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Abstract: This work develops change-point methods for statistics of high-frequency data. The
main interest is the volatility of an Itô semi-martingale, which is discretely observed over a fixed
time horizon. We construct a minimax-optimal test to discriminate different smoothness classes of
the underlying stochastic volatility process. In a high-frequency framework we prove weak conver-
gence of the test statistic under the hypothesis to an extreme value distribution. As a key example,
under extremely mild smoothness assumptions on the stochastic volatility we thereby derive a con-
sistent test for volatility jumps. A simulation study demonstrates the practical value in finite-sample
applications.

AMS 2000 subject classifications: Primary 62M10; secondary 62G10.
JEL classification: Primary C12; secondary C14.
Keywords and phrases: high-frequency data, nonparametric change-point test, minimax-optimal
test, stochastic volatility, volatility jumps.

1. Introduction

Change-point theory classically focuses on detecting one or several structural breaks in the trend of
time series. Statistical methods to infer change-points have a long and rich history, dating back to the
pioneering work of Page (1955). Prominent approaches as e.g. by Hinkley (1971), Pettitt (1980), An-
drews (1993) or Bai and Perron (1998), among many others, provide statistical tests for the hypothesis
of no change-point against the alternative that changes occur. Moreover, they allow for localization of
change-points (estimation) and confidence intervals. Change-point methods usually rely on maximum
statistics and exploit limit theorems from extreme value theory; see Csörgő and Horváth (1997) for
an overview. Less focus has been laid on discriminating jumps from continuous motion in a nonpara-
metric framework. Important exceptions are Müller (1992), Müller and Stadtmüller (1999), Spokoiny
(1998) and Wu and Zhao (2007) in the framework of nonparametric regression analysis. The latter
serves as an important point of orientation for this work.

Statistics of high-frequency data is concerned with discretizations of continuous-time stochastic
processes, most generally Itô semi-martingales. The continuous part of an Itô semi-martingale is of
the form

Xt = X0 +

∫ t

0
as ds+

∫ t

0
σs dWs , (1)

defined on a filtered probability space (Ω,F , (Ft),P) with a standard (Ft)-Brownian motion W and
adapted drift and volatility processes a and σ. One key topic is statistical inference on the volatility
∗Financial support from the Deutsche Forschungsgemeinschaft via SFB 649 Ökonomisches Risiko and FOR 1735 Struc-

tural Inference in Statistics: Adaptation and Efficiency is gratefully acknowledged.
†We thank Marc Hoffmann for helpful remarks on testing hypotheses of smoothness classes.
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FIGURE 1. Log-price intra-day evolutions (top) and estimated spot squared volatilities (bottom) for MMM (left) and GE
(right) on March 18th, 2009.

under high-frequency asymptotics when the mesh of a discretization on a fixed time horizon tends to
zero. There is a vast body of works related to this problem and its economic implications; see e.g. An-
dersen and Bollerslev (1998), Mykland and Zhang (2009) and Jacod and Rosenbaum (2013), among
many others. Statistics for a discretized continuous-time martingale is closely related to Gaussian cal-
culus as highlighted by Mykland (2012) what is also at the heart of our analysis. Many contributions
evolve around the question if jumps are present in the Itô semi-martingale modeling the log-price of a
financial asset; see Aı̈t-Sahalia and Jacod (2009) for a statistical test.

A more involved problem which is of key interest for economics and finance is to infer the smooth-
ness of the underlying stochastic volatility process and to check whether volatility jumps occur. In
particular, inference on volatility jumps allows to investigate the impact of certain news arrivals on fi-
nancial risk. A first empirical study by Tauchen and Todorov (2011) indicates that volatility jumps can
occur but, due to the lack of statistical methods, has been based on direct observations of the VIX, the
most prominent available volatility index. Further contributions consider joint price-volatility jumps.
Jacod and Todorov (2010) have designed a test to decide from high-frequency observations if contem-
poraneous jumps of an Itô semi-martingale and its volatility process have taken place at least once over
some fixed time interval. These methods do not generalize to test directly for volatility jumps without
restricting to a finite set of large price adjustments first. One main profit from our change-point analy-
sis of high-frequency data is a general test for volatility jumps. Moreover, results on estimation of the
time of a volatility jump are provided.

As an example, we illustrate in Figure 1 the evolution of log-prices of two blue-chip stocks, 3M and
GE, over the NASDAQ intra-day trading period (6.5 h rescaled to the unit interval) on March 18th,
2009. We consider one minute returns from executed trades1 to ensure the semi-martingale model
is adequate and limit a manipulation by market microstructure frictions. Available tests and criteria

1reconstructed from the order book using LOBSTER, https://lobster.wiwi.hu-berlin.de/

https://lobster.wiwi.hu-berlin.de/
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do not identify price adjustments so large to be ascribed to jumps such that the test by Jacod and
Todorov (2010) is not applicable. It seems as if a common source of news drives price dynamics at
the end of that day concertedly. The picture becomes much clearer when focusing on the estimated
spot squared volatilities in Figure 1, for which we average at each time point the previous 20 rescaled
squared returns. This example suggests that volatility dynamics vary over time. Here, the volatilities
of both assets sky-rocket at exactly the same time. This common volatility jump exactly coincides
in time with a press release at 02:15 p.m. EST subsequent to a meeting of the Federal Open Market
Committee. The time is marked in Figure 1 by the dashed lines. In light of increasing economic slack,
the FOMC announced “to employ all available tools to promote economic recovery and to preserve
price stability”2, including a guarantee for an exceptionally low level of the federal funds rate for an
extended period and a considerable increase of the size of the Federal Reserve’s balance sheet. The
mathematical concepts developed in this work provide a novel device for assessing volatility dynamics
and jumps.

Quasi-likelihood estimation of a change-point in a diffusion parameter in a high-frequency setting
has been considered by Iacus and Yoshida (2012), pointing out already one very useful bridge between
change-point theory and high-frequency statistics. Our main focus is on testing for the presence of
changes in a general setup exploiting localization techniques. Beyond the analysis of possible jumps
of volatility there is great interest in the smoothness regularity of volatilities; see e.g. Gatheral et al.
(2014) for a recent work, not least because of its crucial role for setting up volatility models.

We focus on volatilities which are almost surely locally bounded and strictly positive adapted pro-
cesses. For our testing problem we consider classes of squared volatilities

Σ(a, L) =
{

(σ2
t (ω))t∈[0,1]

∣∣ sup
s,t∈[0,1],|s−t|<δ

∣∣σ2
t (ω)− σ2

s(ω)
∣∣ ≤ L(ω)δa

}
, (2)

for an almost surely bounded random variable L; cf. Assumption 3.1 for a precise statement about the
conditions under the null hypothesis. The regularity exponent a > 0 is the key parameter to describe
the null hypothesis H0. We may now more formally ask the following questions:

(i) Is there a jump in the volatility, i.e. ∆σ2
θ =

(
σ2
θ − lims↑θ σ

2
s

)
> 0 for some θ ∈ (0, 1)?

(ii) Does volatility get rougher in the sense of a regularity exponent a′ < a on (θ, 1]?
(iii) Can we discriminate different regularity exponents by a statistical test?

From a statistical perspective, the key question is which sizes of volatility jumps or which changes
in the regularity exponent can be detected. For example, it is clear that we cannot detect jumps of
arbitrarily small size. Loosely speaking, if we say that ‘no jump’ is our null hypothesis H0, and ‘there
is a jump’ our alternative H1, then we face the problem of distinguishability between H0 and H1. The
minimum size bn of a jump ∆σ2

θ , such that we are still able to uniformly control the type I and type II
errors, is called detection boundary. If we are interested to test for the presence of jumps, we are thus
led to consider for θ ∈ (0, 1) alternatives of the form

SJθ (a, bn, L) =

{
(vt)t∈[0,1]

∣∣(vt −∆vt)t∈[0,1] ∈ Σ(a, L) ; |∆vθ| ≥ bn
}

(3)

with a decreasing sequence bn. We then address the testing problem

H0 : (σ2
t (ω))t∈[0,1] ∈ Σ(a, L) vs. H1 : ∃ θ ∈ (0, 1) with (σ2

t (ω))t∈[0,1] ∈ SJθ (a, bn, L) . (4)

2source: www.federalreserve.gov/monetarypolicy/fomcminutes20090318.htm

www.federalreserve.gov/monetarypolicy/fomcminutes20090318.htm
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In this context θ is commonly referred to as a change-point. The test alternative means that we demand
at least one jump but do not exclude multiple jumps. The dependence on ω in (4) is natural in the
definition of the hypotheses, as different realizations might lead to different paths on [0, 1].

For the testing problem (4), we establish the minimax-optimal rate of convergence under high-
frequency asymptotics. We follow the notion of minimax-optimality of statistical tests from the semi-
nal contributions of Ingster (1993). For tests ψ that map a sample Xn to zero or one, where ψ accepts
the null-hypothesis H0 if ψ = 0 and rejects if ψ = 1, we consider the maximal type I error αψ

(
a
)

=
supσ2∈Σ(a,L) Pσ

(
ψ = 1

)
and the maximal type II error βψ

(
a, bn

)
= supσ2∈SJθ (a,bn,L) Pσ

(
ψ = 0

)
and

define the global testing error as

γψ
(
a, bn

)
= αψ

(
a
)

+ βψ
(
a, bn

)
. (5)

The primary interest now lies on tests that minimize γψ
(
a, bn

)
, given the boundary bn. We aim to find

sequences of tests ψn and boundaries bn with the property that

γψn
(
a, bn

)
→ 0 as n→∞.

The smaller bn > 0, the harder it is for a test to control the global testing error, i.e. to distinguish
between H0 and H1. It is thus natural to pose the question given a, what is the minimal size of bn > 0
such that

lim
n→∞

inf
ψ
γψ
(
a, bn

)
= 0 (6)

holds? The optimal boptn is called minimax distinguishable boundary, and a test ψn that satisfies (6)
for all bn ≥ bopt

n minimax-optimal.
If L in (2) is deterministic, we prove that bn ∝ (n/ log(n))

−a
2a+1 constitutes the minimax distin-

guishable boundary for testing (4) and our constructed test is eligible to attain minimax-optimality. If
L(ω) is only almost surely bounded, the rate sightly changes; see Section 4 for precise results. The
particular form of this (lower) bound also appears in Spokoiny (1998), where the focus lies on non-
parametric estimation of regression functions in the presence of jumps and where the jump size does
not depend on n, see also Loader (1996). Yet, this estimation setup is very different from our situation.

For the lower bound proof we simplify the problem by information-theoretic reductions passing to
more informative sub-classes of the parameter space. The lower bound established for the sub-class
then serves a fortiori as a lower bound in the more general and less informative model. After gradually
transforming the problem by showing strong Le Cam equivalences of the considered sub-experiment
to more common situations with i.i.d. chi-square and Gaussian variables, the lower bound is proved
by classical arguments based on the theory in Ingster and Suslina (2003).

Here we have outlined the theory with the focus on (4) and question (i). Moreover, we shall consider
minimax-optimal tests to address questions (ii) and (iii). In the process, we may keep to a change-point
setup with possible changes of the regularity exponent. However, the developed methods allow as well
for tests of certain (global) smoothness regularities of the squared volatility.

The paper is organized as follows: Section 2 serves as an illustration for the benefit of cusum-based
statistics in the simple, yet important model of a continuous Itô semimartingale with constant volatil-
ity. This illuminates the connection of classical change-point methods and high-frequency statistics.
More involved, but also more important in practice is the case where the volatility is both time-varying
and random. Section 3 is devoted to this nonparametric problem. As the volatility process is latent,
which requires estimation based on smoothed squared increments of the semi-martingale, this poses
an intricate statistical problem which to the best of the authors’ knowledge had not been addressed
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so far. We establish a consistent test and derive a limit theorem under the hypothesis. The asymptotic
analysis utilizes nonparametric change-point theory, stochastic calculus and bounds on the approxima-
tion error in the invariance principle. Our test allows to distinguish paths with jumps from continuous
paths under remarkably general smoothness assumptions on the hypothesis. In Section 3.2 we discuss
the situation in which the underlying Itô semimartingale might have jumps as well. Section 4 provides
the theory on minimax-optimality with the lower bound, while Section 5 deals with the estimation of
the location of the change in volatility under the alternative. A simulation study that investigates the
finite-sample performance of the proposed methods and discusses some practical issues can be found
in Section 6. All proofs are postponed to the Appendix.

2. Change-points in a parametric volatility model

Arguably, the simplest model of a continuous-time Itô diffusionX is the case of no drift and a constant
volatility, such that X is given by

Xt = X0 +

∫ t

0
σ dWs , (7)

where W denotes a standard Brownian motion. Throughout this work, the underlying process X is
recorded at discrete regular times i∆n with a mesh ∆n → 0. To keep the notation uncluttered, we
assume to be on the fixed time interval [0, 1] and set n = ∆−1

n ∈ N, so that we have observations
Xi∆n , i = 0, . . . , n.

Inference on the squared volatility σ2 is usually based on increments ∆n
i X = Xi∆n −X(i−1)∆n

.
In case one is interested in changes in the volatility, a natural quantity to discuss is the cusum statistic
which reads

Sn,m =
1√
n

m∑
i=1

(
n
(
∆n
i X
)2 − n∑

j=1

(
∆n
jX
)2)

,m ∈ {1, . . . , n} . (8)

In order to derive the asymptotics of the cusum statistic, recall the functional (stable) central limit
theorem for the realized volatility from observations of a continuous Itô semi-martingale (1) by Jacod
(1997). Under mild assumptions, we have

√
n

( bntc∑
i=1

(
∆n
i X
)2 − ∫ t

0
σ2
s ds

)
→
∫ t

0

√
2σ2

s dBs , t ∈ [0, 1] , (9)

as n→∞ weakly in the Skorokhod space with a standard Brownian motion B independent of W . In
particular, if σs = σ is constant, this result directly implies

Sn,bntc → γ
(
Bt − tB1

)
, (10)

with γ2 = limn→∞ nVar
(∑n

i=1

(
∆n
i X
)2)

= 2σ4, which coincides with a standard cusum limit
theorem in the vein of Phillips (1987). The quarticity estimator by Barndorff-Nielsen and Shephard
(2002), γ̂2 = (2n/3)

∑n
i=1

(
∆n
i X
)4, may be used to obtain a self-normalizing version:(

2n

3

n∑
i=1

(
∆n
i X
)4)−1/2

Sn,bntc → Bt − tB1 , (11)
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FIGURE 2. Left: One realized path of X with structural break in volatility at t = 1/2. Right: Empirical results for the test
statistic from 10000 iterations under both alternative and hypothesis.

where the limit process is a standard Brownian bridge. Testing for jumps (resp. structural breaks,
change-points) of the volatility is then pursued based on

Tn = sup
m=1,...,n

∣∣∣(γ̂2
)−1/2

Sn,m

∣∣∣ , (12)

as the test statistic which (under the null that the volatility is constant) tends as n → ∞ to a
Kolmogorov-Smirnov law; see Marsaglia et al. (2003). Under the alternative Tn diverges almost
surely.

Figure 2 shows an example in which we observe n = 10000 values of a standard Brownian motion
under the hypothesis, while under the alternative the volatility jumps in t = 1/2 from 1 to 1.1. Out
of 10000 Monte Carlo iterations for hypothesis and alternative, only 21 realizations of (12) under the
hypothesis are larger than the minimum under the alternative. The other way round, in 11 iterations
the values under the alternative fall below the maximum of the generated values from the hypothesis.
The cusum approach hence clearly allows to separate hypothesis and alternative here, even for the
relatively small volatility jump which is not readily identifiable from the path of X in Figure 2.

This is illustrated within the histogram in Figure 2. The left part stems from realizations under the
hypothesis which closely track the asymptotic Kolmogorov-Smirnov law. The right part instead is due
to realizations under the alternative. For larger volatility jumps the right part moves further to the right
such that the two distributions separate even more clearly. This test based on (12) of Kolmogorov-
Smirnov type permits to test the hypothesis of a constant volatility against structural breaks in an
efficient way.

Beyond this bridging of classical change-point analysis and structural breaks in a parametric volatil-
ity model, our main focus in the sequel is nonparametric: to distinguish volatility jumps from a con-
tinuous motion of volatility or to identify changes in the regularity exponent.
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3. Nonparametric change-point test for the volatility

3.1. Construction and limit behavior under the hypothesis

Suppose we observe a continuous Itô semi-martingale (1) at the regular times i∆n, i = 0, . . . , n ∈ N.
In this setting, we want to construct a test for (4). We write shortly{

ω|(σ2
t (ω))t∈[0,1] ∈ Σ(a, L)

}
= Ωc . (13)

With the volatility process being time-varying, it becomes apparent from (9) that the test statistic (12)
is not suitable to test H0 against H1. Our core idea is to utilize local two-sample t-tests over asymp-
totically small time blocks instead, thereby identifying breaks where segments are not smooth, in
particular jumps, from too large deviations between two successive local estimators for the volatility.

As a first test statistic, we consider

Vn = max
i=0,...,bn/knc−2

|Xn,i/Xn,i+1 − 1|, (14)

where kn →∞ is an auxiliary sequence of integers depending on n and

Xn,i =
n

kn

kn∑
j=1

(∆n
ikn+jX)2 , i = 0, . . . , bn/knc − 1 , (15)

is a rescaled local version of realized volatility over blocks of the partition [ikn∆n, (i + 1)kn∆n].
The Xn,i estimate a block-wise constant proxy of the spot volatility σikn∆n on the respective blocks.
Asymptotic properties of Xn,i were e.g. derived in Alvarez et al. (2012). As mentioned above, a large
distance betweenXn,i andXn,i+1 suggests the presence of a jump or unsmooth breaks in the volatility
close to time ikn∆n, which is why Vn appears to be a reasonable test statistic for our problem.

Our second test statistic is of the same nature as (14), but instead of non-overlapping blocks it takes
into account all overlapping blocks of kn increments:

V ∗n = max
i=kn,...,n−kn

∣∣∣∣∣
n
kn

∑i
j=i−kn+1(∆n

jX)2

n
kn

∑i+kn
j=i+1(∆n

jX)2
− 1

∣∣∣∣∣ . (16)

In comparison to nonparametric change-point approaches like the one by Wu and Zhao (2007), both
statistics (14) and (16) are based on ratios rather than differences. This makes sense intuitively, since
we are not dealing with the typical additive error structure of time series models. In our setting,
we have e.g. n(∆n

i X)2 ≈ σ2
i∆n

χ2
i , i = 1, . . . , n, with i.i.d. χ2

1-distributed random variables χ2
i , so

that the volatility σ plays the role of a multiplicative error. Therefore, by computing ratios first, we
basically deal with a maximum of identically distributed variables in the asymptotics. This is of key
importance to obtain a distribution free limit under the hypothesis.

In order to discuss the asymptotics of Vn and V ∗n under the null-hypothesis we need a couple of
additional assumptions, all of which are rather mild and are covered by a variety of stochastic volatility
models.

Assumption 3.1. The following assumptions on the processes a and σ are in order:

(1) a and σ are locally bounded processes.
(2) σ is almost surely strictly positive, i.e. inft∈[0,1] σ

2
t ≥ σ2

− > 0.
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(3) On Ωc, the modulus of continuity

wδ(σ)t = sup
s,r≤t
{|σs − σr| : |s− r| < δ}

is locally bounded in the sense that there exists a > 0 and a sequence of stopping times Tn →∞
such that wδ(σ)(Tn∧1) ≤ Lnδa, for some a > 0 and some (a.s. finite) random variables Ln.

We choose the sequence kn →∞, as n→∞, such that the following growth condition holds:

k−1
n ∆−εn +

√
kn(kn∆n)a

√
log(n)→ 0 , (17)

for some ε > 0 and with a > 0 from Assumption 3.1 (3).
There are two conditions contained in (17). First, kn →∞ faster than some power of n which is a

mild lower bound on the growth of kn as n→∞. The second condition gives an upper bound related
to the continuity of σ, since a equals the Hölder index for an a-Hölder smooth volatility. Naturally,
the smaller a (and the less smooth σ), the smaller we have to choose the size of the blocks over which
we estimate σ.

Theorem 3.2. Set mn = bn/knc and γmn = [4 log(mn) − 2 log(log(mn))]1/2. If Assumption 3.1
holds and kn satisfies condition (17), then we have on Ωc (under H0)√

log(mn)
((
k1/2
n /
√

2
)
Vn − γmn

) w−→ V, (18)√
log(mn)

(
k1/2
n /
√

2
)
V ∗n − 2 log (mn)− 1

2
log log (mn)− log (3)

w−→ V, (19)

where V follows an extreme value distribution with distribution function

P(V ≤ x) = exp(−π−1/2 exp(−x)) . (20)

Remark 3.3. It is remarkable that Theorem 3.2 in combination with condition (17) allows asymptot-
ically to distinguish between volatility paths with jumps and volatility paths without jumps, where we
only require some granted smoothness a > 0 in Assumption 3.1 (3). Note that less smooth paths re-
quire smaller block lengths kn by (17) which reduces the rate in Theorem 3.2 and the power of the test.
Most importantly, we can cope with standard models for σ. For a continuous semi-martingale volatil-
ity, we have a ≈ 1/2. In this case, we take kn ∝ n1/2−ε for ε > 0 and ε small to preserve the highest
possible power. Similarly, for a Lipschitz volatility, i.e. a = 1, one might choose kn ∝ n2/3−ε.

As we show in Theorem 4.3 that V ∗n and Vn diverge under the alternative almost surely, Theorem
3.2 provides a consistent test with asymptotic power 1 by critical values from the limit law under the
hypothesis.

3.2. A test in presence of jumps in the observed process

In order to provide a valid approach for various economic applications an important aim is to account
for possible jumps in the process X as well. Thereto, consider a general Itô semi-martingale

Xt = X0 +

∫ t

0
as ds+

∫ t

0
σs dWs +

∫ t

0

∫
R

κ(δ(s, x))(µ− ν)(ds, dx) (21)

+

∫ t

0

∫
R

κ̄(δ(s, x))µ(ds, dx) ,
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where a truncation function κ, κ̄(x) = x− κ(x), separates large from compensated small jumps. The
compensating intensity measure ν of the Poisson random measure µ admits the form ν(ds, dx) =
ds⊗ λ(dx) for a σ-finite measure λ. Our notation follows Jacod (2008).

Assumption 3.4. Grant Assumption 3.1 for the continuous part of X . Suppose supω,x |δ(s, x)|/γ(x)
is locally bounded for some deterministic non-negative function γ which satisfies for some r < 2:∫

R

(1 ∧ γr(x))λ(dx) <∞ . (22)

In condition (22), r is a jump activity index that bounds the path-wise generalized Blumenthal-
Getoor index from above. Imposing r < 1 restricts to jumps of finite variation and r = 0 to finite jump
activity. To develop test statistics which are robust against jumps we employ a truncation principle as
introduced for integrated volatility estimation by Mancini (2009) and Jacod (2008). The analogue of
(14) with truncated squared increments reads

Vn,un = max
i=0,...,bn/knc−2

|Xn,un,i/Xn,un,i+1 − 1|, (23)

Xn,un,i =
n

kn

kn∑
j=1

(∆n
ikn+jX)2

1{|∆n
ikn+jX|≤un} , i = 0, . . . , bn/knc − 1 . (24)

The truncation sequence un ∝ n−τ , τ ∈ (0, 1/2), is used to exclude large squared increments which
can be ascribed to jumps. In the same way we can generalize statistic (16) with overlapping blocks:

V ∗n,un = max
i=kn,...,n−kn

∣∣∣∣∣
n
kn

∑i
j=i−kn+1(∆n

jX)2
1{|∆n

jX|≤un}
n
kn

∑i+kn
j=i+1(∆n

jX)21{|∆n
jX|≤un}

− 1

∣∣∣∣∣ . (25)

We prove below that truncation is an appropriate concept to asymptotically eliminate the influence by
jumps, at least under certain restrictions on the jump activity, on kn and on τ . In particular, under the
hypothesis we obtain the same limit behaviour of the test statistics as in Theorem 3.2.

Proposition 3.5. Suppose kn ∝ nβ for 0 < β < 1, such that condition (17) is satisfied. Furthermore,
grant Assumption 3.4 for some

r < min
(

2
(
2− τ−1(1− β/2)

)
,
(
τ−1 min(1/2, 1− β)

)
,
(
2− τ−1β/2

))
(26)

as well. Then, with mn = bn/knc and γmn = [4 log(mn) − 2 log(log(mn))]1/2 as before, and if
either r = 0 or the jump process is a time-inhomogeneous Lévy process, we have on Ωc (under H0)
for the statistics (23) and (25) the weak convergence√

log(mn)
((
k1/2
n /
√

2
)
Vn,un − γmn

) w−→ V, (27)√
log(mn)

(
k1/2
n /
√

2
)
V ∗n,un − 2 log (mn)− 1

2
log log (mn)− log (3)

w−→ V, (28)

where V is distributed according to (20).

Remark 3.6. Arguably, it is most relevant from an applied perspective that the test based on (25) copes
with finite activity jumps. In this case (26) reads as τ > 1/2 − β/4, and the only requirement is that
the threshold is not chosen too small. Beyond the finite activity case we restrict to time-inhomogenous
Lévy jumps with independent increments where condition (26) becomes r < 1 for the typical case
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β ≈ 1/2 and τ ≈ 1/2. When τ ≈ 1/2 the third term in (26) is obsolete and the two others are
equally weighted in case that β ≈ 1/2. Thus, for other choices of β one makes (26) more restrictive,
e.g. r < 2/3 for β ≈ 2/3 under a Lipschitz volatility. The restrictions on the jump activity are
stronger than what is usually needed for truncated realized volatility, i.e. r < 1 for general Itô semi-
martingales; cf. Jacod (2008). This is due to the maximum in (25) compared to linear estimators.

4. Consistency and minimax-optimal rate of convergence

In this section it becomes important that stochastic squared volatility processes lie under H0 in
Σ(a, Ln), defined in (2), where we take into account strictly positive monotone increasing sequences
Ln. This is crucial as we cannot describe the random processes as members of a fixed Hölder class. If
σ2
t satisfies

E
[
|σ2
t − σ2

s |b
]
≤ C

∣∣t− s∣∣C+ba for some b, C > 1,

then the Kolmogorov-C̆entsov Theorem implies that limn→∞ P
(
(σ2
t )0≤t≤1 ∈ Σ(a, Ln)

)
= 1, pro-

vided Ln →∞ arbitrarily slowly. Hence, up to a negligible set, Σ(a, Ln) contains the paths generated
by a huge number of popular volatility models when considering Ln →∞. On the other hand, if L is
fixed, we are in the familiar framework of Hölder classes.

At this stage, we integrate alternatives where the volatility is less smooth than under the hypothesis,
but which require not necessarily jumps. Note that the statistical devices developed above may be
applied to discriminate H0 from two kind of alternatives without jumps:

(R1) Until some change-point θ ∈ (0, 1), the process (σ2
t∧θ) behaves as a process in Σ(a, Ln). After

θ, the regularity exponent drops to some 0 < a′ < a. Since Σ
(
a, L

)
⊂ Σ

(
a′, L

)
, we require

functions that ‘exploit their roughness’ in a certain sense; see below for a more detailed expla-
nation. This change in the regularity exponent at time θ embeds into change-point theory. More
precisely, we test the null of no change in regularity a against a change at θ, where a drops to
a′.

(R2) Under H0 the regularity exponent is a, and we would like to validate this hypothesis against the
alternative hypothesis where the regularity is a′ < a. Processes in the alternative set may be
smoother on parts of the interval, but we require that they ‘exploit their roughness’ somewhere
on [0, 1], such that in particular (σ2

t )t∈[0,1] 6∈ Σ
(
a, L

)
.

Though different, both problems are intimately connected. In fact, we demonstrate in the sequel that
the same statistic can be applied to reach the optimal minimax rate. We also use the notation R1/2 to
address both alternatives. To describe the alternative sets, define

∆a′
h ft =

ft+h − ft
|h|a′

, t ∈ [0, 1], h ∈ [−1, 1].

The terminology ‘exploiting roughness’ is specified and captured in the following sets. We then ex-
press the set of possible alternatives for testing for a change in the regularity exponent:

SR1
θ

(
a, a′, bn, Ln, C

)
=
{(
vt∧θ

)
t∈[0,1]

∈ Σ(a, Ln)
∣∣ inf
0≤h≤b1/an

∆a′
h vθ > C or sup

0≤h≤b1/an

∆a′
h vθ < −C

}
,

for some C > 0. If we want to test for regularity a in σ2
t against a′ < a, the set in question is slightly

different:

SR2
θ

(
a, a′, bn, Ln, C

)
=
{(
vt
)
t∈[0,1]

∈ Σ(a′, Ln)
∣∣ inf
|h|≤b1/an

∆a′
h vθ > C or sup

|h|≤b1/an

∆a′
h vθ < −C

}
.
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In contrast to SR1
θ , volatilities in SR2

θ need not to have regularity a up to a change-point. On the other
hand, it is crucial that we pose a condition on a centered window around θ here. We integrate both
alternatives in the testing problem

H0 : (σ2
t (ω))t∈[0,1] ∈ Σ(a, Ln) vs. HR1/2

1 : ∃ θ ∈ (0, 1) |(σ2
t (ω))t∈[0,1] ∈ SR1/2

θ

(
a, a′, bn, Ln, C

)
. (29)

Let us elaborate on the specific form of the alternative sets. In general, it is impossible to test Σ(a, Ln)
against Σ(a′, Ln) for a > a′, and it is necessary to consider special subsets of Σ(a′, Ln). Intuitively,
it is clear that one needs at least to remove Σ(a, Ln) from Σ(a′, Ln), but this is not sufficient. In fact,
one needs to focus on the functions which exploit their roughness in the sense of the conditions in
SR1/2
θ ; cf. Hoffmann and Nickl (2011) for a detailed discussion in a related context. Geometrically,

this means that the functions of interest are those which fluctuate considerably more, induced by
demanding a′ < a. However, as the sample size n grows, we only require this difference on sets that
become smaller and smaller, which is expressed above in terms of bn. Observe that for appropriate
C > 0, for any θ ∈ (0, 1) we have

{
SR1/2
θ

(
a, a′, bn, Ln, C

)
∩ Σ(a′, Ln)

}
⊆
{

(vt)t∈[0,1] ∈ Σ(a′, Ln)
∣∣ inf
σ2∈Σ(a,Ln)

sup
t∈[0,1]

|vt − σ2
t | ≥ bn

}
,

where the right hand set has been used as alternative in Hoffmann and Nickl (2011). For the testing
problem at hand, which is more complicated, this slightly larger set appears to be a too large alterna-
tive.
For the testing problems (4) and (29), we first present a negative result, that also serves as minimax
lower bound for the problem depicted in (6).

Theorem 4.1. Assume that a > a′ > 0 and inft σ
2
t ≥ σ2

− > 0. Consider either set of hypotheses{
H0, H

J
1

}
or
{
H0, H

R1
1

}
or
{
H0, H

R2
1

}
. Then for

bn ≤
(
n/ log(mn)

)− a
2a+1

(
Lnσ

4
−
) 1

2a+1 , (30)

we have in all three cases limn→∞ infψ γψ
(
a, bn

)
= 1.

Remark 4.2. Observe that for (29), the lower bound does not depend on the value of a′, only the fact
that a′ < a is relevant. This is an asymptotic result though, and in practice the size of the difference
(a− a′) may have a significant impact.

Theorem 4.1 reveals that it is impossible to construct a minimax-optimal test in the sense of (6) if
bn is bounded as in (30). Consequently, we deduce that

bopt
n ≥

(
n/ log(mn)

)− a
2a+1

(
Lnσ

4
−
) 1

2a+1 . (31)

In Theorem 4.3 we shall establish a corresponding upper bound up to a multiplicative constant, and
thus (31) already gives the optimal rate for the minimax distinguishable boundary. Observe that based
on V ∗n from (16), we can obtain the following test ψ�.

ψ�
(
(Xi∆n)0≤i≤n

)
: reject H0 if V ∗n ≥ 2C�

√
2 log(m�n)/k�n, i.e. ψ�

(
(Xi∆n)0≤i≤n

)
= 1, (32)

where C� > 2 and k�n =
(√

log(m�n)na/Ln
) 2

2a+1 , m�n = bn/k�nc. (33)

Alternatively, one might base a test on Vn from (14).



Bibinger, Jirak, Vetter/Nonparametric change-point analysis of volatility 12

To simplify the discussion, we restrict to positive volatility jumps, i.e. inft ∆σt ≥ 0, which appears
natural from an economic point of view. We point out that an analogue result can be shown for neg-
ative, or positive and negative jumps, which however requires a further technical structural condition
in case of multiple jumps in a vicinity for the alternative set.

Theorem 4.3. Consider (4) with inft ∆σt ≥ 0, or (29) with 0 < a′ < a ≤ 1 andLn = O
(
(n/k�n)a−a

′)
.

If

b�n >
(

2C�
√

2 log(m�n)/k�n + 2Ln (k�n∆n)a
)

sup
t∈[0,1]

σ2
t , (34)

where k�n, m�n and C� are as in (33), then limn→∞ γψ�
(
a, b�n

)
= 0. This implies that

bopt
n ∝

(
n/ log(n)

)− a
2a+1L1/(2a+1)

n .

Remark 4.4. If L defined in (2) is deterministic, we get the minimax distinguishable boundary bn ∝
(n/ log(n))

−a
2a+1 .

5. Estimating the change-point

Once one has opted to reject the null hypothesis of no jump or break, the actual locations of jumps
become of interest for further inference. This location problem has been extensively discussed in the
literature in different frameworks; see for instance Csörgő and Horváth (1997) and Müller (1992).
Here we develop a similar approach as in Aue et al. (2009). For the further analysis, we restrict
ourselves to the ‘one change-point alternative’ involving a jump in the volatility, i.e. we specify the
alternative hypothesis H∗1 as

H∗1 :
∣∣σθ − σθ−∣∣ =: δ for a unique θ ∈ (0, 1).

To assess the possible time of change, we use slightly modified versions of the building blocks of the
test statistic V ∗n from (16), defined as

V �n,i =
1√
kn

∣∣∣∣ i∑
j=i−kn+1

n(∆n
jX)2 −

i+kn∑
j=i+1

n(∆n
jX)2

∣∣∣∣ ,
for i = kn, . . . , n − kn, and V �n,i = 0 else. In contrast to the construction of V ∗n , we may employ a
simpler unweighted version. One can also consider the rescaled versions as in V ∗n , and the theoretical
properties of these estimators coincide. The possible time of change is then estimated via

nθ̂n = argmaxi=kn,...,n−kn V
�
n,i . (35)

The following proposition establishes quantitative bounds for the quality of estimation.

Proposition 5.1. Assume that the assumptions of Theorem 3.2 hold and that H∗1 is valid. Then, for
δ ≥ 2k

−1/2
n

√
log(n) supt∈[0,1] σ

2
t , we have that

∣∣θ̂n − θ∣∣ = OP

(√
kn log(n)

nδ

)
.
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Remark 5.2. The estimator θ̂n is consistent as long as
√
kn log(n)/(nδ) = O

(
1
)
. Note that jump

sizes δ dependent on n may be considered, with δ = δn → 0 as n increases. If δ does not tend to
zero, the condition on δ in the proposition is always satisfied. The estimator extends to jumps of X
using truncation as in (25), and Proposition 5.1 then applies to the generalized estimator under the
assumptions of Proposition 3.5.

Obviously, the quality of the estimator θ̂n depends on the bandwidth kn, and the smaller, the better.
This is the complete opposite case compared to the test based on statistic V ∗n , where a larger choice
of kn increases the power. This is no contradiction, since both problems have a different, essentially
reciprocal nature. Also note that kn cannot be chosen arbitrarily small; see condition (17).
While classical estimators as the argmax of statistic (8) attain a standard

√
n-rate, corresponding to

kn ≈ n, our nonparametric localization approach readily facilitates improved convergence rates as
known for state-of-the-art change-point estimators. The following proposition sheds light on optimal
convergence rates for the estimation problem.

Proposition 5.3. On the assumptions of Proposition 5.1 for kn ∝
(√

log(n)na
) 2

2a+1 , a consistent
estimator for θ does not exist in the case that

√
knδn = O

(√
log(n)

)
.

6. Simulations

We examine finite-sample properties of the proposed methods in a simulation study. First, consider
n = 10000 observations at regular times of (1) with deterministic volatility function

σt = 1− 0.01 sin
(

3
16π t), t ∈ [0, 1] , (36)

with start value X0 = 4 and with constant drift a = 0.1. We analyze the performance of the test with
overlapping blocks based on test statistic V ∗n from (16) by simulating this model as hypothesis and
add one jump of size 0.2 at fixed time t = 0.425 to σt as one specific alternative. Shifting the time of
the volatility jump does not affect the results substantially. Also, alternatives with a rough but smooth
movement of the same range result in similar effects.

The function (36) mimics a realistic volatility shape with strong decrease after opening and slight
increase before closing and poses an intricate setup to discriminate jumps from continuous motion
based on the n = 10000 discrete recordings of X . We have taken a jump size under the alterna-
tive which equals the range of the continuous movement. This means, that under the alternative the
volatility jumps back at t = 0.425 to its maximum start value. This is in line with effects evoked
by surprise elements from macroeconomic news in the financial context; see for instance Figure 1.
Particularly, a decreasing continuous movement of volatility after opening (and slight U-shape) and a
positive volatility jump appear as a realistic setup to us.

We have implemented the methods for various block sizes kn, and all simulation results involve
5000 Monte Carlo iterations. We focus on V ∗n with overlapping blocks as it significantly outperforms
the test with non-overlapping blocks using (14). For k10000 = 500, Figure 3 confirms a high finite-
sample accuracy of the test. The empirical distribution under the hypothesis is remarkably close to
the theoretical limit distribution. Besides, the power for an 0.05-level test is almost 95%. The con-
figuration k10000 = 500 thus guarantees high power and a perfect fit by the limit theorem under the
hypothesis.

Minor modifications of kn do not change the results substantially. However, when we choose kn
much smaller, the power deteriorates. On the other hand, choosing kn much larger increases the power
close to 1 – but at the same time the fit by (19) becomes less accurate, as expected from condition (17).
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FIGURE 3. Top: Histograms of (16) for k10000 = 500 under hypothesis and alternative (right) and rescaled version
comparing left hand side and limit law of (19) (left); limit law density marked by solid line. Bottom: Empirical size (left)
and power (right) of the test by comparing empirical percentiles to ones of limit law under H0.

This is illustrated in Figure 4 for k10000 = 1000. As limit theorems with extreme value distributions
as limit laws are often imprecise in finite-sample applications, it is common practice in change-point
literature to apply bootstrap-procedures; see e.g. Wu and Zhao (2007). This could be done here as
well to access the law of (16) for larger kn under the hypothesis when the fit by the limit law from
(19) is not accurate. Such an approach allows to exploit that hypothesis and alternative separate even
more clearly (we attain higher power) for such values of kn.

In the sequel, we consider two further simulation experiments. In the first one, X additionally
comprises jumps. Precisely, for the volatility as above in (36) one jump of X at a uniformly drawn
jump arrival time is implemented for both the hypothesis and the alternative. Under the alternative X
additionally exhibits a common jump ofX and σ at t = 0.425. The jumps areN(0.5, 0.1) distributed.

In the third simulation experiment, a stochastic volatility model is considered. We choose

vt =

(∫ t

0
c · ρ dWs +

∫ t

0

√
1− ρ2 · c dW⊥s

)
· σt (37)
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FIGURE 4. Empirical size (left) and power (right) of the test by comparing empirical percentiles to ones of the limit law
under H0, k10000 = 1000.

with c = 0.1 and ρ = 0.5, where W⊥ is a standard Brownian motion independent of W and σt is the
deterministic Lipschitz function (36) from above. Here, the volatility vt takes the role of σt in (21) and
follows a deterministic seasonality function, but for each path a random motion around that function
is considered as well. The jumps are present in this experiment like in our second example.

In presence of jumps,X is of the form (21). Therefore, we apply the test statistic (25). For the trun-
cation sequence we set un = 2 log (n)n−1/2 ≈ 18.42 for n = 10000, motivated from extreme value
theory and the magnitude of the increments from the continuous motion. In all cases, we simulate
n = 10000 recordings and iterate 5000 Monte Carlo runs. Results for all three simulation scenarios
are summarized in Table 1, i.e. the empirical power and size of tests with significance levels 1%, 5%
and 10% are listed.

In all three experiments the power is very close to 1 for kn = 1000 and slightly lower for kn = 500.
The fit of the empirical distribution by the limit V in (20) under the hypothesis is highly accurate for
kn = 500 in all setups and slightly deteriorates when kn = 1000. Furthermore, the semi-martingale
component of volatility in the third experiment slightly reduces the performance in terms of empirical
power and size. Still, results are promising in view of the challenging model discriminating a volatility
described by a continuous Itô semi-martingale from one with a jump. Comparing with Figures 3 and 4,
we may conclude that there are basically no differences between the results for V ∗n from (16) applied
to a continuous semi-martingale and for V ∗n,un from (25) applied to a process with jumps.

We have investigated in simulations also the influence of the rescaling factor in (16) by local volatil-
ity estimates. Thereto, we have compared the estimator to an oracle version where we rescale in each
iteration with the generated volatility path. Surprisingly, the oracle version does not attain significant
higher power than the original test. For instance, in the random volatility experiment, the power of the
level 0.01 oracle test is 83.29% for kn = 500 and 96.90% for kn = 1000 and thus similar as listed for
the test in Table 1. The statistics supx |Fn(x)−F (x)|, with F the distribution function of V from (20)
and Fn the empirical distribution of realizations under the hypothesis, take values 0.1453 and 0.3702
for kn = 500, 1000, respectively, for the oracle test and 0.1527 and 0.5102 for the original test. This
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Scenario kn level 0.01 level 0.05 level 0.10

1 power 500 84.96 94.58 97.30

1 size 500 99.12 95.04 89.46

1 power 1000 99.08 99.96 99.98

1 size 1000 98.96 91.86 81.14

2 power 500 84.46 94.32 97.02

2 size 500 98.80 93.86 88.52

2 power 1000 99.10 99.88 100

2 size 1000 98.98 91.90 80.66

3 power 500 82.12 91.84 94.54

3 size 500 95.36 87.30 79.10

3 power 1000 97.08 99.18 99.64

3 size 1000 92.66 70.32 52.88
TABLE 1

Empirical size and power of tests in %, each time from 5000 Monte Carlo iterations. Theoretical asymptotic size is
(1− α)100 for level α and theoretical asymptotic power 100.

FIGURE 5. Running local statistics for data example, MMM (left) and GE (right).

indicates that the fit by the theoretical limit law is again just slightly more accurate for the oracle test.

Coming back to our introductory data example for intra-day prices on March 18th, 2009, we high-
light in Figure 5 the evolution of the local rescaled averages over 10 squared returns, namely the
numerator of the first term in the test statistic (16). The test rejects the null for both, 3M and GE with
p-values very close to zero. The point in time where the difference of adjacent statistics is maximized
estimates the timing of the structural change under the alternative. In both examples we find grid point
285 corresponding to 02:15 p.m. EST as estimated change-point.
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Appendix A: Proof of Theorem 3.2

First, we reduce the proof of Theorem 3.2 to Propositions A.1-A.5. The main part in the analysis of
Vn from (14) is to replace it by the statistic

Un = max
i=0,...,bn/knc−2

|Yn,i/Yn,i+1 − 1|, (38)

in which the original statistics Xn,i from (15) are approximated by

Yn,i =
n

kn

kn∑
j=1

σ2
ikn∆n

(∆n
ikn+jW )2. (39)

Up to different (random) factors in front, the maximum in Un is constructed from functionals of the
i.i.d. increments of Brownian motion, which helps a lot in the derivation of its asymptotic behaviour.
We start with a result on the approximation error due to replacing Vn by Un.

Proposition A.1. Suppose that we are under the null. If Assumption 3.1 and (17) hold, then we have√
log (n) kn

(
Vn − Un

) P−→ 0.

Recall that the variables Yn,i are not only computed over different intervals, but come with different
volatilities in front as well. In order to obtain a statistic which is independent of σ let us define

Ỹn,i =
n

kn

kn∑
j=1

σ2
(i−1)kn∆n

(∆n
ikn+jW )2, (40)

where the volatility factor is shifted in time now. Set then

Ũn = max
i=0,...,bn/knc−2

|Yn,i/Ỹn,i+1 − 1|. (41)

Proposition A.2. Suppose that we are under the null. If Assumption 3.1 and (17) hold, then we have√
log (n) kn

(
Un − Ũn

) P−→ 0.

In the final step, we replace Ỹn,i+1 in the denominator by its limit σ2
ikn∆n

. Set

Ṽn = max
i=0,...,bn/knc−2

∣∣∣Yn,i − Ỹn,i+1

σ2
ikn∆n

∣∣∣. (42)

Proposition A.3. Suppose that we are under the null. If condition (17) is satisfied, then we have√
log (n) kn

(
Ũn − Ṽn

) P−→ 0.

From Propositions A.1 to A.3 we have
√

log (n) kn
(
Vn − Ṽn

) P−→ 0, while

Ṽn = max
i=0,...,bn/knc−2

∣∣∣ 1

kn

kn∑
j=1

(
√
n∆n

ikn+jW )2 − 1

kn

kn∑
j=1

(
√
n∆n

(i+1)kn+jW )2
∣∣∣ . (43)

This statistic corresponds to the statistic Dn given in (13) of Wu and Zhao (2007); see as well Propo-
sition A.5. Precisely, after subtracting the mean on both sides above, their (Xk)1≤k≤n correspond to(
(
√
n∆n

kW )2)− 1
)

1≤k≤n, which forms an i.i.d sequence of shifted χ2
1-variables.

In the same fashion we can prove that the asymptotics of V ∗n in (16) can be traced back to the
statistics D∗n in (12) of Wu and Zhao (2007). See again also Proposition A.5.
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Proposition A.4. We have that
√

log (n) kn
(
V ∗n − Ṽ ∗n

) P−→ 0, with

Ṽ ∗n = max
i=kn,...,n−kn

∣∣∣ 1

kn

i+kn∑
j=i+1

(
(
√
n∆n

jW )2 − (
√
n∆n

j−knW )2
)∣∣∣ . (44)

Theorem 1 of Wu and Zhao (2007) establishes limit theorems of the form (18) and (19) under more
restrictive assertions on kn than (17), as they consider the behavior for a class of weakly dependent
random sequences (Xk)k≥1. The next proposition provides a more specific limit theorem tailored
to the asymptotic analysis of the statistics (43) and (44). In particular, instead of using the strong
approximation theory under weak dependence from Wu (2007) employed by Wu and Zhao (2007)
to prove their Theorem 1, we rely on classical bounds for the approximation error in the invariance
principle for i.i.d. variables with existing moments. This is applicable in a more general setup with
much smaller block lengths kn.

Proposition A.5. Consider a sequence (Xk)k∈N of i.i.d. random variables with Var
[
Xk

]
= ς2 and

E
[
|Xk|p

]
<∞ for some p ≥ 4. If

k−p/2n n = O
(
(log(n))−p/2

)
, (45)

then with mn = bn/knc the statistic

D∗n =
1

kn
max

kn≤i≤n−kn

∣∣∣∣ kn+i∑
j=i+1

Xj −
i∑

j=i−kn+1

Xj

∣∣∣∣.
obeys the weak convergence:√

log(mn)(k1/2
n ς−1)D∗n − 2 log (mn)− 1

2
log log(mn)− log 3

w−→ V ,

where V is distributed according to (20). The statistic

Dn = max
1≤i≤bn/knc−2

∣∣ kn∑
j=1

Xikn+j −X(i+1)kn+j

∣∣
using non-overlapping blocks satisfies under the same assumptions√

log(mn)
((
k1/2
n ς−1

)
Dn − [4 log(mn)− 2 log(log(mn))]1/2

) w−→ V .

As all moments of the χ2
1 distribution exist and kn is at least of polynomial growth in n, Proposition

A.5 applied to (43) and (44) implies Theorem 3.2. We start with the proof of Proposition A.5 and then
show by proving Propositions A.1-A.4 that the preliminary reductions are in order.

Proof of Proposition A.5. By a simple rescaling argument, we can restrict ourselves to the case
Var
[
Xk

]
= 1. The Donsker-Prokhorov invariance principle guarantees weak convergence of partial

sums of (Xk)k∈N, rescaled with
√
n, to the law of the standard Brownian motion as n → ∞. Let(

Zj
)
j∈N be a sequence of centered i.i.d. Gaussian random variables with E

[
Z2
j

]
= E

[
X2
j

]
= 1.

Observe that

max
kn≤i≤n−kn

∣∣∣∣ kn+i∑
j=i+1

(
Xj − Zj

)
−

i∑
j=i−kn+1

(
Xj − Zj

)∣∣∣∣ ≤ 4 max
kn≤i≤n

∣∣∣∣ i∑
j=1

(
Xj − Zj

)∣∣∣∣.
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We exploit the classical theory on bounds for the approximation error of partial sums of the above
type associated with the invariance principle provided by the seminal works of Komlós et al. (1975),
Komlós et al. (1976), Zaı̆tsev (1987), and related literature. Let (xn)n∈N be a sequence with xn ≥ 0
for all n. According to Theorem 4 of Komlós et al. (1976) or equivalently (1.6) of Sakhanenko (1996)
with Markov inequality, the sequence

(
Zj
)
j∈N can be constructed in such a manner that

P
(

max
kn≤i≤n

∣∣∣∣ i∑
j=1

(
Xj − Zj

)∣∣∣∣ ≥ xn) ≤ C1
1

xpn

n∑
j=1

E
[
|Xj |p

]
≤ C2

n

xpn
,

with constants C1, C2 which may depend on p. Selecting xn =
√
knδn with δn = (log(n))−1/2, the

conditions to apply Theorem 4 of Komlós et al. (1976) are in order and we get from condition (45)
and the above that

max
kn≤i≤n

∣∣∣∣ kn+i∑
j=i+1

(
Xj − Zj

)
−

i∑
j=i−kn+1

(
Xj − Zj

)∣∣∣∣ = OP
(√

kn(log(n))−1/2
)
. (46)

Denote with B(k) =
∑k

j=1 Zj and define

H(u) =
(
1(0 ≤ u < 1)− 1(−1 < u < 0)

)
/
√

2.

Then by (46), it follows that
√
knD

∗
n√

2
=

1√
2kn

max
kn≤i≤n−kn

∣∣B(i+ kn)− 2B(i) + B(i− kn)
∣∣+

OP(1)√
log(n)

=
1√
kn

sup
s∈[kn,n−kn]

∣∣∣∣∫
R

H

(
s− u
kn

)
dB(u)

∣∣∣∣+
O(Rn)√

kn
+

OP(1)√
log(n)

,

where Rn = sup
{
|B(u) − B(u′)| : u, u′ ∈ [0, n], |u − u′| ≤ 1

}
= OP

(√
log(n)

)
by standard

properties of Brownian motion. Then, since (log(n))6 = O
(
kn) by condition (45), we may apply the

limit theorem from Lemma 2 in Wu and Zhao (2007) with α = 1, DH,1 = 3 and bn = m−1
n for

mn = bn/knc ; see Definition 1 and Lemma 2 of Wu and Zhao (2007).
In the same manner, we can use that

√
kn

(
kn+i∑
j=i+1

Xj −
i∑

j=i−kn+1

Xj

)
=
√
kn

(
kn+i∑
j=i+1

Zj −
i∑

j=i−kn+1

Zj

)
+ OP

(√
log (n)

)
,

for E[X2
j ] = 1 with

(
Zj
)
j∈N again a sequence of centered i.i.d. Gaussian random variables. Lemma

1 of Wu and Zhao (2007) then ensures the limit theorem for non-overlapping blocks. This completes
the proof of Proposition A.5.

Proof of Proposition A.1. First, a standard argument as e.g. laid out in Section 4.4.1 in Jacod and
Protter (2012) allows us to strengthen Assumption 3.1 and to assume that all local conditions are in
fact global. That is, we assume without loss of generality that |as| ≤ K, 0 < σ2

− < σ2
s < K and

wδ(σ)1 ≤ Kδa for a generic constant K.
Let (ai)i=1,...,m and (bi)i=1,...,m be arbitrary reals. Obviously, for an arbitrary i we have

|ai| ≤ |ai − bi|+ |bi| ≤ max
i=1,...,m

|ai − bi|+ max
i=1,...,m

|bi|.
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Therefore the inequality holds with the left hand side replaced with maxi=1,...,m |ai| as well. Applied
to Vn and Un it is simple to deduce

|Vn − Un| ≤ max
i=0,...,bn/knc−2

|Xn,i/Xn,i+1 − 1− (Yn,i/Yn,i+1 − 1)| (47)

≤ max
i=0,...,bn/knc−2

∣∣∣Xn,i

(
1

Xn,i+1
− 1

Yn,i+1

) ∣∣∣+ max
i=0,...,bn/knc−2

∣∣∣Xn,i − Yn,i
Yn,i+1

∣∣∣.
Let us begin with the second term on the right hand side above. For all ε > 0 and all constants D > 0,
we have

P

(
max

i=0,...,bn/knc−2

∣∣∣√kn log(n)(Xn,i − Yn,i)
Yn,i+1

∣∣∣ > ε

)

≤ P
(

max
i=0,...,bn/knc−2

√
kn log(n)|Xn,i − Yn,i| · max

i=0,...,bn/knc−2
1/|Yn,i+1| > ε

)
≤ P

(
max

i=0,...,bn/knc−2

√
kn log(n)|Xn,i − Yn,i| >

ε

D

)
+P

(
max

i=0,...,bn/knc−2
1/|Yn,i+1| > D

)
. (48)

To keep the notation readable, here and below we use standard probabilities and expectations without
an extra indication that we are on the set Ωc.

Since we have σ2
t ≥ σ2

− > 0, we can use the same arguments as in the proof of equation (22) in
Vetter (2012) to derive

P
(

max
i=0,...,bn/knc−2

1/|Yn,i+1| > D

)
= P

(
min

i=0,...,bn/knc−2
|Yn,i+1| < D−1

)
→ 0

with e.g. D−1 = σ2
−/2. The intuition behind this result is that the probability of a mean of kn i.i.d.

variables with all moments deviating too much from its expectation becomes exponentially small in
kn. A similar argument will be given in (56) later. Also, here we need that kn is of (at least) polynomial
growth, which is included in (17).

On the other hand, using Itô formula we obtain

√
kn log(n)(Xn,i − Yn,i) =

n
√

log(n)√
kn

kn∑
j=1

(
(∆n

ikn+jX)2 − σ2
ikn∆n

(∆n
ikn+jW )2

)
(49)

=
n
√

log(n)√
kn

(
kn∑
j=1

2

∫ (ikn+j)∆n

(ikn+j−1)∆n

(Xs−X(ikn+j−1)∆n
)as ds+

kn∑
j=1

∫ (ikn+j)∆n

(ikn+j−1)∆n

(σ2
s−σ2

ikn∆n
) ds

)

+
n
√

log(n)√
kn

kn∑
j=1

2

∫ (ikn+j)∆n

(ikn+j−1)∆n

(
(Xs−X(ikn+j−1)∆n

)σs−(Ws−W(ikn+j−1)∆n
)σ2
ikn∆n

)
dWs .

Using this decomposition, we split the discussion of

P
(

max
i=0,...,bn/knc−2

√
kn log(n)|Xn,i − Yn,i| > ε/D

)
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into three parts. For the first term, observe that

P
(

max
i=0,...,bn/knc−2

n
√

log(n)√
kn

∣∣∣ kn∑
j=1

2

∫ (ikn+j)∆n

(ikn+j−1)∆n

(Xs −X(ikn+j−1)∆n
)as ds

∣∣∣ > ε/(3D)

)

≤
bn/knc−2∑

i=0

P
(
n
√

log(n)√
kn

∣∣∣ kn∑
j=1

2

∫ (ikn+j)∆n

(ikn+j−1)∆n

(Xs −X(ikn+j−1)∆n
)asds

∣∣∣ > ε/(3D)

)

≤ (ε/(3D))−r
bn/knc−2∑

i=0

E
[∣∣∣∣n
√

log(n)√
kn

kn∑
j=1

2

∫ (ikn+j)∆n

(ikn+j−1)∆n

(Xs −X(ikn+j−1)∆n
)as ds

∣∣∣∣r],
for all integers r. Applying a standard bound based on Jensen’s and Minkowski’s inequalities yields

E
[∣∣∣∣n
√

log(n)√
kn

2

∫ (ikn+j)∆n

(ikn+j−1)∆n

(Xs −X(ikn+j−1)∆n
)as ds

∣∣∣∣r]
≤ Kr

(
n
√

log(n)√
kn

∫ (ikn+j)∆n

(ikn+j−1)∆n

E[|Xs −X(ikn+j−1)∆n
|r]1/rds

)r
.

Kr here and below denotes a generic constant depending on r. Burkholder-Davis-Gundy inequality
gives for any s ∈ [(ikn + j − 1)∆n, (ikn + j)∆n]:

E[|Xs −X(ikn+j−1)∆n
|r] ≤ Krn

−r/2 ,

E
[∣∣∣n√log(n)√

kn
2

∫ (ikn+j)∆n

(ikn+j−1)∆n

(Xs −X(ikn+j−1)∆n
)as ds

∣∣∣r] ≤ Kr(nkn)−r/2 logr/2(n) .

We conclude that

P
(

max
i=0,...,bn/knc−2

n
√

log(n)√
kn

∣∣∣ kn∑
j=1

2

∫ (ikn+j)∆n

(ikn+j−1)∆n

(Xs −X(ikn+j−1)∆n
)as ds

∣∣ > ε/(3D)

)
(50)

≤ (ε/(3D))−rbn/kncKrk
r/2
n n−r/2 logr/2(n)→ 0

for r > 2 arbitrary. Regarding the second term in (49), on Ωc we have

max
i=0,...,bn/knc−2

∣∣∣n√log(n)√
kn

kn∑
j=1

∫ (ikn+j)∆n

(ikn+j−1)∆n

(σ2
s − σ2

ikn∆n
) ds
∣∣∣

≤ max
i=0,...,bn/knc−2

n
√

log(n)√
kn

kn∑
j=1

∫ (ikn+j)∆n

(ikn+j−1)∆n

|σ2
s − σ2

ikn∆n
|ds

≤
√
knwkn∆n(σ)1

√
log(n) ≤ K

√
kn(kn∆n)a

√
log(n) ,

which converges to zero by (17). Observe that addends above involve interlacing time intervals such
that for σ a continuous Itô semi-martingale the bound above applies with a = 1/2 and is sharp.

Finally, we have the further decomposition

(Xs −X(ikn+j−1)∆n
)σs − (Ws −W(ikn+j−1)∆n

)σ2
ikn∆n

= σs

∫ s

(ikn+j−1)∆n

au du (51)

+ (σs − σikn∆n)

∫ s

(ikn+j−1)∆n

σu dWu + σikn∆n

∫ s

(ikn+j−1)∆n

(σu − σikn∆n) dWu .
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We proceed in a similar way as above:

P
(

max
i=0,...,bn/knc−2

n
√

log(n)√
kn

∣∣∣ kn∑
j=1

2

∫ (ikn+j)∆n

(ikn+j−1)∆n

σs

∫ s

(ikn+j−1)∆n

aududWs

∣∣∣ > ε/(9D)

)

≤ (ε/(9D))−r
bn/knc−2∑

i=0

E
[∣∣∣n√log(n)√

kn

kn∑
j=1

2

∫ (ikn+j)∆n

(ikn+j−1)∆n

σs

∫ s

(ikn+j−1)∆n

au du dWs

∣∣∣r] . (52)

Precisely, let r = 2m and set

cs =

kn∑
j=1

σs

∫ s

(ikn+j−1)∆n

au du1[(ikn+j−1)∆n,(ikn+j)∆n)(s) .

Then we have in a similar way as before

E
[∣∣∣n√log(n)√

kn

kn∑
j=1

2

∫ (ikn+j)∆n

(ikn+j−1)∆n

σs

∫ s

(ikn+j−1)∆n

au du dWs

∣∣∣2m]
= 22m

(n√log(n)√
kn

)2m
E
[∣∣∣ ∫ (i+1)kn∆n

ikn∆n

cs dWs

∣∣∣2m]
= 22m

(n√log(n)√
kn

)2m
E
[( ∫ (i+1)kn∆n

ikn∆n

c2
sds
)m]

≤ Km

(n√log(n)√
kn

)2m(∫ (i+1)kn∆n

ikn∆n

E[c2m
s ]1/mds

)m
.

With

E[c2m
s ] =

kn∑
j=1

E
[
σ2m
s

(∫ s

(ikn+j−1)∆n

audu
)2m]

1[(ikn+j−1)∆n,(ikn+j)∆n)(s) ≤ Km∆2m
n ,

we obtain(n√log(n)√
kn

)2m(∫ (i+1)kn∆n

ikn∆n

E[c2m
s ]1/mds

)m
≤ Km

(n√log(n)√
kn

)2m
(kn∆3

n)m (53)

= Km∆m
n log2m(n).

By choosing m large enough, the term in (52) converges to zero. Similarly,

E
[∣∣∣n√log(n)√

kn

kn∑
j=1

2

∫ (ikn+j)∆n

(ikn+j−1)∆n

(σs − σikn∆n)

∫ s

(ikn+j−1)∆n

σu dWudWs

∣∣∣2m]

≤ Km

(n√log(n)√
kn

)2m(∫ (i+1)kn∆n

ikn∆n

( kn∑
j=1

E
[
(σs − σikn∆n)2m

×
(∫ s

(ikn+j−1)∆n

σudWu

)2m
1[(ikn+j−1)∆n,(ikn+j)∆n)(s)

])1/m
ds
)m
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≤ Km

(n√log(n)√
kn

)2m(∫ (i+1)kn∆n

ikn∆n

( kn∑
j=1

E
[
wkn∆n(σ)2m

1

×
(∫ s

(ikn+j−1)∆n

σudWu

)2m
1[(ikn+j−1)∆n,(ikn+j)∆n)(s)

])1/m
ds
)m

≤ Km

(n√log(n)√
kn

)2m(∫ (i+1)kn∆n

ikn∆n

(
(kn∆n)2ma∆m

n

)1/m
ds
)m
≤ Km(kn∆n)2ma.

The same upper bound is obtained for the third term in (51). Again, choosing m large enough yields
convergence to zero. Altogether, we conclude

P
(

max
i=0,...,bn/knc−2

√
kn log(n)|Xn,i − Yn,i| > ε/D

)
→ 0,

and we are done with the second term on the right hand side of (47). Next, consider the first term on
the right hand side of (47). For any ε > 0 and any D > 0:

P
(

max
i=0,...,bn/knc−2

√
kn log(n)

∣∣Xn,i

(
1

Xn,i+1
− 1

Yn,i+1

) ∣∣ > ε

)
≤ P

(
max

i=0,...,bn/knc−2

√
kn log(n)|Xn,i(Yn,i+1 −Xn,i+1)| > ε/D

)
+ P

(
max

i=0,...,bn/knc−2
1/|Yn,i+1Xn,i+1| > D

)
.

Observe that

P
(

min
i=0,...,bn/knc−2

|Yn,i+1Xn,i+1| < D−1

)
≤ P

(
min

i=0,...,bn/knc−2
|Yn,i+1| < D−1/2

)
+ P

(
min

i=0,...,bn/knc−2
|Xn,i+1| < D−1/2

)
≤ P

(
min

i=0,...,bn/knc−2
|Yn,i+1| < D−1/2

)
+ P

(
min

i=0,...,bn/knc−2
|Yn,i+1| < 2D−1/2

)
+ P

(
max

i=0,...,bn/knc−2
|Xn,i+1 − Yn,i+1| > D−1/2

)
.

All three terms on the right hand side have already been discussed above for an appropriate choice of
D, the latter term even with an additional factor

√
kn log(n). Similarly, for all Γ > 0 we have

P
(

max
i=0,...,bn/knc−2

√
kn log(n)|Xn,i(Yn,i+1 −Xn,i+1)| > ε/D

)
≤ P

(
max

i=0,...,bn/knc−2
|Xn,i| > Γ

)
+ P

(
max

i=0,...,bn/knc−2

√
kn log(n)|Yn,i+1 −Xn,i+1| > ε/(DΓ)

)
.

Here we only have to focus on the first term, for which we use

P
(

max
i=0,...,bn/knc−2

|Xn,i| > Γ

)
(54)

≤ P
(

max
i=0,...,bn/knc−2

|Yn,i| > Γ/2

)
+ P

(
max

i=0,...,bn/knc−2
|Yn,i+1 −Xn,i+1| > Γ/2

)
.
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The same arguments which were leading to equation (22) in Vetter (2012) show that the first proba-
bility becomes arbitrarily small for large enough Γ, this time because we may assume σ is bounded
from above. The second probability has already been discussed above.

Proof of Proposition A.2. We have to show convergence in probability to zero of

√
kn log(n) max

i=0,...,bn/knc−2

∣∣∣ Yn,i
Yn,i+1

− Yn,i

Ỹn,i+1

∣∣∣ = max
i=0,...,bn/knc−2

∣∣∣√kn log(n)Yn,i(Ỹn,i+1 − Yn,i+1)

Yn,i+1Ỹn,i+1

∣∣∣.
Using equation (22) in Vetter (2012) again, we may focus on the numerator above only, and for the
same reason as in (54) it suffices to prove convergence to zero of

P
(

max
i=0,...,bn/knc−2

√
kn log(n)|Ỹn,i+1 − Yn,i+1| > ε

)
(55)

= P
(

max
i=0,...,bn/knc−2

√
kn log(n)

∣∣σ2
ikn∆n

− σ2
(i+1)kn∆n

∣∣∣∣∣∣ nkn
kn∑
j=1

(∆n
(i+1)kn+jW )2

∣∣∣∣ > ε

)

≤ P
(

max
i=0,...,bn/knc−2

√
kn log(n)

∣∣σ2
ikn∆n

− σ2
(i+1)kn∆n

∣∣ > ε/2

)

+ P

 max
i=0,...,bn/knc−2

∣∣∣ n
kn

kn∑
j=1

(∆n
(i+1)kn+jW )2

∣∣∣ > 2


for all ε > 0. Regarding the first quantity, recall that on Ωc by (17)

max
i=0,...,bn/knc−2

√
kn log(n)|σ2

ikn∆n
− σ2

(i+1)kn∆n
| ≤

√
kn log(n)wkn∆n(σ)1

≤ K
√
kn(kn∆n)a

√
log(n)→ 0 .

On the other hand,

P
(

max
i=0,...,bn/knc−2

∣∣∣n√log(n)

kn

kn∑
j=1

(∆n
(i+1)kn+jW )2

∣∣∣ > 2
)

(56)

≤
bn/knc−2∑

i=0

P
(∣∣∣n√log(n)

kn

kn∑
j=1

(∆n
(i+1)kn+jW )2

∣∣∣ > 2
)

≤
bn/knc−2∑

i=0

P
(∣∣∣√log(n)

kn

kn∑
j=1

(
(
√
n∆n

(i+1)kn+jW )2 − 1
)∣∣∣ > 1

)

≤
bn/knc−2∑

i=0

E
[∣∣∣√log(n)

kn

kn∑
j=1

(
(
√
n∆n

(i+1)kn+jW )2 − 1
)∣∣∣2m]

for all integers m. Due to the i.i.d. structure, the latter term is bounded by Km(n/kn)k−mn logm(n),
which converges to zero for m large enough.
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Proof of Proposition A.3. We have to show convergence to zero in probability of

√
kn log(n) max

i=0,...,bn/knc−2

∣∣∣Yn,i − Ỹn,i+1

Ỹn,i+1

− Yn,i − Ỹn,i+1

σ2
ikn∆n

∣∣∣
=
√
kn log(n) max

i=0,...,bn/knc−2

∣∣∣(Yn,i − Ỹn,i+1)(Ỹn,i+1 − σ2
ikn∆n

)

Ỹn,i+1σ2
ikn∆n

∣∣∣ .
It is sufficient to focus on the numerator, and we discuss two terms separately, using

P
(

max
i=0,...,bn/knc−2

√
kn log(n)|(Yn,i − Ỹn,i+1)(Ỹn,i+1 − σ2

ikn∆n
)| > ε

)
≤ P

(
max

i=0,...,bn/knc−2

√
kn log(n)|Yn,i − Ỹn,i+1| >

√
ε

)
+ P

(
max

i=0,...,bn/knc−2
|Ỹn,i+1 − σ2

ikn∆n
| >
√
ε

)
.

The first term has already been discussed in (55), while

P
(

max
i=0,...,bn/knc−2

|Ỹn,i+1 − σ2
ikn∆n

| >
√
ε

)

= P

 max
i=0,...,bn/knc−2

σ2
ikn∆n

∣∣∣ 1

kn

kn∑
j=1

((
√
n∆n

(i+1)kn+jW )2 − 1)
∣∣∣ > √ε


≤ P

 max
i=0,...,bn/knc−2

∣∣∣ 1

kn

kn∑
j=1

((
√
n∆n

(i+1)kn+jW )2 − 1)
∣∣∣ > √ε/K


using σ2 ≤ K. The claim follows from (56).

Proof of Proposition A.4. For the test statistic V ∗n from (16) our proof follows the same stages as
the one for Vn via Propositions A.1, A.2 and A.3 above. We start proving√

kn log(n)
(
V ∗n − U∗n

) P−→ 0

for

U∗n = max
i=kn,...,n−kn

∣∣∣∣∣
n
kn

∑i
j=i−kn+1 σ

2
(i−kn)∆n

(∆n
jW )2

n
kn

∑i+kn
j=i+1 σ

2
i∆n

(∆n
jW )2

− 1

∣∣∣∣∣ .
Similar to (47), we find that

|V ∗n − U∗n| ≤ max
i=kn,...,n−kn

∣∣∣∣∣
i∑

j=i−kn+1

(∆n
jX)2

(( i+kn∑
j=i+1

(∆n
jX)2

)−1
−
( i+kn∑
j=i+1

σ2
i∆n

(∆n
jW )2

)−1
)∣∣∣∣∣

+ max
i=kn,...,n−kn

∣∣∣∣∣
n
kn

∑i
j=i−kn+1

(
(∆n

jX)2 − σ2
(i−kn)∆n

(∆n
jW )2

)
n
kn

∑i+kn
j=i+1 σ

2
i∆n

(∆n
jW )2

∣∣∣∣∣ .
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Following an inequality analogous to (48), the key step is to show that

P
(√

log(n)kn max
i=kn,...,n−kn

∣∣∣ n
kn

i∑
j=i−kn+1

(
(∆n

jX)2 − σ2
(i−kn)∆n

(∆n
jW )2

)∣∣∣ > ε/D
)
→ 0 , (57)

while for σt bounded from below we readily obtain

P
(

min
i=kn,...,n−kn

n

kn

∣∣∣ i+kn∑
j=i+1

σ2
i∆n

(∆n
jW )2

∣∣∣ < D−1
)
→ 0 .

For the proof of (57) we proceed with a decomposition analogous to (49) and for the first term along
the same lines as above leading to (50). However, the maximum extends now over the larger set of
all indices i = kn, . . . , n− kn, and thus instead of (50) the upper bound yields (ε/(3D))−rn1− r

2k
r/2
n

logr/2(n), which is a factor kn larger than above. Still, choosing r sufficiently large the term tends
to zero. The same reasoning applies to all terms for which we have used Jensen’s and generalized
Minkowski’s inequalities above as (53).

Upper bounds exploiting the smoothness of the volatility remain as before, for instance

√
log(n)kn max

i=kn,...,n−kn

∣∣∣ n
kn

kn∑
j=1

∫ (j+i+kn−1)∆n

(j+i−1)∆n

(σ2
s − σ2

i∆n
) ds
∣∣∣ ≤ Kn

√
log(n)√
kn

kn∑
j=1

(j∆n)a∆n

≤ K
√
kn(kn∆n)a

√
log(n)

with a constant K on Assumption 3.1. In this fashion, all terms generalizing the expressions in the
proofs of Propositions A.1, A.2 and A.3 are controlled and we conclude Proposition A.4.

Appendix B: Proof of Proposition 3.5

Recall the definition of the general Itô semi-martingale in (21). Again, by the usual localization pro-
cedure, we can work under the reinforced assumption that the process Xt and its jumps ∆Xt are
bounded as well. We will then work with the decomposition Xt = X0 + Ct + Jt, where Jt denotes
the pure jump martingale

Jt =

∫ t

0

∫
R

δ(s, x)(µ− ν)(ds, dx)

and the continuous part becomes

Ct =

∫ t

0
ãs ds+

∫ t

0
σs dWs

with ãs = as +
∫
R
κ̄(δ(s, x))λ(dx). The latter integral is finite for bounded jumps.

We shall prove only (28) of Proposition 3.5 by showing that

√
kn log(n)

(
max

i=kn,...,n−kn

∣∣∣∣∣
n
kn

∑i
j=i−kn+1(∆n

jX)2
1{|∆n

jX|≤un}
n
kn

∑i+kn
j=i+1(∆n

jX)21{|∆n
jX|≤un}

− 1

∣∣∣∣∣
− max
i=kn,...,n−kn

∣∣∣∣∣
n
kn

∑i
j=i−kn+1(∆n

jC)2

n
kn

∑i+kn
j=i+1(∆n

jC)2
− 1

∣∣∣∣∣
)

P−→ 0 . (58)
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Following a decomposition of the error term as in (47), we have to show that

√
kn log(n) max

i=kn,...,n−kn

∣∣∣∣∣
n
kn

∑i
j=i−kn+1(∆n

jX)2
1{|∆n

jX|≤un}
n
kn

∑i+kn
j=i+1(∆n

jX)21{|∆n
jX|≤un}

−
n
kn

∑i
j=i−kn+1(∆n

jX)2
1{|∆n

jX|≤un}
n
kn

∑i+kn
j=i+1(∆n

jC)2

∣∣∣∣∣
+
√
kn log(n) max

i=kn,...,n−kn

∣∣∣∣∣
n
kn

∑i
j=i−kn+1

(
(∆n

jX)2
1{|∆n

jX|≤un} − (∆n
jC)2

)
n
kn

∑i+kn
j=i+1(∆n

jC)2

∣∣∣∣∣ P−→ 0 .

Both terms are handled similarly and we restrict to the second one. It suffices to prove that

P

(
max

i=kn,...,n−kn

n
√

log(n)√
kn

∣∣∣ i∑
j=i−kn+1

(
(∆n

jX)2
1{|∆n

jX|≤un} − (∆n
jC)2

)∣∣∣ > ε

D

)
→ 0 , (59)

for all ε > 0 and constants D > 0, as (58) then follows with (48) and the same bound for the second
probability as in the proof of Proposition A.1. As max1≤i≤n |∆n

i C| = Oa.s.(un) by basic extreme
value theory we can work on a subset of Ω where max1≤i≤n |∆n

i C| = O(un). Observe that on this
subset

max
i=kn,...,n−kn

∣∣∣ i∑
j=i−kn+1

(∆n
jX)2

1{|∆n
jX|≤un} − (∆n

jC)2
)∣∣∣

≤ K max
i=kn,...,n−kn

( i∑
j=i−kn+1

1{|∆n
jX|>un}(∆

n
jC)2 +

i∑
j=i−kn+1

(
(|∆n

j J | ∧ un)2 +(|∆n
j J | ∧ un)|∆n

jC|
))

with some constant K.
Pertaining the first addend and using maxi(∆

n
i C)2 = OP(∆n log(n)), we have to ensure that

max
i=kn,...,n−kn

i∑
j=i−kn+1

1{|∆n
jX|>un} = OP

(√
kn/ log3/2 (n)

)
.

Let p with 1 < p < (2rτ)−1 be arbitrary. We use the decomposition X = X
′n +X

′′n with

X
′′n
t =

∫ t

0

∫
R

δ(s, x)1{γ(x)>upn}µ(ds, dx), X
′n
t = Xt −X

′′n
t ,

and define Anj = {|∆n
jX

′n| ≤ un/2}. Finally, Nn is the counting process

Nn
t =

∫ t

0

∫
R

1{γ(x)>upn}µ(ds, dx).

We know from (13.1.10) in Jacod and Protter (2012) that

E
[

max
i=kn,...,n−kn

i∑
j=i−kn+1

1{|∆n
jX|>un}1{(Anj ){}

]
≤

n∑
j=1

P
(
(Anj ){

)
→ 0

for all such p. Then, using 1{|∆n
jX|>un}1{Anj } ≤ 1{|∆n

jX
′′n|>un/2}, all we have to show are conditions

under which

max
i=kn,...,n−kn

i∑
j=i−kn+1

1{|∆n
j N

n|≥1} = OP
(√

kn/ log3/2 (n)
)
.
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Obviously,
i∑

j=i−kn+1

1{|∆n
j N

n|≥1} ≤ Nn
i∆n
−Nn

(i−kn)∆n
,

and Nn is a Poisson process with parameter
∫
R
1{γ(x)>upn}λ(dx) ≤ Ku−rpn ; see (13.1.14) in Jacod

and Protter (2012). It is clearly enough if the probability of more than l < ∞ jumps on one block
converges to zero, i.e.

P
( n⋃
j=kn

{
Nn

(j+1)∆n
−Nn

(j−kn+1)∆n
≥ l
})
≤ nP

(
Nn
kn∆n

≥ l
)
≤ Kn∆l

nk
l
nu
−rpl
n = Kkln∆l(1−rpτ)−1

n .

Thus, we need the condition that for some p > 1 and some l <∞:

kln∆l(1−rpτ)−1
n → 0 and 2rτ < 1 . (60)

Bounding the second term above comprising small jumps in case of non-truncation poses a more deli-
cate mathematical problem. We restrict to the quadratic jump terms as the cross terms lead in the same
way to an obsolete weaker criterion. For finite activity it is enough to ensure that nk−1/2

n

√
log(n)u2

n →
0. Else, define the sequence of random variables

Zi =
(
|∆iJ | ∧ un

)2 − E
[(
|∆iJ | ∧ un

)2]
, i = 1, . . . , n .

Note from equation (54) in Aı̈t-Sahalia and Jacod (2010) that we can bound moments of
(
|∆iJ |∧un

)2
in the following way:

E
[(
|∆n

i J | ∧ un
)2∣∣F(i−1)∆n

]
≤ K∆nu

2−r
n ,

Var
((
|∆n

i J | ∧ un
)2∣∣F(i−1)∆n

)
≤ E

[(
|∆n

i J | ∧ un
)4∣∣F(i−1)∆n

]
≤ u2

nK∆nu
2−r
n = K∆nu

4−r
n ,

for all i = 1, . . . , n. We decompose

max
i=kn,...,n−kn

∣∣∣ i∑
j=i−kn+1

(
|∆jJ | ∧ un

)2∣∣∣ ≤ max
i=kn,...,n−kn

∣∣∣ i∑
j=i−kn+1

Zj
∣∣∣

+ max
i=kn,...,n−kn

i∑
j=i−kn+1

E
[(
|∆jJ | ∧ un

)2]
,

where the condition √
knu

2−r
n

√
log(n)→ 0 (61)

renders the second term with the expectation asymptotically negligible. Yet, the derivation of the
maximum in the first term from its expectation can in general become much larger. Observe that

max
i=kn,...,n−kn

∣∣∣ i∑
j=i−kn+1

Zj
∣∣∣ = max

i=kn,...,n−kn

∣∣∣ i∑
j=1

Zj −
i−kn∑
j=1

Zj
∣∣∣ ≤ 2 max

i=kn,...,n

∣∣∣ i∑
j=1

Zj
∣∣∣ .
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Having a sequence of independent and centered random variables, we can apply Kolmogorov’s max-
imal inequality:

P
(

max
i=kn,...,n−kn

∣∣∣ i∑
j=i−kn+1

Zj
∣∣∣ > λ

)
≤ n

λ2
Var(Z1) ≤ λ−2u4−r

n . (62)

Thereby we conclude that maxi=kn,...,n−kn

∣∣∣∑i
j=i−kn+1Zj

∣∣∣ = OP
(
u

2−r/2
n

)
. We obtain the condition

n
√

log(n)√
kn

u2−r/2
n → 0 . (63)

In conclusion, the conditions (60), (61) and (63) ensure (58), what yields our claim.

Appendix C: Proof of the lower bound and consistency

Proof of Theorem 4.1. The proof is based on equivalences of statistical experiments in the strong Le
Cam sense. After information-theoretic reductions, we subsequently move to statistical experiments
that allow a simpler treatment; see (67) below. Our final experiment E4 is a special high-dimensional
signal detection problem, from which we will deduce the lower bound by classical arguments.

First consider alternatives with a jump as in (4). Here, throughout this proof, we set

kn = ck
(√

log(mn)σ2
−n

a/Ln
) 2

2a+1 , (64)

with a constant ck > 0. In the preliminary step, we first grant the experimenter additional knowledge.
We restrict to a sub-class of SJθ

(
a, bn, L

)
from (3), where we have one jump at time θ ∈ (0, 1) in

the volatility, |σ2
θ − σ2

θ−| ≥ bn. Then, we assume that θnk−1
n ∈ {1, 2, . . . , bn/knc − 1}, such that

the jump time is in the set of observation grid points which are multiples of kn. Furthermore, we can
stick to X0 = 0 and as = 0, s ∈ [0, 1]. From an information-theoretic view, obtaining this additional
knowledge can only decrease the lower boundary on minimax distinguishability. Consequently, a
lower bound derived for the sub-model carries over to the less informative general situation.

To ease the exposition, we first set σ2
− = 1 and Ln = 1 and generalize the result at the end of this

proof. Next, denote with [a]b = a mod b and let

σ2
j∆n

=

{
1 + (kn − [j]kn)an−a, θn ≤ j < θn+ kn,

1, else.
(65)

The discretized squared volatility exhibits a jump (resp. change-point) of order bn at θ and then decays
on the window [θ, θ + kn∆n] smoothly with regularity a and is constant elsewhere. It suffices to
consider the sub-class Σθ ⊂ SJθ

(
a, bn, L

)
of squared discretized volatility processes of the above

form for which it remains unknown on which window the jump occurs.
Introduce a sequence rn with rn →∞ such that rnk−1

n → 0 as n→∞. We specify the following
stepwise approximation of (σ2

j∆n
)0≤j≤n ∈ Σθ:

σ̃2
j∆n

=

{
1 + (kn − irn)an−a, θn+ (i− 1)rn ≤ j ≤ θn+ irn, 1 ≤ i ≤ knr−1

n ,

1, else.
(66)
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Denote the observations by ηj = σ(j−1)∆n

(
Wj∆n − W(j−1)∆n

)
and η̃j = σ̃(j−1)∆n

(
Wj∆n −

W(j−1)∆n

)
, j = 1, . . . , n, respectively, with W the Wiener process in (1). In the sequel, it is con-

venient to distinguish the two cases where a > 1/2 and a ≤ 1/2.

Case a > 1/2: As alluded to above, we relate different experiments:

E1 : Observe
(
ηj
)

1≤j≤n and information θnk−1
n ∈ {1, 2, . . . , bn/knc − 1} is provided.

E2 : Observe
(
η̃j
)

1≤j≤n and information θnk−1
n ∈ {1, 2, . . . , bn/knc − 1} is provided.

E3 : Observe χ =
((
σ̃2
ikn∆n

χi
)
i∈I1 ,

(
σ̃2
θ+(i−1)rn∆n

χ̃i
)
i∈I2

)
, where indices (ikn, i ∈ I1) expand

over all multiples of kn, except the one where the jump is located, i.e. I1 = {1, . . . , θnk−1
n −

1, θnk−1
n + 1, . . . , bn/knc − 1}, and (θn + (i − 1)rn, i ∈ I2) over all multiples of rn in the

window of length kn∆n where (σ2
j ) is non-constant, i.e. I2 = {1, 2, . . . , knr−1

n }. (χi)i∈I1
and (χ̃i)i∈I2 are i.i.d. random variables having chi-square distribution with degrees of freedom
kn for i ∈ I1 and rn for i ∈ I2. Moreover, information θnk−1

n ∈ {1, 2, . . . , bn/knc − 1} is
provided.

E4 : We observe ξ =
((
k
−1/2
n ξiσ̃

2
ikn∆n

+ σ̃2
ikn∆n

)
i∈I1 ,

(
r
−1/2
n ξ̃iσ̃

2
θ+(i−1)rn∆n

+ σ̃2
θ+(i−1)rn∆n

)
i∈I2

)
where (ξi, ξ̃i) are i.i.d. standard normal random variables. Moreover, information θnk−1

n ∈
{1, 2, . . . , bn/knc − 1} is provided.

When considering the above experiments, we always have (σ2
j∆n

) ∈ Σθ (or (σ̃2
j∆n

) ∈ Σθ) as un-
known parameter that index a family of probability measures {P(σ2

j∆n
)}. For the sake of readability,

we move this formalism to the background and omit subscripts indicating the parameter space. We
show the following relations for the experiments, where ∼ marks strong Le Cam equivalence and ≈
asymptotic equivalence:

E1 ≈ E2 ∼ E3 ≈ E4. (67)

Finally, we shall derive the lower bound in E4 which carries over to E1 by the above relations and thus
also to our general model. The proof is now divided into four main steps.

Step 1 E1 ≈ E2: For random variables U, V and their laws PU ,PV , we denote the Kullback-Leibler
divergence D

(
U‖V

)
= D

(
PU‖PV

)
=
∫

log
(
dPU/dPV

)
dPU . For normal families with unknown

variance Pθ = N(0, θ), it is known that

D
(
Pθ‖Pθ′

)
= Eθ

[
log
( dPθ
dPθ′

)]
= −1

2

(
log
( θ
θ′

)
+ 1− θ

θ′

)
,

such that for θ = θ′ + δ and considering asymptotics where δ → 0, we obtain

D
(
Pθ′+δ‖Pθ′

)
= −1

2

(
log
(

1 +
δ

θ′

)
− δ

θ′

)
=

δ2

4θ′
+O

(
δ3
)
. (68)

As E1 and E2 share a common space on which the considered random variables are accommodated,
asymptotic equivalence holds if ‖P(ηj) − P(η̃j)‖TV → 0 as n → ∞ where ‖ · ‖TV denotes the total
variation distance and P(ηj) the law of observations (ηj). We exploit Pinsker’s inequality

∥∥P(ηj) − P(η̃j)

∥∥2

TV
≤ 1

2
D
(
(ηj)‖(η̃j)

)
. (69)

By Gaussianity and independence of Brownian increments, implying additivity of the Kullback-
Leibler divergences, it follows with (68) for any piecewise constant approximation of a function with
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regularity a on knr−1
n intervals of length rn∆n that

D
(
(ηj)‖(η̃j)

)
= O

(
1
) knr−1

n∑
i=1

rn∑
j=1

(
j∆n

)2a
= O

(
n−2aknr

2a
n

)
,

which tends to zero for rnk−1
n = O(n−ε) for some ε > 0.

Step 2 E2 ∼ E3: The vector of averages((
k−1
n

kn∑
j=1

η2
ikn+j−1

)
i∈I1

,
(
r−1
n

rn∑
j=1

η2
θn+(i−1)rn+j−1

)
i∈I2

)

forms a sufficient statistic for (σ̃2
j−1)1≤j≤n. Thereby we conclude, see e.g. Lemma 3.2 of Brown and

Low (1996), the strong Le Cam equivalence.

Step 3 E3 ≈ E4: Let χ� =
(
k
−1/2
n

(
σ̃2
ikn∆n

(χi−kn)
)
i∈I1 , r

−1/2
n

(
σ̃2
θ+(i−1)rn∆n

(χ̃i−rn)
)
i∈I2

)
and

ξ� =
((
ξiσ̃

2
ikn∆n

)
i∈I1 ,

(
ξ̃iσ̃

2
θ+(i−1)rn∆n

)
i∈I2

)
. In both experiments random variables are accommo-

dated on the same space. Rescaling and a location shift yield with Pinsker’s inequality∥∥Pχ − Pξ
∥∥2

TV
=
∥∥Pχ� − Pξ�

∥∥2

TV
≤ 1

2
D
(
χ�‖ξ�

)
.

By independence, it follows that

D
(
χ�‖ξ�

)
≤
∑
i∈I1

D
(
k−1/2
n σ̃2

ikn
n

(χi − kn)
∥∥ξiσ̃2

ikn
n

)
+
∑
i∈I2

D
(
r−1/2
n σ̃2

θ+
(i−1)rn

n

(χ̃i − rn)
∥∥ξ̃iσ̃2

θ+
(i−1)rn

n

)
.

An application of Theorem 1.1 in Bobkov et al. (2013) yields∑
i∈I1

D
(
k−1/2
n σ̃2

ikn∆n
(χi − kn)

∥∥ξiσ̃2
ikn∆n

)
= O

(
nk−2

n

)
,

∑
i∈I2

D
(
r−1/2
n σ̃2

θ+(i−1)rn∆n
(χ̃i − rn)

∥∥ξ̃iσ̃2
θ+(i−1)rn∆n

)
= O

(
knr
−2
n

)
.

For a > 1/2, we have nk−2
n = O(1). Choosing rn sufficiently large such that knr−2

n = O(1), it
follows that ∥∥Pχ − Pξ

∥∥
TV

= O
(
1
)
, (70)

what ensures the claimed asymptotic equivalence.

Step 4: By the previous steps, it suffices to establish a lower bound for the distinguishability in ex-
periment E4. Adding an additional drift, which gives clearly an equivalent experiment, we consider ob-
servations ξ =

((
k
−1/2
n ξiσ̃

2
ikn∆n

+ σ̃2
ikn∆n

−1
)
i∈I1 ,

(
r
−1/2
n ξ̃iσ̃

2
θ+(i−1)rn∆n

+ σ̃2
θ+(i−1)rn∆n

−1
)
i∈I2

)
.

Then, the testing problem can be interpreted as a high dimensional location signal detection problem
in the sup-norm. More precisely, we test the hypothesis

H0 : sup
j

(σ̃2
j − 1) = 0 against the alternative H1 : sup

j
(σ̃2
j − 1) ≥ bn ,
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and we are interested in the maximal value bn → 0 such that the hypothesis H0 and H1 are non-
distinguishable in the minimax sense. Non-distinguishability in the minimax sense is formulated as

lim
n→∞

inf
ψ
γψ
(
a, bn

)
= 1, (71)

and the detection boundary here is bn ∝ (kn∆n)a ∝ n−
a

2a+1 . In order to show (71), we proceed in
the fashion of Section 3.3.7 of Ingster and Suslina (2003). Let Pξ be the law of the observations. We
consider the probability measures

P0 = Pξ × Pθ0 and P1 = Pξ × Pθ1 ,

where Pθ0 means the hypothesis of the test applies (no jump) and Pθ1 draws a jump-time θ with
θnk−1

n ∈ {1, . . . , bn/knc − 1} uniformly from this set. Therefore, P0 represents the probability mea-
sure without signal, and P1 the measure where a signal is present. It then follows that

inf
ψ
γψ
(
a, bn

)
≥ 1− 1

2

∥∥P1 − P0

∥∥
TV
≥ 1− 1

2

∣∣EP0

[
L2

0,1 − 1
]∣∣1/2,

with L0,1 = dP1/dP0 the likelihood ratio of the measures P1 and P0. For the validity of (71), it thus
suffices to establish

EP0

[
L2

0,1

]
→ 1 as n→∞. (72)

To this end, for given θ we denote with uθnk
−1
n

i = σ̃4
θ+(i−1)rn∆n

for i ∈ I2, vθnk
−1
n

i = (u
1/2
i −

1)r
1/2
n . We first perform some preliminary computations. Denote with ϕY (x) the density function of

a Gaussian random variable Y , not necessarily standard normal, and for a, b ∈ {1, . . . , bn/knc − 1}

Ia,b(x, y) :=

∏
i∈I2

ϕξ̃i(uai )1/2+vai
(xi)

ϕξ̃i(xi)

∏
i∈I2

ϕξ̃i(ubi )1/2+vbi
(yi)

ϕξ̃i(yi)

 .

Then, we have that Ia,b :=
∫
Ia,b(x, y)

∏
i∈I2 ϕξ̃i(xi)dxi

∏
i∈I2 ϕξ̃i(yi)dyi = 1. Next, for a ∈

{1, . . . , bn/knc − 1}, consider

IIa(x) :=
∏
i∈I2

(
ϕξ̃i(uai )1/2+vai

(xi)

ϕξ̃i(xi)

)2

.

Observe that for a standard Gaussian random variable Z and s, t ∈ R, |s| < 2, we have

E
[
exp(sZ2 + tZ)

]
=

exp
(

t2

2−4s

)
√

1− 2s
. (73)

This, together with the inequality

C0kn (kn∆n)2a ≤ rn
kn/rn−1∑
i=0

((kn − irn)∆n)2a ≤ kn (kn∆n)2a
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for some constant C0 > 0 and routine calculations yield that for some C0 ≤ C1 ≤ 1:

IIa :=

∫
IIa(x)

∏
i∈I2

ϕξ̃i(xi)dxi ≤ e
C1kn(kn∆n)2a(

1 + O(1)
)
.

With all the preliminary calculations completed, we are now ready to derive a bound for

EP0

[
L2

0,1

]
− 1 =

bn/knc−1∑
a,b=1
a6=b

P
(
θnk−1

n = a
)
P
(
θnk−1

n = b
)(
Ia,b − 1

)

+

bn/knc−1∑
a=1

P
(
θnk−1

n = a
)2(

IIa − 1
)

where the first sum vanishes. For an appropriate choice of ck > 0, kn = ck
(√

log(mn)na
) 2

2a+1 is
equivalent to kn(kn∆n)2a = C2 log(n/kn) for some C2 < C−1

1 . Since P
(
θnk−1

n = a
)

= kn∆n, we
thus obtain

∣∣EP0

[
L2

0,1

]
− 1
∣∣ ≤ bn/knc∑

a=1

P
(
θnk−1

n = a
)2(

eC1kn(kn∆n)2a − 1
)

= (1 + O(1))kn∆n e
C1kn(kn∆n)2a

. (74)

Using

kn∆ne
C1kn(kn∆n)2a

= kn∆n exp
(
C1C2 log

(
n/kn

))
= (kn∆n)1−C1 C2 = O(1),

we conclude (72).

Case a ≤ 1/2: The only time we make use of the condition a > 1/2 above is in Step 3 to ob-
tain n/k2

n = O(1). The necessity of this relation is due to the large number of blocks n/kn, when
operating with the entropy bounds. To establish the lower bound, this constraint can be removed by
granting the experimenter even more additional information what is briefly sketched in the follow-
ing. Indeed, suppose we know in addition that θn ∈

{
kn, 2kn, . . . , lnkn

}
where ln = nl � n/kn,

l > 0 arbitrarily small but strictly positive and such that ln ∈ N. Using the sufficiency argu-
ment of Step 2, we can gather all the information contained in (ηi)lnkn<i≤n in one single average
(n−(ln+1)kn)−1

∑n
i=lnkn+1 η

2
i . Then, one can repeat Steps 3 and 4, subject to the weaker condition

ln/kn = O(1). Selecting l > 0 sufficiently small for each 0 < a ≤ 1, this is always possible. The
lower bound in Step 4 gives the same minimax detection boundary and hence the claim follows.

Let us now touch on the general case with some σ2
− > 0 and sequences Ln. Exactly the same

arguments lead to (with ck as before) limn→∞ infψ γψ(a, bn) = 1 for

bn ≤ Ln (kn∆n)a , kn = ck

(√
log(mn)σ2

−L
−1
n na

) 2
2a+1

= ck n
2a

2a+1

(
σ4
− log(mn)

L2
n

) 1
2a+1

, (75)

which gives the general result.
Finally, we remark on the regularity alternatives HR1/2

1 . The strategy for the proof is exactly the
same for both cases and along the same lines as for jumps above. Instead of a jump of size Ln(kn∆n)a
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at unknown location, we observe a sudden, more regular increase in σ2
t , where we exploit the regu-

larity a′. Hence, the jump gets replaced with a gradual regular increase. However, since a′ < a, this
is always possible on an interval of size (kn∆n)a/a

′
< kn∆n, and thus the arguments are almost

identical. This also highlights the fact that at (or below) the boundary bn, all three alternatives HJ
1 and

HR1/2
1 are not distinguishable.

Proof of Theorem 4.3. Using similar arguments as in the proof of Theorem 3.2 and in particular
Proposition A.4 one derives for

V n,i =

∣∣∣∣∣
n
k�n

∑i
j=i−k�n+1

(
(∆n

jX)2 − E
[
(∆n

jX)2
])

n
k�n

∑i+k�n
j=i+1

(
(∆n

jX)2 − E
[
(∆n

jX)2
]) − 1

∣∣∣∣∣ , k�n ≤ i ≤ n− k�n ,

that under the alternatives HJ
1 and HR1/2

1 , it holds that√
k�nV n,i = OP

(
1
)
, k�n ≤ i ≤ n− k�n. (76)

Based on (76), a simple estimate yields

V ∗n ≥ −V n,bnθc +
n

k�n

∣∣∣∣∫ θ

θ−k�n∆n

σ2
s ds−

∫ θ+k�n∆n

θ
σ2
s ds

∣∣∣∣
(
1− OP(1)

)
σ2
θ

≥ −OP
((
k�n
)−1/2)

+
n

k�n

∣∣∣∣∫ θ

θ−k�n∆n

σ2
s ds−

∫ θ+k�n∆n

θ
σ2
s ds

∣∣∣∣
(
1− OP(1)

)
sup0≤t≤1 σ

2
t

. (77)

Observe that in order to prove γψ�(a, b�n)→ 0, it suffices to show that

P
(
V ∗n ≥ 2C�

√
2 log(m�n)/k�n

)
→ 1 under HJ

1 or HR1/2
1 , (78)

and P
(
V ∗n < 2C�

√
2 log(m�n)/k�n

)
→ 1 under H0. (79)

Case HJ
1: Using that (σ2

t −∆σ2
t )t∈[0,1] ∈ Σ(a, Ln) and ∆σt ≥ 0, we get

n

k�n
sup
t≥θ

∣∣∣∣∫ θ

θ−k�n∆n

σ2
s ds−

∫ θ+k�n∆n

θ
σ2
s ds

∣∣∣∣ ≥ bn − 2Ln (k�n∆n)a .

Hence (78) follows for (34) with (77).

Case HR1/2
1 : We consider HR1

1 here, the proof for HR2
1 follows the same strategy and is omitted.

For σ2
t ∈ SR1

θ

(
a, a′, b�n, Ln, C

)
, we have that

σ2
θ+h ≥ σ2

θ + Cha
′

or σ2
θ+h ≤ σ2

θ − Cha
′
, for 0 ≤ h ≤ (b�n)1/a.

Since (b�n)1/a ≥ k�n∆n and (σ2
t∧θ)t∈[0,1] ∈ Σ(a, Ln), it follows that

n

k�n

∣∣∣∣∫ θ

θ−k�n∆n

σ2
s ds−

∫ θ+k�n∆n

θ
σ2
s ds

∣∣∣∣ ≥ C n

k�n

∫ k�n∆n

0
sa
′
ds− Ln (k�n∆n)a

≥ C

1 + a′
(k�n∆n)a

′
− Ln (k�n∆n)a .
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Thus, using Ln = O
(
(n/k�n)a−a

′)
, for sufficiently large n the above is bounded from below by b�n.

Therefore (78) follows with (77).

Case H0: Under the hypothesis we employ the upper bound

V ∗n ≤ max
k�n≤i≤n−k�n

V n,i + Ln(k�n∆n)a

to prove (79). (33) implies

2C�
√

2 log(m�n)/k�n ≥ 2
√

2 log(m�n)/k�n + Ln(k�n∆n)a,

and hence it suffices to show that P
(
maxk�n≤i≤n−k�n V n,i ≤

√
2 log(m�n)/k�n

)
→ 1. This, how-

ever, follows from a very easy adaption of Theorem 3.2. Hence (79) follows, which completes the
proof.

Appendix D: Proofs of Section 5

Proof of Proposition 5.1. We use the following elementary lemma to prove Proposition 5.1.

Lemma D.1. Let f(t) and g(t) be functions on [0, θ] such that f(t) is increasing. As long as f(θ)−
f(θ − γ) ≥ sup0≤t≤θ |g(t)| for some γ ∈ [0, θ], we have that

argmax0≤t≤θ
(
f(t) + g(t)

)
≥ θ − γ.

An analogous result holds if f(t) and g(t) are functions on [θ, 1] and f(t) is decreasing.

For θ ∈ (0, 1) define i∗ = dθne, the smallest integer such that i∗∆n is larger or equal than θ. While
(σ2
t )t∈[0,1] is the squared volatility process containing one jump at time θ, denote by (σ̃2

t )t∈[0,1] the
same path without jump, such that

σ2
i∆n

= σ̃2
i∆n

+ δ1(i ≥ i∗)

with jump size δ. Without loss of generality, we assume δ > 0. Define

f
(
i∆n

)
=


0, if i+ kn < i∗,

(i+ kn − i∗)k−1/2
n δ for i = i∗ − kn, . . . , i∗ ,

√
knδ if i > i∗,

(80)

and (f(t))t∈[0,1] the associated piecewise constant increasing step function. For i = kn, . . . , n− kn:

i∑
j=i−kn+1

n(∆n
jX)2 −

i+kn∑
j=i+1

n(∆n
jX)2

=
{ i∑
j=i−kn+1

(
n(∆n

jX)2 − E[n(∆n
jX)2]

)
−

i+kn∑
j=i+1

(
n(∆n

jX)2 − E[n(∆n
jX)2]

)}
+
{ i∑
j=i−kn+1

(
E[n(∆n

jX)2]− σ̃2
j∆n

)
−

i+kn∑
j=i+1

(
E[n(∆n

jX)2 − σ2
j∆n

]
)}

+
{ i∑
j=i−kn+1

σ̃2
j∆n
−
i+kn∑
j=i+1

σ̃2
j∆n

}
−

i+kn∑
j=i+1

(
σ2
j∆n
− σ̃2

j∆n

)
=: Ani +Bn

i + Cni −
i+kn∑
j=i+1

(
σ2
j∆n
− σ̃2

j∆n

)
,
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with the obvious definition using the curly brackets. Thus, for the step function (g(t))t∈[0,1], with

g
(
i∆n

)
= k−1/2

n

(
i∑

j=i−kn+1

n(∆n
jX)2 −

i+kn∑
j=i+1

n(∆n
jX)2 +

i+kn∑
j=i+1

(
σ2
i∗∆n

− σ̃2
i∗∆n

))

for i = kn, . . . , n− kn and g(i∆n) = 0 else, we have that√
kn g

(
i∆n

)
= An,i +Bn,i + Cn,i +Dn,i ,

−Dn,i =

i+kn∑
j=i+1

(
σ2
j∆n
− σ̃2

j∆n

)
−
(
σ2
i∗∆n

− σ̃2
i∗∆n

)
=

i+kn∑
j=i+1

(
σ2
j∆n
− σ2

i∗∆n

)
+
(
σ̃2
i∗∆n

− σ̃2
j∆n

)
.

Exploiting the smoothness of (σt)t∈[0,1] by Assumption 3.1, we obtain

max
i=1,...,n

∣∣Dn,i

∣∣ = max
i∗−kn≤i≤i∗

∣∣Dn,i

∣∣ ≤ K sup
0≤s≤1

|σs| max
i∗−kn≤i≤i∗

i+kn∑
j=i+1

|σj∆n − σi∗∆n |

≤ K sup
0≤s≤1

|σs|k1+a
n n−a = Oa.s.

(√
kn log(n)

)
,

with some constant K by (17). Proceeding similarly as in the proof of Theorem 3.2, it follows that

max
i=1,...,kn

∣∣An,i +Bn,i + Cn,i
∣∣ = OP

(√
kn log(n)

)
. (81)

Altogether, we conclude that

sup
t∈[0,θ]

∣∣g(t)
∣∣ = OP

(√
log(n)

)
. (82)

Finally, using (80), we see that f(i∆n) > |g(i∆n)| > 0 holds for each i = i∗ − kn/2, . . . , i∗, with
probability tending to 1. In particular,

V �n,i =
∣∣f(i∆n

)
+ g
(
i∆n

)∣∣ = f
(
i∆n

)
+ sign

(
g(i∆n)

)∣∣g(i∆n

)∣∣ (83)

for those i. Furthermore,

f(i∗∆n)− f(i∗∆n − γn) = bγnncδk−1/2
n for γn ∈ [0, kn/(2n)] .

Thus, we choose γn such that √
kn log(n)

δn
= O

(
γn
)
. (84)

Now the assumptions of Lemma D.1 are fulfilled, and we obtain, with probability tending to one,

i∗∆n ≥ argmaxi=kn,...,i∗ V
�
n,i ∆n ≥ i∗∆n − γn,
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through an application of Lemma D.1 together with (83). A similar argument for i > i∗ shows

i∗∆n ≤ argmaxi=i∗,...,n−kn V
�
n,i ∆n ≤ i∗∆n + γn,

from which one obtains |θ̂n − i∗∆n| = OP
(
γn
)
, which completes the proof by definition of i∗.

Proof of Proposition 5.3. Suppose that√
knδn = O

(√
log(n)

)
(85)

and we have a consistent estimator θ̂∗ for θ. Define

T
θ̂∗

=
n

kn

( θ̂∗n−1∑
j=θ̂∗n−kn

(
∆n
jX
)2 − θ̂∗n+kn∑

j=θ̂∗n+1

(
∆n
jX
)2)

. (86)

Using the statistic T
θ̂∗

, we can now test for jumps in the volatility σ2
t . Note that due to (85), it readily

follows that this new test has a detection boundary bn = O
(√

log(n)/
√
kn
)
. This, however, is a

contradiction to Theorem 4.1, and hence such an estimator θ̂∗ cannot exist.
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