 1.1 7.6 5.69 8.4 2.9 1.9 1.0 9.6 5.75 7.9

L(0.5) 6.7 1.3 5.4 19.1 4.41 37.3 3.7 1.6 2.1 11.9 4.35 35.7
L(pt) 5.2 2.6 2.7 16.4 4.18 34.3 5.2 2.6 2.7 11.4 4.18 33.3
L(p) 5.2 2.6 2.7 8.6 4.18 36.6 3.7 1.6 2.1 11.8 4.35 36.3
t(νt) 3.1 2.2 0.9 10.4 5.80 4.9 3.4 2.6 0.8 8.9 5.86 4.4
t(ν) 2.9 1.9 1.0 11.2 5.75 2.1 3.1 2.2 0.9 9.1 5.80 2.4
t(5) 2.3 0.6 1.8 11.2 5.40 27.2 2.4 0.9 1.5 10.6 5.51 28.1

χ2
cv/true 9.2 6.6 6.6 16.8 5.00 9.2 9.2 6.6 6.6 16.8 5.00 9.2
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Turning to the model with SD-EWMA dynamics based on the Student’s t distribu-

tion, we see that the performance of the model is much better. Exchange rate returns are

typically characterized by fat-tails such as Student’s t tails rather than by heavy tails such

Laplace tails. The Student’s t based SD-EWMA approach, therefore, provides a useful ad-

ditional tool for VaR forecasting. The gain from using the Student’s t based SD-EWMA

is stronger if we look at more extreme tail outcomes, such as the 1% VaR levels. The

Student’s t based SD-EWMA scheme has the best overall performance, particularly if we

allow the degrees of freedom parameter νt to follow the dynamics described in equation

(14). The Berkowitz test and the Conditional Coverage test do not reject the Student’s

t based SD-EWMA for any of the VaR confidence levels considered. Moreover, the Hit

Rate for the model with time varying νt is closest to the true value for most series.

4.3. Full results: all series

To investigate the robustness of the results, we extend our analysis to other exchange

rates as well as to individual stock returns. We present the results in Tables 3 and 4.

We focus on the intended coverage levels a = 1%, 5%, and only include the conditional

coverage (CC) and Berkowitz (BE) tests. Additional results can be found in the online

appendix.

We first note that for a = 5%, the conditional coverage (CC) test does not really dif-

ferentiate between the alternative models. With a few exceptions for the Laplace based

schemes, all models pass the test. The same holds for the equity returns if we consider

more extreme tail areas (a = 1%). For the exchange rate returns, however, going deeper

into the tails provides a more mixed result. In particular, some of the models are rejected

for a number of series. Interestingly, the Student’s t based model with time varying de-

grees of freedom parameter works well, except for the UK pound and Australian dollar

exchange rates. For the other exchange rates, this model typically gives the lowest value

for the CC test.

18



Table 3: VaR Forecasting Results, No Parameter Updating

The table contains the values of the the conditional coverage test of Christoffersen [1998] and the Berkowitz
[2001] test. Test values below the 1% critical value of 9.2 are put in bold. Tests are carried out at two levels
for the tail area, namely a = 1% and a = 5%. The estimation sample is Jan 5, 1999 to Dec 29, 2006, and the
forecasting period Jan 3, 2007 to Nov 1, 2013. Parameters are estimated over the estimation sample, and
not updated afterwards. The exchange rates are always vis-à-vis the US Dollar. We consider the Australian
Dollar (AUD), the Canadian Dollar (CAD), the Euro (EUR), British Pound (GBP), Japanese Yen (JPY), and
Swedish Kroner (SEK). The individual stocks are Alcoa Inc. (AA), Boeing Co. (BA), General Electric (GE),
IBM, Coca-Cola (KO), and AT&T (T). The SD-EWMA schemes use the normal distribution (N), Laplace
distribution (L) with skewness parameter 0.5, p, or pt, and Student’s and distribution (t) with degrees of
freedom parameter ν, νt, or 5.

Exchange rate Equity returns
GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T

conditional coverage test, a = 1%
N 7.7 29.6 3.3 7.2 13.5 7.2 9.5 14.4 8.2 8.2 11.4 11.7

L(0.5) 6.3 1.8 2.8 8.0 6.3 9.9 6.3 0.4 0.9 1.8 2.0 4.9
L(pt) 9.9 1.8 3.7 8.0 6.3 12.2 6.3 0.4 0.4 5.8 1.3 3.7
L(p) 12.2 3.3 3.7 12.2 8.0 14.9 9.9 0.4 1.3 2.3 2.0 3.7
t(νt) 9.5 13.1 0.9 2.8 2.4 1.3 2.0 2.4 3.1 6.5 1.8 2.4
t(ν) 11.3 21.2 2.4 9.3 9.5 3.1 1.8 5.6 7.2 6.5 1.3 2.8
t(5) 8.0 6.5 1.8 2.0 2.0 6.3 6.2 0.6 1.3 6.5 0.9 0.6

conditional coverage test, a = 5%
N 6.6 6.6 0.6 7.8 4.5 2.8 4.9 3.8 1.1 1.3 2.7 0.6

L(0.5) 0.6 2.6 2.6 2.7 2.1 6.7 7.4 1.3 2.0 2.8 13.3 4.6
L(pt) 0.8 2.7 4.9 2.0 0.9 5.2 11.8 0.7 0.5 1.8 9.3 3.6
L(p) 0.4 1.4 6.0 1.4 1.4 5.2 5.0 0.7 0.4 1.8 2.9 2.5
t(νt) 7.1 6.6 4.0 4.5 4.2 3.1 6.5 5.8 3.8 0.8 5.1 0.5
t(ν) 7.6 8.1 4.0 4.1 4.5 2.9 8.5 6.2 2.7 0.8 5.0 0.5
t(5) 4.5 5.2 2.6 1.4 0.8 2.3 6.4 5.1 2.9 0.8 5.4 1.3

Berkowitz test, a = 1%
N 12.0 97.1 71.1 7.5 18.1 9.6 73.9 80.6 107.0 330.7 138.5 72.7

L(0.5) 34.1 3.7 14.0 32.9 24.3 33.3 18.0 4.7 9.4 16.5 10.2 11.2
L(pt) 37.4 2.0 17.2 30.8 24.0 33.9 14.1 3.3 5.1 17.5 8.3 11.4
L(p) 37.3 6.6 18.3 35.2 28.9 34.1 23.0 4.7 10.3 17.5 8.7 7.5
t(νt) 2.8 9.1 0.2 0.1 0.3 2.1 1.6 1.3 4.4 6.8 2.1 0.2
t(ν) 8.0 22.2 1.4 5.6 3.2 1.7 4.0 4.1 9.8 9.7 0.9 1.0
t(5) 24.2 0.2 1.5 21.0 15.1 21.2 6.9 0.3 0.5 6.3 0.0 2.4

Berkowitz test, a = 5%
N 12.3 83.6 58.9 10.8 19.5 8.4 61.7 73.2 79.0 302.8 127.8 73.5

L(0.5) 40.0 4.0 13.4 40.8 35.9 37.3 13.7 9.9 16.4 15.5 14.8 14.3
L(pt) 37.8 2.2 19.8 39.2 34.7 34.3 11.1 8.1 10.2 15.3 21.7 15.3
L(p) 40.0 6.9 17.1 45.9 36.5 36.6 13.5 9.9 11.7 11.5 13.5 11.5
t(νt) 5.6 8.5 2.5 2.9 4.8 4.9 0.3 1.2 1.0 4.7 1.7 0.6
t(ν) 7.1 20.1 0.9 8.5 5.6 2.1 1.6 3.2 4.6 7.0 0.5 1.6
t(5) 21.4 1.5 5.0 18.0 19.2 27.2 2.7 0.7 2.0 4.0 1.0 2.4
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If we turn to the results of the Berkowitz test, the results are much more interesting.

As mentioned earlier, the Berkowitz test is particularly interesting because it tests the ad-

equacy of the model as a description of the size and magnitude of all tail observations. At

the 5% level for both the exchange rate returns and individual stock returns, we see that

all models are rejected except the Student’s t SD-EWMA model. Particularly the model

with time varying degrees of freedom νt is never rejected at the 1% significance level for

this (95%) confidence level VaR. In line with our previous results, the Australian dollar

exchange rate return is better described by the heavy-tailed Laplace rather than the fat-

tailed Student’s t distribution. For the UK pound exchange rate, however, the Student’s

t SD-EWMA model with time varying νt performs well in terms of the Berkowitz test.

If we go deeper into the tails (a = 1%), these results are confirmed. Again we find

the SD-EWMA model with time varying degrees of freedom to perform best with ac-

ceptable Berkowitz test values for all series. Interestingly, the Student’s t model with

plug-in value ν = 5 performs well for the individual stock returns, but not for the foreign

exchange rates. The Laplace based models only perform well for the Australian dollar

exchange rate, and for the return on Boeing. The Gaussian based standard EWMA does

not perform well for any of the series in our sample.

The results are robust to a forecasting analysis in which we recursively update the

static parameters in the model over the forecasting period; see Table 4. The results in

Table 4 confirm that the Student’s t based SD-EWMA with time varying degrees of free-

dom performs well for almost all series. The results are in general close to those in Table

3. We also note that recursively updating the static parameters does not unequivocally

improve the forecasting results. Though the results are better for some series and some

tests, the converse holds for other combinations. In general, however, the results remain

quite close for the series considered in this paper.
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Table 4: VaR Forecasting Results, With Parameter Updating

The table contains the values of the the conditional coverage test of Christoffersen [1998] and the Berkowitz
[2001] test. Test values below the 1% critical value of 9.2 are put in bold. Tests are carried out at two levels
for the tail area, namely a = 1% and a = 5%. The estimation sample is Jan 5, 1999 to Dec 29, 2006, and
the forecasting period Jan 3, 2007 to Nov 1, 2013. Parameters are estimated over the estimation sample,
and recursively updated afterwards. The exchange rates are always vis-à-vis the US Dollar. We consider
the Australian Dollar (AUD), the Canadian Dollar (CAD), the Euro (EUR), British Pound (GBP), Japanese
Yen (JPY), and Swedish Kroner (SEK). The individual stocks are Alcoa Inc. (AA), Boeing Co. (BA), General
Electric (GE), IBM, Coca-Cola (KO), and AT&T (T). The SD-EWMA schemes use the normal distribution
(N), Laplace distribution (L) with skewness parameter 0.5, p, or pt, and Student’s and distribution (t) with
degrees of freedom parameter ν, νt, or 5.

Exchange rate Equity returns
GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T

conditional coverage test, a = 1%
N 9.3 29.6 3.3 9.3 17.5 9.3 8.7 13.0 10.4 11.7 8.9 10.4

L(0.5) 8.0 2.3 3.7 12.2 8.0 12.2 6.3 0.4 1.3 1.8 1.3 2.8
L(pt) 9.9 2.3 3.7 9.9 8.0 12.2 6.3 0.4 1.3 1.8 0.6 3.7
L(p) 8.0 2.7 3.7 12.2 8.0 12.2 6.3 0.6 2.0 2.0 2.8 3.7
t(νt) 5.4 16.5 2.1 2.4 9.5 3.1 1.8 3.8 4.7 7.4 2.4 3.9
t(ν) 6.2 18.6 2.4 9.3 8.0 4.6 1.8 3.8 4.7 7.4 1.3 3.9
t(5) 2.8 6.1 0.4 2.8 5.1 4.9 5.1 0.6 0.6 7.4 0.9 0.9

conditional coverage test, a = 5%
N 6.6 5.2 0.9 8.1 5.4 2.9 8.1 4.0 0.6 1.1 5.8 1.3

L(0.5) 0.1 1.3 1.9 2.7 0.7 3.7 4.7 1.3 0.4 1.5 5.5 4.1
L(pt) 0.3 2.3 6.6 1.3 0.3 5.2 5.0 0.7 0.3 1.3 4.2 3.6
L(p) 0.1 1.3 6.0 2.1 1.2 3.7 6.7 1.3 0.5 2.8 5.2 3.6
t(νt) 7.6 7.6 1.0 8.7 5.4 3.4 8.3 5.8 4.4 0.9 5.0 1.4
t(ν) 7.6 7.6 1.0 10.0 5.0 3.1 8.5 5.8 4.9 0.9 5.1 1.5
t(5) 3.8 4.9 0.6 3.1 0.9 2.4 6.6 5.1 2.6 1.0 5.2 0.5

Berkowitz test, a = 1%
N 13.3 103.0 69.8 7.1 19.4 9.6 74.7 82.0 96.7 330.0 136.5 69.1

L(0.5) 36.2 6.3 16.5 35.9 26.4 32.2 17.9 4.7 11.1 17.4 8.3 8.6
L(pt) 37.9 3.3 17.6 31.5 26.1 33.1 14.1 3.3 8.9 18.6 5.4 11.4
L(p) 35.6 7.2 18.2 36.3 26.5 32.0 17.9 4.7 12.8 16.5 10.6 9.9
t(νt) 1.0 10.3 0.0 0.2 1.9 2.3 1.5 1.6 3.4 5.6 2.3 0.9
t(ν) 5.7 18.2 0.8 5.1 2.8 2.3 3.0 3.6 6.9 8.5 0.8 1.8
t(5) 23.5 0.2 1.9 21.7 15.3 20.3 5.8 0.3 1.2 5.3 0.0 2.4

Berkowitz test, a = 5%
N 12.2 94.7 61.1 10.8 19.8 7.9 61.0 76.3 82.6 306.4 124.3 66.2

L(0.5) 43.5 4.5 12.9 40.6 36.4 35.7 13.1 9.4 13.3 12.5 12.1 13.6
L(pt) 38.5 2.1 20.0 36.9 33.6 33.3 11.1 7.8 9.9 13.9 23.3 15.1
L(p) 42.0 5.5 17.5 42.4 37.2 36.3 12.5 9.8 13.4 14.4 17.3 13.8
t(νt) 5.7 11.1 0.6 5.2 5.7 4.4 0.4 1.4 1.0 4.5 2.1 0.9
t(ν) 7.0 18.7 0.3 8.8 6.6 2.4 1.2 3.0 2.3 7.0 0.8 1.7
t(5) 22.5 1.4 3.8 22.9 19.3 28.1 2.8 0.5 1.5 3.8 0.8 2.1
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5. Conclusion

We developed a range of simple EWMA refinements that build on the recent litera-

ture on score driven dynamics for time varying parameters in non-normal models. We

showed that the standard EWMA and the robust Laplace based EWMA can all be seen

as special cases of the new score driven EWMA (SD-EWMA) approach. In particular,

as financial return series may typically be fat-tailed rather than heavy-tailed (such as

Laplace), we developed a score driven EWMA scheme based on the Student’s t distri-

bution. As the score driven approach is not limited to time variation in volatilities only,

we also developed a new SD-EWMA scheme for the simultaneous time series dynam-

ics of the volatility and the degrees of freedom parameters in a Student’s t distribution.

The new schemes exhibit interesting robustness features for the time varying parameter

dynamics that make them particularly suited in a context with fat-tailed observations.

We applied the new methods to forecast Value-at-Risk (VaR) for exchange rate and

stock return data. We found that the robust Student’s t based SD-EWMA model with time

varying volatility and degrees of freedom parameter had the best overall performance for

different series and different VaR confidence levels. If we accounted for both the event

and the magnitude of a tail observation using the test of Berkowitz [2001], the dynamic

Student’s t based SD-EWMA schemes performed particularly well for most series. Next

in line in terms of performance were the SD-EWMA schemes based on the heavy-tailed

Laplace rather than fat-tailed Student’s t distribution. We showed that these SD-EWMA

schemes based on the (skewed) Laplace are very close to the robust EWMA schemes

proposed by Guermat and Harris [2002] and Gerlach et al. [2013]. The new score driven

SD-EWMA approach thus provides a unified and flexible tool for risk forecasting.

The score driven EWMA approach can easily be adapted to accommodate the re-

searcher’s preferred choice of forecasting distribution. For example, the ideas could be

generalized further to semi-parametric approaches, such as the Gram-Charlier expansion

of Gabrielsen et al. [2012]. Also note that the score driven EWMA can be adapted to han-
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dle multivariate observations; see for example Creal et al. [2011] and Lucas et al. [2014].

Both of these possible extensions open up an interesting avenue for further research.
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A. Time varying νt derivations

Define γ(x) = ln Γ(x), with first and second order derivatives γ′(x) and γ′′(x), re-

spectively. Given the density of the Student’s t distribtution with variance σ2,

`t(σ
2, ν) = γ
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− γ
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we obtain

∂`t(σ2, ν)
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with E[∂`t(σ2, ν)/∂ν] = 0. Taking further derivatives, we obtain
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Using the transformation of variables ν1/2(ν − 2)−1/2y/σ → y, we have that for some

a, b > 0
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with z1 ∼ N(0, ν/(ν + 2b)), z2 ∼ χ2(ν + 2b), z3 = (ν + 2b)1/2z1/ν1/2 ∼ N(0, 1), and z1

and z2 independent. Note that if z4 ∼ χ2(ν), then
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such that
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We use the expression for q(a, b, ν) to rewrite
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Note that if we use the parameterization ν( f ) with first and second derivatives ν̇ =
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ν̇( f ) = ∂ν( f )/∂ f and ν̈ = ∂ν̇( f )/∂ f , respectively, we have
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With inverse Fisher information scaling and thus using minus the expected hessian, we

obtain the steps
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Online Appendix: Additional results
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Distribution Updating GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T
Conditional Coverage test, a = 0.5%

N No 15.2 21.4 11.0 5.4 11.0 3.1 9.6 17.1 8.2 17.5 11.5 14.0
L(0.5) No 4.9 4.4 0.9 4.9 3.1 7.4 3.1 0.9 0.1 4.5 1.8 1.8
L(pt) No 4.9 4.4 0.9 4.9 3.1 11.0 1.8 0.1 0.1 4.9 1.8 1.8
L(p) No 7.4 4.4 0.4 11.0 3.1 7.4 3.1 0.4 0.1 4.5 3.1 3.1
t(νt) No 3.1 15.1 0.1 0.3 0.3 0.4 0.4 5.4 1.4 8.4 0.1 0.1
t(ν) No 5.4 22.6 0.8 5.4 2.1 0.3 0.1 8.2 9.8 9.6 0.9 1.4
t(5) No 3.1 4.5 0.1 3.1 1.8 7.4 0.9 0.8 0.1 8.4 0.9 1.8

N Yes 15.2 26.4 11.0 5.4 9.6 3.1 11.0 17.1 9.8 17.5 17.1 15.7
L(0.5) Yes 4.9 4.2 0.4 4.9 3.1 7.4 3.1 0.4 0.1 4.2 3.1 1.8
L(pt) Yes 7.4 4.2 0.4 4.9 3.1 11.0 1.8 0.1 0.1 4.5 3.1 1.8
L(p) Yes 4.9 4.2 0.4 7.4 3.1 7.4 3.1 0.4 0.1 4.2 3.1 1.8
t(νt) Yes 6.7 16.4 0.3 0.1 1.4 0.1 0.1 6.7 1.4 7.3 0.1 0.8
t(ν) Yes 6.7 16.4 0.3 5.4 6.3 0.8 0.1 5.4 1.4 8.4 0.1 0.8
t(5) Yes 3.1 4.2 0.1 1.8 0.9 7.4 0.9 1.4 0.1 7.3 0.9 0.9

Distribution Updating GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T
Unconditional Coverage test, a = 0.5%

N No 14.6 20.7 9.3 5.1 9.3 2.8 7.8 16.5 7.8 16.5 11.0 12.7
L(0.5) No 4.9 0.0 0.9 4.9 3.1 7.4 3.1 0.9 0.0 1.2 1.8 1.8
L(pt) No 4.9 0.0 0.9 4.9 3.1 11.0 1.8 0.0 0.0 1.9 1.8 1.8
L(p) No 7.4 0.0 0.3 11.0 3.1 7.4 3.1 0.3 0.0 1.2 3.1 3.1
t(νt) No 2.8 9.3 0.0 0.2 0.2 0.3 0.3 5.1 1.2 6.4 0.0 0.0
t(ν) No 5.1 18.5 0.6 5.1 1.9 0.2 0.0 7.8 9.3 7.8 0.9 1.2
t(5) No 3.1 1.2 0.0 3.1 1.8 7.4 0.9 0.6 0.0 6.4 0.9 1.8

N Yes 14.6 22.8 9.3 5.1 7.8 2.8 9.3 16.5 9.3 16.5 16.5 14.6
L(0.5) Yes 4.9 0.2 0.3 4.9 3.1 7.4 3.1 0.3 0.0 0.6 3.1 1.8
L(pt) Yes 7.4 0.2 0.3 4.9 3.1 11.0 1.8 0.0 0.0 1.2 3.1 1.8
L(p) Yes 4.9 0.2 0.3 7.4 3.1 7.4 3.1 0.3 0.0 0.6 3.1 1.8
t(νt) Yes 6.4 11.0 0.2 0.0 1.2 0.0 0.0 6.4 1.2 5.1 0.0 0.6
t(ν) Yes 6.4 11.0 0.2 5.1 3.9 0.6 0.0 5.1 1.2 6.4 0.0 0.6
t(5) Yes 3.1 0.2 0.0 1.8 0.9 7.4 0.9 1.2 0.0 5.1 0.9 0.9
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Distribution Updating GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T
Independence test, a = 0.5%

N No 0.6 0.8 1.6 0.3 1.6 0.2 1.8 0.6 0.4 1.0 0.5 1.3
L(0.5) No 0.0 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 3.3 0.0 0.0
L(pt) No 0.0 4.4 0.0 0.0 0.0 0.0 0.0 0.1 0.1 3.0 0.0 0.0
L(p) No 0.0 4.4 0.1 0.0 0.0 0.0 0.0 0.1 0.1 3.3 0.0 0.0
t(νt) No 0.2 5.8 0.1 0.1 0.1 0.1 0.1 0.3 0.2 2.0 0.1 0.1
t(ν) No 0.3 4.1 0.1 0.3 0.2 0.1 0.1 0.4 0.4 1.8 0.0 0.2
t(5) No 0.0 3.3 0.1 0.0 0.0 0.0 0.0 0.1 0.1 2.0 0.0 0.0

N Yes 0.6 3.5 1.6 0.3 1.8 0.2 1.6 0.6 0.4 1.0 0.6 1.1
L(0.5) Yes 0.0 4.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 3.6 0.0 0.0
L(pt) Yes 0.0 4.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 3.3 0.0 0.0
L(p) Yes 0.0 4.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 3.6 0.0 0.0
t(νt) Yes 0.3 5.4 0.1 0.1 0.2 0.1 0.1 0.3 0.2 2.2 0.1 0.1
t(ν) Yes 0.3 5.4 0.1 0.3 2.4 0.1 0.1 0.3 0.2 2.0 0.1 0.1
t(5) Yes 0.0 4.0 0.1 0.0 0.0 0.0 0.0 0.2 0.1 2.2 0.0 0.0

Distribution Updating GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T
Dynamic Quantile test, a = 0.5%

N No 26.1 100.3 32.2 7.6 31.6 5.3 25.8 112.3 82.5 46.0 25.2 36.9
L(0.5) No 3.8 38.8 0.8 3.9 52.1 5.1 55.6 34.8 25.3 34.8 40.8 1.8
L(pt) No 3.8 38.7 0.9 4.0 52.1 6.8 42.9 25.6 25.3 33.3 40.7 1.8
L(p) No 5.2 38.4 0.4 6.9 51.9 5.1 55.6 29.4 22.2 20.7 2.5 3.2
t(νt) No 3.8 80.8 0.2 1.2 36.8 0.4 28.6 59.0 172.6 68.3 23.6 22.1
t(ν) No 8.4 159.1 1.9 7.6 73.3 1.2 21.1 126.7 215.5 66.3 33.2 16.5
t(5) No 2.6 85.8 0.2 2.6 81.9 5.1 34.2 78.3 25.3 68.3 33.2 1.8

N Yes 26.3 116.1 31.8 7.8 33.4 5.5 36.5 113.4 120.9 45.0 34.3 38.3
L(0.5) Yes 3.7 34.6 0.4 3.9 52.0 5.1 55.6 29.5 25.1 21.2 2.5 1.8
L(pt) Yes 5.4 34.5 0.4 3.9 52.0 6.8 42.9 26.8 25.1 34.4 2.5 1.8
L(p) Yes 4.0 34.5 0.4 5.2 52.0 5.1 55.6 29.4 25.1 21.2 2.5 1.8
t(νt) Yes 8.5 126.1 0.6 0.3 30.5 0.6 24.2 58.2 110.5 69.7 20.8 18.8
t(ν) Yes 10.1 125.8 1.1 7.8 34.6 2.4 24.2 60.4 110.5 67.5 23.6 18.7
t(5) Yes 2.5 34.7 0.2 1.8 33.5 5.1 34.2 72.1 22.1 69.7 33.1 1.4
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Distribution Updating GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T
Berkowitz test, a = 0.5%

N No 10.7 96.5 70.8 4.5 17.6 9.4 74.7 82.8 113.4 331.1 144.4 74.8
L(0.5) No 27.3 0.5 14.5 22.1 14.3 27.7 2.9 5.5 3.5 16.0 6.2 3.7
L(pt) No 25.1 1.0 13.4 20.9 14.2 25.3 2.0 2.0 4.4 15.8 5.5 3.8
L(p) No 30.2 1.0 11.8 29.6 15.1 24.8 3.0 3.8 1.9 11.8 10.0 5.1
t(νt) No 2.8 9.7 2.2 0.6 2.3 1.8 5.5 1.5 4.6 6.7 3.8 0.3
t(ν) No 3.1 22.4 3.0 3.7 3.0 1.3 6.8 5.3 9.9 9.3 3.2 1.1
t(5) No 20.4 0.1 3.0 17.8 10.2 21.4 1.3 0.5 1.9 6.0 1.4 2.7

N Yes 11.6 106.1 70.4 5.5 18.8 6.7 72.5 84.4 104.9 335.3 133.7 71.9
L(0.5) Yes 33.4 0.2 12.2 21.1 14.6 26.5 2.9 4.0 3.4 17.4 7.4 3.7
L(pt) Yes 26.9 0.3 11.1 20.1 14.4 25.2 2.0 2.0 4.1 17.2 6.6 3.8
L(p) Yes 31.3 0.3 11.8 22.7 14.8 26.2 2.9 3.9 3.3 15.6 6.6 3.7
t(νt) Yes 4.7 11.0 1.6 1.4 1.5 1.0 4.6 2.0 5.0 6.2 3.1 0.9
t(ν) Yes 4.5 17.4 2.2 2.5 2.5 1.4 6.4 3.9 8.3 8.7 1.5 1.7
t(5) Yes 21.1 0.2 3.0 17.5 9.8 21.0 1.3 0.9 1.1 5.8 1.1 2.0
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Distribution Updating GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T
Conditional Coverage test, a = 1%

N No 7.7 29.6 3.3 7.2 13.5 7.2 9.5 14.4 8.2 8.2 11.4 11.7
L(0.5) No 6.3 1.8 2.8 8.0 6.3 9.9 6.3 0.4 0.9 1.8 2.0 4.9
L(pt) No 9.9 1.8 3.7 8.0 6.3 12.2 6.3 0.4 0.4 5.8 1.3 3.7
L(p) No 12.2 3.3 3.7 12.2 8.0 14.9 9.9 0.4 1.3 2.3 2.0 3.7
t(νt) No 9.5 13.1 0.9 2.8 2.4 1.3 2.0 2.4 3.1 6.5 1.8 2.4
t(ν) No 11.3 21.2 2.4 9.3 9.5 3.1 1.8 5.6 7.2 6.5 1.3 2.8
t(5) No 8.0 6.5 1.8 2.0 2.0 6.3 6.2 0.6 1.3 6.5 0.9 0.6

N Yes 9.3 29.6 3.3 9.3 17.5 9.3 8.7 13.0 10.4 11.7 8.9 10.4
L(0.5) Yes 8.0 2.3 3.7 12.2 8.0 12.2 6.3 0.4 1.3 1.8 1.3 2.8
L(pt) Yes 9.9 2.3 3.7 9.9 8.0 12.2 6.3 0.4 1.3 1.8 0.6 3.7
L(p) Yes 8.0 2.7 3.7 12.2 8.0 12.2 6.3 0.6 2.0 2.0 2.8 3.7
t(νt) Yes 5.4 16.5 2.1 2.4 9.5 3.1 1.8 3.8 4.7 7.4 2.4 3.9
t(ν) Yes 6.2 18.6 2.4 9.3 8.0 4.6 1.8 3.8 4.7 7.4 1.3 3.9
t(5) Yes 2.8 6.1 0.4 2.8 5.1 4.9 5.1 0.6 0.6 7.4 0.9 0.9

Distribution Updating GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T
Unconditional Coverage test, a = 1%

N No 6.7 23.9 2.4 6.7 11.5 6.7 6.7 14.3 7.8 7.8 10.2 11.5
L(0.5) No 6.2 0.2 2.6 7.9 6.2 9.9 6.2 0.1 0.7 0.2 1.8 4.8
L(pt) No 9.9 0.0 3.6 7.9 6.2 12.2 6.2 0.1 0.1 0.4 1.1 3.6
L(p) No 12.2 0.7 3.6 12.2 7.9 14.9 9.9 0.1 1.1 0.1 1.8 3.6
t(νt) No 6.7 6.7 0.4 1.8 1.8 0.8 0.0 1.8 2.4 2.4 1.2 1.2
t(ν) No 9.0 12.8 1.2 9.0 6.7 2.4 0.0 4.8 6.7 2.4 0.8 1.8
t(5) No 0.3 2.4 0.2 1.8 1.8 6.2 2.6 0.2 0.8 2.4 0.4 0.3

N Yes 9.0 23.9 2.4 9.0 12.8 9.0 5.7 12.8 10.2 11.5 7.8 10.2
L(0.5) Yes 7.9 0.1 3.6 12.2 7.9 12.2 6.2 0.1 1.1 0.0 1.1 2.6
L(pt) Yes 9.9 0.1 3.6 9.9 7.9 12.2 6.2 0.1 1.1 0.2 0.3 3.6
L(p) Yes 7.9 0.3 3.6 12.2 7.9 12.2 6.2 0.3 1.8 0.0 2.6 3.6
t(νt) Yes 4.8 11.5 0.8 1.2 6.7 2.4 0.0 3.1 3.9 3.9 1.8 3.1
t(ν) Yes 5.7 14.3 1.2 9.0 4.8 3.9 0.0 3.1 3.9 3.9 0.8 3.1
t(5) Yes 2.6 1.8 0.1 2.6 1.8 4.8 1.8 0.2 0.2 3.9 0.4 0.7
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Distribution Updating GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T
Conditional Independence test, a = 1%

N No 1.0 5.7 0.9 0.4 2.0 0.4 2.8 0.1 0.4 0.4 1.2 0.2
L(0.5) No 0.1 1.6 0.1 0.1 0.1 0.0 0.1 0.3 0.2 1.6 0.2 0.1
L(pt) No 0.0 1.8 0.1 0.1 0.1 0.0 0.1 0.3 0.3 5.4 0.2 0.1
L(p) No 0.0 2.7 0.1 0.0 0.1 0.0 0.0 0.3 0.2 2.2 0.2 0.1
t(νt) No 2.8 6.3 0.5 1.0 0.6 0.5 2.0 0.6 0.7 4.1 0.6 1.1
t(ν) No 2.4 8.3 1.1 0.3 2.8 0.7 1.8 0.9 0.4 4.1 0.5 1.0
t(5) No 7.7 4.1 1.6 0.2 0.2 0.1 3.6 0.4 0.5 4.1 0.5 0.3

N Yes 0.3 5.7 0.9 0.3 4.7 0.3 3.0 0.1 0.2 0.2 1.1 0.2
L(0.5) Yes 0.1 2.2 0.1 0.0 0.1 0.0 0.1 0.3 0.2 1.8 0.2 0.1
L(pt) Yes 0.0 2.2 0.1 0.0 0.1 0.0 0.1 0.3 0.2 1.6 0.3 0.1
L(p) Yes 0.1 2.4 0.1 0.0 0.1 0.0 0.1 0.3 0.2 2.0 0.1 0.1
t(νt) Yes 0.6 5.0 1.3 1.1 2.8 0.7 1.8 0.7 0.8 3.5 0.6 0.8
t(ν) Yes 0.5 4.4 1.1 0.3 3.2 0.7 1.8 0.7 0.8 3.5 0.5 0.8
t(5) Yes 0.1 4.4 0.3 0.1 3.3 0.1 3.3 0.4 0.4 3.5 0.5 0.2

Distribution Updating GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T
Dynamic Quantile test, a = 1%

N No 10.9 99.5 23.5 13.4 61.0 13.5 31.6 46.3 74.1 39.9 21.1 18.0
L(0.5) No 5.2 47.1 3.0 6.1 28.9 7.4 17.1 66.3 74.6 27.0 9.2 4.0
L(pt) No 7.4 50.1 3.4 6.3 28.9 9.1 17.2 66.1 101.2 37.8 8.0 3.9
L(p) No 8.8 33.1 3.6 8.8 19.9 10.4 24.1 66.2 52.1 12.7 9.1 3.8
t(νt) No 39.7 74.1 6.5 7.2 52.5 11.6 8.5 47.6 84.2 32.6 7.3 50.2
t(ν) No 40.4 110.7 10.2 66.8 61.3 10.5 7.8 45.7 77.4 32.6 7.3 47.6
t(5) No 47.9 68.9 11.0 9.0 40.7 5.1 17.6 55.8 95.8 32.6 7.4 42.6

N Yes 13.3 125.4 22.2 67.0 86.7 16.8 32.3 47.0 86.7 42.1 17.2 18.3
L(0.5) Yes 6.2 27.9 3.6 8.9 20.0 9.1 17.1 66.3 52.0 28.3 7.9 2.6
L(pt) Yes 7.5 27.8 3.6 7.5 20.0 9.1 17.2 66.1 52.0 27.6 6.3 3.9
L(p) Yes 6.2 30.4 3.6 8.9 20.0 9.1 17.1 29.0 56.5 30.0 10.6 3.8
t(νt) Yes 9.0 99.3 6.6 7.0 61.3 10.7 7.8 46.9 77.8 32.2 7.4 28.2
t(ν) Yes 18.4 95.2 9.3 67.0 63.9 11.7 7.8 46.7 77.8 32.1 6.0 28.2
t(5) Yes 2.5 72.2 2.5 2.4 21.5 4.3 15.4 55.8 54.7 32.2 5.7 30.2
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Distribution Updating GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T
Berkowitz test, a = 1%

N No 12.0 97.1 71.1 7.5 18.1 9.6 73.9 80.6 107.0 330.7 138.5 72.7
L(0.5) No 34.1 3.7 14.0 32.9 24.3 33.3 18.0 4.7 9.4 16.5 10.2 11.2
L(pt) No 37.4 2.0 17.2 30.8 24.0 33.9 14.1 3.3 5.1 17.5 8.3 11.4
L(p) No 37.3 6.6 18.3 35.2 28.9 34.1 23.0 4.7 10.3 17.5 8.7 7.5
t(νt) No 2.8 9.1 0.2 0.1 0.3 2.1 1.6 1.3 4.4 6.8 2.1 0.2
t(ν) No 8.0 22.2 1.4 5.6 3.2 1.7 4.0 4.1 9.8 9.7 0.9 1.0
t(5) No 24.2 0.2 1.5 21.0 15.1 21.2 6.9 0.3 0.5 6.3 0.0 2.4

N Yes 13.3 103.0 69.8 7.1 19.4 9.6 74.7 82.0 96.7 330.0 136.5 69.1
L(0.5) Yes 36.2 6.3 16.5 35.9 26.4 32.2 17.9 4.7 11.1 17.4 8.3 8.6
L(pt) Yes 37.9 3.3 17.6 31.5 26.1 33.1 14.1 3.3 8.9 18.6 5.4 11.4
L(p) Yes 35.6 7.2 18.2 36.3 26.5 32.0 17.9 4.7 12.8 16.5 10.6 9.9
t(νt) Yes 1.0 10.3 0.0 0.2 1.9 2.3 1.5 1.6 3.4 5.6 2.3 0.9
t(ν) Yes 5.7 18.2 0.8 5.1 2.8 2.3 3.0 3.6 6.9 8.5 0.8 1.8
t(5) Yes 23.5 0.2 1.9 21.7 15.3 20.3 5.8 0.3 1.2 5.3 0.0 2.4
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Distribution Updating GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T
Conditional Coverage test, a = 5%

N No 6.6 6.6 0.6 7.8 4.5 2.8 4.9 3.8 1.1 1.3 2.7 0.6
L(0.5) No 0.6 2.6 2.6 2.7 2.1 6.7 7.4 1.3 2.0 2.8 13.3 4.6
L(pt) No 0.8 2.7 4.9 2.0 0.9 5.2 11.8 0.7 0.5 1.8 9.3 3.6
L(p) No 0.4 1.4 6.0 1.4 1.4 5.2 5.0 0.7 0.4 1.8 2.9 2.5
t(νt) No 7.1 6.6 4.0 4.5 4.2 3.1 6.5 5.8 3.8 0.8 5.1 0.5
t(ν) No 7.6 8.1 4.0 4.1 4.5 2.9 8.5 6.2 2.7 0.8 5.0 0.5
t(5) No 4.5 5.2 2.6 1.4 0.8 2.3 6.4 5.1 2.9 0.8 5.4 1.3

N Yes 6.6 5.2 0.9 8.1 5.4 2.9 8.1 4.0 0.6 1.1 5.8 1.3
L(0.5) Yes 0.1 1.3 1.9 2.7 0.7 3.7 4.7 1.3 0.4 1.5 5.5 4.1
L(pt) Yes 0.3 2.3 6.6 1.3 0.3 5.2 5.0 0.7 0.3 1.3 4.2 3.6
L(p) Yes 0.1 1.3 6.0 2.1 1.2 3.7 6.7 1.3 0.5 2.8 5.2 3.6
t(νt) Yes 7.6 7.6 1.0 8.7 5.4 3.4 8.3 5.8 4.4 0.9 5.0 1.4
t(ν) Yes 7.6 7.6 1.0 10.0 5.0 3.1 8.5 5.8 4.9 0.9 5.1 1.5
t(5) Yes 3.8 4.9 0.6 3.1 0.9 2.4 6.6 5.1 2.6 1.0 5.2 0.5

Distribution Updating GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T
Unconditional Coverage test, a = 5%

N No 6.4 5.9 0.5 7.5 4.5 1.6 0.9 1.9 0.3 0.2 0.0 0.0
L(0.5) No 0.0 0.0 2.6 0.3 0.6 1.3 0.1 0.2 1.3 1.1 2.2 2.2
L(pt) No 0.0 0.0 4.8 0.1 0.1 2.6 0.6 0.0 0.5 0.5 0.6 1.6
L(p) No 0.0 0.0 6.0 1.3 0.8 2.6 0.1 0.4 0.1 0.5 1.9 1.6
t(νt) No 6.9 6.4 2.2 4.5 3.7 2.2 2.2 4.9 2.9 0.6 0.4 0.2
t(ν) No 7.5 8.1 2.2 4.1 4.1 1.9 3.7 5.4 2.6 0.6 0.6 0.2
t(5) No 4.1 4.9 1.4 0.7 0.6 0.6 1.9 4.1 2.9 0.6 0.2 0.2

N Yes 6.4 4.9 0.8 8.1 5.4 1.9 1.6 2.2 0.4 0.1 0.0 0.3
L(0.5) Yes 0.1 0.4 1.9 0.3 0.3 1.6 0.0 0.3 0.1 0.3 0.8 1.9
L(pt) Yes 0.1 0.3 6.6 0.2 0.1 2.6 0.1 0.0 0.3 0.2 1.1 1.6
L(p) Yes 0.0 0.3 6.0 0.6 0.6 1.6 0.0 0.2 0.2 1.1 1.6 1.6
t(νt) Yes 7.5 7.5 0.9 8.6 5.4 2.6 3.3 4.9 4.1 0.7 0.6 0.7
t(ν) Yes 7.5 7.5 0.9 9.9 4.9 2.2 3.7 4.9 4.5 0.7 0.4 0.9
t(5) Yes 3.7 4.5 0.6 2.9 0.7 0.9 2.6 4.1 1.9 0.9 0.3 0.1
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Distribution Updating GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T
Independence test, a = 5%

N No 0.1 0.7 0.2 0.3 0.0 1.1 3.9 1.9 0.9 1.1 2.7 0.5
L(0.5) No 0.6 2.5 0.0 2.4 1.5 5.4 7.3 1.1 0.7 1.7 11.1 2.4
L(pt) No 0.8 2.7 0.1 1.9 0.9 2.7 11.2 0.7 0.0 1.3 8.7 2.0
L(p) No 0.4 1.3 0.1 0.0 0.6 2.7 5.0 0.3 0.3 1.3 1.0 0.9
t(νt) No 0.1 0.1 1.7 0.0 0.5 0.9 4.3 0.9 0.9 0.2 4.7 0.4
t(ν) No 0.1 0.1 1.7 0.1 0.4 1.0 4.8 0.8 0.2 0.2 4.4 0.4
t(5) No 0.4 0.3 1.2 0.7 0.2 1.8 4.5 1.1 0.0 0.2 5.2 1.1

N Yes 0.1 0.3 0.1 0.0 0.0 1.0 6.5 1.7 0.2 1.0 5.7 1.0
L(0.5) Yes 0.0 0.9 0.0 2.4 0.4 2.1 4.7 1.0 0.3 1.2 4.7 2.2
L(pt) Yes 0.2 2.0 0.1 1.1 0.2 2.7 5.0 0.7 0.0 1.1 3.2 2.0
L(p) Yes 0.1 1.0 0.1 1.5 0.5 2.1 6.6 1.1 0.2 1.7 3.6 2.0
t(νt) Yes 0.1 0.1 0.1 0.0 0.0 0.8 5.1 0.9 0.4 0.2 4.4 0.7
t(ν) Yes 0.1 0.1 0.1 0.1 0.0 0.9 4.8 0.9 0.4 0.2 4.7 0.6
t(5) Yes 0.1 0.4 0.0 0.2 0.2 1.5 4.0 1.1 0.6 0.1 4.9 0.4

Distribution Updating GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T
Dynamic Quantile test, a = 5%

N No 8.1 25.2 11.6 42.5 9.0 7.6 16.5 8.5 15.0 8.9 5.8 9.5
L(0.5) No 6.8 32.6 12.1 44.4 10.3 19.1 23.0 6.8 26.2 12.8 23.6 18.0
L(pt) No 4.7 24.2 16.7 46.6 9.8 16.4 27.6 10.2 26.0 11.0 21.4 18.8
L(p) No 1.1 13.4 17.4 37.4 8.5 8.6 14.6 5.2 16.4 8.0 5.5 16.6
t(νt) No 21.8 32.3 15.7 50.0 13.7 10.4 19.7 15.3 29.0 18.0 12.3 11.6
t(ν) No 19.1 31.4 15.6 47.8 13.7 11.2 26.8 15.4 17.5 18.0 11.9 11.6
t(5) No 17.3 27.8 15.0 40.5 6.8 11.2 20.2 12.2 27.8 18.0 13.3 15.0

N Yes 8.1 22.0 10.5 48.3 12.2 9.6 25.8 9.0 13.4 10.2 11.6 11.9
L(0.5) Yes 1.4 18.6 13.2 40.6 7.4 11.9 17.5 7.3 15.9 10.4 13.2 20.0
L(pt) Yes 2.4 17.6 21.8 43.9 6.9 11.4 18.7 10.3 17.9 12.1 9.3 19.2
L(p) Yes 1.1 19.1 17.9 37.3 7.7 11.8 17.2 7.0 17.0 10.0 7.8 18.9
t(νt) Yes 9.5 25.7 12.2 43.6 13.0 8.9 24.5 15.4 19.8 14.9 12.2 10.1
t(ν) Yes 9.5 27.0 12.1 46.3 11.1 9.1 26.4 15.4 19.6 14.9 13.3 9.8
t(5) Yes 5.6 19.4 12.6 42.0 5.1 10.6 19.3 15.5 21.8 17.0 13.7 10.8
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Distribution Updating GBP AUD JPY CAD SEK EUR AA BA GE IBM KO T
Berkowitz test, a = 5%

N No 12.3 83.6 58.9 10.8 19.5 8.4 61.7 73.2 79.0 302.8 127.8 73.5
L(0.5) No 40.0 4.0 13.4 40.8 35.9 37.3 13.7 9.9 16.4 15.5 14.8 14.3
L(pt) No 37.8 2.2 19.8 39.2 34.7 34.3 11.1 8.1 10.2 15.3 21.7 15.3
L(p) No 40.0 6.9 17.1 45.9 36.5 36.6 13.5 9.9 11.7 11.5 13.5 11.5
t(νt) No 5.6 8.5 2.5 2.9 4.8 4.9 0.3 1.2 1.0 4.7 1.7 0.6
t(ν) No 7.1 20.1 0.9 8.5 5.6 2.1 1.6 3.2 4.6 7.0 0.5 1.6
t(5) No 21.4 1.5 5.0 18.0 19.2 27.2 2.7 0.7 2.0 4.0 1.0 2.4

N Yes 12.2 94.7 61.1 10.8 19.8 7.9 61.0 76.3 82.6 306.4 124.3 66.2
L(0.5) Yes 43.5 4.5 12.9 40.6 36.4 35.7 13.1 9.4 13.3 12.5 12.1 13.6
L(pt) Yes 38.5 2.1 20.0 36.9 33.6 33.3 11.1 7.8 9.9 13.9 23.3 15.1
L(p) Yes 42.0 5.5 17.5 42.4 37.2 36.3 12.5 9.8 13.4 14.4 17.3 13.8
t(νt) Yes 5.7 11.1 0.6 5.2 5.7 4.4 0.4 1.4 1.0 4.5 2.1 0.9
t(ν) Yes 7.0 18.7 0.3 8.8 6.6 2.4 1.2 3.0 2.3 7.0 0.8 1.7
t(5) Yes 22.5 1.4 3.8 22.9 19.3 28.1 2.8 0.5 1.5 3.8 0.8 2.1
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