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Abstract

This paper studies the relation between optimal dam capacity and water management un-

der rivalry uses and externalities. We extend the hydropower generation model, based on

Haddad (2011), by including the competing use of water resource, non-linear building cost

of dam capacity and externalities in a welfare optimization model. We obtain the optimal

dam capacity for multi-functional dams such as providing infrastructure for industrial and

households water use, conjunctive use of hydropower generation and irrigation; storing water

in the wet season for use in the dry season, and mitigating flooding damages. The optimal

solution shows that optimal dam capacity is characterized by the marginal benefits of hy-

dropower generation, the marginal costs of flooding damages, and the constraining factors.

Moreover, the optimal water management can be achieved by using derived seasonal prices

in a decentralized manner.
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1 Introduction

Dams have made an important and significant contribution to human development, and the

benefits derived from them have been considerable. Dams were built to provide water for

irrigated agriculture, industrial and domestic (households) use, to generate hydropower or

to help control floods. But dams also altered and diverted river flows, resulting in significant

impacts on livelihoods, fishery and the environment (Dugan et al., 2010; Beck et al., 2012).

The latter impacts are the so-called social costs. Often dams are built for multiple of these

purposes. For example, electricity generation is an important reason for building large dams

in many countries, either as the primary purpose, or as an additional function such as

regulating water use in different seasons. Decision-making on dam capacity choice should,

therefore, trade off different water uses and take into account the possible adverse impacts.

As dams have been an important means of meeting needs for water and energy services,

optimal dam capacity for hydropower generation and its effi cient operation are important.

Recently, Haddad (2011) studies capacity choice and hydropower generation in a determin-

istic model with two seasons from the perspective of the dam operator. All social costs,

including those for environmental externalities, are said to be incorporated in the building

costs of dams and are assumed to be linear. However, for the study of environmental issues

concerning dams and their operation this assumption is somewhat oversimplified. Our main

research questions are thus: what is the optimal dam capacity considering multiple purposes

and including the possible social costs caused by externalities? The aim of this paper is to

study some externalities of dams based the model of Haddad (2011) by explicitly modelling

the rivalry use of water and the social costs (e.g. flood damages).

We consider the following major economic functions of dam capacity building: it provides

infrastructure for industrial and households’water use, hydropower generation, flood damage

mitigation and agricultural irrigation. Therefore, we consider multiple functions of dams.

Water use among different users is rival, i.e. there is competition among industry and

households, and a hydropower generator. However, water use for irrigation and hydropower

generation is non-rival or conjunctive, because irrigation water is withdrawn after hydropower

is generated. Furthermore, we also consider the seasonal variations in water availability or

inflows. We represent all these aspects in a welfare optimization model (see e.g. Zhu and van
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Ierland, 2012). Houba et al. (2013) perform a numerical analysis of such as a model that is

calibrated for the Mekong River. However, the Mekong River is just one specific case of a

wide diversity of realistic cases, which cannot inform policy makers in different river basins

about the economic issues in their specific basin management. Solving the model analytically

gives some interesting results on the choices of dam capacities under different specific cases

of reality, such as dams solely used for flooding control, for irrigation, or for hydropower

generation. Our contribution of this paper is to characterize the relations between optimal

dam capacity and water management under rivalry uses and externalities. We view this

paper complementary to Houba et al. (2013).

The paper is organized as follows. The next section presents the basic model that extends

the model of Haddad (2011) in which dam capacity is endogenous. Section 3 presents the

general case of Pareto effi cient dam capacity and its operation. It also discusses the welfare

costs of neglecting rivalry use and externalities. Section 4 discusses the implications of the

model results based on three special cases of single purpose dams: a dam is used solely for

flood control, for irrigation and for hydropower generation respectively. Concluding remarks

follow in the last section.

2 The Model

Following Haddad (2011), our model respects the hydrological basin reality. Total water

available is determined by seasonal precipitation or water inflows. We distinguish two sea-

sons, the wet season (w) and the dry season (d). There is an option to build a dam with a

certain capacity, denoted by D. The dam is used as infrastructure (a reservoir) to provide

end users such as industry and households with water, and it is also used for hydropower

generation and to store water from the wet season, denoted by y, for usage in the dry season.

Due to evaporation losses and leakage from the dam, only δy, δ ∈ (0, 1), can be used in the

dry season.1 Water availability, including inflows and river flows, determine water usage in

each season τ = w, d. Water users are aggregated into three categories of representative

consumers: Industry and households, irrigated agriculture and a hydropower generator.

The water balances
1Haddad (2011) assumes δ = 1.
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Our model extends Haddad (2011) by including other water uses (e.g. industry and

households, irrigation) and flood damage. The river basin is presented in Figure 1. In the

wet season w, inflow fw can be spent on consumptive use by industry and households xw,

storage y for the dry season, hydropower generation qw that is reusable further downstream,

and pass-through by the dam to downstream. River outflow from the dam ow consists of qw

and pass-through that runs directly to downstream and might cause flood damage. In season

d, inflow fd and the fraction of stored water δy can be spent on water use xd, hydropower

generation qd that remains available further downstream, and pass-through by the dam to

downstream. River outflow from the dam od can be used either for irrigation id (assuming

an irrigation infrastructure that is independent of capacity D) or runs to downstream. This

imposes id ≤ od. Formally, upstream’s water balances2 are given by

xw + y + qw ≤ fw, (1)

xw + y + ow = fw, (2)

xd + qd ≤ fd + δy, (3)

xd + od = fd + δy, (4)

id ≤ od. (5)

In Figure 1, both ow and od are expressed as the residuals from inflow minus water use. The

total use of water must not exceed the available dam capacity D. Dam capacity D imposes

the restrictions

xw + y + qw ≤ D, (6)

xd + qd ≤ D. (7)

This completes the description of the water balances.

Benefits and costs

There are three water users that create economic value. Consumptive use by industry

and households permanently remove amounts of water in both wet and dry seasons. The

economic value is vτ (xτ ), a concave function with satiation point x̄τ > 0. Both, xw and

2This formulation extends the model in Haddad (2011) to include the industrial and households’water
use.
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Figure 1: Seasons, storage and water uses.

xd are externalities for downstream, as is storage y. The net benefits from hydropower in

season τ are hτ (qτ ), a concave function with satiation point q̄τ > 0. The net benefits from

irrigation in season d are ad (id), a concave function with satiation point ı̄d > 0.

The costs of building dam capacityD including costs for storing water are c (D), a convex

function with c′ (D) > 0.3 These costs include the annuities of the capital costs, the operation

and maintenance costs and evaporation losses. River flows also involve costs associated with

flooding in the wet season. The costs of flood damage are cw (ow), a convex function with

c′w (ow) > 0.

The annual economy’s welfare function u (xw, xd, qw, qd, id, D, ow, od) is given by

vw (xw) + vd (xd) + hw (qw) + hd (qd) + ad (id)− c (D)− cw (ow) . (8)

From this objective function, it is clear that our model includes flood damage, the benefits

from consumptive use and irrigation, and allows nonlinear building costs. This completes the

description of costs and benefits of dam capacity building and water management (allocation

among different users).

3 Pareto effi cient management

In this section, we investigate Pareto effi cient management of dams. Because the derivations

are quite technical we defer these to the appendix. In what follows we discuss the main

results.
3Haddad (2011) assumes constant costs of building dam capacity.
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Pareto effi cient management internalizes all externalities by maximizing the welfare func-

tion (8). After substituting out the flow variables ow and od from (2) and (4), we obtain the

following welfare optimization program:

max
xw,xd,qw,qd,id,D,y

vw (xw) + vd (xd) + hw (qw) + hd (qd) + ad (id) (9)

−c (D)− cw (fw − xw − y) ,

s.t.
xw + y + qw ≤ fw, (pw)
xd + qd ≤ fd + δy, (pd)
id ≤ fd + δy − xd, (λd)
xw + y + qw ≤ D, (µw)
xd + qd ≤ D, (µd)

where all symbols between brackets denote shadow prices.

The most realistic scenario is that D < fw, which is the case in most south-east Asia

countries. Therefore, the fourth constraint holds with equality, and we substitute y =

D−xw− qw in the first and fourth constraints. This eliminates these two constraints and we

will solve the reduced optimization problem. Due to the assumptions we have made on the

benefits and costs of water use and dam capacity building, the resulting welfare optimum

is unique. In our analysis, we only characterize the case in which all variables xw, xd, qw,

qd, id and D are positive in the optimum. We do so, because it is the most interesting and

relevant case and this limits the number of possible boundary cases to discuss.

Our first result is discussed in the following Proposition.

Proposition 3.1 In the unique welfare optimum of (9), it holds that

v′w (xw) = h′w (qw)− c′w (fw + qw −D) , (10)

v′d (xd) = h′d (qd) + a′d (id) , (11)

id = min {ı̄d, qd} and λd = a′d (id) .

Moreover, h′w (qw) ≥ c′w (fw + qw −D) and qw < q̄w.

Proposition 3.1 reflects that the use of dam capacity in the wet season for hydropower

generation is rival to water that is used first for consumptive use of industry and households

and then for irrigation. Condition (10) illustrates the rivalry use of water in the wet season.

The marginal benefit of consumptive use by the industry and household sector should be
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equal to the marginal benefit of hydropower generation after deducting the incremental

costs of its flood damage, i.e. the cost of its negative externality. Since the marginal benefit

of consumptive use is nonnegative, the marginal benefit of hydropower generation should

exceed the incremental costs of the flood damage hydropower generation causes. Satiation

of consumptive use in the wet season can only occur if the marginal benefits of hydropower

generation equal the marginal cost of flood damage in this season. Satiation of hydropower

generation in the wet season can never occur, because this activity causes flooding as an

externality. Therefore, qw < q̄w has to hold.

Similarly, condition (11) illustrates the rivalry use of water in the dry season between

consumptive use and irrigation. Because water for irrigation first passes the dam before it can

be used, this part of the water can be utilized twice, namely hydropower generation before

irrigation takes place. In other words, hydropower generation augments the benefits from

irrigation. Then, condition (11) states that the marginal benefit of water used by the industry

and household sector should be equal to the marginal benefit of hydropower generation

augmented by the incremental benefits of reusing the water for hydropower generation for

irrigation. Obviously, v′d (xd) ≥ a′d (id) and v′d (xd) ≥ h′d (qd). Satiation of consumptive use

in the dry season can only occur if both hydropower generation and irrigation are satiated

as well in this season. The fact that irrigation water first passes the dam implies id =

min {ı̄d, qd}.

For the two crucial shadow prices pd and µd, we derive the following result.

Proposition 3.2 In the unique welfare optimum of (9), it holds that

h′w (qw) ≤ c′ (D) ≤ h′w (qw) + h′d (qd) ,

and µd, pd ∈ [0, h′d (qd)] are given by

µd = c′ (D)− h′w (qw) ,

pd = h′d (qd) + h′w (qw)− c′ (D) .

Moreover, µd = 0 and pd = h′d (qd) if and only if c′ (D) = h′w (qw). Similarly, µd = h′d (qd)

and pd = 0 if and only if c′ (D) = h′w (qw) + h′d (qd).
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Although there are many economic activities and externalities related to water, the

shadow prices pd and µd can be fully characterized by the marginal benefits from hydropower

generation and the marginal costs of dam capacity. These shadow prices hint at that ex-

ternalities do not play a role, but one should realize that hydropower generation causes

externalities (e.g. flood damage downstream), and such activity can be regarded as the gate-

way through which external economic values enter the dam facility. This becomes apparent

if Propositions 3.1 and 3.2 are combined, we can rewrite the shadow prices as

pd = v′w (xw) + v′d (xd) + c′w (fw + qw −D)− a′d (id)− c′ (D) ,

µd = c′ (D)− v′w (xw)− c′w (fw + qw −D) .

Hence, externalities of dams such as flood damage or less water for irrigation do enter these

prices.

Note that the existence of an optimal welfare solution implies that the shadow prices in

Proposition 3.2 are nonnegative. Hence, the marginal benefits from hydropower generation

in the wet season are bounded by the marginal costs of dam capacity, i.e. h′w (qw) ≤ c′ (D)

has to hold in the welfare optimum. This suggests that marginally expanding dam capacity

further for solely increasing this activity should not be beneficial. Although externalities

seem absent from h′w (qw) ≤ c′ (D), these can be brought in through Proposition 3.1 to

obtain v′w (xw) + c′w (fw + qw −D) ≤ c′ (D). Marginally expanding dam capacity further for

increasing consumptive use, and thereby marginally reducing flood damage, should not be

beneficial either. Furthermore, combining Propositions 3.1 and 3.2, we obtain

c′w (fw + qw −D) ≤ h′w (qw) ≤ c′ (D) .

From these inequalities, it is immediately clear that the marginal costs of flood damage

should be lower than the marginal costs of expanding dam capacity.

The solution to (9) depends upon whether the water availability (3) or dam capacity (7)

or both restrict water use and hydropower generation in the dry season. Water availability

in the dry season is the binding constraint, whenever (1− δ)D+ δ (xw + qw) > fd, which we

call water scarcity.

Note that the nonlinearity of the functions excludes a closed-form solution. In what

follows, we report for each case the nonlinear system that characterizes the optimal solution.
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Case 1: Water availability is the constraining factor in the dry season

Recall that in this case we have (3) is binding and (7) nonbinding. Define x∗w, x
∗
d, q

∗
w, q

∗
d,

i∗d and D
∗ as the unique solution to the following non-linear system:

v′w (xw) = h′w (qw)− c′w (fw + qw −D) ,
v′d (xd) = h′d (qd) + a′d (id) ,
id = min {ı̄d, qd} ,
v′w (xw) = δv′d (xd) ,
c′ (D) = h′w (qw) ,

either qd = fd + δ (D − xw − qw)− xd, or qd = q̄d.

(12)

Obviously, the third line obeys the condition h′w (qw) ≤ c′ (D) of Proposition 3.2. Water

availability in the dry season, given by fd + δ (D − xw − qw), constrains the three categories

of water use in this season. Note also that the case δ < 1 is qualitatively similar to the case

δ = 1. The unique solution to this system characterizes all values for this case.

Proposition 3.3 If (1− δ)D∗ + δ (x∗w + q∗w) > fd, then welfare optimal water management

is given by building dam capacity D∗, industrial and households’water use x∗w and x
∗
d, hy-

dropower generation q∗w < q̄w and q∗d, and irrigation id = min {ı̄d, fd + δ (D∗ − x∗w − q∗w)− x∗d}.

Moreover, µ∗d = 0 and p∗d = h′d (q∗d) ≥ 0.

Note that h′w (qw) = c′ (D) > 0 once more implies qw < q̄w. Furthermore, since id = ı̄d,

and xd = x̄d and xw = x̄w implies c′ (D) = c′w (fw + qw −D) > 0, the first case includes the

special case in which all but one satiation levels are reached. In this special subcase, D and

qw solve the smaller subsystem

c′ (D) = h′w (qw) and c′w (fw + qw −D) = h′w (qw) .

Such solution is fully driven by reasons for flood control: all pass-through from the dam

in the wet season is equal to zero and all outflow from the dam ow is used for hydropower

generation. All other water is either consumed in the wet season or diverted to the dry

season.

In general, after several substitutions, we obtain

c′ (D) = c′w (fw + qw −D) + δ [h′d (qd) + a′d (id)] . (13)

The left-hand side expresses that building dam capacity for additional water storage reduces

flood damage and fraction δ of this water becomes available for the double utilization of
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hydropower generation and irrigation. Note that δ can be seen as a sort of discount factor

that delivers the net present value of future utilization in the dry season. All these marginal

benefits should be equal to the marginal cost of expanding dam capacity.

The optimal water management can be decentralized by having seasonal water prices, and

personalized taxes or subsidies per sector. In the wet season, industrial and households, and

hydropower generation should all be charged a water price of v′w (x∗w) and additionally the

generator should be taxed c′w (fw + q∗w −D∗) per unit of water because his activity increases

the damage of flooding. So, in total he pays v′w (x∗w)+c′w (fw + q∗w −D∗) = h′w (q∗w) per unit of

water. The irrigation sector is charged a water price ofmax {0, a′d (fd + δ (D∗ − x∗w − q∗w)− x∗d)},

which might be zero if the river flow in the dry season od is large enough. The reason is

that irrigation is modelled as upstream’s last water user, which can be reinterpreted as a

legal system with hierarchical water users where industrial, households and the hydropower

generator are served before the agricultural sector. In such a setting, a reduced water price

for irrigation compared to the water price set for other sectors can be theoretically justified

on the grounds of Pareto effi ciency. Such practice is observed in many countries, see e.g.

Cornish et al. (2004). Building dam capacity can also be decentralized by offering the dam

operators a price of

c′ (D∗) = h′w (q∗w) = v′w (x∗w) + c′w (fw + q∗w −D∗)

per unit of capacity installed. In case the dam operator is the hydropower generator who

also charges and collects the sales directly from industry and households, then the water

management authority has to subsidize h′w (q∗w) − c′w (fw + q∗w −D∗) per unit of capacity

built on top of the dam operator’s sales against price v′w (x∗w) in case of a uniform price for

industry, households and hydropower generation.

Case 2: Dam capacity is the constraining factor in the dry season

Recall that we now have that (7) is binding while (3) is nonbinding. The optimal x̂w, x̂d,
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q̂w, q̂d, ı̂d and D̂ are the unique solution to the following non-linear system:

v′w (xw) = h′w (qw)− c′w (fw + qw −D) ,
v′d (xd) = h′d (qd) + a′d (id) ,
id = min {ı̄d, qd} ,
v′w (xw) = δ [v′d (xd)− h′d (qd)] ,
c′ (D) = h′w (qw) + h′d (qd) ,

either qd = D − xd, or qd = q̄d.

(14)

Since h′d (qd) ≥ 0 the third line obeys the condition h′w (qw) ≤ c′ (D) of Proposition 3.2.

Again, the case δ < 1 is qualitatively similar to the case δ = 1. There are three striking

differences between (12) and (14). The obvious one is the presence of a different binding

constraint that defines each case. A more interesting difference is c′ (D) = h′w (qw) versus

c′ (D) = h′w (qw) + h′d (qd). The latter implies that an economic pressure for expanding

dam capacity is driven by hydropower generation in both seasons, whereas the former only

hydropower in the wet season provides such a pressure. Of course, the term h′d (qd) drops

out in case qd = q̄d holds in the optimum. Another difference between (12) and (14) is

v′w (xw) = δv′d (xd) versus v′w (xw) = δ [v′d (xd)− h′d (qd)].

The unique solution to system (14) characterizes the optimal values for this case.

Proposition 3.4 If (1− δ) D̂ + δ (x̂w + q̂w) < fd, then the welfare optimal water manage-

ment is given by building dam capacity D̂, industrial and households’water use x̂w and x̂d,

hydropower generation q̂w < q̄w and q̂d, and irrigation id = min {ı̄d, q̂d}. Moreover, p̂d = 0

and µ̂d = h′d (q̂d) ≥ 0.

In this case, c′ (D) = h′w (qw)+h′d (qd) > 0, the marginal costs of dam capacity is equal to

the sum of the marginal benefits from hydropower generation in both seasons. The optimal

dam capacity should be able to generate the optimal amounts of hydropower in both seasons.

As in Case 1, we obtain (13) from (14) with a similar interpretation.

The optimal water management can be decentralized by using seasonal water prices. As

in Case 1, industry and households are charged by v′w (x̂w) in the wet season, and the hy-

dropower generator by v′w (x̂w)+c′w

(
fw + q̂w − D̂

)
. However in the dry season, the generator

should be charged by v′d (x̂d) but subsidized by a′d (x̂d) because the water that passes through

the dam can be used by irrigators who are willing to pay a′d (x̂d) per unit of water.

Case 3: Water availability and dam capacity are the constraining factors in the dry season

11



In this case, both (3) and (7) are binding. Define p̃d, µ̃d, x̃w, x̃d, q̃w, q̃d, ı̃d and D̃ as the

unique solution to the following non-linear system:

v′w (xw) = h′w (qw)− c′w (fw + qw −D) ,
v′d (xd) = h′d (qd) + a′d (id) ,
id = min {ı̄d, qd} ,
µd = v′d (xd)− δ−1v′w (xw) ,
(1− δ)D = fd − δ (xw + qw) ,

either qd = fd + δ (D − xw − qw)− xd, or qd = q̄d and µd = pd = 0.

(15)

From the fourth line, we deduce that the case δ < 1 is qualitatively different from the

case δ = 1, because under δ = 1 this line only ties two variables (xw, qw) to fd leaving D

unrestricted and otherwise three variables are tied up. As such, we obtain insights for δ < 1

that are qualitatively different from Haddad (2011). Note that in case of ‘or’, µd = 0 pins

down the solution further than the ‘either’case. In fact, the case of ‘or’coincides with the

boundary of Case 1 where the condition defining Case 3 holds. It can be shown that the

boundary of Case 2 is also captured by Case 3. Therefore, this case is the intermediary case

between Case 1 and Case 2. Thus, system (14) completes the characterization of the unique

solution for this case.

Proposition 3.5 If (1− δ) D̃ + δ (x̃w + q̃w) = fd, then the welfare optimal water manage-

ment is given by building dam capacity D̃, industrial and households’water use x̃w and x̃d,

hydropower generation q̃w < q̄w and q̃d, and irrigation id = min {ı̄d, q̃d}.

In this case, h′d (qd) + h′w (qw) ≥ c′ (D) ≥ h′w (qw). This means the marginal benefits from

hydropower generation in the two seasons should not be smaller than the marginal costs

of dam capacity. Considering the constraints from the water availability and dam capacity,

we should ensure that the marginal costs of dam capacity should not be smaller than the

marginal benefit of hydropower generation in the wet season. After several substitutions in

(15), we obtain

c′ (D) = c′w (fw + qw −D) + δ [h′d (qd) + a′d (id) + µd] . (16)

This reduces to (13) for the ‘or’case. In case h′w (qw) < c′ (D), the ‘either’case implies µd > 0

and c′ (D) > c′w (fw + qw −D) + δ [h′d (qd) + a′d (id)]. Therefore, there are stronger incentives

to build dam capacity. Finally, the optimal water management can be decentralized through

seasonal prices as in Case 1 and 2, which we do not elaborate on to avoid repetition.
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4 Single-purpose dams

This section discusses several special cases in which the dam fulfills a single purpose. We

obtain clearer insights for single purpose dams and study boundary cases that are excluded

in the previous section.

4.1 Flood control

Floods are among the world’s most frequent and damaging disasters. Dams have historically

been extensively used as a defence against floods. When dams are used for flood control

only, we have vw(xw) = 0, vd(xd) = 0, hw (qw) = 0, hd (qd) = 0 and ad (id) = 0 for all

xw, xd, qw, qd, id ≥ 0. It is then easy to see that D ≤ fw because D > fw implies excessive

dam building. Observe also that under utilization of the dam by storing y < D would

imply suboptimal excessive dam building, and therefore, we must have y = D. Welfare

optimization (9) reduces to the cost minimization program:

min
D≥0

cw (fw −D) + c (D) , s.t. D ≤ fw.

Define D∗ as the unique solution to c′ (D) = c′w (fw −D). The following result is straight-

forward.

Proposition 4.1 If c′ (0) < c′w (fw), then the welfare optimal dam capacity is given by

D∗ ∈ (0, fw). Otherwise, the welfare optimal dam capacity is 0.

This result shows that flooding will be mitigated by building dam capacity but never

fully controlled. By applying implicit differentiation, it follows that D∗ is increasing in fw.

To see this, such differentiation with respect to fw implies

c′′ (D∗) ·D∗′ = c′′w (fw −D∗) · (1−D∗′) ,

and hence,

D∗′ =
c′′w (fw −D∗)

c′′w (fw −D∗) + c′′ (D∗)
∈ (0, 1] ,

because c′′ ≥ 0 and c′′w > 0. Constant marginal costs of dam building, as in Haddad (2010),

implies D∗′ = 1, because c′′ = 0. Then, increased inflow due to climate change (e.g. heavy

rains) will be met by an equivalent increase in dam capacity. Under increasing marginal costs,
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we obtain D∗′ < 1 and increased inflow will only be partially met by increased dam capacity.

In principle, the relation between inflow and welfare optimal dam capacity is nonlinear and

increasing.

4.2 Irrigation in the dry season

Irrigation is the single largest consumptive use of fresh water in the world. Half of the world’s

largest dams were built exclusively or primarily for irrigation. As estimated 30-40 % of the

268 million hectares of irrigated lands worldwide rely on dams (World Commission on Dams

and Development, 2000). Based on our model we may obtain more detailed insights for the

single purpose irrigation dam.

In the case of dam for irrigation purposes only, we have: vw(xw) = 0, vd(xd) = 0,

hw (qw) = 0, hd (qd) = 0 and cw (fw − y) = 0 for all xw, xd, qw, qd, fw − y ≥ 0. As before,

we have D ≤ fw. Under utilization of the dam by storing y < D would imply suboptimal

excessive dam building, and therefore, we must have y = D. After substitution, the welfare

function (9) becomes

max
id,D

ad (id)− c (D) (17)

s.t.

id − fd − δD ≤ 0, (λd)
D − fw ≤ 0. (pw)

Observe that it is suboptimal to build dam capacity up to the level that meets the

satiation level of irrigation ı̄d, because a′d (̄ıd) = 0 < c′ (D). So, id = fd + δD < ı̄d,

provided fd < ı̄d. Let D∗ (fd) ∈
(
0,min

{
fw, δ

−1 (̄ıd − fd)
})

be the unique solution to

c′ (D) = δa′d (fd + δD) > 0. Then, we have the following result.

Proposition 4.2 For fd < ı̄d and c′ (0) < δa′d (fd), optimal management is given by

1. If c′ (fw) ≤ δa′d (fd + δfw), D = fw and id = fd + δfw,

2. If c′ (fw) ∈ (δa′d (fd + δfw) , δa′d (fd)), D = D∗ (fd) and id = fd + δD∗ (fd)

and D∗′ (fd) < 0.

Note that for the case of constant marginal costs of dam building we would have D∗′ (fd) =

−δ−1 ≤ −1, because c′′ = 0. For δ = 1, it is −1.
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The first case applies to arid regions. Then, harvesting all water in the wet season for

use in the dry season is optimal if the marginal costs of dam capacity are lower than the

marginal benefits from agriculture. Such practice is observed in e.g. the Jordan River where

water resources for Israel and Jordan are harvested in Lake Tiberias and there is almost

no river flow to the Dead Sea. The second case applies to semi-arid regions, where the wet

season provides abundant precipitation and it is optimal to harvest only a fraction of it for

use in the dry season. Then, the marginal costs of dam capacity are equated to the marginal

benefits from agriculture. Such practice can be observed in e.g. the Ebro River basin in

northern Spain.

There are two cases for which it is optimal not to build. This is the case if the condition

of the above proposition does not hold, either fd ≥ ı̄d, or fd < ı̄d and c′ (0) ≥ δa′d (fd). In

the first case, river flow in the dry season is abundant to reach the satiation level ı̄d, while

in the second case c′ (0) > 0 = δa′d (̄ıd) says that the marginal cost of dam building lie above

the marginal benefits of irrigated agriculture.

4.3 Hydropower generation

Hydropower used in over 150 countries provided 19% of the world’s total electricity supply

around the millennium (World Commission on Dams and Development, 2000) and has in-

creased to 24% today (NREL, 2014). If dam capacity are built for hydropower generation

purposes only, we have the following relation: vw(xw) = 0, vd(xd) = 0, ad (id) = 0, ı̄d = 0

and cw (fw − y) = 0 for all xw, xd, id, fw − y ≥ 0.

All these additional restrictions imply that, after substitution of y = D − qw ≥ 0, we

consider the reduced optimization problem for δ ∈ (0, 1] and the cost function c (D) :

max
qw,qd,D≥0

hw (qw) + hd (qd)− c (D) , (18)

s.t.

qd − δD + δqw ≤ fd, (pd)
qd −D ≤ 0. (µd)

We have the same three cases as in Section 3.

Case 1’: qd = fd + δ (D − qw) < D. As we will make clear in the appendix, this special case

follows directly from the general Case 1 of section 3. Let the pair q∗w and q
∗
d be the unique
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solution to

h′w (qw) = c′
(
qw + δ−1 (qd − fd)

)
and δh′d (qd) = c′

(
qw + δ−1 (qd − fd)

)
. (19)

We have the following result.

Proposition 4.3 If (1− δ) q∗d + δq∗w > fd, then welfare optimal water management is given

by hydropower generation q∗w < q̄w and fd ≤ q∗d < q̄d, and building dam capacity D∗ =

q∗w + δ−1 (q∗d − fd).4

This result has a straightforward interpretation. Water scarcity in the dry season to

generate q∗d of hydropower implies a water deficit of q
∗
d − fd in the dry season if no water

would be stored during the wet season. This deficit is met by building dam capacity that

exactly meets the optimal hydropower generation q∗w in the wet season plus the stored water

needed to meet the water deficit qd − fd in the dry season. The evaporation losses of stored

water requires to store δ−1 (q∗d − fd) in the wet season. This is the case in arid and semi-arid

regions in e.g. Africa, southeast Asia and the midwest of the US. The building cost of dam

capacity make it optimal to install less capacity than q̄w + δ−1 (q̄d − fd), i.e., the optimum

levels under costless dam capacity building.

Case 2’: qd ≤ D < fd + δ (D − qw). Although this special case also seems to follow directly

from the general Case 2, there is an important caveat that we have to impose. Proceeding

as in Case 1’, let the pair q̂w and q̂d be the unique solution to

c′ (qd) = h′w (qw) + h′d (qd) and c′ (qd) = δh′d (qd) . (20)

Please note that (20) only holds when qd = D. It yields inconsistency when qd = q̄d.

Then, bearing in mind that h′w (qw) ≥ 0, we arrive at

c′ (qd) = h′w (qw) + h′d (qd) ≥ h′d (qd) ≥ δh′d (qd) .

All these inequalities can only hold if and only if δ = 1 and qw = q̄w such that h′w (q̄w) = 0.

So, this case can only hold for the unrealistic case of no evaporation losses δ = 1 from stored

water. And then, (20) reduces to q̂d is the unique solution to c′ (qd) = h′d (qd). We have the

following result.

4Note that q∗d < D∗ = q∗w + δ
−1 (q∗d − fd) imposes the condition (1− δ) q∗d + δq∗w > fd.
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Proposition 4.4 Only if δ = 1 and q̄w ≤ q̂d ≤ fd welfare optimal water management is

given by hydropower generation q̂w = q̄w and q̂d < q̄d, and building dam capacity D̂ = q̂d.

Loosely speaking, the above result implies an impossibility result for realistic values of

evaporation losses of stored water, i.e., any δ < 1. Here we obtain an entirely different

conclusion than Haddad (2011), who assumes δ = 1 and constant marginal costs of dam

capacity building.

Case 3’: qd = D = fd + δ (D − qw). Proceeding as in Case 1’, let q̃w and q̃d be the unique

solution to

h′w (qw) = δh′d (qd) and (1− δ) qd + δqw = fd. (21)

We have the following result.

Proposition 4.5 Welfare optimal water management is given by hydropower generation

q̃w < q̄w and fd ≤ q̃d < q̄d, and building dam capacity D̃ = q̃d.

By one of the binding constraints we have (1− δ) q̃d+δq̃w = fd in the optimum. Rewriting

in terms of the water deficit q̃d − fd implies this deficit is equal to δ (q̃d − q̃w) in the dry

season. So, a nonnegative water deficit requires δ−1 (q̃d − fd) of water storage in the wet

season. Obviously, hydropower generation q̃w in the wet season is lower than hydropower

generation q̃d in the dry season to allow for the optimal amount of water stored because

D̃ = q̃d.

5 Concluding remarks

To analyze the impact of dam capacity choice under rivalry use and externalities, we extend

the hydropower generation model in Haddad (2011). Having included the competing use of

water resources and non-linear building costs of dam capacity as well as the externalities

of dams in a welfare optimization model, we obtained the optimal dam capacity for multi-

functional dams such as providing infrastructure for industrial and households’water use,

conjunctive use of hydropower generation and irrigation, reserving water in the wet season

for use in the dry season and mitigating flooding damages. The optimal solution shows

that optimal dam capacity depends on marginal benefits of hydropower generation and the
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constraining factors. The optimal water management can be achieved by using specific

seasonal prices in a decentralized manner. This research offers useful insights and lays the

foundation for a policy framework tailored to different development stages of water resource

management in the presence of hydropower systems.

In this paper, we have not included issues such as salt water intrusion in the dry season,

in order to keep our analysis tractable. It is, however, worthwhile to give some reflections on

some relevant issues which are not formally discussed in the paper. Various extensions of this

analysis can be considered such as saltwater intrusion in the estuary during the dry season,

or the environmental function of water resources competing with irrigation id. Additional,

in the dry season, outflow od − id to the estuary combats saltwater intrusion with costs

cd (od − id), a convex function cd (·) with c′d (·) < 0. Therefore the costs decrease when more

fresh water flows into the estuary. We regard irrigation id as irrigation at elevated inland

plots that are immune to saltwater intrusion, and irrigation on plots at the lowest parts of

the delta can be included as benefits in the costs function for saltwater intrusion. Moreover,

we can replace ad (id) by ad (id)−cd (od − id) and a′d (id) by a′d (id)−c′d (od − id). Therefore, id

increasing implies both a′d and c
′
d are increasing, whereas, ow increasing implies c

′
d decreasing.

Restoring nature in wet season, both functions nw (ow) and n′w (ow) are positive. In the future

work, we will present further details of feasible extensions and an empirical analysis.

6 Appendix: Derivations

In this appendix, we derive the main results discussed in Section 3. Optimization program (9)

is strictly convex and, therefore, it allows a unique welfare optimum with nonnegative shadow

prices. Moreover, water using activities such as consumptive use by industry and households,

hydropower generation, irrigation and storage of water have the property of free disposal, i.e.,

agents are not forced to consume excess water. Consequently, the marginal benefits of these

activities are nonnegative. Formally, in the optimum it holds that v′τ (xτ ) ≥ 0, h′τ (qτ ) ≥ 0

for τ = w, d and a′d (id) ≥ 0.
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The Lagrangian function of system (9) is given by

vw (xw) + vd (xd) + hw (qw) + hd (qd) + ad (id)− c (D)− cw (qw −D + fw)

−pd [δxw + xd + δqw + qd − δD − fd]− µd [xd + qd −D]

−λd [δxw + xd + δqw + id − δD − fd] .

The first-order-conditions for a positive solution, i.e. xw, xd, qw, qd, id, D > 0, are

xw : v′w (xw)− δpd − δλd = 0,
xd : v′d (xd)− pd − λd − µd = 0,
qw : h′w (qw)− c′w (fw + qw −D)− δpd − δλd = 0,
qd : h′d (qd)− pd − µd = 0,
id : a′d (id)− λd = 0,
D : −c′ (D) + c′w (fw + qw −D) + δpd + δλd + µd = 0,

pd [xd + qd − fd − δ (D − xw − qw)] = 0,
λd [id − δ (D − xw − qw)− fd + xd] = 0,

µd [xd + qd −D] = 0.

(22)

Proof of Proposition 3.1. From (22), λd = a′d (id) is straightforward. Then,

λd [id − δ (D − xw − qw)− fd + xd] = 0 implies either λd = a′d (id) = 0 and in turn id = ı̄d,

or id = qd and in turn a′d (id) ≥ 0. So,

id = min {ı̄d, qd} . (23)

By λd = a′d (id) and from combining the first and third line of (22) and the second and fourth

line of (22), we obtain:

v′w (xw) = h′w (qw)− c′w (fw + qw −D) , (24)

v′d (xd) = h′d (qd) + a′d (id) . (25)

Note that v′w (xw) ≥ 0 implies that h′w (qw) ≥ c′w (fw + qw −D). Whatever the optimum,

these conditions must always hold.

Proof of Proposition 3.2. By the fourth line of (22), µd + pd = h′d (qd), and then, by the

nonnegativity of shadow prices, pd, µd ∈ [0, h′d (qd)]. After substituting the third line of (22)

into the sixth line of (22), we obtain

µd = c′ (D)− h′w (qw) . (26)

So, µd ≥ 0 implies c′ (D) ≥ h′w (qw) and µd ≤ h′d (qd) implies c′ (D) ≤ h′w (qw) +h′d (qd). Then

by µd + pd = h′d (qd), we obtain

pd = h′d (qd) + h′w (qw)− c′ (D) ∈ [0, h′d (qd)] . (27)
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Whatever the optimum, these conditions must always hold.

Proof of Proposition 3.3-3.5. As derived in the main text, combining both proposi-

tions yields c′w (fw + qw −D) ≤ h′w (qw) ≤ c′ (D). The solution to (9) depends upon whether

the water availability (3) or dam capacity (7) restricts water use and hydropower genera-

tion in the dry season. Water availability is the binding constraint whenever (1− δ)D +

δ (xw + qw) > fd. In the following, we distinguish three cases based upon >, < and =.

Case 1: (1− δ)D + δ (xw + qw) > fd

Then, xd + qd ≤ fd + δ (D − xw − qw) < D. The last inequality imposes µd = 0. By

Proposition 3.2, h′w (qw) = c′ (D) > 0 and pd = h′d (qd). Then also, h′w (qw) > 0 implies

qw < q̄w. From combining µd = 0 and the first and second line of (22), we obtain v′w (xw) =

δv′d (xd). These results and Proposition 3.1 imply the upper five lines of (12). There are two

subcases:

Case 1A: xd + qd < fd + δ (D − xw − qw). Then also pd = 0, and h′d (qd) = pd + µd = 0

imposes qd = q̄d. So, id = min {ı̄d, q̄d}. The remaining variables xw, xd, qw, D > 0 solve the

upper four lines of (12).

Case 1B: xd + qd = fd + δ (D − xw − qw). Then xw, xd, qw, qd, id, D > 0 solve this constraint

and the upper five lines of (12).

Combining both subcases implies that xw, xd, qw, qd, id, D > 0 solve the upper five lines of

(12) and either xd + qd = fd + δ (D − xw − qw) or qd = q̄d. This proves Proposition 3.3.

Case 2: (1− δ)D + δ (xw + qw) < fd

Then, xd + qd ≤ D < fd + δ (D − xw − qw). The last inequality imposes pd = 0 and, by

Proposition 3.2, h′d (qd) + h′w (qw) = c′ (D) and µd = h′d (qd). Combining the first and second

line of (22) and substituting the shadow prices, we obtain v′w (xw) = δ [v′d (xd)− h′d (qd)].

These results and Proposition 3.1 imply the upper five lines of (14). There are again two

subcases:

Case 2A: xd + qd < D. Then, also µd = 0 and similar as in case 1.A, h′d (qd) = 0 and qd = q̄d.

Then also h′w (qw) = c′ (D) > 0 and qw < q̄w must hold. Then the remaining variables

xw, xd, qw, id, D > 0 solve the upper five lines of (14).
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Case 2B: xd + qd = D. Then xw, xd, qw, qd, id, D > 0 solve this constraint and the upper five

lines of (14).

Combining both subcases implies that xw, xd, qw, qd, id, D > 0 solve the upper five lines of

(14) and either xd + qd = fd + δ (D − xw − qw) or qd = q̄d. This proves Proposition 3.4.

Case 3: (1− δ)D + δ (xw + qw) = fd

Then, xd + qd ≤ fd + δ (D − xw − qw) = D. The equality constraint can be rewritten as

(1− δ)D = fd− δ (xw + qw). Since we solve for D > 0, we must have that fd > δ (xw + qw).

By Proposition 3.2, µd + pd = h′d (qd). From combining the first and second line of (22), we

obtain µd = v′d (xd) − δ−1v′w (xw). These results and Proposition 3.1 imply the upper five

lines of (15). Similar as before, there are two subcases:

Case 3A: xd + qd < fd + δ (D − xw − qw) = D. Then, µd = pd = 0 and for reasons similar

as in case 1.A, qd = q̄d. So, the remaining variables xw, xd, qw, id, D > 0 solve the upper five

lines of (15), where v′d (xd) = δ−1v′w (xw) holds due to µd = 0.

Case 3B: xd + qd = D. Then, µd, pd ≥ 0 and xw, xd, qw, qd, id > 0 solve this constraint and

the upper five lines of (15).

Combining both subcases implies that xw, xd, qw, qd, id, D > 0 solve solve the upper five lines

of (15) and either xd + qd = D or [ qd = q̄d and µd = pd = 0].

Water stored is in nonnegative amounts, which imposes D ≥ xw + qw. In addition to

Proposition 3.1, µd ∈ [0, h′d (qd)] imposes

v′w (xw) ≤ δv′d (xd) ≤ δh′d (qd) + v′w (xw) .

This proves Proposition 3.5.

Proof of Proposition 4.2. From (22), the first-order-conditions for a positive solution,

i.e. id, D > 0, in this special case are

id : a′d (id)− λd = 0,
D : −c′ (D) + δλd − pw = 0,

λd(id − fd − δD) = 0,
pw (D − fw) = 0.
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By Proposition 3.1, we have that λd = a′d (id) and, therefore, pw = δa′d (id) − c′ (D). Non-

negativity of pw implies δa′d (id) ≥ c′ (D) > 0 and, thus, both id < ı̄d and λd > 0. Then,

id = fd + δD holds. There are two cases to consider:

• If D = fw. Then, pw ≥ 0, id = fd + δfw and D = fw can only be optimal if

δa′d (fd + δfw) ≥ c′ (fw).

• If D ∈ (0, fw), then pw = 0 implies δa′d (id) = c′ (D) > 0. Combined with id =

fd + δD, we obtain that D solves c′ (D) = δa′d (fd + δD) > 0, which is D∗ (fd).

Since c′ (D) is increasing in D, and δa′d (fd + δD) is decreasing in D, there exists

a unique intersection point D ∈ (0, fw) if and only if both c′ (0) < δa′d (fd) and

c′ (fw) > δa′d (fd + δfw). Since id < ı̄d, we also have fd + δD < ı̄d, or D < δ−1 (̄ıd − fd).

So, D < min
{
fw, δ

−1 (̄ıd − fd)
}
.

Implicit differentiation of c′ (D∗ (fd)) = δa′d (fd + δD∗ (fd)) with respect to fd yields

c′′ (D∗ (fd)) ·D∗′ (fd) = δa′′d (fd + δD∗ (fd)) · [1 + δD∗′ (fd)] ,

which implies

D∗′ (fd) =
δa′′d (fd + δD∗ (fd))

c′′ (D∗ (fw))− δ2δa′′d (fd + δD∗ (fd))
< 0,

because c′′ ≥ 0 and a′′d < 0. This completes the proof.

Proof of Proposition 4.3 - 4.5. From (22), the first-order-conditions for a positive

solution, i.e. qw, qd, D > 0, in this special case are

qw : h′w (qw)− δpd = 0,
qd : h′d (qd)− pd − µd = 0,
D : −c′ (D) + δpd + µd = 0,

pd [qd − fd − δ (D − qw)] = 0,
µd [qd −D] = 0.

(28)

Recall that D ≥ qw also holds. So, D ≥ max {qw, qd}. There are three cases to consider.

1. qd ≤ fd + δ (D − qw) < D. Then, µd = 0 and Proposition 3.2 imply h′w (qw) =

c′ (D) > 0, and (13) imposes δh′d (qd) = c′ (D) > 0. So, qw < q̄w and qd < q̄d.

The last inequality imposes qd = fd + δ (D − qw) ≥ fd, because water stored is in

nonnegative amounts, i.e., D − qw ≥ 0, and h′d (qd) > 0 while qd < fd + δ (D − qw) is

suboptimal. The binding constraint yieldsD = qw+δ−1 (qd − fd) and after substitution

into c′ (D) = h′w (qw) = δh′d (qd) we obtain (19). This proves Proposition 4.3
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2. qd ≤ D < fd + δ (D − qw). Then, pd = 0 and Proposition 3.2 imply c′ (D) = h′w (qw) +

h′d (qd). Recall from the main text that (13) also holds for Case 2, so δh′d (qd) = c′ (D) >

0. As in Case 1’, we have qd < q̄d. In this case, qd = D has to hold, because otherwise

qd < D < fd + δ (D − qw) while h′d (qd) > 0 is suboptimal. So, after substitution of

D = qd into c′ (D) = h′w (qw) + h′d (qd) = δh′d (qd) we obtain (20). By h′w (qw) ≥ 0, we

have

c′ (qd) = h′w (qw) + h′d (qd) ≥ h′d (qd) ≥ δh′d (qd)

and these inequalities can only hold if and only if δ = 1 and qw = q̄w such that

h′w (q̄w) = 0. This proves Proposition 4.4

3. qd ≤ D = fd + δ (D − qw). Recall from the main text that (16) holds for Case 3, so

µd = c′ (D) − δh′d (qd). By Proposition 3.2, we also have µd = c′ (D) − h′w (qw). So,

h′w (qw) = δh′d (qd) must hold. Substitution of the last equality into Proposition 3.2

yields

δh′d (qd) ≤ c′ (D) ≤ (1 + δ)h′d (qd) ,

and due to c′ (D) > 0 this imposes h′d (qd) > 0 and qd < q̄d. This imposes qd = D,

because otherwise qd < D = fd + δ (D − qw) while h′d (qd) > 0 is suboptimal. After

substitution of D = qd into the binding constraint (21) follows. Because water stored

is in nonnegative amounts, i.e., D − qw ≥ 0, qd = D = fd + δ (D − qw) ≥ fd. This

proves Proposition 4.5
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