
Lovász, Anna; Szabó-Morvai, Ágnes

Working Paper

Does Childcare Matter for Maternal Labor Supply?
Pushing the limits of the Regression Discontinuity
Framework

Budapest Working Papers on the Labour Market, No. BWP - 2013/13

Provided in Cooperation with:
Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of Sciences

Suggested Citation: Lovász, Anna; Szabó-Morvai, Ágnes (2013) : Does Childcare Matter for Maternal
Labor Supply? Pushing the limits of the Regression Discontinuity Framework, Budapest Working
Papers on the Labour Market, No. BWP - 2013/13, ISBN 978-615-5243-86-8, Hungarian Academy of
Sciences, Institute of Economics, Centre for Economic and Regional Studies, Budapest

This Version is available at:
https://hdl.handle.net/10419/108485

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/108485
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

  

 

 

BUDAPEST WORKING PAPERS ON THE LABOUR MARKET  

BWP – 2013/13 

 
 

 
Does Childcare Matter for Maternal Labor Supply? 

Pushing the limits of the Regression Discontinuity 

Framework 

 
 
 

ANNA LOVÁSZ - ÁGNES SZABÓ-MORVAI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTITUTE OF ECONOMICS, CENTRE FOR ECONOMIC AND REGIONAL STUDIES 

HUNGARIAN ACADEMY OF SCIENCES 

DEPARTMENT OF HUMAN RESOURCES, CORVINUS UNIVERSITY OF BUDAPEST 

BUDAPEST, 2013 



 

 

Budapest Working Papers on the Labour Market 

BWP – 2013/13 

Institute of Economics, Centre for Economic and Regional Studies,  

Hungarian Academy of Sciences 

Department of Human Resources, Corvinus University of Budapest 
 
 

Does Childcare Matter for Maternal Labor Supply?  
Pushing the limits of the Regression Discontinuity Framework 

 
 

Authors:  
 
 

Anna Lovász 
research fellow 

Institute of Economics 
Centre for Economic and Regional Studies 

Hungarian Academy of Sciences 
Department of Economics, Eötvös Lóránd University 

email: lovasz.anna@krtk.mta.hu 
 
 

Ágnes Szabó-Morvai  
PhD candidate 

Central European University and HÉTFA Research Institute 
HETFA Research Institute 

email: szabomorvaiagnes@hetfa.hu 

July 2013 

 

ISBN 978 615 5243 86 8 

ISSN 1785 3788



 

Does Childcare Matter for Maternal Labor Supply?  
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Anna Lovász - Ágnes Szabó-Morvai 

 

 
Abstract 

 
 
We use an extension of the RD approach based on a kindergarten enrollment cutoff date and a 

new resampling design to estimate the causal impact of subsidized childcare availability on 

Hungarian mothers’ labor market participation around the 3rd birthday of the child. Besides 

standard fuzzy RD, which holds calendar time constant, we apply an alternative version where 

child’s age is held constant, which enables us to (a) separate the childcare effect from other, age-

specific effects, and (b) consider the effect of not only point, but interval cutoffs for eligibility. We 

combine RD with a difference-in-differences approach using a comparison group of mothers 

with children aged 4-5 to control for seasonal effects (parent selection, child development, 

within-year labor market fluctuations). Our estimates indicate that a mother with a 3 year old is 

15% more likely to be active if her child is eligible for subsidized kindergarten, corresponding to 

previous estimates of labor supply elasticity of 0.3-0.75. This suggests that increased subsidized 

childcare availability and parental leave alone cannot explain the sharp increase in the rate of 

maternal participation seen around children’s 3rd birthday, highlighting the importance of other 

factors such as separation preferences and flexible work forms.  

 

 
Keywords: Subsidized Childcare Availability, Maternal Labor Supply, Regression 

Discontinuity 
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Befolyásolja a gyermekellátás az anyák munkakínálatát?  

A diszkontinuitás regressziós modell korlátainak 

kiterjesztése 

 

Lovász Anna - Szabó-Morvai Ágnes 

 

 

Összefoglaló 

 

Az RD modell – újfajta mintavétel révén történő - kiterjesztésével azt vizsgáljuk, hogy az 

mekkora a gyermekellátás hatása a magyarországi anyák munkapiaci aktivitására a gyermekek 3. 

születésnapja körül. A standard “fuzzy” RD használata mellett egy alternatív verziót is 

alkalmazunk, ami révén (a) szét tudjuk választani a gyermekellátás hatását egyéb, gyermekkor 

függő hatásoktól (GYES vége, preferenciák változása), és (b) nem csak pont, de intervallum 

bekerülési küszöböt is vizsgálunk. A szezonalitási hatásokat (szülői szelekció, gyermekfejlődés, 

munkapiaci fluktuációk) úgy kezeljük, hogy az RD modellt egy difference-in-differences 

módszerrel kombináljuk, ahol a 4-5 éves gyerekkel rendelkező anyákat kontroll csoportként 

használjuk. Az eredményeink alapján egy 3 éves gyermek anyja 15%-al nagyobb valószínűséggel 

aktív, ha állami (ártámogatott) gyermekellátásban részesülhet, ami korábbi eredményekhez 

hasonló, kb. 0,3-0,75-ös munkakínálati rugalmasságnak felel meg. Ennek megfelelően 

elmondhatjuk, hogy az aktivitás 3 éves kornál látott hirtelen növekedését nem magyarázza sem a 

gyermekellátásra való jogosultság növekedése, sem a GYES vége, rámutatva, hogy egyéb 

tényezők, mint a kötődési preferenciák és a rugalmas munkaformák elérhetősége szerepe is 

jelentős. 

 

Tárgyszavak: Gyermekellátás, anyák munkakínálata, diszkontinuitás regressziós modell 
 

 

JEL kódok: J13, J22 
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I. INTRODUCTION 

 
Encouraging higher participation of women in the labor market is an important policy goal in 

most countries.1 In particular, the employment of mothers of young children has remained low 

despite the general increase seen in overall female employment, and they remain an important 

untapped workforce. The employment prospects of these women play a key role in two processes 

of outstanding importance. First, fertility rates, which are crucial in aging populations, depend 

crucially on the labor market opportunities of mothers. Second, if mothers stay at home for long 

time periods after giving birth, employers bear higher potential costs hiring them, and all women 

of childbearing age may be affected by statistical discrimination. There are many factors that 

may affect a woman’s ability and willingness to work after having a child, such as parental leave, 

tax/child benefits, childcare availability and costs, flexible employment opportunities, 

preferences regarding separation from the child, societal attitudes, labor market opportunities 

and discrimination. The possible range of policy tools is correspondingly varied, but recent 

consensus among policymakers is that expanding subsidized childcare availability is a key step.2  

To find the most effective mix of policies - and to forecast the benefits of investment in 

subsidized childcare facilities - it is important to estimate the impact of childcare (as well as 

other factors) on mothers’ labor supply precisely. Yet the available empirical evidence so far is 

highly ambiguous, and dependent on methodology and data constraints. Our paper proposes an 

empirical method (regression discontinuity with a resampling design) for estimating the causal 

effect of childcare availability on mothers’ labor supply that is very close to an experimental 

design. The discontinuity in childcare availability (at the enrollment cutoff date) allows us to 

untangle the effect from that of unobserved regional and individual level characteristics, while 

the resampling design separates the childcare effect from other child age-related factors 

(parental leave, preferences) that is discontinuous at the cutoff. This allows us to draw important 

conclusions regarding the role of childcare availability and other factors, as well as related policy 

implications. 

                                                 
1 It is key to sustainable growth, satisfying long term labor demand, lowering budget deficits, and 
achieving gender equality (Bloom et al. (2009)). In aging populations, it is a crucial for demographic policy 
to ease constraints related to childbearing (Apps and Rees (2001)). Economies have increasing skill 
demand, and women are an important potential resource (Krusell et al. (2000)). 
2 In the US and Canada, several states introduced universal subsidized pre-kindergarten (Fitzpatrick 
(2010), Baker et al. (2008), Lefebvre and Merrigan (2008)). EU policymakers declare increasing childcare 
availability an important goal (Barcelona Summit, EU (2002)).  
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Previous estimates of the effect of childcare opportunities on mothers’ labor supply use three 

main types of empirical methodology: estimates based on structural models, those based on 

policy change, and a recent RD estimate based on discontinuity at the enrollment cutoff date.3 

Each of these has its advantages and drawbacks. Studies built on structural models generally use 

regional or time variation in childcare prices to identify the impact on labor supply. The 

advantage of these studies is that they control for fertility and other selection biases.4 However, 

there are several drawbacks as well. Such models are based on several behavioral and 

distributional assumptions, which can be quite restrictive. Unobserved characteristics in the 

error term - mainly individual and regional - may make childcare availability endogenous in the 

labor supply equation (e.g. migration between settlements, or the economic development of 

settlements), and most of these introduce an upward bias. These are generally not controlled for 

in the studies based on structural models due to data limitations.5 The evidence from these 

studies varies not only because of differences in methodology and data, but also differences in 

the age of the children analyzed, and cross-country differences in hard-to-observe preferential6 

and institutional factors. Little is known about the source and impact of these. Several structural 

studies support the existence of a negative effect of childcare costs on participation or 

employment: Lokshin in Russia (2004), Borra (2010) in Spain, Kimmel (1992), Conelly (1992), 

and Conelly and Kimmel (2001) in the US, Haan and Wrohlich (2011) in Germany, Del Boca 

(2002) in Italy. On the other hand, some studies find little or no significant effect: Chevalier and 

Viitanen (2002) in the UK, Chone et al. (2003) in France, Ribar (1995) in the US. 

More recent research noted that these empirical issues make it difficult to provide causal 

estimates of the impact of childcare based on regional and time variation, and looked to other 

sources of variation for identification. Several studies make use of a policy change and use 

difference in differences methods. The advantage of using such changes is that much fewer 

assumptions are needed for estimation, and they should eliminate omitted variables bias as long 

                                                 
3 Most studies are from Europe and North America, studies on developing countries are rare (Lokshin 
(2004)). 
4 Fertility may be endogenous to post-birth labor market opportunities. A common solution to this is 
modeling labor supply and fertility simultaneously in a structural model, based on several behavioral and 
distributional assumptions (Ribar (1995), Powell (2002)). Some studies use correction methods for other 
types of selection (participation and, given participation, formal child-care utilization), but inappropriate 
exclusion restrictions may lead to biases (Lefebvre and Merrigan (2008)). 
5 Reviewing US evidence, Blau (2003) concludes that the variability of empirical results stems from 
differences in model specification and econometric methodology. Del Boca (2002) uses an individual 
fixed-effects model of fertility and employment decisions for Italy, which alleviates bias that is constant 
over time. 
6 Regarding separation preferences, see for instance the International Social Survey Programme. 
(http://zacat.gesis.org/webview/index.jsp?object=http://zacat.gesis.org/obj/fStudy/ZA3880%20). The 
data reflect a wide variation among countries: the ratio of those preferring to stay home with children 
under school age ranges from 13.6% (Israel) to 64.3% (New Zealand). 

http://zacat.gesis.org/webview/index.jsp?object=http://zacat.gesis.org/obj/fStudy/ZA3880%20
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as the policy changes were exogenous. However, policy decisions about subsidized childcare 

supply may be endogenous as well if they depend on local childcare demand, which is likely the 

case. As a consequence, estimations based on a policy change may suffer from bias, because the 

exogeneity of the treatment is not necessarily ensured. Moreover, these methods do not control 

for fertility selection as structural model-based estimates do. Some policy change-based studies 

find a significant positive impact of childcare expansion (or childcare subsidy expansion) on the 

labor supply of mothers (Baker et al. (2008), Lefebvre and Merrigan (2008)), while others find 

no significant impact (Cascio (2009), Lundin et al. (2008)).7 Baker et al. (2008) note that the 

estimated elasticities from policy change based studies (Berger and Black (1992), Gelbach 

(2002), Herbst (2008), Cascio (2009)) are at the lower end of the range of estimates based on 

structural models reported by Blau (2003). 

In an RD approach, there is a unique discontinuity that can be exploited: identification 

comes from the difference in the eligibility of otherwise identical children born just before and 

after the cutoff. Randomness of the children’s birth dates ensures that there is exogenous 

variation in childcare. RD also requires fewer assumptions, but an important condition is that no 

other factors change discontinuously at the same cutoff point. This may limit the applicability of 

the RD method in measuring the childcare effect even if an enrollment cutoff date exists, if there 

are other child age-related factors that change discontinuously at the cutoff. RD also does not 

control for fertility selection as structural model-based methods do. Fitzpatrick (2010) uses an 

RD framework based on new policies in three US states that recently introduced universal 

prekindergarten programs (for 4-year-olds) with birth date based eligibility cutoffs. The study 

uses US Census information to estimate the difference in the labor supply of mothers whose 

children were born shortly before and after the cutoff. The results suggest that although 

universal childcare availability increased preschool enrollment by 14 percent, it had negligible 

effect on the labor supply of most women.  

Throughout this article we stay in the realm of regression discontinuity framework, but use 

an extension of RD in order to address a violation of the requirement of standard RD that no 

other factor may be discontinuous at the cutoff point. The source of this violation is that in 

Hungary children who turn 3 before September 1st are eligible for subsidized kindergarten. 

However, there are two other major sources of discontinuity around age 3: parental leave ends, 

                                                 
7 Baker et al. (2008) use the introduction of subsidized universal childcare in Quebec, and find strong 
evidence of a significant increase in maternal labor supply. Lefebvre and Merrigan (2008) compare 
multiple pre- and post-treatment periods for Quebec mothers, and mothers in other provinces, and find a 
large significant impact. Cascio (2009) uses the staggered timing and age targeting of new subsidies for 
kindergartens in the US, and detects no significant response. Lundin et al. (2008) use data from Sweden, 
and changes in prices due to reforms, finding an effect close to zero. 
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and, as Blaskó (2011) shows, preferences regarding separation from the child change sharply as 

well. This means that using standard RD, which holds observation calendar time constant, would 

not allow us to differentiate these factors from each other. To tackle this problem, we utilize a 

new resampling design, which holds the age of child at observation constant. That is to say, we 

estimate the difference in the activity of the treatment and control groups not at the same 

calendar date, but in the quarter after the child turned 3, so children in the two groups are the 

same age on average. As a result, discontinuities related to child age affect the treatment and the 

control groups similarly, and do not bias the estimation of the treatment effect.  

Contrary to the standard RD setup, the resampling design makes it possible for us to 

separate birth date and age effects. However, it is important to note that in this setup, the groups 

differ in the season in which they are observed and that their child was born. This means that 

estimates may be affected by selection bias if the composition of parents differs by season of 

birth of children, or if labor market opportunities (and therefore, expectations) differ by season. 

We control for this by using a comparison group of mothers with 4-5 years old children and 

difference in differences. An additional benefit of our RD resampling design is that it allows us to 

define the cutoff more broadly, and explore the possibility of an eligibility cutoff that is not a 

single point in time, but a time interval. Empirical evidence suggests that in reality, there is a 

less-strictly enforced cutoff date,8 so we explore the possibility of an eligibility cutoff that is not a 

single point in time, but a time interval (September 1 – January 1st). This is not possible in the 

standard RD setup, because it is important that the cutoff be one point in time so treatment and 

control groups are similar enough, ensuring that differences stemming from age differences and 

birth date differences are negligible. The resampling design allows the cutoff to be a time 

interval, while treatment and control groups remain similar along the age dimension. 

Our results point to a significant effect of childcare availability on mothers’ participation. The 

reduced form results show that women whose children are born in the months before the 

kindergarten eligibility cutoff are significantly (6 percentage points) more likely to be active in 

the labor market than those whose children are born immediately after the cutoff. 2SLS 

estimates suggest that increasing subsidized childcare availability for a child around 3 years old 

by 10 % increases the probability that a mother is active by 1.5%. This means that the 

participation rate of mothers with children aged 2-3 would increase by about 13.5% if nursery 

school coverage increased to the level of kindergarten coverage. Taking into account the average 

                                                 
8 We interviewed directors of kindergartens about actual enrollment practices. We found that (a) they vary 
a lot, and (b) kindergartens handle rules elastically in order to maximize parental satisfaction and 
kindergarten cost efficiency. The results of the interviews are in line with our estimates, which suggest that 
the 1st September cutoff date does not effectively divide the treatment and control groups. 
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female wage rate and the price of non-subsidized childcare, this translates to a labor supply 

elasticity of 0.3-0.75, which is in line with previous labor supply elasticity estimates for EU 

countries (e.g. Bargain et al. (2011), Bargain and Peichl (2013)). Since the amount of parental 

leave is rather low in amount (5/8th of the childcare subsidy) in the final year, based on this 

elasticity estimate, subsidized childcare availability and parental leave explain only one half of 

the large increase in mothers’ activity seen at the 3rd birthday. The policy implication of our 

paper is therefore that childcare expansion (and, in the case of Hungary, shorter parental leave) 

alone will not achieve the goals set for the labor market activity of mothers. Other exogenous 

factors, such as preferences and societal attitudes may have an important role, in line with the 

observed cross-country differences in labor supply of mothers of children a young ages. 

II. BACKGROUND AND FRAMEWORK 

 
Before giving the details of the methodology and estimation results, we begin our discussion by 

describing important details of the institutional setting in Hungary that are relevant to our 

analysis. We focus on the childcare system, as well as two other major sources of change around 

age 3 of the child that affect our estimation: parental leave and preferences regarding separation 

from the child.9 We then present a simple theoretical framework, and discuss the effect of these 

factors on labor supply and on our estimation methodology. 

 

II.1. BACKGROUND ON DETERMINANTS OF LABOR SUPPLY IN HUNGARY 

 The Childcare system 

The system of formal childcare institutions in Hungary consists of various possibilities. State-

owned and -financed nursery schools accept children up to 3 years of age.10 The childcare 

services of these institutions are free of charge, but parents pay for the meals, and make minor 

material contributions (toilet paper, etc.), which amount to approximately EUR 20 a month. 

There are also nursery schools owned and maintained by churches, foundations, or private 

                                                 
9 Some previous studies deal with various aspects of the Hungarian system: the fertility effects of the 
benefit system (e.g. Gábos et al. (2009)), the effects of mothers’ employment on child development, and 
related attitudes (e.g. Blaskó (2005, 2008, 2011)), and labor market effects of child benefits (e.g. Lakatos 
(1996), Frey (2002), Nagy and Pongrácz (2009), Köllő and Bálint (2008), Szabó-Morvai (2013)). The labor 
market effect of the childcare system is barely analyzed: Blaskó et al. (2009), offer a review of this topic, 
and an approximation of the excess demand for formal childcare. 
10 State-owned institutions refer to those run by the federal or local government. 
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owners. Some of them offer their services for free; some of them charge a fee (approx. EUR 100-

150 monthly). Nursery school coverage and usage are relatively low: a mere 11% of children 

under age 3 were attending nursery school in 2009 (EU-SILC), and approximately 9% of the 

settlements had a nursery school. This is rather low relative to the EU average, as can be seen in 

Figure 1, however, other CEE countries – with the exception of Slovenia – show a similar trend. 

The admissions process into nursery schools is highly competitive, and admittance is based on 

general rules as well as subjective factors.11 For children above 3, state-owned kindergarten 

becomes available (depending on their birth date, as described below), which costs about the 

same as nursery school. Kindergarten coverage is significantly higher, around 80% in 2009 (EU-

SILC), and relatively high compared to other countries (Figure 1).  This means that when a child 

turns 3 and becomes eligible for kindergarten, the mother’s childcare opportunities expand 

significantly: the expected cost of childcare decreases, as their child becomes very likely to be 

accepted into subsidized childcare. 

Figure 2 shows our own calculations of nursery and kindergarten coverage rates based on T-

STAR Hungarian regional data, at the level of our empirical analysis,12 in 2010. Coverage is 

calculated as the number of childcare places divided by the number of children of the given age 

group in the region. These statistics highlight the lack of childcare availability (which we use as a 

synonym of coverage throughout the paper) before age 3 of the child: 13% of the Hungarian 

population lives in a region with 0% nursery school coverage, which means that nursery school is 

not available in their township or be reasonably commuted to. The bulk of the population lives in 

regions where 10-25% of children under 3 years can access nursery school places, and there is no 

region in Hungary where more than 35% of the children can go to nursery school. Average 

coverage is around 9%. Kindergarten coverage is much more favorable: most regions have 

around 100% coverage, that is, most children should have a place in kindergarten. 

 

                                                 
11 The school year starts in September, but parents have to apply well in advance. Acceptance rules may 
differ by institution. Children generally have priority if they live permanently in the given township, if they 
have older siblings already enrolled, if both of their parents work or study full-time, if they have a single 
parent, or are at risk (e.g. disadvantaged social situation). Besides general rules, subjective factors (e.g. 
acquaintance, sympathy) also affect the acceptance decision. 
12 The construction of these regions is based on township-level data aggregated according to commuting 
statistics, as described in the Data section. 

http://szotar.sztaki.hu/search?searchWord=acquaintenance&fromlang=eng&tolang=hun&outLanguage=hun
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Figure 1 

 Percentage of the population of the relevant age groups attending formal childcare 
institutions, EU countries, 2009 
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Figure 2 

Distribution of nursery and kindergarten coverage rates by region, 2010 
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Notes: Based on T-STAR Hungarian regional data. Coverage rate: the number of childcare places 
within each region, divided by the number of children of relevant age in each region. Region 
refers to townships merged based on commuting data. 

 

                                                 
13 http://epp.eurostat.ec.europa.eu/portal/page/portal/income_social_inclusion_living_conditions 
/data/database  

http://epp.eurostat.ec.europa.eu/portal/page/portal/income_social_inclusion_living_conditions%0b/data/database
http://epp.eurostat.ec.europa.eu/portal/page/portal/income_social_inclusion_living_conditions%0b/data/database
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The kindergarten school year begins in September. Officially, children who turn 3 (have a 

birth date) prior to September 1st are accepted into state-run kindergartens in the given school 

year, while children born after September 1st are accepted next year. However, kindergartens 

may accept every child over age 3 as space becomes available throughout the year. According to 

childcare professionals, children most often do enroll in next September, when older children 

leave kindergarten for primary school and spaces open up. At the same time, some children are 

allowed to enroll in September even if the child has not turned 3 yet, and some institutions have 

an additional enrollment wave in January. This means that the September 1st cutoff, in fact, may 

not be strictly enforced, which affects our estimation. To determine the actual cutoff, we explore 

several alternative specifications of the cutoff (September 1, January 1, and September 1-January 

1) and compare the results. This allows us to draw some interesting conclusions regarding how 

the actual admittance process is carried out, without limiting our analysis to the official 

September 1 rule.  

From 1993, this system of formal childcare was amended with the possibility of opening 

family daycare service centers, though these are not very common. In 1999, there were altogether 

28 such institutions in Hungary, their number increased to 70 by 2003 (Rajkort (2006)). Family 

daycare centers are generally privately owned and provide paid childcare for about EUR 100-150 

monthly, similar to private-owned formal institutions.
14

 In addition to formal childcare 

arrangements, it is also possible to ensure childcare informally. Informal childcare may be the 

primary childcare possibility for some families, or it may complement formal arrangements. 

Informal care may be provided by for instance an au-pair, a helping family member (a 

grandmother), or a neighbor. The au-pair is expensive (approx. EUR 700 for a month), the 

others are usually for free. Although our focus is on the effect of the provision of low-cost formal 

childcare, we control for the availability of family daycare services and the presence of potential 

informal childcare providers in the household using the estimation method: the randomness of 

children’s birth dates ensures that these should be equally available, on average, for both groups. 

The September 1st enrollment cutoff date does not apply to private-owned kindergartens (or 

grannies), so our estimates actually capture the effect of differences in subsidized state childcare 

availability between the groups. 

 

                                                 
14 Calculated with 8 hours a day, 20 days a month, for this and all other price estimates given. 
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 Parental leave 

In order to understand the labor supply decision of mothers with young children, it is important 

to also review the parental leave system, which also impacts mothers’ participation when 

children are young (Szabo-Morvai (2013)). For our purposes, flat-rate parental leave is of special 

interest among the available benefits, because it is given to families when the youngest child is 

under 3 years old, and it is terminated afterwards.
15

 Flat-rate parental leave is universal in 

Hungary, and can be received by anyone, whether they were previously insured or not. One 

parent in each family is entitled to it, though statistics show that the overwhelming majority 

(98.1%) is taken by mothers, not fathers according to the H-LFS data. For this parent, full-time 

employment is restricted to telecommuting only, and part time employment is allowed. The sum 

of this benefit in the final year equals the old-age pension minimum, which was around EUR 105 

in 2010. Figure 3 depicts the evolution of average net wages, the mandatory wage minimum, and 

parental leave payments over time. The amount of the parental leave is low relative to the 

average wage, however, it may still have an impact on the labor supply decision of mothers with 

low expected wages or employment probabilities. Furthermore, the length of parental leave may 

be taken as an institutional signal regarding the “proper”, socially accepted time for separation 

from the child, effecting mothers’ preferences (discussed next).16 To sum up, since parental leave 

ends at age 3, it is highly relevant to our estimation, which is based on the discontinuous change 

in subsidized childcare availability at that time. Therefore this is an important issue that we 

address both in the theoretical framework, and in the empirical method based on the resampling 

design. 

                                                 
15 Some receive this flat-rate payment between ages 2-3 of the child, while some receive it for the full 0-3 
years. Other types of benefits (e.g. family allowance) are not relevant to our estimation, as there is no 
significant change in them around age 3 of the child. 
16 Such institutional signaling of the childcare system is discussed by Hasková et al. (2012) 
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Figure 3 

 Average wage, wage minimum, and parental leave in Hungary (1992-2010) 

 
Source: CSO and The Hungarian Labor Market – Review and Analysis (2011) 

 

Other Factors: separation preferences 

In addition to the two main institutional factors (subsidized childcare availability and parental 

leave), in the case of Hungary, we also have to consider the role of preferences regarding 

separation from the child. Since parents become less attached as the child grows older, a 

comparison of treatment and control groups before and after the cutoff in the RD setup will lead 

to a bias, depending on the rate of change in preferences and narrowness of the RD sample 

frame. In the case of Hungary, there is an additional problem, which is that these preferences 

may also change discontinuously at age 3 of the child. A 2009 survey by Blaskó (2011) suggests 

that 56.4% of people believe age 3 is the earliest acceptable time for a mother to leave the child 

and return to work, while 19.6% responded age 2, and 19.7% gave a later age than 3. This 

suggests that there may be a correlation between the institutional setting and societal/individual 

preferences in the 3rd birthday being set as an important deadline (Hasková et al. (2012)). 

Whether this is due to the institutional framework being interpreted as a signal by mothers that 

they should send the child to childcare and return to work, employers assuming that mothers 

will be absent less often after this age, or other factors, it leads to a discontinuity at age 3 that 

needs to be addressed in the estimation setup in order for it to be separated from the childcare 

effect. 
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II.2. THEORETICAL FRAMEWORK 

To set up our model, we first have to clarify that we view childcare availability and childcare cost 

as the two sides of a medal. On the one hand, there is always some kind of childcare available, if 

one is willing to pay for it. On the other hand, if we restrict our interest to state-subsidized 

childcare, we can say that – knowing the expected price of each type of childcare – a given 

increase in subsidized childcare availability decreases the expected childcare price by a certain 

amount. Thus, subsidized childcare availability and expected childcare cost can be converted 

between each other. We utilize both sides of the medal in our study. We have accurate data on 

availability, thus we use it in our estimations. However, when it comes to the individual’s labor 

supply decision, it is expected childcare price which is taken into account, and we interpret our 

estimation results in that light as well, converting them to elasticities. As a result, we introduce a 

theoretical model which is based on the cost of childcare. 

Blau (2003) provides a simple theoretical framework used to model how childcare price 

subsidy affects the labor supply decision of mothers with young children. We adopt this model to 

motivate our empirical methodology and pinpoint the main estimation issues relevant in our 

case. The analysis is based on a cost of working model, which does not take into account 

childcare as an input into the child’s development. Childcare enters the decision process only as 

a cost of working - a pre-condition of it - as a means of taking care of the child while the mother 

works. Thus, the quality of childcare institutions is not taken into account, and is assumed to be 

homogenous. Although they differ in many ways, we also do not differentiate between 

kindergarten and nursery school, because – if available – both of them fulfill the requirement of 

safeguarding the child while the mother works. We assume that childcare is available for 

everyone at some market price, that is, practically anyone can hire a nanny, if they can afford it. 

However, mothers face a significantly lower cost of childcare if subsidized institutional childcare 

is available to them.17  

The decision model is based on a traditional view of family decisions. The labor supply 

decision and the wage of the husband are exogenously given, and it is taken into account in the 

decision of the mother. Thus, the mother is the only agent in the model. For the sake of 

simplicity, we assume that working has no fixed costs and the wage rate ( ) is constant, 

independent of the hours worked. If the mother decides to work  hours a month, she receives 

 amount of salary. Additionally, she has  nonwage income, which includes the husband’s 

salary. The mother spends the income on consumption goods ( ), and she also pays for  hours 

                                                 
17 Heckman (1974) emphasized the role of unpaid care, included in the model as a zero-cost childcare 
form. 
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of childcare, with a market price . Total income left after paying for childcare is , and  is the 

amount of leisure time of the mother.18  

Figure 4.a. depicts the mother’s labor supply. With zero hours of work, the mother receives 

income  , independent of the type of childcare available to her. The dotted line shows the 

budget constraint when there is no subsidized childcare available. In this case, with each hour of 

work, the mother gains the wage rate, minus the market price of non-subsidized childcare 

(nanny), which is . The solid line shows the mother’s labor supply if subsidized childcare 

becomes available to her. The cost of childcare decreases by , and the mother’s budget 

constraint rotates upward, as an additional hour of work now provides a gain of ( . 

The mother’s optimal labor supply is given by the tangency point of her budget constraint and an 

indifference curve in each case. The effect of a decrease in childcare costs – an increase in the 

availability of subsidized childcare - results in a labor supply increase, that is,  increases to . 

However, the other changes described above take place around age 3 of the child, which may 

confound the issue in the case of Hungary. First, one is that mothers are eligible for the flat-rate 

parental leave up to the child’s 3rd birthday. Figure 4.b. depicts the labor supply of the mother 

when she is eligible for parental leave (child under age 3), and when not. The termination of 

parental leave also increases labor supply. Second, the mother’s decision is also affected by her 

preferences regarding separation from the child (or other preferences, such as employers’, or 

societal). Figure 4.c. shows the effect of a sudden change in separation preferences at age 3 of the 

child. As the child grows older, the mother requires less compensation for an extra hour spent 

working. The indifference curve becomes flatter, which will also lead to an increase in labor 

supply. 

                                                 
18 This means that: . The mother’s budget constraint is: . If 
there is state-subsidized childcare available, the slope of the budget constraint changes: 

. The mother’s time constraint is: . 



Figure 4 

Labor supply decision of mothers around age 3 of the child 

(a) The effect of a childcare subsidy (b) The effect of the end of parental leave (c) The effect of a change in separation 

preferences 
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III. METHODOLOGY 

 
Our methodology is based on the kindergarten enrollment cutoff date in an RD setup, however, 

we propose an extension of RD, which we call RD with a resampling design, in order to tailor the 

estimation to a case where some of the classical RD assumptions do not hold. RD is usually 

estimated on a cross section of data, and the date of observation is the same for the treatment 

and the control group. As a consequence, effects related to age cannot be separated from those 

related to date of birth. The identification strategy is based on the fact that the treatment and 

control groups are divided by one cutoff point in time, so they are very similar in age, birth date, 

and observation date, as well as every other characteristic except that only one group received 

the treatment. Another key condition for identification (among some others) is that nothing 

other than the treatment changes discontinuously around the cutoff point. These two 

requirements can be relaxed by using resampling design. The resampling method differs from 

the classic RD in that here we use repeated cross section samples, one for the treatment and one 

for the control group, such that the average child age is held constant for the treatment and the 

control group. This allows for the separation of the calendar date-specific treatment effect from 

other factors that are age-dependent. In this setup, the cutoff separating the treatment and the 

control groups may be a point or a time interval. In case of an interval cutoff, the two groups will 

still be similar in age due to the resampling design, but differ in birth date and observation date.  

These latter differences may introduce seasonal bias of some forms. First, Bound and Jaeger 

(1996) claim that quarter of birth may be associated with various factors. They quote 

Kestenbaum (1987), who find that parents with higher incomes tend to have spring babies. We 

check this assumption by noting that in our sample, the level of education of the mothers in the 

treatment and the control group does not differ significantly in Hungary. However, there may be 

other types of selection present, as we will see in our descriptive statistics in the next section. 

Second, child development may differ by season of birth, which may influence the mother’s 

willingness to separate from the child. Currie and Schwandt (2013) show that even after 

controlling for maternal characteristics, health status and weight at birth depends on the season 

of birth. Third, labor demand varies seasonally as well, especially in certain industries. Labor 

demand, in turn, determines the actual and expected probability of employment, which strongly 

affects labor supply. The usual solution of including season fixed effects cannot be applied here, 

as seasonal effects are highly correlated with the instrument T of the 2SLS regressions. Instead, 
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in order to cope with possible seasonal biases, we include a comparison group which is very 

similar to the original sample, but does not differ by child’s birth date in terms of treatment 

status. We use the comparison group to execute a difference-in-differences estimation: the intra-

year variations of the variables and the sample are captured by the comparison group, so the 

observed differences among two groups of mothers of 3 year olds can be ascribed to the 

treatment.  

To sum up, we introduce resampling, an extension of RD, which combines RD with the DID 

method. By using resampling, two requirements of RD may be relaxed: (1) no other thing change 

discontinuously at the cutoff, and (2) there is a point cutoff. However, it has two additional 

requirements compared to standard RD: (1) it requires repeated cross section or panel data, and 

(2) a comparison group is needed in which either everyone or no one is treated. In the Results 

section we compare the results from the standard RD and RD with a resampling design to draw 

conclusions regarding the role of childcare in maternal labor supply, as well as the role of 

parental leave and other factors. Additionally, the different cutoff specifications (point and 

interval) provide information on the actual enrollment practices regarding cutoff dates in 

Hungary. 

STANDARD RD 

Regression discontinuity design is based on the following discontinuity: 

, where . 

 indicates that the child uses subsidized childcare.  is the month of the third birthday of 

the child
19

, and  is the month which includes the cutoff date. As discussed in the background 

section, the actual effective cutoff date is questionable in Hungary, so we use September 1st and 

January 1st as two alternative cutoffs.  is nursery school coverage,  is kindergarten coverage 

in region . We define the instrumental variable as follows:  

   

 is the instrumental variable of a fuzzy RD design, as the probability of childcare usage 

changes with  from 9% to 99% on average, depending on the region. The treatment group 

includes mothers whose child turned 3 in the 5 months prior to the cutoff, who are eligible for 

                                                 
19 We use a natural numbering 1-12 for birthmonths. In case of a January cutoff,  for the preceiding 
December,  for November, etc. 
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kindergarten enrollment. The control group includes mothers whose child turned 3 in the 5 

months after the cutoff, thus, as a general rule, are not eligible for state-subsidized kindergarten 

enrollment until significantly later. The mothers in both groups are observed on average 1.5 

months after the cutoff. In general, we include 5 months of birth dates for each group, but we 

decrease the timeframe as a robustness check.20 

We run individual level two stage least squares regressions of the following form:  

   (1) 

   (2) 
The corresponding reduced form equation is: 

   (3) 
Where equation (1) shows the first stage regression, (2) shows the second stage regression, 

and equation (3) represents the reduced form regression. The parameter  reflects the first-

stage effect of  on , the regional childcare coverage faced by individual .   on the other 

hand, captures the reduced-form effect of  on , the individual labor supply, which can be 

zero or one. The effects are measured adjusting for a set of individual ( ) and regional 

covariates ( ). Child care coverage ( ), labor supply ( ), and individual covariates ( ) 

vary by year ( ), region ( ), and individual ( ), while  represents year fixed effects, and  

region fixed effects.  

In the case of Hungary, estimation results using standard RD capture the effect of not only 

increased childcare availability, but other factors described in the background section as well: 

the end of parental leave when the child turns age 3, and changes in preferences regarding 

separation from the child around the 3rd birthday. Children in the treatment group are 3.5 years 

old on average, whereas children in the control group are 3 months younger. Thus, for treatment 

group, more time has passed since the end of the parental leave, which may induce mothers to 

increase their labor supply. On the other hand, these children are older, and the mothers might 

be more willing to separate from them and go back to work.  

RESAMPLING DESIGN 

In order to separate the effect of childcare availability from the other effects, we use a resampling 

design. As childcare availability depends on birth date, while the other factors (parental leave 

and separation preferences) are related to child age, this method enables us to do so. We define 

                                                 
20 We carry out the estimation with 3 and 4 month groups as well. The results show a similar pattern, 
though the significance of the estimates is lower due to the smaller sample sizes. 
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the treatment and the control groups similarly to the classic RD case, but we observe each 

mother the same length of time (4 months) on average after their child’s 3rd birthday: 

 

 
 
where  is the age of the child, and  is the length of the interval cutoff, in months. In case of a 

point cutoff, , while an interval cutoff means that .  

As in the previous setup,  is strongly correlated with childcare costs, as members of the 

treatment group have a significantly higher probability of having subsidized childcare available 

to them through their eligibility for kindergarten. At the same time, note that there is random 

assignment between the two groups, as the birth quarter does not correlate with any other factor 

that is relevant for labor market decisions.  is not correlated with any observed or 

unobserved individual or regional level characteristics, with the exception of possible seasonality 

effects noted earlier (addressed below). The average time spent from parental leave termination 

(the 3rd birthday) is the same in the two groups, so its effect is the same, on average, in the 

treatment and the control group. Moreover, since the children in the two groups are of the same 

age – all observed in the period after they turn 3 - separation preferences should also be the 

same for the two groups. Our estimation will no longer depend on these two factors, so we can 

isolate the childcare effect.  

In order to address the previously noted seasonal bias problem, we expand both treatment 

and control groups with reasonably close labor market substitutes, namely, mothers of children 

aged 4-5 years, and estimate a DID regression. For this comparison group, childcare availability 

no longer differs for the treatment and the control group (by birth date). Thus, any difference 

between them should be the result of the factors mentioned above: selection among the groups 

or within-year variations in the labor market (such as exogenous random shocks or seasonal 

effects). We denote our original sample of mothers of 3-year-old children , and the 

comparison sample of mothers of 4-5-year-old children . The  subsample is 

divided into two groups as in the case of the  subsample, based on the month of childbirth 

and the date of the interview. We define the instrument for the  subsample as follows:  

 
We construct a variable indicating the focus and the comparison sample:  
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We then run the 2SLS regression on the extended sample, and include  and the 

interaction of  and  as additional controls: 

  

 (4) 
  

 (5) 
 

 (6) 
In this setup, the parameter  shows the effect of  on , net of any seasonal effects, 

while  is the reduced form effect of  on , free of the within-year effects. 

The ability to compare groups based on an interval cutoff allows us to examine the treatment 

effect for 3 different groups. Group 1, where the kids were born in April-August, can enroll soon 

after their 3rd birthday in September. The enrollment date of Group 2, where the kids were born 

in September-January, is unclear. If the law (allowing the child to enroll in September only if she 

has turned 3) is strictly enforced, and there is no continuous enrollment throughout the school 

year, they can enroll only in next September, shortly before they turn 4. But if the law is not 

enforced, they can enroll before their 3rd birthday, or if possible, immediately after their 3rd 

birthday. If they can enroll in January in an additional wave, their average waiting time for 

enrollment will be similar to that of Group 1. Group 3, where the child was born in January-May, 

most likely has to wait to enroll until next September, that is, 4-9 months after their 3rd birthday. 

A comparison of the results with different cutoffs can reveal whether Group 2 is in the most 

advantageous position, suggesting that the law is not strictly enforced, or there is continuous 

enrollment up to January. In that is the case, the opportunities of the first group are similar, or 

slightly worse, while the third group is clearly in the most disadvantageous position. Thus, we 

would expect the largest and most significant effect in case of the January 1st cutoff (where 

groups 2 and 3 are compared), a moderate effect in case of the September 1st – January 1st 

interval cutoff (where groups 1 and 3 are compared), and a slightly negative or insignificant 

effect in case of the September 1st cutoff (where groups 1 and 2 are compared).  
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IV. DATA AND CHARACTERISTICS 

 
The primary source of the data used to estimate the effect of childcare availability on the labor 

market activity of mothers is the Hungarian Labor Force Survey (H-LFS). This is a rotating panel 

dataset, which consists of individual-level data about all members of the households selected in 

the sampling process. If a household consists of more than one family, then all of them are 

included, with different family identification numbers. Approximately 17% of the households are 

rotated in each quarter; the maximum number of periods for observation is 6, which equals one 

and a half year. The sample is representative of Hungary; sample weights based on the data of 

the Hungarian Central Statistical Office (CSO) are used. One wave consists of about 70-80 

thousand observations, however, only a fraction of these can be used for our purposes. Our 

restricted sample includes mothers with or without a partner. We exclude fathers from the 

analysis, because in Hungary it is quite rare that fathers stay at home with the child and mothers 

go back to work. As it can be seen from the H-LFS dataset, between 1996 and 2011, a mere 1.9% 

of those receiving parental leave payments were males. We define variables indicating treatment 

and control groups (z) and the corresponding comparison group of mothers of 4-5 year olds, and 

limit our estimation sample to these groups, observed in the time periods indicated in the 

resampling design, as described in the methodology.  

In the H-LFS dataset, detailed demographic and labor market data are included about each 

individual, and supplementary questionnaires give more details on certain topics for each year. 

In our analysis, we use information on the individual’s labor market activity as our labor supply 

measure, and include as controls individual characteristics (education, occupation, age, etc.), 

and family characteristics (marital status, partner’s work status, number of children, etc). 

Individuals are classified as active if they have completed at least one hour of paid work in the 

previous week, or if they are available for work and actively seeking for a job (ILO definition). We 

use this dummy variable as our dependent variable in the estimation.21 This means that we are 

not considering changes in hours of employment, because, as noted earlier, part-time work is 

rare in Hungary, so choices are made mostly between working and non-working.  

The individual level LFS data is linked with T-STAR township level regional data on childcare 

availability, as well as other regional characteristics, linked via township codes. The focus of our 

analysis, childcare availability, is constructed from the T-STAR database based on the number of 

                                                 
21 We also run our estimation with an employment dummy as the dependent variable as a further check. 
The results show similar overall trends as those presented here. 



22 

 

nursery and kindergarten spots in the township, and the number of children of the given age 

groups (0-3 for nursery school, 3-6 for kindergarten) in the population. We aggregate the 

coverage of formal childcare institutions in order to take agglomeration effects and commuting 

into account by merging townships based on previous data (Kertesi et al. [2012]), defining the 

regions used in our estimation. The region level childcare coverage measure is available from 

1997 to 2011, and can be linked to the LFS data for each of those years. We include regional 

descriptive variables of the population, economy, unemployment rates, and government 

financial status, as well as year dummies in the regressions. 

Summary statistics of the variables used in the estimations are given in Appendix Table A1, 

shown for the January 1st cutoff. The table gives the means of the control individual, family, and 

regional variables used in the estimation (as well as occupational data, for the sake of 

comparison). The third column in each panel (for mothers of 3 year olds, and mothers of 4-5 

year olds) gives the difference in the treatment and control group’s means, divided by the 

standard deviation of the control group. This measures the difference between groups in terms of 

number of standard deviations. The most significant difference between the groups can be found 

in the participation rate of mothers of 3-year olds: it is 59.6% for the treatment, and 51.5% for 

the control group. This means the difference is about 0.16 standard deviations. The difference in 

activity rates shrinks to 0.17 percentage points for 4-5 year olds. The two subsamples of mothers 

with 3-year-olds and 4-5-year-olds are similar in most aspects, except for trivial differences 

stemming from the construction of the subsamples: the average age of the parents and the 

children differs slightly, and mothers with 4-5-year-old children have more children on average. 

Most individual and regional characteristics that are used as explanatory variables are very 

similar in the treatment and control groups of both age groups. This is important for the validity 

of the RD setup, in that the birth date of the children can be considered random, and the 

compared groups are similar on average apart from the treatment. Based on the number of 

standard deviations measure, the biggest differences among mothers of 3 year olds can be seen 

in the type of settlement and nursery school coverage. The treatment group is 3.9 percentage 

points more likely to live in a city than a town, which is a 0.1 standard deviations. Nursery 

coverage is correspondingly 1 percentage point higher for the treatment group (0.1 SDs). 

Although these differences are not huge, they do suggest some seasonality may exist in the 

characteristics of the two groups. Therefore the DID seasonality correction may be important in 

our estimation. The differencing should capture seasonal differences, as the comparison groups 

of mothers with 4-5 year old children show a similar pattern in terms of type of living place. 
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V. RESULTS 

V.1. GRAPHICAL ANALYSIS: MOTHERS’ ACTIVITY RATES OVER CHILDREN’S AGE 

We begin our description of the estimation results by presenting a graphical analysis of the effect 

of treatment. Using the repeated cross-section (in our case, panel) dataset, we graph the activity 

rates of mothers of the three groups compared in case of the various cutoffs over a longer time 

span. Figure 5 presents the activity rates of the groups for child ages 0.5-7. Mothers are grouped 

based on the birth date of their child, and their average activity rate is calculated at each age (in 

quarters) of their child. All three groups show a gradual increase in the labor market activity, the 

rate of which increases after age 2 of the child, especially sharply after age 3, and levels off after 

age 4 around 0.75. The gradual increase over time is in line with gradually changing separation 

preferences. The sharp increase after age 3 may reflect the effect of the end of parental leave, as 

well as any more sudden changes in preferences regarding separation that may occur at age 3, as 

discussed earlier. The groups do not differ in these: parental leave and preferences are only 

dependent on the child’s age and independent of group membership (birth date).  Any difference 

between the groups is due to the difference in childcare availability due to the kindergarten 

eligibility cutoff: mothers in the various groups wait different lengths of time to gain access to 

kindergarten on average. Of course, seasonal effects may play a role here as well, and are not 

controlled for.  

The graph shows that while the three lines move together in general, there is a difference 

after age 3 of children. The activity of the group with children born September-January increases 

the most (or earliest), suggesting that they indeed are in an advantageous position, and are able 

to enroll their children at the earliest age on average. The pre-September group is next, while the 

January-May group lags behind the other two. These results suggest that the effective cutoff date 

is January 1st rather than September 1st., leading to the largest treatment effect. We now turn our 

attention to the RD estimation results to see more precisely what the magnitude of this effect is, 

and to control for possible bias from seasonal effects. 
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Figure 5 

 Activity rates of mothers by birth date of their child 
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V.2. RD REGRESSION RESULTS 

The estimation results are presented for three designs: standard RD, resampling with a point 

cutoff, and resampling with an interval cutoff. The comparison of these results allows us to draw 

some conclusions about the relative importance of not only childcare availability, but also the 

other factors that lead to changes in mothers’ labor supply around age 3 of their children.  

As a starting point, Table 1 presents estimation results based on the standard RD design22, 

though this method cannot produce unbiased estimates of the effect of childcare availability in 

our case, as discussed. In the standard RD setup, the two groups differ not only in childcare 

availability, but also child age related factors, specifically, parental leave and attachment 

preferences. The treatment group is observed after the child has turned 3, so after the end of 

parental leave. The control group is observed before or as the child turns 3, therefore most of 

these mothers still receive parental leave, and most probably are more attached to the child on 

                                                 
22 For the he full set of results see Appendix Table A2. 
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average. The standard RD estimates therefore capture the combined effect of all of these factors. 

Results are presented with January 1st and September 1st cutoff dates, and for three specifications 

of control variables. The upper panel of reduced form estimates shows a large and significant 

positive effect of around 0.25 in the January cutoff, and 0.24 in the September cutoff case. The 

2SLS regressions give coefficient estimates of around 0.32 and 0.31 for the childcare coverage 

variable, however, this is biased, as both coverage, and the instrument T, are correlated with the 

other two factors.23 Therefore, we cannot draw conclusions regarding the magnitude of the 

childcare effect alone, but we can say that there is a very significant change that takes place when 

children turn 3 and become eligible for kindergarten. 

 

                                                 
23 These estimates are very close to what we find if we run similarly specified OLS or regional fixed effects 
regressions on the full sample of mothers of 2-4 year olds in the LFS dataset, which range from 0.3-0.4. 
This suggests that standard RD results are in fact driven by the other factors that change discontinuously 
at age 3. 
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Table 1 

 Standard RD regression results 

Specification 1 2 3 1 2 3 

Reduced form 

Cutoff: January 1 September 1 

T 0.253*** 0.252*** 0.247*** 0.236*** 0.236*** 0.242*** 

  (0.025) (0.022) (0.023) (0.024) (0.023) (0.023) 

N 3444 3444 3379 3370 3370 3255 

Adj. R2 0.284 0.336 0.333 0.262 0.318 0.324 

2SLS 

Cutoff: January 1 September 1 

T 0.323*** 0.323*** 0.318*** 0.304*** 0.303*** 0.314*** 

  (0.026) (0.023) (0.024) (0.026) (0.025) (0.026) 

N 3248 3248 3184 3196 3196 3076 

Adj. R2 0.075 0.143 0.142 0.068 0.137 0.137 

Year dummies x x x x X x 

No controls x     x     

Individual 
controls 

  x     X   

Individual and 
regional controls 

    x     x 

Notes: Estimation based on H-LFS and T-STAR datasets, years 1997-2010. The dependent variable is the 
activity dummy. The table gives coefficient estimates of the dummy variable indicating treatment group 
membership (z=1 if treated). Year dummies are included in all regressions. Standard errors are given in 
parentheses. Stars indicate significance as: * p<0.05; ** p<0.01; *** p<0.001. 

 
More appropriate for our task of measuring the childcare effect, the reduced form regression 

results based on RD with a resampling design (point and interval cutoffs) are shown in Table 2. 

The table contains only the coefficient estimates of interest: the dummy variable indicating 

treatment group membership (T=1 if treated), seasonality comparison group membership (m=1 

if child is 3-3.6, m=0 if child is 4-5), and their interaction.24 The first three columns of the results 

give baseline estimates without the seasonality correction, for specifications with no controls (1), 

individual controls (2), and individual and regional controls (3). The last three columns show the 

same three specifications with the seasonality correction, when the comparison mothers are 

included. Coefficient estimates measuring the effect of subsidized childcare availability are given 

in bold: for the baseline regressions, these are the coefficients of T, while for the seasonality-

corrected regressions, they are the coefficients of the interaction term T*m.  

                                                 
24 Full estimation results can be seen in Appendix Table A3. 
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Of the three cutoffs, the RD results for January 1st show the most significant effect, ranging 

from 0.082 to 0.095 in the baseline specification. The September 1st cutoff, which should 

theoretically show the most significant if regulations are strictly enforced, shows no significant 

effect. The interval cutoff estimate, for September 1st-January 1st, is between the two point 

cutoffs, with somewhat smaller and less significant estimates than the January 1st cutoff results. 

The seasonality-corrected results show a similar pattern with slightly lower estimates: the results 

for January 1st range between 0.06-0.064. The coefficients of m, which signals membership in 

the group with children aged 3-3.6, are significant and negative, reflecting the difference in labor 

market activity on average compared to mothers with older, 4-5 year-old children. The 

coefficient estimates of T, which capture seasonality that is common to all mothers, are not 

significant. The stability of our main coefficient estimate, that of the interaction variable T*m 

(and T in the baseline regressions), over the different specifications of controls provides a 

robustness check, since the groups should not differ significantly in terms of individual and 

regional characteristics on average.  

The larger estimated impact of the January 1st cutoff suggests that in reality, children born up 

to December are either allowed to enroll in January, immediately after their 3rd birthday, or even 

in September, prior to their birthday. Those born between September and December spend the 

shortest time, on average, waiting for enrollment eligibility, even less than those born prior to 

September 1st. Children born after December 31st, however, have a significantly lower probability 

of being enrolled in kindergarten soon after their 3rd birthday, and likely have to wait until the 

next September. Therefore, for mothers, having a child born in the months before January 

means higher childcare availability, which leads to a higher probability that they will be active in 

the labor market than those with children born after January 1st. Based on the most stringent 

estimate, being eligible for kindergarten increases a mother’s probability of being active by 6 

percentage points. 
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Table 2 

RD with resampling design and interval cutoff, reduced form regression results 

Reduced form regressions 

Specification 1 2 3 1 2 3 

Cutoff: January 1 

 
Baseline Seasonality-corrected 

T*m   
 

  0.064** 0.064* 0.060*   

 
  

 
  (0.02) (0.03) (0.03)    

T 0.086*** 0.095*** 0.082*** 0.012 0.019 0.012    

 
(0.02) (0.02) (0.02)    (0.02) (0.02) (0.02)    

m   
 

  -0.170*** -0.156*** -0.156*** 

 
  

 
  (0.02) (0.02) (0.02)    

N 3309 3309 3244 9152 9152 8982 

Cutoff: September 1 

 
Baseline Seasonality-corrected 

T*m   
 

  -0.026 -0.035 -0.027    

 
  

 
  (0.03) (0.03) (0.03)    

T -0.028 -0.030 -0.021    -0.001 0.006 0.004    

 
(0.03) (0.02) (0.02)    (0.02) (0.02) (0.02)    

m   
 

  -0.101*** -0.082*** -0.082*** 

 
  

 
  (0.02) (0.02) (0.02)    

N 3344 3344 3229 9183 9183 8871 

Cutoff: September 1-January 1 

 
Baseline Seasonality-corrected 

T*m   
 

  0.039 0.035 0.041    

 
  

 
  (0.02) (0.02) (0.02)    

T 0.030 0.040* 0.050*   -0.009 0.004 0.005    

 
(0.02) (0.02) (0.02)    (0.02) (0.02) (0.02)    

m   
 

  -0.164*** -0.151*** -0.150*** 

 
  

 
  (0.02) (0.02) (0.02)    

N 3296 3296 3181 9142 9142 8830 

Year dummies X x x x x x 

No controls X     x     

Individual 
controls 

  x     x   

Individual and 
regional controls 

    x     x 

Notes: Estimation based on H-LFS and T-STAR datasets, years 1997-2010. The dependent variable is the 
activity dummy. The table gives coefficient estimates of the dummy variable indicating treatment group 
membership (z=1 if treated), seasonality comparison group membership (m=0 if child is 4-5), and their 
interaction. Year dummies are included in all regressions. Standard errors are given in parentheses. Stars 
indicate significance as: * p<0.05; ** p<0.01; *** p<0.001. 
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To gain a better understanding of the magnitude of the impact, and to compare it to labor 

supply elasticity estimates, we turn our attention to the 2SLS results, shown in Table 3 in the 

same format.25 Again, the January 1st cutoff shows the greatest impact, while September 1st shows 

no significant impact, and the interval cutoff is between the two, but closer to the January 1st 

estimates. For January 1st, baseline results show the coefficient estimate of childcare coverage 

ranging from 0.11-0.12. The seasonality-corrected estimates are around 0.8, with the full set of 

controls it is 0.076 and significant. This suggests that seasonal effects do have an impact and 

need to be taken into consideration. This result suggests that if childcare coverage increased 

from 0 to 100%, i.e. if subsidized childcare became available to mothers who did not previously 

have access, their activity rate would increase by 7.6 percentage points, or about 15 percent. In 

terms of Hungary, this means that if the average nursery school coverage for mothers of 2-3 year 

olds (10%) increased to the level of kindergarten coverage (around 99%), their activity rate 

would increase by roughly 13%. 

Contrary to the previous RD estimate for US mothers with 4 year olds, our results suggest 

that subsidized childcare availability does have a significant impact on mothers’ labor supply. 

The estimated impact is in line with earlier findings from the US: Cascio (2009) found an 

increase of 12%, and Gelbach (2002) found an impact of 7% for mothers of 5 year olds being 

eligible for kindergarten. However, the estimated impact is relatively low, in line with recent 

findings that female labor supply elasticity has declined (Blau and Kahn (2007), Heim (2007)). 

Converting our estimate shows that it is in line with labor supply elasticities estimated for EU 

countries (Bargain et al. (2011), Bargain and Peichl (2013)). Bargain et al. (2011) estimate 

elasticity between 0.2-0.6. In Hungary, a 40 000 HUF increase in the net wage (the subsidy 

received with state–run childcare), translates to a 20-50% wage increase (for net wages between 

80.000 – 200.000 HUF). This increases labor supply by 15%, which is an elasticity of 0.3-0.75.  

                                                 
25 Full results are given in Appendix Table A4. 
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Table 3 

RD with resampling design and interval cutoff, 2SLS regression results 

2SLS regressions 

Specification 1 2 3 1 2 3 

Cutoff: January 1 

 
Baseline Seasonality-corrected 

C*m   
 

  0.080** 0.081* 0.076*   

 
  

 
  (0.03) (0.03) (0.03)    

C 0.110*** 0.121*** 0.106*** 0.015 0.024 0.015    

 
(0.03) (0.03) (0.03)    (0.02) (0.02) (0.02)    

m   
 

  -0.179*** -0.166*** -0.165*** 

 
  

 
  (0.03) (0.03) (0.03)    

N 3116 3116 3054 9087 9087 8914 

Cutoff: September 1 

 
Baseline Seasonality-corrected 

C*m   
 

  -0.033 -0.043 -0.035    

 
  

 
  (0.04) (0.04) (0.04)    

C -0.036 -0.038 -0.027    -0.001 0.008 0.005    

 
(0.03) (0.03) (0.03)    (0.03) (0.03) (0.03)    

m   
 

  -0.098*** -0.077*** 
-

0.078*** 

 
  

 
  (0.02) (0.02) (0.02)    

N 3152 3152 3037 9112 9112 8797 

Cutoff: September 1-December 31 

 
Baseline Seasonality-corrected 

C*m   
 

  0.049* 0.043 0.052*   

 
  

 
  (0.02) (0.02) (0.03)    

C 0.039 0.051* 0.064*   -0.011 0.005 0.006    

 
(0.02) (0.02) (0.03)    (0.02) (0.02) (0.02)    

m   
 

  -0.169*** -0.156*** -0.156*** 

 
  

 
  (0.03) (0.02) (0.02)    

N 3120 3120 3000 9064 9064 8748 

Year dummies x x x x x X 

No controls x     x     

Individual controls   x     x   

Individual and 
regional controls 

    x     X 

Notes: Estimation based on H-LFS and T-STAR datasets, years 1997-2010. The dependent variable is the 
activity dummy. The table gives coefficient estimates of regional childcare coverage relevant to the given group 
(kindergarten if treated, nursery if not), the dummy indicating seasonality comparison group membership (m=0 
if child is 4-5), and their interaction. Year dummies are included in all regressions. Standard errors are given in 
parentheses. Stars indicate significance as: * p<0.05; ** p<0.01; *** p<0.001. 
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An important implication of our study can be seen when we take the standard RD results into 

account as well. We saw that there is a large increase in mothers’ activity rates around age 3 of 

their child, which is due to the combination of the effect of increased childcare availability, the 

end of parental leave, and other exogenous factors that change at that time, for example, 

separation preferences. Based on the estimated impact of monetary constraints, the end of 

parental leave does not, in itself, or together with the childcare effect, explain this change. The 

standard RD estimates show an increase in mothers’ activity of about 31 percentage points. Of 

this, we estimate that childcare availability leads to an increase of 7.6 percentage points. Based 

on the fact that the childcare subsidy is about 40 000 HUF, while the parental leave payment 

prior to age 3 is only 25 000 HUF (105 Euro in 2010), the effect of the latter should be no more 

than 7.6 percentage points as well. This suggests that at least 15.8 of the overall 31 percentage 

point change seen in mothers’ activity at age 3 of children, i.e. roughly one half, remains 

unexplained. This may be due to individual preferences, or some other exogenous factors, but we 

can see that they change significantly around age 3 of children, suggesting some link to the 

institutional framework. 

As a final check that the results are robust and meaningful, we carry out the reduced form 

estimation presented in this section for each age group from 1 to 7 years of age, using the 

January 1st cutoff.  Table 4 summarizes the results,26 which indicate that there is a significant 

effect at age 3 of the child, but there is no effect at other ages, in line with our model.  

Table 4 

 Robustness check: resampling for each age group  

 Child age 

 
Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 

T 0.021 0.009 0.082*** -0.010 0.009 -0.009 0.008 

 
(0.01) (0.01) (0.02) (0.03) (0.02) (0.02) (0.02) 

N 3796 3688 3244 2883 2853 2666 2603 

Notes: The table shows the result of a reduced-form estimate with January 1st cutoff. Estimation based on H-LFS and 
T-STAR datasets, years 1997-2010. The dependent variable is the activity dummy. The table gives coefficient estimates 
of regional childcare coverage relevant to the given group (kindergarten if treated, nursery if not), the dummy 
indicating seasonality comparison group membership (m=0 if child is 4-5), and their interaction. Year dummies are 
included in all regressions. Standard errors are given in parentheses. Stars indicate significance as: * p<0.05; ** 
p<0.01; *** p<0.001. 
 

                                                 
26 Full results are given in Appendix Table A5. 
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VI. CONCLUSION 

 
In this study, we develop an extension of the RD framework, which uses a resampling design and 

DID to measure the effect of childcare availability on mothers’ labor supply in a case when other, 

child age related factors change discontinuously as well at the cutoff. The method allows us to 

separate calendar-related and age-related effects, as well as to explore not only point, but 

interval cutoffs in the RD framework. Our results suggest that eligibility for subsidized childcare 

increases mothers’ activity by about 7.6 percentage points (15 percent). Based on the size of the 

subsidy, this corresponds to previous labor supply elasticity estimates of 0.3-0.75 (Bargain et al. 

(2011), Bargain and Peichl (2013)). This explains about a quarter of the 31 percentage point 

increase in mothers’ participation that we see when children turn 3. 

The effectiveness of childcare expansion in increasing mothers’ labor supply may be limited 

by other factors, such as the lack of availability of part time work, and the inflexibility of 

childcare services in terms of hours offered.27 This means that mothers are constrained in their 

time spent working, and suffer a disadvantage competing with coworkers, providing a basis for 

employer statistical discrimination. As there may be a complementarity between the availability 

of childcare and flexible jobs, increasing the availability of inflexible state childcare alone will not 

improve mothers’ labor market opportunities as much as it would in combination with 

additional flexible work opportunities and childcare services.28  

The comparison of our results from the three RD designs point to an interesting puzzle. From 

the standard RD results, we see that there is a 31 percentage point increase in the activity of 

mothers when their child turns 3. This is partly due to the increase in subsidized childcare 

availability (7.6 percentage points). Parental leave should have (maximum) similar impact based 

on monetary incentives alone (parental leave is about 5/8th of the childcare subsidy). This means 

that changes in these two factors explain half of the sudden increase in activity at age 3 of the 

child, while the other half, 15.8 percentage points, remains unexplained. Further research is 

needed to determine what other factors play a role, and what policy steps can influence them.  

                                                 
27 In Hungary, state-owned institutions provide childcare on workdays, usually from 6 a.m. to 4 p.m. The 
ratio of part time jobs is low, about 4.4% of overall employment (H-LFS), which poses a real constraint. 
28 Del Boca (2002) states that policies need to combine the aims of more flexible work schedule choices 
and greater child care availability. 
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The timing suggests that these factors are related to the institutional framework, which can 

have an influence through several possible channels. The length of parental leave and starting 

age of kindergarten may be perceived as a signal by mothers (and society), suggesting that age 3 

is the appropriate time for separating from the child and returning to work. It is also possible 

that, lacking clear views on the matter, mothers simply use the age suggested by the institutional 

framework as a rule of thumb for when they should return to work. At the same time, employers 

may assume that after age 3, childcare duties of mothers are less of a constraint (children get sick 

less, need less attention), and be more willing to employ them. This, in turn, may influence 

mothers’ expectations and activity. To sum up, we do not know what the underlying mechanisms 

are, but our results suggest that individual (societal) preferences have an important role. 

Institutions and policies influence mothers beyond monetary incentives. Policymakers need to 

take both possible complementarities with other factors, as well as the signaling effect of the 

institutional framework into consideration to successfully increase maternal labor supply. 
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APPENDIX 

Table A1 

Summary statistics of the estimation sample, by group, January cutoff 

Summary statistics m=1: child aged 3 m=0: child age 4-5 

 
Treatment Control Diff/SD Treatment Control Diff/SD 

Mother 

Activity rate (1997-2011) (%) 59.6% 51.5% 0.161 68.32% 68.15% 0.004 

Number of children 1.3 1.3 -0.022 1.1 1.1 -0.040 

Age of youngest child 3.3 3.3 -0.030 4.8 4.8 -0.043 

Age (years) 31.1 31.1 0.001 32.4 32.5 -0.004 

Education (%) 

Primary 23.6% 22.1% 0.037 23.2% 23.1% 0.000 

Vocational school 26.9% 27.2% -0.006 28.0% 25.3% 0.063 

High school 31.9% 33.3% -0.030 34.4% 35.0% -0.013 

University 17.6% 17.5% 0.004 14.5% 16.6% -0.057 

Occupation (%) 

Leader, executive 19.9% 20.6% -0.016 20.2% 18.2% 0.053 

Higher educ. requiring 1.8% 1.9% -0.006 2.1% 2.6% -0.031 

GED requiring 11.4% 12.1% -0.022 10.0% 12.0% -0.061 

Clerical, customer service 15.4% 14.7% 0.020 15.2% 14.4% 0.022 

Service, commerce 9.5% 9.3% 0.005 9.7% 10.7% -0.033 

Agricultural 17.0% 20.1% -0.077 18.5% 18.2% 0.008 

Construction, industry 1.2% 0.8% 0.050 2.0% 1.7% 0.019 

Operation, assembly 8.8% 7.3% 0.056 7.6% 6.9% 0.028 

Unskilled 8.2% 8.1% 0.004 7.8% 7.4% 0.012 

Armed forces 6.7% 5.0% 0.077 7.0% 7.8% -0.033 

Husband or partner 

Age (years) 30.0 29.8 0.017 30.8 30.8 -0.002 

Employment status (%) 

No partner 13.3% 13.2% 0.004 14.1% 12.7% 0.042 

Partner without job 13.3% 13.2% 0.004 14.1% 12.7% 0.042 

Partner with job 76.0% 75.6% 0.007 73.2% 75.0% -0.042 

Education (%) 

Primary 16.6% 16.0% 0.017 15.8% 16.8% -0.025 

Vocational school 38.2% 38.2% 0.000 38.5% 37.9% 0.012 

High school 20.7% 21.4% -0.017 21.8% 22.3% -0.012 
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University 13.4% 13.0% 0.012 11.0% 10.5% 0.014 

Occupation (%) 

Leader, exec. 17.8% 17.8% 0.002 20.6% 17.7% 0.076 

Higher educ. Requiring 6.3% 5.9% 0.015 5.6% 5.6% -0.001 

GED requiring 7.6% 7.7% -0.006 5.8% 5.6% 0.007 

Clerical, customer serv. 7.2% 7.1% 0.003 6.6% 7.1% -0.019 

Service, commerce 0.3% 0.7% -0.052 0.6% 0.5% 0.021 

Agricultural 11.0% 12.0% -0.032 11.0% 10.4% 0.020 

Construction, industry 3.5% 3.8% -0.017 4.4% 4.0% 0.021 

Operation, assembly 25.0% 24.7% 0.005 25.5% 27.2% -0.038 

Unskilled 14.9% 13.7% 0.032 14.3% 14.3% 0.000 

Armed forces 6.6% 6.4% 0.004 5.5% 7.5% -0.075 

Environment 

Type of settlement (%) 

Village 27.5% 28.6% -0.025 28.8% 26.8% 0.045 

Town 35.7% 40.7% -0.103 39.5% 42.6% -0.063 

City 21.0% 17.1% 0.104 19.1% 17.6% 0.039 

Region (%) 

Central Hungary 28.1% 28.3% -0.005 26.4% 25.5% 0.022 

Central Transdanubia 10.6% 10.7% -0.003 10.9% 11.1% -0.008 

Western Transdanubia 9.3% 9.4% -0.003 9.3% 9.6% -0.007 

Southern Transdanubia 9.7% 9.4% 0.008 10.2% 10.6% -0.013 

Northern Hungary 14.1% 11.2% 0.092 12.9% 12.8% 0.003 

Northern Plains 15.0% 16.8% -0.049 16.8% 16.6% 0.006 

Southern Plains 13.2% 14.2% -0.027 13.5% 13.9% -0.012 

Unemployment rate (%) 4.4% 4.4% 0.006 4.6% 4.6% -0.017 

Nursery coverage (%) 11.2% 10.2% 0.106 10.5% 10.0% 0.053 

Kindergarten coverage (%) 105.1% 105.0% 0.005 103.5% 102.8% 0.022 

Average population 310147 260321 0.085 248879 252224 -0.006 

Number of obs. 1732 1577   2975 2868   
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Table A2 

Standard RD design, regression results 

Variable 1 2 3 Variable 1 2 3 Variable 1 2 3 Variable 1 2 3

T 0.2365 0.236 0.2416 C 0.3039 0.303 0.3139 T 0.2531 0.2528 0.2469 C 0.3229 0.3226 0.3181

0.0244 0.0237 0.0233 0.0259 0.0252 0.0257 0.0252 0.0224 0.023 0.0256 0.0232 0.0239

# of children -0.082 -0.073 # of children -0.0809 -0.0715 # of children -0.0928 -0.0866 # of children -0.0927 -0.087

0.0204 0.0214 0.0178 0.0186 0.0185 0.0197 0.0171 0.0183

Partner w/o job -0.013 -0.041 Partner w/o job -0.0162 -0.044 Partner w/o job -0.0167 -0.0005 Partner w/o job -0.02 -0.004

0.0799 0.0734 0.071 0.065 0.0711 0.0684 0.0635 0.0609

Partner w/ job 0.0576 0.0248 Partner w/ job 0.0536 0.021 Partner w/ job 0.0023 0.0088 Partner w/ job -0.0044 0.0011

0.088 0.0804 0.0776 0.0708 0.0641 0.0635 0.0579 0.0572

Vocational school 0.0898 0.0928 Vocational school 0.0833 0.0858 Vocational school 0.1428 0.1523 Vocational school 0.1408 0.1507

0.036 0.0313 0.0323 0.028 0.035 0.0353 0.0311 0.0311

High school 0.1866 0.1786 High school 0.1843 0.1765 High school 0.2036 0.2068 High school 0.2024 0.2062

0.0461 0.0374 0.0402 0.0324 0.0403 0.0422 0.0348 0.0362

University 0.3727 0.3534 University 0.3738 0.3551 University 0.3587 0.3545 University 0.3626 0.3593

0.0528 0.05 0.0477 0.045 0.0492 0.0545 0.0422 0.0466

Age 0.0048 -6E-04 Age 0.0066 0.0015 Age 0.0141 0.02 Age 0.0147 0.0205

0.0287 0.0301 0.0252 0.0263 0.0191 0.0204 0.0171 0.018

Age squared 0 0.0001 Age squared -0.0001 0 Age squared -0.0002 -0.0003 Age squared -0.0002 -3E-04

0.0005 0.0005 0.0004 0.0004 0.0003 0.0003 0.0003 0.0003

Partner: University -0.018 -0.011 Partner: University -0.0256 -0.0186 Partner: University 0.0165 0.0206 Partner: University 0.0147 0.0195

0.0545 0.0524 0.0489 0.0469 0.0469 0.043 0.0412 0.0377

Partner: High sc. 0.0099 0.0285 Partner: High sc. 0.0064 0.0246 Partner: High sc. 0.0287 0.0242 Partner: High sc. 0.0321 0.028

0.0461 0.0463 0.0411 0.0413 0.0422 0.0481 0.0372 0.0422

Partner: Vocationa.. 0.0433 0.0543 Partner: Vocationa.. 0.0433 0.0544 Partner: Vocationa.. 0.0483 0.0452 Partner: Vocationa.. 0.0499 0.0474

0.0371 0.036 0.0328 0.0319 0.0343 0.0365 0.0307 0.0326

Partner's age -0.003 -0.003 Partner's age -0.0032 -0.0029 Partner's age -0.0028 -0.0031 Partner's age -0.0028 -0.003

0.0021 0.002 0.0019 0.0018 0.0016 0.0018 0.0015 0.0016

Unemployment level -1.563Unemployment level -1.4188Unemployment level -1.5839Unemployment level -1.336

0.5469 0.4886 0.7003 0.6385

Village -0.143 Village -0.15 Village 0.1126 Village 0.1006

0.0502 0.0444 0.0675 0.0602

City -0.143 City -0.1516 City 0.1573 City 0.1432

0.0334 0.0288 0.0592 0.0528

Large city -0.12 Large city -0.121 Large city 0.2186 Large city 0.2054

0.0644 0.0576 0.072 0.0631

Constant 0.3929 0.2407 0.5347 Constant 0.2896 0.0467 -0.0669

0.0836 0.4315 0.463 0.0999 0.3198 0.3332

N 3370 3370 3255 N 3444 3444 3379

adjusted N 3196 3196 3076 adjusted N 3248 3248 3184

r2 0.2627 0.3182 0.3248 adjusted r2 0.2847 0.3366 0.3332 adjusted

aic 3833.173 3593.7 3442.7 r2 0.0678 0.137 0.1374 aic 3855.11 3619.85 3567.49 r2 0.0755 0.1426 0.1423

2SLSReduced form2SLSReduced form

September cutoff January cutoff
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Table A3 

 RD with resampling design, full reduced form regression results 

Specification 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Year dummies x x x x x x x x x x x x x x x x x x

T*m 0.064** 0.064* 0.060*  -0.026 -0.035 -0.027   0.039 0.035 0.041   

(0.02) (0.03) (0.03)   (0.03) (0.03) (0.03)   (0.02) (0.02) (0.02)   

T 0.086*** 0.095*** 0.082*** 0.012 0.019 0.012   -0.028 -0.030 -0.021   -0.001 0.006 0.004   0.030 0.040* 0.050*  -0.009 0.004 0.005   

(0.02) (0.02) (0.02)   (0.02) (0.02) (0.02)   (0.03) (0.02) (0.02)   (0.02) (0.02) (0.02)   (0.02) (0.02) (0.02)   (0.02) (0.02) (0.02)   

m -0.170*** -0.156*** -0.156*** -0.101*** -0.082*** -0.082*** -0.164*** -0.151*** -0.150***

(0.02) (0.02) (0.02)   (0.02) (0.02) (0.02)   (0.02) (0.02) (0.02)   

# of children -0.124*** -0.117*** -0.127*** -0.122*** -0.123*** -0.116*** -0.123*** -0.124*** -0.151*** -0.148*** -0.131*** -0.132***

(0.02) (0.02)   (0.02) (0.02)   (0.02) (0.02)   (0.01) (0.01)   (0.02) (0.02)   (0.01) (0.01)   

Partner w/o job -0.007 0.007   -0.005 0.000   0.018 -0.006   0.021 0.012   0.050 0.033   -0.020 -0.031   

(0.06) (0.06)   (0.04) (0.04)   (0.09) (0.09)   (0.07) (0.06)   (0.11) (0.11)   (0.04) (0.04)   

Partner w/ job 0.033 0.032   0.038 0.039   0.062 0.028   0.067 0.056   0.099 0.080   0.022 0.011   

(0.06) (0.06)   (0.04) (0.04)   (0.08) (0.08)   (0.07) (0.06)   (0.10) (0.09)   (0.04) (0.04)   

Vocational school 0.168*** 0.186*** 0.168*** 0.175*** 0.134*** 0.141*** 0.187*** 0.185*** 0.129*** 0.139*** 0.136*** 0.135***

(0.04) (0.03)   (0.02) (0.02)   (0.04) (0.04)   (0.02) (0.02)   (0.03) (0.03)   (0.02) (0.02)   

High school 0.233*** 0.245*** 0.281*** 0.287*** 0.220*** 0.214*** 0.276*** 0.273*** 0.213*** 0.209*** 0.240*** 0.236***

(0.03) (0.03)   (0.02) (0.02)   (0.06) (0.05)   (0.03) (0.03)   (0.05) (0.04)   (0.03) (0.02)   

University 0.365*** 0.367*** 0.412*** 0.412*** 0.415*** 0.393*** 0.410*** 0.399*** 0.399*** 0.380*** 0.388*** 0.378***

(0.05) (0.05)   (0.03) (0.04)   (0.05) (0.05)   (0.03) (0.03)   (0.05) (0.04)   (0.03) (0.03)   

Age 0.014 0.020   -0.008 -0.004   0.030 0.027   -0.002 0.003   0.025 0.028   -0.013 -0.009   

(0.02) (0.02)   (0.01) (0.01)   (0.02) (0.02)   (0.01) (0.02)   (0.02) (0.02)   (0.01) (0.01)   

Age squared -0.000 -0.000   0.000 0.000   -0.000 -0.000   0.000 -0.000   -0.000 -0.000   0.000 0.000   

(0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   

Partner: University 0.078* 0.083   0.052* 0.055*  -0.003 0.010   0.021 0.019   -0.013 -0.009   0.031 0.024   

(0.04) (0.04)   (0.02) (0.02)   (0.05) (0.05)   (0.03) (0.03)   (0.04) (0.04)   (0.03) (0.03)   

Partner: High sc. 0.077 0.071   0.085** 0.085*  0.046 0.072   0.068* 0.070*  0.043 0.053   0.083** 0.080** 

(0.05) (0.06)   (0.03) (0.04)   (0.07) (0.07)   (0.03) (0.03)   (0.06) (0.05)   (0.03) (0.03)   

Partner: Voc. Sc. 0.066* 0.060   0.074** 0.073** 0.055 0.070   0.041 0.043*  0.048 0.058   0.062** 0.065***

(0.03) (0.04)   (0.02) (0.02)   (0.04) (0.04)   (0.02) (0.02)   (0.04) (0.03)   (0.02) (0.02)   

Partner's age -0.004* -0.004*  -0.004*** -0.005*** -0.005 -0.004   -0.004** -0.004** -0.005* -0.005*  -0.004** -0.004** 

(0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   

Unemp.  level -2.006** -1.218** -1.762*  -1.480** -1.045   -1.195*  

(0.76)   (0.47)   (0.73)   (0.46)   (0.68)   (0.49)   

Village 0.218*** 0.100** -0.016   0.170*** 0.341*** 0.054   

(0.06)   (0.03)   (0.07)   (0.03)   (0.07)   (0.03)   

City 0.243*** 0.102*** 0.004   0.170*** 0.305*** 0.028   

(0.06)   (0.02)   (0.05)   (0.02)   (0.06)   (0.02)   

Large city 0.250*** 0.118** 0.028   0.198*** 0.327*** 0.088*  

(0.07)   (0.05)   (0.06)   (0.04)   (0.09)   (0.04)   

_cons 0.467*** 0.237 0.074   0.621*** 0.778*** 0.690** 0.594*** 0.114 0.257   0.719*** 0.711** 0.585*  0.521*** 0.190 -0.067   0.740*** 1.003*** 0.971***

(0.10) (0.40) (0.37)   (0.05) (0.22) (0.22)   (0.07) (0.25) (0.28)   (0.03) (0.23) (0.26)   (0.07) (0.36) (0.39)   (0.04) (0.21) (0.22)   

Year dummies x x x x x x x x x x x x x x x x x x

r2 0.248 0.317 0.318 0.179 0.27 0.273 0.238 0.314 0.322 0.174 0.259 0.264 0.234 0.307 0.315 0.189 0.267 0.272

aic 3846.88 3551.975 3491.096 10812.093 9758.754 9573.245 3921.809 3595.612 3435.935 10917.77 9946.386 9544.196 3920.509 3611.168 3453.368 10756.71 9855.974 9451.333

N 3309 3309 3244 9152 9152 8982 3344 3344 3229 9183 9183 8871 3296 3296 3181 9142 9142 8830

Baseline Seasonality-corrected

Cutoff: January 1 Cutoff: September 1 Cutoff: September 1-December 31

Baseline Seasonality-corrected Baseline Seasonality-corrected
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Table A4 

RD with resampling design, full 2SLS regression results 

Specification 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Year dummies x x x x x x x x x x x x x x x x x x

C 0.110*** 0.121*** 0.106*** 0.015 0.024 0.015   -0.036 -0.038 -0.027   -0.001 0.008 0.005   0.039 0.051* 0.064*  -0.011 0.005 0.006   

(0.03) (0.03) (0.03)   (0.02) (0.02) (0.02)   (0.03) (0.03) (0.03)   (0.03) (0.03) (0.03)   (0.02) (0.02) (0.03)   (0.02) (0.02) (0.02)   

C*m 0.080** 0.081* 0.076*  -0.033 -0.043 -0.035   0.049* 0.043 0.052*  

(0.03) (0.03) (0.03)   (0.04) (0.04) (0.04)   (0.02) (0.02) (0.03)   

m -0.179*** -0.166*** -0.165*** -0.098*** -0.077*** -0.078*** -0.169*** -0.156*** -0.156***

(0.03) (0.03) (0.03)   (0.02) (0.02) (0.02)   (0.03) (0.02) (0.02)   

# of children -0.123*** -0.116*** -0.126*** -0.122*** -0.123*** -0.116*** -0.123*** -0.124*** -0.151*** -0.148*** -0.131*** -0.132***

(0.02) (0.02)   (0.01) (0.01)   (0.02) (0.02)   (0.01) (0.01)   (0.02) (0.02)   (0.01) (0.01)   

Partner w/o job -0.008 0.006   -0.006 -0.000   0.018 -0.006   0.021 0.012   0.051 0.035   -0.020 -0.031   

(0.06) (0.05)   (0.04) (0.04)   (0.08) (0.08)   (0.06) (0.06)   (0.10) (0.09)   (0.04) (0.04)   

Partner w/ job 0.031 0.031   0.037 0.039   0.062 0.028   0.067 0.056   0.100 0.081   0.022 0.011   

(0.05) (0.05)   (0.04) (0.04)   (0.07) (0.07)   (0.06) (0.06)   (0.09) (0.08)   (0.04) (0.04)   

Vocational school 0.167*** 0.186*** 0.168*** 0.174*** 0.135*** 0.142*** 0.187*** 0.185*** 0.128*** 0.138*** 0.136*** 0.135***

(0.03) (0.03)   (0.02) (0.02)   (0.03) (0.03)   (0.02) (0.02)   (0.03) (0.03)   (0.02) (0.02)   

High school 0.232*** 0.245*** 0.281*** 0.287*** 0.221*** 0.214*** 0.276*** 0.273*** 0.213*** 0.210*** 0.240*** 0.236***

(0.03) (0.03)   (0.02) (0.02)   (0.05) (0.04)   (0.03) (0.03)   (0.04) (0.03)   (0.03) (0.02)   

University 0.365*** 0.368*** 0.412*** 0.411*** 0.415*** 0.393*** 0.410*** 0.399*** 0.399*** 0.380*** 0.388*** 0.378***

(0.04) (0.04)   (0.03) (0.04)   (0.04) (0.04)   (0.03) (0.03)   (0.04) (0.04)   (0.03) (0.03)   

Age 0.015 0.021   -0.009 -0.004   0.030* 0.027   -0.002 0.003   0.026 0.029   -0.013 -0.009   

(0.02) (0.02)   (0.01) (0.01)   (0.01) (0.02)   (0.01) (0.01)   (0.02) (0.02)   (0.01) (0.01)   

Age squared -0.000 -0.000   0.000 0.000   -0.000 -0.000   0.000 -0.000   -0.000 -0.000   0.000 0.000   

(0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   

Partner: University 0.077* 0.082*  0.052* 0.055*  -0.002 0.010   0.022 0.019   -0.014 -0.010   0.031 0.023   

(0.03) (0.04)   (0.02) (0.02)   (0.04) (0.04)   (0.03) (0.02)   (0.04) (0.04)   (0.02) (0.02)   

Partner: High sc. 0.077 0.071   0.086** 0.085*  0.045 0.072   0.068* 0.070*  0.043 0.053   0.083*** 0.080***

(0.05) (0.05)   (0.03) (0.04)   (0.06) (0.06)   (0.03) (0.03)   (0.05) (0.05)   (0.02) (0.02)   

Partner: Vocationa.. 0.065* 0.060   0.074*** 0.073*** 0.055 0.070   0.041* 0.043*  0.048 0.057   0.062*** 0.065***

(0.03) (0.03)   (0.02) (0.02)   (0.04) (0.04)   (0.02) (0.02)   (0.03) (0.03)   (0.02) (0.02)   

Partner's age -0.004** -0.004** -0.004*** -0.005*** -0.005* -0.004*  -0.004** -0.004** -0.005* -0.005*  -0.004*** -0.003***

(0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   

Unemployment level -1.918** -1.191** -1.776** -1.485*** -0.986   -1.179*  

(0.68)   (0.45)   (0.65)   (0.44)   (0.60)   (0.46)   

Village 0.214*** 0.101*** -0.014   0.169*** 0.343*** 0.055   

(0.06)   (0.03)   (0.06)   (0.03)   (0.07)   (0.03)   

City 0.236*** 0.103*** 0.006   0.170*** 0.306*** 0.029   

(0.05)   (0.02)   (0.05)   (0.02)   (0.05)   (0.02)   

Large city 0.246*** 0.119** 0.029   0.198*** 0.330*** 0.089*  

(0.06)   (0.04)   (0.06)   (0.03)   (0.08)   (0.04)   

Year dummies x x x x x x x x x x x x x x x x x x

r2 0.023 0.112 0.114 0.025 0.133 0.136 0.013 0.111 0.111 0.017 0.118 0.12 0.01 0.105 0.106 0.027 0.121 0.123

aic 3785.051 3511.442 3449.452 10793.06 9750.067 9562.318 3856.854 3551.134 3394.993 10895.52 9933.523 9529.204 3844.547 3553.291 3395.93 10721.53 9829.471 9423.95

N 3116 3116 3054 9087 9087 8914 3152 3152 3037 9112 9112 8797 3120 3120 3000 9064 9064 8748

Cutoff: January 1 Cutoff: September 1 Cutoff: September 1-December 31

Baseline Seasonality-corrected Baseline Seasonality-corrected Baseline Seasonality-corrected



Table A5 

 Robustness check: Robustness check: resampling for each age group 

Year1 Year2 Year3 Year4 Year5 Year6 Year7   

T 0.021 0.009 0.082*** -0.010 0.009 -0.009 0.008   

(0.01) (0.01) (0.02) (0.03) (0.02) (0.02) (0.02)   

# of children -0.021** -0.048*** -0.117*** -0.120*** -0.171*** -0.210* -0.190*

(0.01) (0.01) (0.02) (0.03) (0.05) (0.10) (0.09)

Partner w/o job -0.020 -0.068 0.007 0.032 -0.044 -0.212** -0.166   

(0.02) (0.06) (0.06) (0.12) (0.08) (0.08) (0.13)   

Partner w/ job -0.030 -0.081 0.032 0.077 -0.018 -0.129 -0.107   

(0.02) (0.06) (0.06) (0.11) (0.07) (0.07) (0.13)   

Vocational school-0.009 0.003 0.186*** 0.133*** 0.203*** 0.187*** 0.200***

(0.01) (0.02) (0.03) (0.03) (0.04) (0.04) (0.04)   

High school 0.010 0.075* 0.245*** 0.298*** 0.322*** 0.287*** 0.278***

(0.01) (0.03) (0.03) (0.04) (0.03) (0.04) (0.04)   

University 0.035* 0.148** 0.367*** 0.430*** 0.440*** 0.394*** 0.371***

(0.01) (0.05) (0.05) (0.04) (0.05) (0.05) (0.05)   

Age 0.009 0.024 0.020 -0.005 -0.039 -0.017 -0.013   

(0.01) (0.02) (0.02) (0.02) (0.02) (0.03) (0.04)   

Age squared -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000   

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)   

Partner: University0.027 0.021 0.083 0.030 0.074 0.009 0.077   

(0.02) (0.04) (0.04) (0.05) (0.04) (0.05) (0.05)   

Partner: High sc. 0.020 0.034 0.071 0.121 0.104** 0.046 0.113** 

(0.01) (0.03) (0.06) (0.06) (0.04) (0.04) (0.04)   

Partner: Vocationa..0.009 0.028 0.060 0.093* 0.094** 0.063 0.086*  

(0.01) (0.02) (0.04) (0.04) (0.04) (0.04) (0.04)   

Partner's age -0.000 0.002 -0.004* -0.006* -0.003 0.002 0.000   

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)   

Unemployment level0.341 0.207 -2.006** -0.092 -2.795*** -1.679* -1.040   

(0.21) (0.54) (0.76) (1.03) (0.81) (0.84) (1.18)   

Village -0.092*** -0.001 0.218*** 0.226*** 0.008 -0.258** 0.146   

(0.02) (0.05) (0.06) (0.07) (0.06) (0.09) (0.08)   

City -0.073*** -0.036 0.243*** 0.197*** 0.041 -0.249** 0.132*  

(0.01) (0.03) (0.06) (0.05) (0.03) (0.09) (0.07)   

Large city -0.118*** 0.025 0.250*** 0.237** 0.021 -0.202* 0.207** 

(0.02) (0.04) (0.07) (0.08) (0.06) (0.09) (0.08)   

Year dummies x x x x x x x

r2 0.177 0.213 0.318 0.369 0.403 0.366 0.406   

aic -2578.996 2055.402 3491.096 2579.223 2258.491 2197.612 1831.307   

N 3796.000 3688.000 3244.000 2883.000 2853.000 2666.000 2603.000   

Child age

 


