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Sequential Auctions, Price Trends, and Risk Preferences

Abstract

We analyze sequential auctions where bidders are heterogeneous in risk expo-

sures and exhibit non-quasilinear utilities. We derive an increasing pure strategy

equilibrium for the sequential Dutch and Vickrey auctions with arbitrary number

of identical objects for sale. A suffi cient, and to certain extent necessary, condition

for this result is that bidders’marginal utilities are log-submodular in income and

type. This condition is fairly general, and in the environment we consider implies

that both the Dutch and Vickrey sequential auctions are ex post effi cient. We then

show that when bidders are risk averse (preferring), the equilibrium price sequences

must be downward (upward) drifting. In particular, the “declining price anomaly”is

perfectly consistent with nonincreasing absolute risk aversion when bidders have ex-

posures to background risks– that is, when failure of acquiring the auctioned object

entails negative consequences.

Key words: sequential auction, background risk, risk preferences, declining

prices, log-submodularity, ex post effi ciency

JEL classification: D44, D82
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1 Introduction

Sequential auctions frequently take place to sell multiple units of similar objects–

one after another– using the same auction policy. Examples range from fine wine,

cut flowers, live cattle, licenses, mineral rights to blocks of shares of IPO firms or the

like. Bidders at these auctions are typically business people to whom both winning

and losing can have risky consequences. For example, it can be a firm bidding for an

asset to diversify its ongoing risk, or a wholesaler for roses to supply foreign demand

and so on. In these situations, a bidder’s willingness-to-pay can be directly related

to the severity of the undesirable consequences should he lose, as well as the added

value should he win. We construe these situations as bidders having exposures to

background risk.1

Indeed, as Arrow (1951, p.404) put it: “Risk and the human reactions to

it have been called upon to explain everything from the purchase of chances in a

‘numbers’game to the capitalist structure of our economy; according to Professor

Frank Knight, even human consciousness itself would disappear in the absence of

uncertainty.”Few people would dispute this classical view. Yet, to date, most of the

literature on sequential auctions has been focused on risk neutral bidders, or risk-free

payoffs of the bidders upon winning or losing. Important issues as to how bidders’

risk preferences would affect competitive bidding strategies, behavior of price pat-

terns, and ex post effi ciency in a sequential auction remain highly conjectural. In

this paper, we take a serious look at these problems.

We consider a general model of sequential auctions in which bidders can have

privately known exposures to risk, both before and after the auctions, and can

be risk averse, risk neutral, or risk preferring. We focus on a sequence of Dutch

1Some studies allow bidders to have exposures to ensuing risk, or ex post risk, upon winning–

i.e., the true value of the object, or its contribution to the bidder’s payoff, remains uncertain when

the auction concludes (e.g., Maskin and Riley, 1984; Eso and White, 2004; Hu, Matthews and Zou,

2014; and Hu, Offerman and Zou, 2014). Our notion of background risk incorporates ensuing risk

as a special case, but in general also allows losing bidders to face undesirable risky consequences.
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or Vickrey auctions with an arbitrary number m of identical objects for sale to n

(> m) competing bidders, each having a unit demand (e.g., Milgrom and Weber,

2000). As McAfee and Vincent (1993) demonstrate, the general m-unit sequential

auctions are complicated when bidders exhibit risk aversion. Unlike single-unit

auctions, in sequential auctions bidders have the option to buy the object in any

period of the auctions and therefore a new dimension of strategic decision arises:

now or later? The rational trade-off calls on a bidder to weigh his utility of winning

in the current auction against the expected utility of winning in the subsequent

auctions– given the bid history, the bidder’s future plan, and the equilibrium play

of the others. Risk aversion complicates such a trade-off and, as shown in McAfee

and Vincent (1993), in the standard symmetric private values model the existence of

a pure strategy equilibrium rests on an uncommon assumption that bidders exhibit

nondecreasing absolute risk aversion (NDARA). Therefore, in the more commonly

assumed environments where bidders exhibit nonincreasing absolute risk aversion

(NIARA), any equilibrium has to involve mixed strategies that are ex post ineffi cient.

McAfee and Vincent (1993) obtained these results assuming bidders are risk averse,

private values are riskless, and there are two units for sale. The case beyond two

units is left open because of the diffi culty in establishing equilibria for m-period

auctions even under the NDARA preferences.

A contribution of this paper is to show that the existence of a pure strategy

equilibrium hinges on a key assumption that bidders’marginal utilities are log-

submodular in income and type. This condition is fairly general, as it imposes no

restriction on the sign of the Arrow-Pratt measure of absolute risk aversion of the

utility functions. The main contribution of our study is to derive and characterize

a unique pure strategy equilibrium, in both the Dutch and the Vickrey sequential

auctions, for the general m-period case (Propositions 1 and 2). Therefore, in the

general environment considered in this paper, both the Dutch and the Vickrey se-

quential auctions are ex post effi cient. The clear characterizations of the equilibria

also allow us to obtain sharp predictions in terms of the expected price trends for
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risk neutral, risk averse, and risk preferring bidders (Proposition 3). A finding of

particular interest is that there exists plausible situations (see Section 6), in which

the well-known “declining price anomaly”is consistent with the common assumption

that bidders exhibit NIARA.

Popularized by Ashenfelter’s (1989) documentation of the “afternoon effect”in

wine auctions, the “declining price anomaly”remains a lively issue of much academic

attention. The “anomaly”refers to the empirical observations of downward-drifting

price patterns for similar objects sold in sequential auctions.2 It contradicts the

standard theoretical prediction that the expected prices should be the same when

bidders have private values, or increasing when bidders’ valuations are affi liated

(e.g., Milgrom and Weber, 1981, 2000; Weber, 1983). Ashenfelter (1989, p.31)

suggests that risk aversion lies at the bottom of the declining price anomaly: “Indeed,

assuming bidders are risk averse may simply be a convenient analytical device for

dealing with the fact that many bidders at auctions are buying to fill orders....

Theoretical work on auctions will almost certainly have to remove the assumption

of risk neutral bidders if it is to explain the full range of interesting empirical results

from real auctions.”Intuitively, risk averse bidders are willing to pay a premium for

removing the risk of losing in subsequent rounds of the auctions. As such, they can

be comfortable upon winning even if the expected subsequent prices are lower than

what they pay. Unfortunately, this logic is blurred under the observation of McAfee

and Vincent (1993) that it rests on the assumption of NDARA in the standard

private values models. A good number of papers have since emerged seeking different

institutional details that may rationalize the declining price phenomenon in the risk

neutral paradigm.3 More recently, Mezzetti (2011) derived a declining price result

2For example, see Ashenfelter (1989), Ashenfelter and Genesove (1992); Beggs and Graddy

(1997); McAfee and Vincent (1993); Van den Berg, Van Ours and Pradhan (2001); among others.

3See, e.g., Black and De Meza (1992); McAfee and Vincent (1997); Bernhardt and Scoones

(1994); Engelbrecht-Wiggans (1994); Gale and Hausch (1994); Menezes and Monteiro (2003); Von
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in sequential auctions assuming that bidders are averse only to the risk of price they

pay.4 In Section 2, we discuss how the models of McAfee and Vincent (1993) and

Mezzetti (2011) for his private-values case are generalized in our environment. The

general conclusions concerning the price trends from our study are that when bidders

are risk averse, the expected price in both the sequential Dutch and Vickrey auctions

declines over time in the course of the sale and when bidders are risk preferring,5

the price trend is reversed.6

In Section 2, we present the model and the assumption of log-submodularity

on the bidders’marginal utilities. A number of special cases that are of interest are

shown to be consistent with this assumption. We then analyze the sequential Dutch

auctions in Section 3, showing that it is ex post effi cient as a consequence of the

existence of a unique pure strategy equilibrium. Section 4 derives and characterizes

the unique pure strategy equilibrium for the sequential Vickrey auctions, arriving

at the same conclusion that the auctions are ex post effi cient. Section 5 shows how

bidders’risk attitudes predict the behavior of price sequences. Section 6 discusses

background risk and explains why a marginal utility function that satisfies log-

submodularity can be derived from a primitive utility function that exhibits NIARA.

Section 7 concludes the paper with some remarks on future research. Appendix A

der Fehr (1994); Jeitschko (1999); Gale and Stegeman (2001); Pitchick and Schotter (1988); Beggs

and Graddy (1997); Ginsburgh (1998); Eyster (2002); Kittsteiner et al. (2004); and Mezzetti

(2011), among others.

4Mezzetti (2011) also considered affi liated values and a non-standard formulation of English

auctions, with mixed results.

5Risk seeking preferences can be due to bidders financing their bids with borrowed money,

or firms with existing debt that act to maximize the equity values of shareholders. Then, limited

liability could lead to a convex payoff function and cause a bidder to behave like he is risk preferring

(see, e.g., the single-unit auction models of Zheng, 2001; DeMarzo, Kremer and Skrzypacz, 2005;

Board, 2007).

6Increasing price patterns are observed empirically in, e.g., Delas and Kosmopoulou (2004);

Chanel et al. (1996); Jones et al. (2004); and Gandal (1997).
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presents several useful properties that are implications of log-submodular marginal

utilities, and Appendix B contains the proofs of the propositions.

2 Environment

A number m (≥ 1) of identical objects are for sale sequentially, one at a time

through periods 1, ...,m using either an open descending Dutch auction throughout,

or a Vickrey auction throughout. There are n (> m) competing bidders at the start,

each having a single-unit demand for the object.

In each period k of the Dutch auction, the price of an item steadily declines

from a very high level until one of the bidders indicates that he is willing to pay.

The bidder then becomes the winner of the kth auction and purchases the object at

his stopping price. Because of the open format of the Dutch auction, the winning

price in each period is publicly observed. The Dutch auction is thus strategically

equivalent to a first-price sealed-bid auction with the announcement of the winning

price in each period.

In each period k of the Vickrey auction (or, equivalently, the second-price

sealed-bid auction), the active bidders submit sealed bids and the highest bidder

wins and pays the price equal to the second highest bid. Because of the sealed-

bid policy, we assume that the remaining active bidders do not know the winning

prices. However, in deriving the equilibrium strategies we will first assume that the

winning bid is announced in each period, and then show that the announcement

of the winning bid has no effect on the bidding strategies. This is the standard

approach that simplifies the equilibrium analysis.

In both Dutch and Vickrey auctions, we assume that if several bidders are tied

in any period k with the same highest bid, then all of them will buy the remaining

objects at their bid. If the remaining number of objects falls short of the number

of the tied bidders, then the allocation will be resolved randomly and the auction

concludes. The reserve price in each period is normalized to be zero, and if a bidder
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does not win, he pays zero.

Each bidder i has a private type ti ∈ [0, 1] that affects his preference for the

object. Ex ante, the types ti are independently distributed according to the same

cumulative distribution F with F (0) > 07 and density f = F ′ that is strictly positive

and continuous on [0, 1].

The preference of a typical bidder with type t is represented by w(x, t) if he wins the object and receives income x

u(x, t) if he loses and receives income x
(1)

We interpret w : R × [0, 1] → R and u : R × [0, 1] → R as the bidder’s

(induced) utilities conditional on winning and losing, respectively. In particular,

u(·, t) is type-t bidder’s status-quo utility for income, and a losing bidder after all

objects are sold will have a utility denoted by u(0, t). The preference model in (1)

generalizes Maskin and Riley (1984) by allowing the private type t of a bidder to

matter in both winning and losing events. This generalization is particularly useful

for incorporating background risks in our analysis.

We assume that u and w are twice continuously differentiable. In addition,

the following assumptions will be maintained throughout the paper.

Assumption 1 The partial derivatives w1(x, t) > 0 and w2(x, t) > u2(0, t) for all

x and t such that w(x, t) ≥ u(0, t).

Assumption 2 w1(x, t) is log-submodular in (x, t) for all x and t such that w(x, t) ≥

u(0, t).

Assumption 1 provides the standard condition that utility increases in income,

and a higher type makes a winning bidder better off as long as he prefers winning

over losing. It is important to point out that no restriction is made on the signs of

the partial derivatives u2(0, t) and w2(x, t).

7This is a mild assumption consistent with situations where the seller has a reserve price that

is (slightly) higher than the lowest willingness-to-pay of the bidder types. See footnote 11.
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A positive bivariate function h(x, y) is log-submodular (log-supermodular) in

(x, y) if and only if for all x < x′ and y < y′ (e.g., Topkis, 1978, Milgrom and Weber,

1982; Jewitt, 1987; Athey, 2001, 2002),

h(x′, y′)h(x, y) ≤ [≥]h(x′, y)h(x, y′) (2)

Therefore, Assumption 2 is equivalent to the assumption that w1(−x, t) is log-

supermodular in (x, t). Obviously, this assumption holds trivially true if w is qua-

silinear in x. For a general function w, we summarize in Appendix A some of its

useful properties when its partial derivative w1(x, t) is log-submodular.

For ease of exposition, the following lemma provides three equivalent state-

ments in terms of log-submodular/log-supermodular marginal utilities and nonin-

creasing/nondecreasing absolute risk aversion of a von Neumann-Morgenstern utility

function. The proof of the lemma amounts to straightforward verifications, and is

thus omitted (see, e.g., Athey, 2001 for part (iii) of the lemma).

Lemma 1 Let U be a von Neumann-Morgenstern utility function with U ′ > 0. Then

the following three conditions are equivalent:

(i) U(x) exhibits nonincreasing [nondecreasing] absolute risk aversion.8

(ii) U ′(x− y) is log-submodular [log-supermodular] in (x, y).

(iii) U ′(x+ y) or U ′(−x− y) is log-supermodular [log-submodular] in (x, y).

Our environment incorporates many special cases of interest. For example,

consider the following four.

Case 1. u(0, t) ≡ U(0) and w(x, t) = U(v(t) + x), with v′(t) > 0.

This is the standard private values model that has been extensively studied,

including McAfee and Vincent (1993). Because v′ > 0, by Lemma 1 w1(x, t) is log-

submodular if and only if U exhibits NDARA, a condition required by McAfee and

Vincent for the existence of a pure strategy symmetric equilibrium in their sequential

first-price and second-price auctions.

8That is, without restricting to risk aversion.
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Case 2. u(0, t) ≡ U(0) and w(x, t) = U(v(t) + ϕ(x)), with v′(t) > 0,and

ϕ′(x) > 0.

In this case, the object is of certain quality v(t) that contributes to the utility.

But the object may not have an equivalent monetary value. This is Case 2 of

Maskin and Riley (1984). For U risk neutral, define `(p) = −ϕ(−p) and assume

`′′ = −ϕ′′ ≥ 0. Then w(−p, t) = v(t)−`(p) and the model reduces to Mezzetti (2011)

for his private-values case. The partial derivative w1(−p, t) = `′(−p) is independent

of t, so that (2) holds as an equality. This shows that Mezzetti’s private-values model

satisfies Assumption 2 and is therefore nested as a special case of our environment.

For U nonlinear, Assumption 2 continues to hold for the NDARA class of functions

U .

Case 3. u(0, t) ≡ 0 and w(x, t) =
∫
max(v+ x−B, 0)dQ(v|t), where a higher

t shifts Q to the right in the sense of first-order stochastic dominance.

This case captures the effect of limited liability, where B can be interpreted as

the bidder’s liability or face value of debt. Because w is now convex in x, we have

w11 > 0 so the bidder’s induced utility w is risk preferring. Suppose the density

Q1(v|t) exists and is positive on the support of v. Then it can be readily verified

that Assumption 2 holds if the hazard rate (1−Q(v|t)/Q1(v|t) is nondecreasing in

t (e.g., Board, 2007).

Case 4. A bidder’s income v has a distribution Q(v|t) if losing and Q̂(v|t) if

winning, i.e.,

u(0, t) =

∫ ∞
−∞
U(v)dQ(v|t)

w(x, t) =

∫ ∞
−∞
U(v + x)dQ̂(v|t) with Q̂2(v|t) < Q2(v|t)

Winning allows the bidder to realize a more favorable income distribution

Q̂(v|t), which dominates his status-quo income distribution Q(v|t) in the sense of

first-order stochastic dominance. We say that a bidder is exposed to background risk

if u(0, t) cannot be “normalized”as zero without losing generality. So Case 4 allows
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the bidder to have exposures to both ensuing risk, since v remains uncertain to the

winner, and background risk. We will take a closer look at this case in Section 6.

3 Sequential Dutch Auctions

We first look at the Dutch auctions. At the start, a bidding strategy for a bidder with

type t is a collection of m bid functions b1, ..., bm where bk(t|p1, ..., pk−1) denotes his

bid in the kth auction, given that he has lost the previous k−1 auctions and observed

the winning prices p1, ..., pk−1. We focus on symmetric pure strategy equilibria in

which bk is a continuous and increasing function of the bidder’s type t. The collection

of strategies {bk, k = 1, ...,m} is a symmetric equilibrium of the sequential auctions

game if in any period k, every active bidder finds it optimal to play bk– given that

the other active bidders play strategy bk, and that all bidders, including the bidder

himself, plan to play the remaining strategies {b`, ` = k + 1, ...,m} upon losing the

kth auction.

For bk continuous and increasing in t, as will be verified, in equilibrium the

winning bidder’s type in each auction is revealed to the remaining active bidders. By

symmetry, w.l.o.g. we focus on analyzing the optimal strategies of bidder 1. Let the

random variable Yk denote the kth highest type from among the n−1 bidders other

than bidder 1, so that if bidder 1 with type t wins the kth auction, in equilibrium

it must be the case that9

Yk < t < Yk−1, k = 1, ...,m

where Y0 = ∞ (by default). We let Fk(·|yk−1) denote the cumulative distribution,

and fk(·|yk−1) the associated density function, of Yk conditional on Yk−1 = yk−1. So,

the conditional equilibrium expected payoff for bidder 1 when he lost the previous

9To ease analysis, we ignore the zero-probability events of ties, which will not affect the results

of this paper.
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k − 1 auctions and observed yk−1, can be specified recursively for all k by

W k
I (t|yk−1) := w(−bk(t), t)Fk(t|yk−1) +

∫ yk−1

t

W k+1
I (t|y)dFk(y|yk−1), (3)

In (3), the first term on the right-hand side is associated with the winning

event Yk < t < yk−1, and the last term the losing event t < Yk < yk−1. If the bidder

loses in period k < m, he still has the chance to win in the subsequent period k + 1

and hence attain the expected utility of W k+1
I . The final period expected payoff is

given by

Wm
I (t|ym−1) = w (−bm(t), t)Fm(t|ym−1) + u(0, t)(1− Fm(t|ym−1)) (4)

where, for m = 1, the equation reduces to the familiar specification of expected

utility in single-unit first-price auctions.

Proposition 1 Under Assumptions 1 and 2, there exists a unique continuous and

increasing symmetric equilibrium of the Dutch sequential auctions {bk : k = 1, ...,m}

characterized by

b′m(t) = (n−m)w(−bm(t), t)− u(0, t)
w1(−bm(t), t)

f(t)

F (t)
(5)

b′k(t) = (n− k)w(−bk(t), t)− w(−bk+1(t), t)
w1(−bk(t), t)

f(t)

F (t)
, k = 1, ...,m− 1 (6)

with the initial conditions bk(0) = b0 that solves w(−b0, 0) = u(0, 0).

The differential equation (5) derives from maximizing the expected payoff in

(4), which is similar to the standard characterization of bidding strategy in the single-

unit first-price auctions. Except for special cases (e.g. when w exhibits constant

absolute or constant relative risk aversion), the strategy cannot be solved explicitly

but Assumptions 1 and 2 ensure the existence of a unique bm. For Cases 1—4, it can

be readily verified that Assumption 2 is equivalent to U(x) being log-concave for

m = 1. Therefore the characterization of bm in (5) can be seen as a generalization of

the existing symmetric first-price private values auctions (e.g., Holt, 1980; Milgrom,
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2004, Chapter 4.3) in terms of the more general utility function w. The differential

equations in (6) derive from maximizing (3), assuming sequentially rational best

responses of every bidder to the bidding strategies of the others.

In general, consistent with the existing results under risk neutrality (e.g., Mil-

grom and Weber, 2000), bidders submit increasingly higher bids if they lose, i.e.,

the bid bk(t) increases as k increases. Another noteworthy point, as can be seen

from (5)-(6), is that the previous winning prices have no influence on the remaining

active bidders’strategies.

In Proposition 1, Assumptions 1 and 2 are suffi cient conditions that ensure the

existence of a pure strategy equilibrium for arbitrary distribution functions F in the

general environment. If the result is to hold as such in general, then Assumptions

1-2 also become necessary. For instance, McAfee and Vincent (1993) showed that

for Case 1, if U exhibits decreasing absolute risk aversion (DARA), or equivalently,

if Assumption 2 is violated, then there may not exist a pure strategy equilibrium.

An important consequence of Proposition 1 is that the sequential Dutch auc-

tion is ex post effi cient in this environment. Essential for this result is the existence

of an increasing pure strategy equilibrium, which implies that all m winners have

higher willingness to pay than any of the losers do. In other words, when the auction

concludes no re-trade among bidders could lead to a Pareto superior re-allocation.

4 Sequential Vickrey Auctions

We analyze in this section the sequential Vickrey auctions or its strategically equiva-

lent format second-price sealed-bid auctions. In each period, the winning bidder pays

the price of the second highest bid, and the losers pay nothing. Let {ak : k = 1, ...,m}

denote the collection of symmetric bid functions, and assume (and verify later) that

each ak is a continuous and increasing function of type t. Following the literature,

we assume that the winning bid, but not the winning price, is announced in each
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auction period.10 As it turns out however, similar to the Dutch auctions, in equi-

librium the knowledge of the winning bid in each period has no effect on the active

bidders’remaining strategies.

The equilibrium expected payoff for bidder 1 if he lost the previous k − 1

auctions and observed Yk−1 = yk−1, can be specified recursively for all k by

W k
II(t|yk−1) :=

∫ t

0

w(−ak(y), t)dFk(y|yk−1) +
∫ yk−1

t

W k+1
II (t|y)dFk(y|yk−1),

where the first term on the right-hand side is associated with the winning event

Yk < t < yk−1 in period k, and the last term the event t < Yk < yk−1, with the final

period expected payoff given by

Wm
II (t|ym−1) =

∫ t

0

w(−am(y), t)dFm(y|ym−1) + u(0, t)(1− Fm(t|ym−1))

Proposition 2 Under Assumptions 1 and 2, there exists a unique continuous and

increasing symmetric equilibrium of the Vickrey sequential auctions {ak : k =

1, ...,m} satisfying

w(−am(t), t) = u(0, t) (7)

w(−ak(t), t) =

∫ t

0

w(−ak+1(y), t)dFk+1(y|t) (8)

The proposition shows that in every period k, the previous winner’s type yk−1

does not appear in (8) so that any realization of Yk−1 has no influence on the sub-

sequent equilibrium bids. Instead, the bidder calculates his expected subsequent

period payoffusing the distribution Fk+1(y|t) of Yk+1 conditional on the event Yk = t.

The equation in (7) of the proposition provides the familiar (weakly) dominant

strategy of bidding up to one’s break-even level, when there is a single object left

10If the winning price is announced in each period, the situation resembles a sequence of open

acending English auctions. As some of the pivotal or highest losing bidders will still be active, if

their bids were known the existence of a pure strategy equilibrium can be diffi cult to establish.

The conventional model of button-English auctions may become inappropriate as well. See, e.g.,

Mezzetti (2011).
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for sale. The equations (8) say about the same thing, although not in terms of

dominant strategies: in the sequential Vickrey auction it is optimal to bid up to the

level in each period k such that the bidder is indifferent whether paying his bid and

win or losing the kth period of the auction. This reveals an interesting link between

the private-values sequential Vickrey auction, as modelled here, and the single-unit

Vickrey auction with affi liated values, as modelled in Milgrom and Weber (1982).

In both models, it is optimal for a bidder to bid up to an amount such that he will

be at tie with the next potential winner, i.e., Yk = t.

In light of McAfee and Vincent’s observation (1993, Remark 3) that for Case

1, NDARA is necessary for the existence of a pure strategy equilibrium in a two-

unit second-price sequential auction, Assumption 2 can also be seen, to some extent,

necessary for the result of Proposition 2.

Like the sequential Dutch auction, a desirable feature of the sequential Vickrey

auction is that it is ex post Pareto effi cient in this general environment.

5 Price Trends

The equilibrium strategies derived in Propositions 1 and 2 have clear-cut implica-

tions for the expected price trends, as well as the comparative revenues between the

sequential Dutch and Vickrey auctions. We first show the price trends as conse-

quences of bidders’risk preferences.

Proposition 3 Under Assumptions 1 and 2, let p1, ..., pm be the prices that the

objects are sold in periods 1, ...,m of the Dutch or Vickrey auctions, respectively.

Then, for all k = 1, ...,m− 1,

(i) if w11 < 0, then E(p̃k+1|pk) < pk;

(ii) if w11 = 0, then E(p̃k+1|pk) = pk;

(iii) if w11 > 0, then E(p̃k+1|pk) > pk.
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The intuition of this proposition is that for risk averse bidders, the risk of

losing outweighs the opportunity of winning in subsequent periods of the auction.

Consequently, they are more eager to avoid the risk of losing and are thus willing

to pay a risk premium for it. For risk preferring bidders, they value more the

option of waiting and winning in subsequent periods, and are thus reluctant to

bid too high in earlier rounds. As mentioned in the introduction, the risk averse

case has been shown in McAfee and Vincent (1993) in a two-period model under the

assumption of NDARA. Proposition 2 generalizes their conclusion and further shows

the consequence of increasing price sequences when bidders are risk preferring.

6 Background Risk

As mentioned in the introduction, bidders in sequential auctions are conceivably

more likely to be firms or individuals who have a business to run. A bidder’s

objective of acquiring the auctioned object can be just to maintain an ongoing

business. Under these circumstances, participating in an auction can be motivated

by either seeking potential profits or avoiding potential losses or both. For instance,

losing in the auctions could mean losses of sales, customers, or any kind of unintended

consequence that a bidder would like to avoid. Such background risk, as we call it,

is perhaps inconsequential when bidders are risk neutral. In this case only the

difference between winning and losing matters so that the status-quo utility of a

bidder may be normalized as zero. However, when bidders are not risk neutral, such

a normalization removes an important part of reality– that is, when winning helps

reduce the background risks. Indeed, taking background risks into consideration

significantly enlarges the scope of our theoretical predictions. In particular, it allows

us to explain the "declining price anomaly" in sequential auctions under the common

assumption that bidders exhibit nonincreasing absolute risk aversion (NIARA).

To gain some insight into this conclusion, let us compare the following two sim-

ple models. Consider first a symmetric private-values setting (e.g., Case 1) where
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bidders adopt an increasing equilibrium strategy in each period of a sequential auc-

tion. Suppose a bidder’s utility with private value v equals U(v − p) if he wins at

price p and U(0) = 0 if he loses. Then the highest-value bidder will win in the first

period, the second-highest next, and so on. If bidders expect declining prices, then

the early winners should be (weakly) more risk averse than the late winners (see

McAfee and Vincent, 1993, Remark 3). This is the case when U exhibits NDARA,

so that for v > v̂, U(v + x) is (weakly) more risk averse than U(v̂ + x) in x.

Consider next a similar setting except that the losing bidder has a status-

quo utility U(−C(v)) where C is some cost function that increases in v (e.g., cost

of losing sales or customers due to failure of delivering orders), and that winning

removes that potential cost, generating a utility of U(r− p) to the bidder (e.g., r is

the revenue, and r−p is the profit when the object is purchased at price p and sold).

Then, the highest bid in the first period of the auction is still the one with highest

v, but for the higher bids to come from bidders who are more risk averse than those

submitting lower bids, by Lemma 1 the level of risk aversion of U(x − C(v)) as a

function of x has to be nonincreasing in v.

Now consider the more general Case 4. Let U be a von Neumann-Morgenstern

utility function with U ′ > 0, and suppose

u(0, t) =

∫ ∞
−∞
U(v)dQ(v|t) with Q2(v|t) > 0 (9)

w(x, t) =

∫ ∞
−∞
U(v + x)dQ̂(v|t) with Q̂2(v|t) < Q2(v|t) (10)

The assumption Q2(v|t) > 0 in (9) implies that u(0, t) is a decreasing function of t.

This represents the situation where the bidder’s willingness-to-pay is directly related

to the severity of his background risk.

Corollary 1 For Case 4, suppose U exhibits NIARA and the density Q̂1(v|t) is log-

submodular in (v, t). Then there exists a pure strategy equilibrium in the sequential

Dutch and Vickrey auctions as characterized in Proposition 1 and Proposition 2,

respectively.
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Proof. It suffi ces to show that w1(x, t) is log-submodular so that Assumptions

1-2 hold, as (10) implies w2 > u2. To see this, let y = −v. Then Q̂1(−y|t) is

log-supermodular in (y, t) by assumption. Also by assumption, and by Lemma 1,

U(v + x) is log-supermodular in (v, x), which is equivalent to U(−y − x) being

log-supermodular in (x, y). Consequently,

w1(−x, t) =
∫ ∞
−∞
U ′(v − x)Q̂1(v|t)dv =

∫ ∞
−∞
U ′(−y − x)Q̂1(−y|t)dy

is log-supermodular, or w1(x, t) log-submodular, in (x, t). This derives from the fact

that log-supermodularity is preserved under integration (see, e.g., Athey, 2002).

This corollary extends and clarifies the conclusion of McAfee and Vincent

(1993) that NDARA preferences are necessary for the existence of pure strategy

equilibria in sequential auctions. The corollary suggests that there are many plau-

sible circumstances in which NIARA, rather than NDARA, leads to a pure strategy

equilibrium. The assumption of log-submodular density Q̂1(v|t) captures the essen-

tial feature of background risk: a higher type t increases a bidder’s willingness-to-pay

because it makes losing more painful.

7 Concluding Discussion

This paper shows that the effi ciency property of the standard single-unit private

values auctions can be extended to a significantly richer context: bidders can have

non-quasilinear utilities as well as heterogeneous exposures to risk, and there can

be multiple (m) identical objects for sale sequentially. The extension derives from

the existence of a pure strategy increasing equilibrium in both the sequential Dutch

and Vickrey auctions.

The key assumption underlying all results of this paper is that bidders’utilities

exhibit log-submodularity in income and type. The special cases (Cases 1-4) demon-

strate that this condition is fairly general. Hence, the results obtained in this paper

are applicable to a large class of circumstances. A subset of these circumstances,
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which we leave with the reader to judge its significance, is where bidders have ex-

posures to background risks. In these situations the “declining price anomaly” is,

in fact, not an anomaly but a natural consequence of nonincreasing absolute risk

aversion.

Conceivably, effi ciency may be harder to achieve if bidders have interdepen-

dent willingness-to-pay and affi liated types or signals. This is an open issue. Further

extensions of the results of this paper are needed before the issue can be addressed

properly. In light of the preponderant evidence that risk matters in decision making,

this paper provides a useful first step towards analyzing auctions involving dynamic

strategic decisions and non-quasilinear utilities. The next step will be a general-

ization towards interdependent valuations and affi liated signals. Given the insights

derived from the present study, we surmise that the key to finding and solving pure

strategy equilibria in the more general settings still hinges upon the assumption of

log-submodular marginal utilities. This conjecture is left for future research.

Another line of future research concerns experimental testing of the results

reported in this paper. As is well known, for single-object auctions, comparing

results across experiments requires replicating the experimental conditions, which is

not an easy task. The sequential auctions results, on the other hand, derive from

a multi-period single sale with the same pool of bidders. As a result, the statistics

and their relations to the primitive conditions observed during a sequential auction

can be much amenable to experimental testing.

Appendix A. Implications of Assumptions 1 and 2

In this appendix we summarize five useful properties that are implications of As-

sumptions 1 and 2.

Property 1. Assumptions 1 and 2 imply

w(x, t)− w(y, t)
w1(x, t)

≤ w(x, t
′)− w(y, t′)
w1(x, t′)

, ∀t < t′ and ∀x, y (11)
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This derives from (2) straightforwardly by integrations. Note that in (11), the

signs of x, y, and x− y are arbitrary.

Property 2. Assumptions 1 and 2 imply that for all t < t′, and x such that

w(x, t) > u(0, t),

w(x, t)− u(0, t)
w1(x, t)

≤ w(x, t
′)− u(0, t′)
w1(x, t′)

, ∀t < t′ (12)

To see this, define a(t) by w(−a(t), t) = u(0, t). Then (12) is equivalent to
w(x, t)− w(−a(t), t)

w1(x, t)
≤ w(x, t

′)− w(−a(t′), t′)
w1(x, t′)

, ∀t < t′

By Assumptions 1,

a′(t) =
w2(−a(t), t)− u2(0, t)

w1(−a(t), t)
> 0

So (11) implies that (w(x, t)− w(−a(t), t)) /w1(x, t) is an increasing function of t.

Property 3. Property 1 implies that for all random ỹ such that Ew(ỹ, t)

exists (replace y by ỹ and take expectation over ỹ in (11)),

w(x, t)− Ew(ỹ, t)
w1(x, t)

≤ w(x, t
′)− Ew(ỹ, t′)
w1(x, t′)

, ∀t < t′ and ∀x (13)

Therefore, (11) has an economic interpretation that increasing t makes the

utility function w(x, t) (weakly) more risk averse in income x.

Property 4. Suppose (11) holds, then

w(x, t) = Ew(ỹ, t) implies w2(x, t) ≥ Ew2(ỹ, t) (14)

This result is well known (e.g., McAfee and Vincent, 1993 and the references

therein).

Property 5. Assumptions 1 and 2 imply

w(x, t)− w(y, t)
w1(x, t)


> x− y if w11 < 0

= x− y if w11 = 0

< x− y if w11 > 0

(15)

This can be seen by letting w(x, t0) denote a risk neutral utility function in x,

so that w(x, t0) = h(t0)x+ g(t0). Then, (15) follows as special cases of (11) because

(13) implies w11(·, t) ≤ [≥] 0 iff t ≥ [≤] t0.
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Appendix B. Proofs of Propositions

Proof of Proposition 1. We analyze by backward induction bidder 1’s optimal

response assuming that all others play a given set of continuous and increasing

strategies {bk : k = 1, ...,m}. We take the standard approach by first assuming for

each k that b′k > 0, and then verify that this is indeed true upon establishing its

existence. In the last period, suppose bidder 1 has lost the preceding m−1 auctions

and observed Ym−1 = ym−1. The bidder’s expected payoff if he has type t and bids

as though his type was z equals

V m(z, t|ym−1) := w (−bm(z), t)Fm(z|ym−1) + u(0, t)(1− Fm(z|ym−1)) (16)

Taking partial derivative w.r.t. z gives

V m1 (z, t|ym−1)

= −b′m(z)w1 (−bm(z), t)Fm(z|ym−1) + (w (−bm(z), t)− u(0, t)) fm(z|ym−1)

= w1 (−bm(z), t)Fm(z|ym−1)
(
w (−bm(z), t)− u(0, t)

w1 (−bm(z), t)
fm(z|ym−1)
Fm(z|ym−1)

− b′m(z)
)
(17)

As we do not assume that bidder 1 has followed the equilibrium strategies previously,

there are two possibilities: t < ym−1 and t > ym−1.We first assume t < ym−1, which

is a consequence of equilibrium play given increasing bid functions bk. Since b′m > 0,

from (17) it can be seen that if V m1 (z, t|ym−1) ≥ 0 then w (−bm(z), t) > u(0, t). By

(12) in Appendix A, V m1 (z, t|ym−1) ≥ 0 thus implies

w (−bm(z), t)− u(0, t)
w1 (−bm(z), t)

≤ w (−bm(z), t
′)− u(0, t′)

w1 (−bm(z), t′)
for all t′ > t

and therefore V m1 (z, t
′|ym−1) ≥ 0 for all t′ > t. Consequently, V m(z, t|ym−1) satisfies

the single-crossing condition of Milgrom and Shannon (1994) and the existence of

bm is guaranteed under the assumption that bm is nondecreasing (e.g., Athey, 2001).

From (17), V m1 (t, t|ym−1) = 0 implies (5):

b′m(t) =
w(−bm(t), t)− u(0, t)

w1(−bm(t), t)
fm(t|ym−1)
Fm(t|ym−1)

= (n−m)w(−bm(t), t)− u(0, t)
w1(−bm(t), t)

f(t)

F (t)
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where the last equation derives from

Fk(x|yk−1) =
F (x)n−k

F (yk−1)n−k
(18)

As for the case t > ym−1, it is only possible if in the preceding auction the bid-

der has deviated from the equilibrium strategy and bid higher than bm−1(t). Given

ym < ym−1 < t, it does not make sense to bid above bm(ym−1). In this case

V m1 (ym−1, t|ym−1) ≥ 0 and so it is optimal for the bidder to bid bm(ym−1) and win

the mth auction with certainty.

We now prove (6) by backward induction on k. For k = m, we have derived

that given any ym−1,

V m(t ∧ ym−1, t|ym−1) = max
z
V m(z, t|ym−1) (19)

where t ∧ yk = min(t, yk). Now suppose the bidder has lost the previous auctions

up to the kth auction for k ≤ m − 1, and observes Yk−1 = yk−1. Our induction

hypothesis is

V k+1(t ∧ yk, t|yk) = max
z
V k+1(z, t|yk), ∀yk (20)

for the subsequent auctions k+ 1, ...,m. That is, if the bidder loses the kth auction

and observes Yk = yk, sequential rationality calls on him to bid bk+1(t ∧ yk) in the

(k + 1)th auction and so on. Hence, if the bidder bids now as though his type was

z, his expected payoff equals

V k(z, t|yk−1) := w(−bk(z), t)Fk(z|yk−1) +
∫ yk−1

z

V k+1(t ∧ y, t|y)dFk(y|yk−1) (21)

Differentiating yields

V k1 (z, t|yk−1)

= −b′k(z)w1(−bk(z), t)Fk(z|yk−1) +
(
w(−bk(z), t)− V k+1(t ∧ z, t|z)

)
fk(z|yk−1)

= w1(−bk(z), t)Fk(z|yk−1)

×
(
w(−bk(z), t)− V k+1(t ∧ z, t|z)

w1(−bk(z), t)
fk(z|yk−1)
Fk(z|yk−1)

− b′k(z)
)

(22)
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Substituting z for yk−1 in (21) reveals

V k(z, t|z) = w(−bk(z), t)Fk(z|z) = w(−bk(z), t) for all k. (23)

So for z ≤ t, V k1 (z, t|yk−1) ≥ 0 and b′k(z) > 0 imply

w(−bk(z), t) > V k+1(t ∧ z, t|z) = w(−bk+1(z), t)

and consequently, by (23), and (11) in Appendix A,

w(−bk(z), t)− V k+1(t ∧ z, t|z)
w1(−bk(z), t)

is nondecreasing in t (24)

This shows that V k1 (z, t
′|yk−1) ≥ 0 for all t′ > t. The single-crossing condition thus

holds for V k(z, t|yk−1) for all z ≤ t.

For z > t, we show V k1 (z, t|yk−1) < 0 and so it is never optimal to bid higher

than the equilibrium play (which then of course implies the single-crossing condi-

tion). We have now

V k+1(t ∧ z, t|z) = V k+1(t, t|z) > V k+1(z, t|z) = w (−bk+1(z), t) , ∀z > t

where the inequality is due to (20), and the equalities are due to (23) and t < z.

Therefore, the term in large braces of (22)

w(−bk(z), t)− V k+1(t ∧ z, t|z)
w1(−bk(z), t)

fk(z|yk−1)
Fk(z|yk−1)

− b′k(z)

<
w(−bk(z), t)− w (−bk+1(z), t)

w1(−bk(z), t)
fk(z|yk−1)
Fk(z|yk−1)

− b′k(z) by (11)

≤ w(−bk(z), z)− w (−bk+1(z), z)
w1(−bk(z), z)

fk(z|yk−1)
Fk(z|yk−1)

− b′k(z)

= 0 for all z > t by (6)

Bidding bk(t) is therefore optimal, yielding

V k(t, t|yk−1) = max
z
V k(z, t|yk−1), ∀yk−1

The first order condition V k1 (t, t|yk−1) = 0 now gives

b′k(t) =
w(−bk(t), t)− w (−bk+1(t), t)

w1(−bk(t), t)
fk(t|yk−1)
Fk(t|yk−1)

(25)
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which, by (18), reduces to (6). Note that this also implies that for the subsequent

auction, V k+1(t, t|yk) = maxz V k+1(z, t|yk), ∀yk−1. By the induction hypothesis, we

conclude that {bk : k = 1, ...,m} constitute a symmetric equilibrium for the sequen-

tial Dutch auctions.

The uniqueness of the equilibrium can be established also by induction on k.

By the fundamental theorem of ordinary differential equations, bm is unique under

the initial condition bm(0) = b0 because the right-hand side of (5) is continuously

differentiable in bm and continuous in t on a compact set [0, 1].11 Now suppose

bk+1 is unique. Then because bk+1(t) is differentiable, the right-hand side of (6) is

continuously differentiable in bk and continuous in t ∈ [0, yk−1] so that bk is unique

with bk(0) = b0. By induction, the uniqueness of bk holds therefore for all k = 1, ...,m.

Finally, we verify that b′k > 0 by backward induction. For k = m, let A(t) =

w(−bm(t), t)− u(0, t) so that b′m(t) > 0 iffA(t) > 0.We have A(0) = 0. For t ≥ 0, if

A(t) = 0 then b′m(t) = 0 so that A
′(t) = w2(−bm(t), t)− u2(0, t) > 0 by Assumption

1. This implies A(t) > 0 for all t ∈ (0, 1] (e.g., Hu, Matthews and Zou, 2010,

Lemma 1(i)). Now suppose b′k+1(t) > 0 on (0, 1] and we show b
′
k > 0 on (0, 1]. Let

B(t) = bk+1(t) − bk(t) so that by (6), b′k(t) > 0 iff B(t) > 0. We have B(0) = 0.

For t > 0, if B(t) ≤ 0 then b′k(t) ≤ 0 so that B′(t) = b′k+1(t) − b′k(t) ≥ b′k+1(t) > 0.

This implies B(t) > 0 on (0, 1] (e.g., Matthews and Zou, 2010, Lemma 1(ii)). So by

induction, b′k > 0 on (0, 1] for all k = 1, ...,m.

Proof of Proposition 2. We prove again the existence and uniqueness of equi-

librium by backward induction on k. In the last period k = m, it is a (weakly)

dominant strategy for bidder 1 with type t to bid am(t) according to (7). Because

w1 is continuous and positive, am(t) is uniquely defined, and by Assumption 1 it’s

11This is where F (0) > 0 is useful for simplifying the uniqueness argument. If F (0) = 0, then

the differential equation has a singular point at t = 0 but it still can be shown that the uniqueness

holds in this case (e.g., see Maskin and Riley, 1984, Remark 2.1).
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derivative is positive:

a′m(t) =
w2(−am(t), t)− u2(0, t)

w1(−am(t), t)
> 0 (26)

Assuming all other active bidders play am as well, the expected payoff of bidder 1

at the start of the mth auction knowing Ym−1 = ym−1 equals

V m(t ∧ ym−1, t|ym−1) :=
∫ t∧ym−1

0

(w(−am(y), t)− u(0, t)) dFm(y|ym−1) + u(0, t)

where the notation t ∧ ym−1 incorporates the possibility that bidder 1 has deviated

from the equilibrium bid in the previous auction, resulting in ym−1 < t.

Now consider the kth auction for k ≤ m− 1 assuming that a unique sequence

of increasing strategies ak+1, ..., am will be played by all bidders including bidder 1.

Let V k+1(z ∧ yk, t|yk) denote the bidder’s expected payoff if he bids in period k + 1

as though his type was z. Our induction hypothesis is that for all k ≤ m− 1,

V k+1(t ∧ yk, t|yk)

=

∫ t∧yk

0

(w(−ak+1(y), t)− u(0, t)) dFk+1(y|yk) + u(0, t)

≥ V k+1(z ∧ yk, t|yk) for all realized yk in the kth auction and z

Suppose Yk−1 = yk−1 and bidder 1 is still active in the kth auction. Obviously, bid-

ding above ak(yk−1) is weakly dominated by bidding lower than or equal to ak(yk−1).

So given that the other bidders play ak, if bidder 1 bids as though his type was z,

his expected payoff equals

V k(z, t|yk−1) =
∫ z

0

w(−ak(y), t)dFk(y|yk−1) +
∫ yk−1

z

V k+1(t ∧ y, t|y)dFk(y|yk−1)

(27)

Differentiating w.r.t. z gives

V k1 (z, t|yk−1)

=
(
w(−ak(z), t)− V k+1(t ∧ z, t|z)

)
fk(z|yk−1)

=

(
w(−ak(z), t)− u(0, t)−

∫ t∧z

0

(w(−ak+1(y), t)− u(0, t)) dFk+1(y|z)
)
fk(z|yk−1)(28)
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Equation (8) implies

w(−ak(z), z)− u(0, z) =
∫ z

0

(w(−ak+1(y), z)− u(0, z)) dFk+1(y|z) (29)

If z < t then the term in large braces of (28) reduces to

w(−ak(z), t)−
∫ z

0

w(−ak+1(y), t)dFk+1(y|z)

which, by (13) in Appendix A, is non-negative because

w(−ak(z), t)−
∫ z
0
w(−ak+1(y), t)dFk+1(y|z)

w1(−ak(z), t)

≥
w(−ak(t), z)−

∫ z
0
w(−ak+1(y), z)dFk+1(y|z)

w1(−ak(t), z)
= 0 by (8)

If z > t, then the term in large braces of (28)

w(−ak(z), t)− u(0, t)−
∫ t

0

(w(−ak+1(y), t)− u(0, t)) dFk+1(y|z)

< w(−ak(z), t)−
∫ z

0

w(−ak+1(y), t)dFk+1(y|z)

≤ 0 by (8)

Consequently, V k1 (t, t|yk−1) = 0 is a necessary and globally suffi cient condition for

ak(t) to be optimal for bidder 1. Since ak+1, ..., am are unique, ak(·) is uniquely

defined implicitly by (8) given w1 > 0.

Finally, we show that ak(·) is increasing by backward induction. For k = m

(26) shows a′m > 0. Suppose a
′
k+1 > 0 and differentiate (8) to get

a′k(t) =
w2(−ak(t), t)−

∫ t
0
w2(−ak+1(y), t)dFk+1(y|t)

w1(−ak(t), t)

+(n− k) f(t)
F (t)

(
w(−ak(t), t)− w(−ak+1(t), t)

w1(−ak(t), t)

)
By (8) and (14), the first term on the right-hand side is non-negative. Since a′k+1 > 0

as assumed, (8) implies ak(t) < ak+1(t). Hence the last term in the above expression

is positive. The conclusion of the proposition is thus established by induction.
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Proof of Proposition 3. Dutch auctions. We show that (i)-(iii) follow from

(15) in Appendix A, because (6) and Fk(x|yk−1) = F (x)n−k/F (yk−1)n−k imply

b′k(t) =
w(−bk(t), t)− w (−bk+1(t), t)

w1(−bk(t), t)
fk(t|yk−1)
Fk(t|yk−1)

> [≤] (bk+1(t)− bk(t))
fk(t|yk−1)
Fk(t|yk−1)

if w11 < [≥] 0 (30)

The risk neutral case (ii) is well known. Now we show Case (i) assuming that

w11 < 0. Rearranging terms of the first inequality in (30) gives

d

dt
[bk(t)Fk(t|yk−1)] > bk+1(t)fk(t|yk−1)

For t = yk+1, integrating over [0, yk] yields

bk(yk) >
1

Fk(yk|yk−1)

∫ yk

0

bk+1(yk+1)dFk(yk+1|yk−1)

=
1

F n−k(yk)

∫ yk

0

bk+1(yk+1)dF
n−k(yk+1)

= E(bk+1(Yk+1)|Yk+1 < yk)

= E(b̃k+1|bk(yk))

In the Dutch auction, pk = bk(yk). So we have shown thatw11 < 0 impliesE(p̃k+1|pk) <

pk. Case (iii) can be established by simply altering the sign of the inequality, and so

is omitted.

Vickrey auctions. By (8), we have

w(−ak(yk), yk) =
∫ yk

0

w(−ak+1(y), yk)dFk+1(y|yk)

This shows that for w(·, yk), the payment ak(yk) is the certainty equivalent of random

payment ak+1(y), under expectation according to distribution Fk+1(y|yk). Therefore,

ak(yk)


>
∫ yk
0
ak+1(y)dFk+1(y|yk) for w11 < 0

=
∫ yk
0
ak+1(y)dFk+1(y|yk) for w11 = 0

<
∫ yk
0
ak+1(y)dFk+1(y|yk) for w11 > 0
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Since ak(yk) and yk are one-to-one, we obtain

pk = ak(yk)


>
∫ yk
0
ak+1(y)dFk+1(y|yk) = E(p̃k+1|pk) for w11 < 0

=
∫ yk
0
ak+1(y)dFk+1(y|yk) = E(p̃k+1|pk) for w11 = 0

<
∫ yk
0
ak+1(y)dFk+1(y|yk) = E(p̃k+1|pk) for w11 > 0
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