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Abstract 
 
We solve a large class of multidimensional adverse selection problems with one observed 
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I Introduction

The nonlinear optimal tax model of Mirrlees (1971), which pioneered the adverse selection

literature, assumes individual unobserved heterogeneity to be one-dimensional. This assump-

tion is very restrictive. For instance, it prevents individuals with the same income level to

exhibit heterogeneous behavioral responses to tax reforms. One therefore needs to introduce

at least a second source of unobserved heterogeneity to derive nonlinear optimal income taxes

in more realistic frameworks. Using a first-order approach, this paper solves a class of adverse

selection models with one observed action and many unobservable characteristics in order to

assess how the nonlinear optimal income tax schedule is modified in such contexts.

The technical difficulty of these adverse selection models lies in characterizing the types

of individuals who “pool” by choosing the same action, i.e. by earning the same income. To

address this issue, we consider the population as composed of distinct “groups”, which are

subsets of individuals with the same vector of characteristics except for skill levels. We assume

a very general distribution of groups and a continuous skills distribution within each group.

We show that, whatever group they belong to, individuals who pool at a given income level

must face the same marginal rate of substitution between pretax income and after-tax income,

as they face the same marginal tax rate. Because we assume that the single-crossing condition

with respect to skill holds within each group, this equality of marginal rates of substitution

unambiguously determines the skill levels of individuals in the different groups who pool at

any given income level. This characterization of pooling is our first methodological contribu-

tion. It allows us to deduce any (smooth) incentive-compatible allocation from its restriction to

a single reference group that one arbitrarily chooses.

The pooling of individuals from distinct groups at each level of income induces that we

have constraints on state and control variables that hold at endogenous skill levels. This pre-

vents us from using the standard Hamiltonian approach to characterize the optimal alloca-

tion. Our second methodological contribution is to overcome this difficulty by adopting an

“allocation-perturbation” method. We compute the first-order effects of a small perturbation in

the allocation specific to an arbitrarily chosen reference group. Thanks to our characterization

of pooling, we can compute how this perturbation in the reference group affects the allocations

in all other groups. Our allocation-perturbation methodology uses calculus of variation to deal

with endogenous pooling.

We first derive an optimal tax formula expressed in terms of the policy-invariant primitives

of the model (Proposition 1), which makes it numerically implementable with real data. This

formula also allows us to show that optimal marginal tax rates are positive under Benthamite

social preferences and maximin (Proposition 2). We then reformulate our optimality condition

to obtain an elasticity-based optimal tax formula in terms of behavioral responses, social wel-

fare weights and income density. We show that the multidimensional context implies that all

these terms need to be averaged across individuals who earn the same income (Proposition
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3). A difficulty in the averaging procedure lies in the way to integrate the following circular

process in the optimal tax formula: In the presence of a nonlinear tax schedule, an individ-

ual who faces a tax reform adjusts her income, which in turn induces a further change in the

marginal tax rates, which triggers a further behavioral response. This is the reason why we

express our optimal tax formula in terms of total compensated income elasticity and total in-

come responses, which, unlike the usual direct compensated income elasticity and direct income

responses, encapsulate the circular process in their definitions. We show that under multidi-

mensional heterogeneity, the tax formula averages total, and not direct, behavioral responses

over individuals who pool at the same income level across the different groups.

We next show that heterogeneous elasticities have dramatic consequences when determin-

ing the optimal asymptotic marginal tax rates. As an illustrative example, assume that each

group has a distinct taxable income elasticity and a conditional skill distribution that is un-

bounded Pareto as, is observed empirically. Consider that asymptotic Pareto coefficients dif-

fer across groups. When calculating the asymptotic tax rate, only the income elasticity of the

group with the fatter-tailed Pareto distribution matters. This elasticity can be drastically differ-

ent from the average taxable income elasticity among, let us say, the top 1%. However, in the

literature, asymptotic tax rates are typically calibrated using this average elasticity among high

income earners (Saez, Slemrod, and Giertz, 2012, Piketty and Saez, 2013) which may therefore

lead to erroneous recommendations. If one wants to say something about asymptotic tax rates,

our theoretical result calls for estimating the income elasticity of the group whose distribution

has the fatter Pareto tail.

Moreover, using Current Population Survey data on the US, we illustrate how taking into

account multiple dimensions of individual heterogeneity entails important changes in the sim-

ulated optimal tax profile. In our numerical illustration, we consider that the elasticity of tax-

able income is due to both real labor supply and tax avoidance responses. We take the indica-

tor of whether individuals are salary workers or self-employed as a proxy for distinct taxable

income elasticities. The self-employed are endowed with higher taxable income elasticity be-

cause it is empirically reasonable to consider that they have more possibility to evade income

and adjust their labor supply than salary workers (Sillamaa and Veall, 2001, Saez, 2010, Kleven,

Knudsen, Kreiner, Pedersen, and Saez, 2011). In this context, we obtain significantly lower (by

up to 10 percentage points) optimal marginal tax rates in the upper part of the income distri-

bution where the self-employed are relatively more numerous, compared to the usual scenario

where all individuals have the same taxable income elasticity.

It is worth noting that our method is general enough to solve a large set of adverse se-

lection problems for which it is crucial, but challenging, to include multidimensional hetero-

geneity. Accordingly, when presenting our framework, we show that the latter encompasses

many policy-oriented applications as special cases. It can be interpreted to derive the nonlinear

optimal income tax schedules, for instance, when individual elasticities of taxable income are

due to both real labor supply responses and tax avoidance (as done in our empirical illustra-
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tion), when individuals earn labor income and non-labor income (capital income, income from

renting out property, etc.), when individuals also earn some untaxable non-labor income or

when the income of households is taxed jointly. We show that our method also applies beyond

optimal taxation, for instance to the nonlinear monopoly pricing problem in a more general

framework than Laffont, Maskin, and Rochet (1987).

In our framework with many unobserved characteristics, a single observable action and

one instrument, it is obviously crucial to allow for pooling. Conceptually, we can distinguish

“pooling” from “bunching”, broadly defined in e.g. Rochet and Choné (1998) as a situation

where a set of agents of different types choose the same action and are treated identically in the

optimal solution. In our context, we define bunching as the specific situation where individuals

who belong to the same group but have different skill levels earn the same income. We how-

ever assume away bunching which, in our multidimensional case, is not so relevant. Indeed,

individuals in the same group have identical characteristics except skills. So assuming that

different skill levels always lead to distinct labor incomes is a reasonable assumption which is

moreover validated in all our numerical simulations. This assumption allows us to implement

a method that relies on the smoothness of the optimal allocation. At first glance, assuming

there is no bunching may look at odds with Rochet and Choné (1998) who argue that bunching

is generic in adverse selection models with multidimensional heterogeneity. This is because

they do not study a model with many unobservable characteristics and one action, but a model

where the number of observable actions is the same as the number of unobservable character-

istics. In their context, pooling is then irrelevant. Moreover, the bunching Rochet and Choné

(1998) have to deal with comes from a strong conflict between the incentive constraints and

a participation constraint. The latter arises because they consider a nonlinear pricing model

where consumers have the same outside option and are then bunched in this outside option.

This is irrelevant in our framework.1

Related literature

Our paper relates to the “sufficient statistic” literature as applied to optimal income taxa-

tion (e.g.,Piketty (1997), Saez (2001), Diamond and Saez (2011), Piketty and Saez (2013), Hen-

dren (2014), Golosov, Tsyvinski, and Werquin (2014)). This approach consists in focusing on

empirical combinations of the primitives of the model, known as ”sufficient statistics”, that can

be estimated using data, rather than considering the full economic structure (Chetty, 2009). In

the nonlinear income tax problem, the sufficient statistics are the compensated elasticity and

income response, the income density and the social welfare weights. Sufficient statistics are

however endogenous and can be different at the optimum and in the actual economy where

they are estimated. While this approach is enough to indicate the direction of desirable tax

reforms (Golosov, Tsyvinski, and Werquin, 2014), one needs an optimal tax formula expressed

1In an appendix available upon request, we introduce a random participation constraint to extend our model for
realistic participation responses.
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in terms of the policy-invariant primitives of the model to numerically compute the optimal

tax schedule. This is exactly what our Proposition 1 does in the context of multidimensional

unobserved heterogeneity.

The sufficient statistics approach derives the optimal tax schedule by using a tax pertur-

bation. This method considers the effects of an infinitesimal tax reform on the government’s

objective. The underlying assumption is that such a reform only triggers first-order changes

in individuals’ behavior. With a nonlinear income tax schedule, we see however no way to

guarantee that individual labor supply decisions will not jump after a small tax reform for in-

dividuals who are initially indifferent between two distinct local maxima. Moreover, such tax

reforms introduce nonlinearities in the tax schedule, usually through kinks, whose effects are

typically ignored by the sufficient statistics approach. This is why we view the tax perturba-

tion method as merely a way to provide an intuition for the economics behind the optimal tax

formula, and not as a rigorous proof in itself.2 In contrast, our allocation-perturbation method

avoids these mathematical weaknesses by directly optimizing over smooth incentive compati-

ble allocations. Moreover, the tax perturbation method is unclear about the treatments of pool-

ing and of the circularity process3 while our method encapsulates it in a clear-cut way. Saez

(2001) rigorously shows that a rewriting of Mirrlees (1971)’s tax formula leads to an elasticity-

based optimal tax formula, once the latter is expressed in terms of the virtual income density.4

His proof is however only valid under a one-dimensional unobserved heterogeneity. Our paper

provides a formal derivation of the optimal elasticity-based tax formula with multidimensional

heterogeneity.

Our paper is part of the growing body of literature dealing with optimal nonlinear income

tax under multidimensional unobserved heterogeneity. To the best of our knowledge, this lit-

erature assumes that the (intensive) labor supply decision only depends on a one-dimensional

aggregation of the multidimensional unobserved heterogeneity, an assumption from which

we depart in our approach. Brett and Weymark (2003), Boadway, Marchand, Pestieau, and

del Mar Racionero (2002), Choné and Laroque (2010), Lockwood and Weinzierl (2014) make

exactly this assumption. The second source of heterogeneity then only matters in the computa-

tion of the social welfare weights and enables the government to value differently the welfare

of individuals at the same income level. The mean social welfare weights may no longer be de-

creasing with income which allows optimal marginal tax rates to be negative. In random par-

ticipation models, individuals differ in skill and in an additional cost of participation (Rochet

and Stole, 2002, Kleven, Kreiner, and Saez, 2009, Jacquet, Lehmann, and Van der Linden, 2013)

or of migration (Lehmann, Simula, and Trannoy, 2014, Blumkin, Sadka, and Shem-Tov, 2014)

2Saez (2001) does not advocate the tax perturbation as a formal proof but calls it a ”heuristic proof”. Piketty and
Saez (2013, Footnote 78, p.436) state that the extension of the optimal tax formula to a multidimensional context
“does not seem to have been formally established”.

3This circularity process is neglected in Piketty (1997) and Diamond and Saez (2011) and considered in Saez
(2001), Hendren (2014), Golosov, Tsyvinski, and Werquin (2014) and in the appendix of Piketty and Saez (2013).

4defined by Saez (2001, p. 215) as “the density of incomes that would take place [at an income level] z if the tax
schedule at T(·) were replaced by the linear tax schedule tangent to T(·) at level z.”
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that matters only for the extensive margin. In Rothschild and Scheuer (2013, 2014a,b), Scheuer

(2013, 2014) and Gomes, Lozachmeur, and Pavan (2014), the total amount of labor earnings of

an individual (in distinct sectors of the economy) depends only on a one-dimensional aggrega-

tion of her characteristics. This aggregation of characteristics is allowed to depend on the price

vector of the different types of labor to encapsulate general equilibrium effects on the wage

distribution, hence pooling depends on prices. However in these papers, the one-dimensional

aggregation implies that individuals who earn the same pre-tax income are characterized by

the same level of aggregated characteristics and are therefore constrained to react identically

to any tax reform. Conversely, our method does no rely on an aggregator, so we are able to

simultaneously consider heterogeneity in income and heterogeneity in behavioral elasticities.

The rest of the paper is organized as follows. Section II introduces the model and, to em-

phasize its flexibility, presents how it can easily be adapted to study several policy applications.

Section III characterizes optimal incentive-compatible allocations. In particular, it characterizes

the set of individuals belonging to different groups who pool at a given income level. Section

IV provides optimal marginal tax rates as a function of the primitives of the model and shows

that optimal marginal tax rates are positive under Benthamite and maximin social preferences.

Section V reinterprets the first-order conditions of our model to obtain an elasticity-based tax

formula. This formula is then used to study the optimal taxation of high income earners. Sec-

tion VI presents our numerical illustration. The last section concludes.

II Model

II.1 The general framework

Individuals differ along their skill level w ∈ R+ and along a vector of characteristics de-

noted θ ∈ Θ. Labor supply elasticity can be one of these individual characteristics. We call

a group a subset of individuals with the same θ. We assume that the set of groups Θ is mea-

surable with a cumulative distribution function (CDF) denoted µ(·). The set Θ can be finite

or infinite and may be of any dimension. The distribution µ(.) of the population across the

different groups may be continuous, but it may also exhibit mass points. Among individuals

of the same group θ, skills are continuously distributed according to the conditional density

f (·|θ) which is to be assumed positive over the support R+. The conditional CDF is denoted

F(w|θ) def≡
∫ w

0 f (x|θ)dx. The size of the total population is normalized to one, so that:∫
θ∈Θ

{∫ +∞

0
f (w|θ)dw

}
dµ(θ) = 1.

Following Mirrlees (1971), the government is unable to base the tax on individual types

(w, θ). It can only condition taxes and transfers on pre-tax income y through a non-linear

income tax function T(.).
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Individual Choices

Every worker of type (w, θ) derives utility from consumption c and disutility from effort.

Effort captures the quantity as well as the intensity of labor supply. Let v(y; w, θ) be the disutil-

ity of a worker of type (w, θ) to obtain pre-tax income (for short, income hereafter) y ≥ 0 with

vy(·), vyy(·) > 0 > vw(·).5 Disutility is increasing and convex in income, and decreasing in skill

w because earning a given income requires less effort to a more productive agent.6 Individual

preferences are described by the twice differentiable utility function:

U (c, y; w, θ) = u(c)− v(y; w, θ) with u′(·) > 0. (1)

Additive separable utility as in (1) is commonly assumed in optimal taxation and in the adverse

selection literature with multidimensional heterogeneity (e.g., Rochet (1985), Wilson (1993),

Rochet and Choné (1998), Rochet and Stole (2002)). The marginal rate of substitution between

income y and consumption c is:

M (c, y; w, θ)
def≡ −

Uy(c, y; w, θ)

Uc(c, y; w, θ)
=

vy(y; w, θ)

u′(c)
. (2)

We impose a single-crossing (Spence-Mirrlees) condition within each group of individuals en-

dowed with the same θ: Starting from any positive level of consumption and pre-tax income,

more skilled workers need to be compensated with a smaller increase in their consumption to

accept a unit rise in income. We therefore assume that for each θ ∈ Θ and for any bundle (c, y),

the marginal rate of substitution M (c, y; w, θ) is a decreasing function of the skill level:

Assumption 1 (Within-group single-crossing condition). For each θ ∈ Θ, and each (c, y), function

w 7→M (c, y; w, θ) maps R+ onto R+ with a strictly negative derivative everywhere, so:7

Mw(c, y; w, θ) < 0 ⇔ vyw(y; w, θ) < 0. (3)

Assumption 1 also imposes that the marginal rate of substitution decreases from plus infinity to

zero. This is a kind of INADA condition that will appear technically convenient. An individual

of type (w, θ), facing the nonlinear income tax y 7→ T(y), solves:

max
y

U (y− T(y), y; w, θ) (4)

We call Y(w, θ) the solution to program (4),8 C(w, θ) = Y(w, θ)− T(Y(w, θ)) the consumption

of an individual of type (w, θ) and U(w, θ) = u(C(w, θ))− v (Y(w, θ); w, θ) her utility. When

5 For any function f of a single variable, we denote f ′ its first derivative. For any function g of multiple variables
x, y, ..., we denote gx its first-order partial derivative with respect to x and gxy its second-order partial derivative
with respect to x and y, etc.

6The latter assumption is standard. For instance, when income is equal to the product of effort and skill, y =
w × ` and when preferences depend on effort `, we get v(y; w, θ) ≡ V

( y
w ; θ

)
with V`(·) > 0,V``(·) > 0. The

assumption V` > 0 implies υy > 0 > υw. The assumption V`` > 0 implies υyy > 0 > υyw.
7The assumption vyw(y; w, θ) < 0 is not restrictive. For instance, it holds when preferences are of the form

described in Footnote 6.
8If the maximization program (4) admits multiple solutions, we make the tie-breaking assumption that individ-

uals choose among their best options the income level preferred by the government, i.e. the one with the largest tax
liability.
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the tax function is differentiable, the first-order condition associated to (4) implies with (2) that:

1− T′ (Y (w, θ)) = M (C (w, θ) , Y (w, θ) ; w, θ) (5)

The Government

The government’s budget constraint takes the form:∫
θ∈Θ

{∫ +∞

0
[Y(w, θ)− C(w, θ)] f (w|θ)dw

}
dµ(θ) ≥ E (6)

where E ≥ 0 is an exogenous amount of public expenditures. Turning now to the government’s

objective function, we adopt a general welfarist criterion that sums over all types of individuals

an increasing and weakly concave transformation Φ(U; w, θ) of individuals’ utility level U. The

government’s objective is:∫
θ∈Θ

{∫ +∞

0
Φ (U(w, θ); w, θ) f (w|θ)dw

}
dµ(θ). (7)

This welfarist specification allows Φ to vary with individual types (w, θ) which makes it

very general. It admits as a particular case Benthamite social preferences where Φ(U; w, θ)) ≡
U. The social objective is then:∫

θ∈Θ

{∫ +∞

0
U(w, θ) f (w|θ)dw

}
dµ(θ). (8a)

Another particular case is weighted utilitarian preferences with type-specific weights ϕ(w, θ)

and Φ(U; w, θ)) ≡ ϕ(w, θ) ·U. The social objective is then:∫
θ∈Θ

{∫ +∞

0
ϕ (w, θ) U(w, θ) f (w|θ)dw

}
dµ(θ). (8b)

Our social objective also encompasses the Bergson-Samuelson criterion which is a concave

transformation of utility that does not depend on individuals’ type (w, θ), i.e. Φ(U; w, θ) does

not vary with its two last arguments. The Bergson-Samuelson criterion takes the form:∫
θ∈Θ

{∫ +∞

0
Φ (U(w, θ)) f (w|θ)dw

}
dµ(θ). (8c)

We can easily extend our analysis to non-welfarist social criteria following the method of gener-

alized marginal social welfare weights developed in Saez and Stantcheva (2013).

II.2 Policy-relevant applications

This section highlights that the model described above is general enough to encompass

many policy-oriented applications that require individuals endowed with multidimensional

unobserved characteristics. We explain how redefining and/or reinterpreting variables and

individual characteristics make all these applications tractable in our framework. Each example

below includes a different source of heterogeneity. These sources are not mutually exclusive

and can be simultaneously incorporated in the model. The reader interested in the core model

but not in its various applications can skip this section.
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II.2.a Optimal Income Taxation with Heterogeneous Skills and Labor Supply Elasticities

Our leading example is nonlinear labor income taxation with heterogeneous skills w and

where heterogeneous θ represent distinct direct Frisch labor supply elasticities, hereafter, “labor

supply elasticities ”. In this context, individuals’ preferences (1) are assumed to be isoelastic

with:

U (c, y; w, θ) = u(c)− θ

1 + θ

( y
w

)1+ 1
θ

with θ > 0 and u′(·) > 0 ≥ u′′(·). (9)

The optimal tax schedule derived in this paper then directly applies to this context. It is

worth noting that Assumption 1 is verified under this specification of preferences.

II.2.b Optimal Joint Taxation of Labor and Non-Labor Income

Our method can also be used to obtain the optimal joint taxation of non-labor income and

labor income when the tax function does not distinguish between both types of income. This

is the case in countries like France where, for instance, entrepreneurial income and income

received from renting property are jointly taxed with labor income. Assume that an argument

in the vector of characteristics θ stands for the ability to earn non-labor income z. We note

V(y − z, z; w, θ) the joint disutility of earning labor income y − z and non-labor income z for

an individual of skill w who belongs to group θ, with Vy−z, Vz > 0. The taxable income of this

individual is the sum of her labor and non labor income, i.e. y. Individuals of type (w, θ) then

solve:

max
y,z

u(y− T(y))−V(y− z, z; w, θ).

where two decision variables appear instead of program (4). This program can be solved se-

quentially, the last step being the choice of non-labor income z for a given taxable income y.

Our model can then be retrieved by defining:

v(y; w, θ)
def≡ min

z
V(y− z, z; w, θ). (10)

Our framework and optimal tax formulas then directly apply whenever Assumption 1 is sat-

isfied, i.e. when the second-order derivatives of V(·) are such that vyw < 0.9 This within-

group single-crossing property generally holds in the case where non-labor income z is ex-

ogenous. For instance, θ can be rents perceived by landlords who have inherited the prop-

erty they rent hence, z = θ. When non-labor income z is endogenous, Assumption 1 is still

verified when the disutility of income takes the additively separable form V(y − z, z; w, θ) =

V`(y− z; w, θ) + Vz(z; θ), V`(·; w, θ) and Vz(·; θ) are increasing and convex and V`
yw < 0.10

9The envelope theorem induces that vy = Vy−z and vw = Vw. Hence, one obtains vy > 0 > vw, whenever
Vy−z > 0 > Vw, which are natural assumptions.

10We note z∗(y; w, θ) the solution to (10). Differentiating the first-order condition V`
y = Vz

z leads to ∂z∗/∂w =

V`
yw/(V`

yy + Vz
zz), which is negative by the convexity of V`(·; w, θ) and of Vz(·; θ) and by the single-crossing as-

sumption V`
yw < 0. Therefore, as vy(y; w, θ) = Vz

z (z∗(w, θ), θ) from the envelope theorem and first-order condition,
the convexity of Vz(·; θ) induces that vyw < 0 so that our method can be used.
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II.2.c Optimal Joint Income Taxation of Couples

From our model, we can also obtain the optimal family tax system where the income tax is

based on the sum of income from each household members, as in France, Germany or in the

US. Everything we just presented in II.2.b then directly applies to the derivation of the optimal

family tax system. We simply need to redefine w and θ as the skill levels of each member of

the couple and y− z and z as their respective labor incomes. While Kleven, Kreiner, and Saez

(2007) and Cremer, Lozachmeur, and Pestieau (2012) stop short of deriving the optimal tax

schedule when the couple is the tax unit and each partner decides along the intensive margin,

our method allows one to do this.

II.2.d Optimal Income Taxation with Tax Avoidance

Our method is also relevant to solve an optimal income tax problem with tax avoidance for

a given tax enforcement. Assume that individuals differ in productivities w and in their abilities

to avoid taxation θ. We denote z the sheltered income (i.e. income that is not taxed at all) and

y the taxable income, so that labor income is equal to y + z in this context. Consumption is the

sum of after-tax income, i.e. c = y− T(y), plus sheltered income z. Assume that preferences are

quasi-linear in consumption: c + z−V (y + z, z; w, θ) where Vy+z, Vy+z y+z. Moreover, Vz, Vzz >

0.11 To retrieve our model, we simply define:

v (y; w, θ)
def≡ min

z
V (y + z, z; w, θ)− z

and assume that the second-order derivatives of V(·) are such that vyw (y; w, θ) < 0 to ensure

the within-group single-crossing property. We will get back to this application when deriving

the optimal tax profile on US data, in Section VI. In that section, θ will denote the taxable income

elasticity which depends on individual ability to avoid taxation.

II.2.e Optimal Labor Income Taxation with Taxable and Untaxable Non-Labor Incomes

Our framework also allows θ to be some exogenous untaxable non-labor income, as for

instance the imputed rent of owner-occupied housing. In this context, consumption is c + θ

since θ is an implicit income which is consumed, and taxable income consists only in labor

income y. Assuming that the social objective is Φ̃(U; w, θ) and that individual preferences

over consumption exhibit constant absolute risk aversion (CARA), the individual utility can

be stated as U (c, y; w, θ) = −e−γ(c+θ) − ṽ(y; w).12 To solve this model, we simply divide this

utility function by a(θ)
def≡ e−γθ which yields individual preferences (1) where:

v(y; w, θ)
def≡ ṽ(y; w)

a(θ)

11For a given labor income, increasing the amount of sheltered income is costly (i.e., requires more effort). This
is a standard assumption in papers that incorporate avoidance effects for optimal tax design, see Piketty and Saez
(2013, Section 4.3.).

12We here obviously assume that ṽy > 0 > ṽw, that ṽyw < 0 to ensure the within-group single-crossing property
and that Φ̃u > 0 ≥ Φ̃uu .
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and u(c) = −e−γc and, we multiply by a(θ) the individual utility in the objective function so

that the social objective is

Φ(U; w, θ)
def≡ Φ̃ (a (θ) ·U; w, θ) .

Our model then applies with these redefined individual and social preferences.

II.2.f Optimal Nonlinear Price Schedule

To illustrate that our approach can be applied beyond optimal tax problems, we now rein-

terpret our model in the context of the nonlinear pricing framework where a principal observes

a one-dimensional action, namely how much of a commodity the agent buys, and where unob-

served individual characteristics are multidimensional.13 Laffont, Maskin, and Rochet (1987)14

study the problem of a monopolist (the principal) who sells a single product and needs to de-

termine a nonlinear price schedule observing only a one-dimensional action (how much con-

sumers are demanding), while consumers differ both in the slope and in the intercept of their

demand functions. The latter correspond to w and θ in our model. The authors derive the

optimal quantity assignment function when these two characteristics are independently and

uniformly distributed and under restrictive assumptions on preferences (they are assumed lin-

ear in income and quadratic in consumption). Our approach can then be used to generalize

this nonlinear pricing model under less restrictive assumptions on the distributions of char-

acteristics and on preferences. To do so, reinterpret c as the amount of goods bought by any

consumer and y as the amount she pays for the c units. Equation (1) gives the preferences of

consumer (w, θ). The firm proposes a nonlinear price schedule that expresses payment y as a

nonlinear function of quantity through y = P(c). The firm only values the profit y− c made on

each consumer, so the social transformation is Φ (U; w, θ) ≡ 0. For a consumer of type (w, θ),

the first-order condition of the program max
c

U (c, P (c) ; w, θ) is:

1
P′c (c(w, θ))

= −
Uy(c, y; w, θ)

Uc(c, y; w, θ)

where the retention rate 1− T′(y(w, θ)) we have in (5) is replaced by the inverse of the marginal

price P′c(c(w, θ)). The reinterpretation of our results is then straightforward.

III Incentive-Compatible Allocations

In this section, we characterizes incentive-compatible allocations when unobserved indi-

vidual characteristics (w, θ) are multidimensional. We start by stating the incentive constraints.

Since the individual’s objective (4) is maximized for y = Y(w, θ), we have:

∀(w, θ, ỹ) ∈ R+ ×Θ×R+ U (C(w, θ), Y(w, θ); w, θ) ≥ U (ỹ− T(ỹ), ỹ; w, θ) .

13Note that we restrict our attention in this paper to deterministic mechanisms. This restriction is natural in the
context of optimal income taxation but may be less natural in other contexts.

14See Wilson (1993) for a survey of the literature.
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Taking ỹ = Y(w̃, θ̃) leads to the following set of incentive constraints:

∀(w, w̃, θ, θ̃) ∈ R2
+ ×Θ2 U (C(w, θ), Y(w, θ); w, θ) ≥ U

(
C(w̃, θ̃), Y(w̃, θ̃); w, θ

)
. (11)

Equation (11) states that individuals of type (w, θ) prefer the bundle (C(w, θ), Y(w, θ)) they

have chosen to any other bundle (C(w̃, θ̃), Y(w̃, θ̃)) intended for any other type (w̃, θ̃) of work-

ers. The usual taxation principle (Hammond, 1979, Guesnerie, 1995) holds. For the govern-

ment, it is equivalent to choose a non-linear income tax, taking individual choices (4) into ac-

count or to directly select an allocation satisfying the incentive-compatible constraints (11). We

follow the second approach and characterize the set of incentive-compatible allocations in two

steps. We first characterize incentive-compatible allocations w 7→ (Y(w, θ), C(w, θ)) within

each group θ. In this step, the within-group single-crossing condition (Assumption 1) enables

to retrieve the properties that are usual when unobserved heterogeneity is one-dimensional like

in Mirrlees (1971). The novelty lies in the second step where we characterize how these within-

group allocations need to be set to ensure overall incentive-compatibility, i.e when considering

(11) for θ̃ 6= θ.

Within-Group Incentive Constraints

An incentive-compatible allocation has to satisfy (11). It thus has to verify for each group θ

the following set of “within-group incentive constraints”:

∀(w, w̃, θ) ∈ R2
+ ×Θ U (C(w, θ), Y(w, θ); w, θ) ≥ U (C(w̃, θ), Y(w̃, θ); w, θ) . (12)

For each θ, characterizing the within-group allocations w 7→ (C(w, θ), Y(w, θ)) that verify the

within-group incentive constraints (12) is the same problem as characterizing incentive compat-

ible allocations when unobserved heterogeneity is one-dimensional. This is due to the within-

group single-crossing assumption 1. Under the Spence-Mirrlees single-crossing condition, the

set of incentive constraints can be transformed into two much simpler local conditions, a mono-

tonicity constraint and a differential equation, without any loss of generality (Mirrlees, 1971).

When heterogeneity is multidimensional, we retrieve the monotonicity constraint and differ-

ential equation in Lemmas 1 and 2 below.

Lemma 1. Under Assumption 1, the function w 7→ Y(w, θ) is nondecreasing for each θ ∈ Θ.

Appendix A.1 provides the proof which relies on the within-group incentive constraints

and within-group single-crossing assumption. Note that Y(·; θ) being nondecreasing, it may

exhibit discontinuities over a countable set and it may also exhibit bunching where individ-

uals in the same group but endowed with different skill levels earn the same income. It is

however standard in the tax literature to consider only smooth allocations where these two

“pathologies” do not arise and to follow the so-called “first-order approach”. We thus make

the following smoothness assumption:

12



Assumption 2 (Smooth allocations). For each θ, w 7→ Y(w, θ) is differentiable with a strictly positive

derivative and maps R+ onto R+.

Assumption 2 rules out bunching, the absence of which is validated by our simulations in

Section VI. It also assumes that Y(w, 0) = 0 and lim
w 7→∞

Y(w, θ) = ∞, so that the support of the

income distribution for each group is the entire positive real line.15 Assumption 2 therefore

implies that pooling is unavoidable. Moreover, Assumption 2 is very natural under the isoelas-

tic individual preferences (9). The following lemma provides the differential equation. It also

shows that the marginal rate of substitution between income and consumption has to be equal

to the ratio Ċ(w, θ)/Ẏ(w, θ).16

Lemma 2. Under Assumptions 1 and 2, for each θ, the mapping w 7→ U(w, θ) is differentiable with a

derivative

U̇(w, θ) = Uw(C(w, θ), Y(w, θ); w, θ) = −vw (Y(w, θ); w, θ) . (13a)

Moreover, Equation (13a) is equivalent to:

Ċ(w, θ)

Ẏ(w, θ)
= M (C(w, θ), Y(w, θ); w, θ) . (13b)

The proof, which is very standard, can be found in Appendix A.2. Integrating Equation

(13a) leads to:

U(w, θ) = U(0, θ)−
∫ w

0
vw (Y(t, θ); t, θ) dt. (13c)

If the government was able to observe the group θ to which each taxpayer belongs to, the

government would propose group-specific income tax schedules T(·; θ). We would then only

need to take into account the within-group incentive constraints (12).17 The observation of θ

would then reduce the set of incentive constraints and increase the possibility for the govern-

ment to redistribute income as highlighted in the so-called tagging literature (see e.g., Akerlof

(1978), Boadway and Pestieau (2006), Cremer, Gahvari, and Lozachmeur (2010), Mankiw and

Weinzierl (2010)). In contrast, our paper does not consider tagging so that the government

does not condition taxes on the vector of individual characteristics θ. Therefore, we need now

to describe how the various within-group allocations ω 7→ (Y(ω, θ), C(ω, θ)) coexist to verify

the full set of incentive constraints (11).

15One may instead assume the existence of a reference group θ0 such that for all θ 6= θ0, Y(w, θ0) ≤ Y(w, θ) and
lim

w 7→∞
Y(w, θ) ≤ lim

w 7→∞
Y(w, θ0). Assuming the existence of such a reference group for which the support of the income

distribution includes the support of the income distribution in all the other groups would not substantially change
the results of the paper while it would add notational complexity.

16We henceforth use a dot to denote the derivatives with respect to w of functions Y(·, θ), C(·, θ) and U(·, θ).
17To be more precise, this remark holds only if the government was furthermore allowed to condition taxation

on θ. For instance, despite the fact that the government can observe whether a taxpayer is a woman or a man,
gender-based taxation is in practice ruled out for horizontal equity reasons, preventing the government from using
an information that would otherwise improve the equity-efficiency trade-off (Alesina, Ichino, and Karabarbounis,
2011). A similar issue arises when conditioning income taxation on individuals’ height (Mankiw and Weinzierl,
2010).

13



Pooling Types across θ-Groups at each Income Level

In our context of multidimensional heterogeneity, each level of income y is obtained by

individuals belonging to different groups θ. The cornerstone of our method is the character-

ization for each group θ of the skill level w of individuals who earn the same income level.

Choose a reference group θ0 ∈ Θ, a skill level w and another group θ. Individuals of type

(w, θ0) earn income Y(w, θ0). According to the smoothness Assumption 2, each group-specific

allocation Y(·, θ) : w 7→ Y(w, θ) is an increasing one-to-one function that maps the positive real

line into itself. Therefore, there must exist a single skill level, hereafter denoted W(w, θ), so

that individuals of the other group (θ) endowed with that skill level must get the same income

level Y(w, θ0) as individuals of type (w, θ0), i.e. Y(W(w, θ), θ) = Y(w, θ0). We call W(., .) the

pooling function. The pooling function W(., .) characterizes how the distinct within-group allo-

cations ω 7→ (Y(ω, θ), C(ω, θ)) need to be set to ensure that the overall allocation satisfies the

entire set of incentive compatible conditions (11). For each θ ∈ Θ, the pooling function com-

bines two one-to-one differentiable mappings, with a strictly positive derivative everywhere,

namely ω
Y(·,θ0)7−→ Y(ω, θ0)

Y−1(·,θ)7−→ W(ω, θ). The pooling function is therefore also a one-to-one

differentiable mapping with a strictly positive derivative everywhere. It obviously verifies

W(w, θ0) = w.

We now characterize the pooling function from the allocation designed for a reference

group ω 7→ (Y(ω, θ0), C(ω, θ0)). We have Y(W(w, θ), θ) ≡ Y(w, θ0) from the definition of the

pooling function. Provided that the allocation is incentive-compatible, it is not possible that

individuals with characteristics (W(w, θ), θ) and individuals of type (w, θ0) obtain the same

income Y(w, θ0) but distinct consumption levels. Therefore, for each (w, θ), we must simulta-

neously have:

Y(W(w, θ), θ) ≡ Y(w, θ0) and C(W(w, θ), θ) ≡ C(w, θ0). (14)

These simultaneous equalities induce that individuals of different θ-groups who pool at the

same income level need to have the same marginal rate of substitution between income and

consumption. This property is formally presented in the following lemma.

Lemma 3. Under Assumptions 1 and 2, along an incentive-compatible allocation, the bundle designed

for individuals of type (W(w, θ), θ) coincides with the bundle (C(w, θ0), Y(w, θ0)) designed for indi-

viduals of type (w, θ0), where W(w, θ) is the unique solution in ω to

M (C(w, θ0), Y(w, θ0); w, θ0) = M (C(w, θ0), Y(w, θ0); ω, θ) . (15a)

Proof: According to Assumption 1, Equation (15a) admits exactly one solution in ω. Differen-

tiating in w both sides of each two equalities in (14) leads to:

Ẏ(W(w, θ), θ) Ẇ(w, θ) = Ẏ(w, θ0) and Ċ(W(w, θ), θ) Ẇ(w, θ) = Ċ(w, θ0)

where Ẇ(w, θ) denotes the partial derivative of W with respect to the skill level. Hence,

Ċ(W(w, θ), θ)

Ẏ(W(w, θ), θ)
=

Ċ(w, θ0)

Ẏ(w, θ0)
.
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If the allocation is incentive-compatible, then, according to Lemma 2, Equation (13b) holds,

which implies:

M (C(w, θ0), Y(w, θ0); w, θ0) = M (C(w, θ0), Y(w, θ0); W(w, θ), θ) . (15b)

�

Intuitively, if individuals of type (w, θ0) and of type (W(w, θ), θ) choose the same income

Y(w, θ0), they must face the same marginal tax rate T′(Y(w, θ0)). Hence, from the first-order

condition (5) they must face the same marginal rate of substitution. A key point here is that, be-

cause of the within-group single-crossing condition (Assumption 1), Equation (15a) admits ex-

actly one solution in ω. Hence, Equation (15a) fully characterizes the pooling function W(·, θ).

The following lemma, which is proved in Appendix A.3, shows that once an incentive-

compatible allocation is set for the reference group θ0, the allocation for another group θ is

determined by the equality between their marginal rates of substitution in Equation (15b). This

equality is thus critical to guarantee that all incentive-compatible constraints are satisfied.

Lemma 4. Let w 7→ (C(w, θ0), Y(w, θ0)) be a within-group allocation that verifies Assumption 2 and

the within-group incentive-compatible Equation (13b). For each w ∈ R+ and each group θ ∈ Θ,

let W(w, θ) be the unique skill level ω that solves (15a). There exists a unique incentive-compatible

allocation (w, θ) 7→ (C(w, θ), Y(w, θ)) whose restriction to group θ0 is w 7→ (C(w, θ0), Y(w, θ0)) and

that verifies Assumption 2 if and only if, for each θ, W(·, θ) maps R+ into R+ and admits a positive

derivative Ẇ(w, θ) > 0 everywhere.

The assumption that W(·, θ) admits a positive derivative everywhere plays in our analysis

a role similar to the “first-order approach” in the Mirrleesian literature with a one-dimensional

unobserved heterogeneity. In what follows, we therefore select the allocation only for the refer-

ence group θ0 and assume that the triggered allocations for the other groups verify Assumption

2. Using Equation (2), the pooling condition (i.e. Equation (15b)) can be rewritten as:

vy (Y(w, θ0); w, θ0)

u′(C(w, θ0))
=

vy (Y(w, θ0); W(w, θ), θ)

u′(C(w, θ0))

which can be simplified as:

vy (Y(w, θ0); w, θ0) = vy (Y(w, θ0); W(w, θ), θ) . (15c)

Therefore, the pooling function W(·, θ) that enables to retrieve (C(·, θ), Y(·, θ)) from the

allocation of the reference group (C(·, θ0), Y(·, θ0)) depends on Y(·, θ). This endogeneity of

the pooling function is a major difference with the previous literature. Moreover, the pooling

function does not depend on C(·, θ), a simplification that relies on the assumption that the

utility function (1) is additively separable, which is standard in the literature.
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Consider, as an illustration, the case of the isoelastic preferences proposed in (9). The equal-

ity in Equation (15c) implies that the pooling function is:18

W(w, θ) =

(
w

1+θ0
θ0 · (Y(w, θ0))

1
θ−

1
θ0

) θ
1+θ

.

The pooling function thus depends on the choice of Y(·, θ0) whenever the different groups are

endowed with distinct direct labor supply elasticities (i.e. when θ 6= θ0). Note that if Θ is

compact and if, for the reference group, one takes θ0 = max {θ ∈ Θ}, it is then sufficient to

have that w 7→ Y(w, θ0) verifies Assumption 2 to ensure that the pooling function w 7→ W(., θ)

is differentiable, with a positive derivative everywhere and maps R+ into R+. Lemma 4 is then

valid and Assumption 2 is directly satisfied for all groups.

Related Literature

In many previous tax models with multidimensional unobserved heterogeneity, the deci-

sions along the intensive margin are assumed to depend only on a one-dimensional aggrega-

tion of characteristics. Therefore, the pooling function does not depend on the chosen alloca-

tion, unlike in our model. We argue that this restriction implies the counter-factual prediction

that all individuals earning the same income level exhibit identical behavioral elasticities. To

clarify this point, let t denote the vector of unobserved characteristics and assume that intensive

decisions depend only on a one-dimensional aggregator denoted w = Ξ(t), so that individuals

of type t have preferences U (c, y; Ξ(t)) over consumption and income and solve:

max
y

U (c, y; Ξ(t)). (16)

All individuals with the same w = Ξ(t) are therefore making the same intensive decisions and

the pooling function is simply obtained by inverting the aggregator Ξ(·). Importantly, it does

not depend on the chosen variables Y(., .) and C(., .). Since all individuals who pool at the

same income level are characterized by the same Ξ(t), they solve the same intensive program

(16) and are therefore equally responsive to tax reforms.

Brett and Weymark (2003), Boadway, Marchand, Pestieau, and del Mar Racionero (2002),

Choné and Laroque (2010), Lockwood and Weinzierl (2014) explicitly assume that labor supply

decisions depend only on an exogenous unidimensional combination w = Ξ(t) of two unob-

served characteristics t. Therefore, two individuals who earn the same income cannot have dis-

tinct labor supply elasticities despite their distinct characteristics. The additional heterogeneity

matters for the computation of social marginal weights in Boadway, Marchand, Pestieau, and

del Mar Racionero (2002), Choné and Laroque (2010), Lockwood and Weinzierl (2014).

Rothschild and Scheuer (2013, 2014a,b), Scheuer (2013, 2014) and Gomes, Lozachmeur, and

Pavan (2014) study optimal income taxes with several sectors. In their models, individuals

need to choose how to split their labor effort between different sectors. The productivity of

18Substituting (9) in (15c) yields Y(w, θ0)
1/θ0 /w(1+θ0)/θ0 = Y(w, θ0)

1/θ/W(w, θ)(1+θ)/θ .
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individuals in each sector composes the vector of unobserved characteristics t. The private and

social returns of labor effort in each sector are functions of the aggregate amount of labor in

each sector, thereby allowing for rich patterns of technological complementaries and external-

ities between these sectors. However, individuals’ preferences are specified in such a way that

once the individual allocation of effort across sectors is chosen, the total amount of effort of an

individual of characteristics t depends only on a one-dimensional aggregation Ξ(t; p) of types

t and of prices p, i.e. private returns of effort in each sector. Hence, individuals who earn the

same income cannot have distinct skills, thereby distinct labor supply elasticities.

In random participation models with endogenous participation (Rochet and Stole, 2002,

Kleven, Kreiner, and Saez, 2009, Jacquet, Lehmann, and Van der Linden, 2013) or in optimal

income tax models with migration (Blumkin, Sadka, and Shem-Tov, 2014, Lehmann, Simula,

and Trannoy, 2014), individuals differ in skills and in costs of participation (migration). The

cost of participation (migration) drives the individual participation (migration) decision while

the level of skill determines the intensive labor supply decision. Therefore, people with an

identical skill level earn the same income, whatever their participation (or migration) costs.

The aggregator is then reduced to w = Ξ(w, θ) and again, workers earning the same income

are constrained to react identically to any tax reform.

IV Optimal Structural Tax Formula

In this section, we derive the optimal marginal tax rates as a function of the policy-invariant

primitives of the model, which are the individual U (·, ·; w, θ) and social Φ(·; w, θ) preferences

and the distributions of characteristics f (·|θ) and µ(·). We start by stating the maximization

program the government faces. This program cannot be solved with the usual Hamiltonian.

Therefore, to obtain the first-order conditions, we propose a new method that relies on a specific

perturbation of the optimal allocation.

The government maximizes social preferences (7) under its budget constraint (6) within the

subset of incentive-compatible allocations which satisfy (11). For the sake of clarity, we denote

C (û, y; w, θ) the consumption level the government needs to provide to a worker of type (w, θ)

who earns y to ensure her with the utility level û. Function C (·, y; w, θ) is the reciprocal of

U (·, y; w, θ) and we have:

Cu(û, y; w, θ) =
1

u′ (c)
and Cy(û, y; w, θ) =

vy (y; w, θ)

u′ (c)
(17)

where the various derivatives are evaluated at c = C (û, y; w, θ). The Lagrangian multiplier

associated to the government’s budget constraint (6) is denoted λ. The Lagrangian L of the

government’s problem is defined as:

L
def≡
∫∫ [

Y(w, θ)− C (U(w, θ), Y(w, θ); w, θ) +
Φ (U(w, θ); w, θ)

λ

]
f (w|θ)dw dµ(θ). (18)

The government’s problem consists in maximizing L within the subset of incentive-compa-

tible allocations that verify (11), and in adjusting the Lagrange multiplier λ to ensure that the
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budget constraint (6) is satisfied. Following the usual first-order approach, we consider a “re-

laxed” problem where the government maximizes over the set of allocations that verify for each

group the within-group incentive constraints (13a) and the pooling condition (15c). Whenever

the solution to this relaxed problem verifies Assumption 2, it also solves the overall program,

according to Lemma 4.

When the unobserved heterogeneity is one-dimensional, the usual method to derive the

necessary conditions is to construct a Hamiltonian and to apply the Pontryagin principle. In

our multidimensional environment, the pooling condition (15c) induces constraints on state

and control variables which hold at endogenous skill levels. This prevents one from using the

Hamiltonian approach. We therefore develop a new method that relies on a specific perturba-

tion of the optimal allocation that we now present.

Prototypical Allocation Perturbation

We investigate the effects of a small perturbation of the optimal allocation specific to group

θ: In group θ, the income Y(., θ) is increased by small amounts of average ∆Y for skill lev-

els ω in a small interval [w − δw, w], as shown in the upper panel of Figure 1. Because of

the within-group incentive constraint (13c), this prototypical perturbation requires, for all skill

levels above w, to uniformly increase utility U(ω, θ) by:19

∆U = −vyw(Y(w); w, θ) · ∆Y · δw ⇔ ∆Y · δw =
∆U

−vyw(Y(w); w, θ)
(19)

This is illustrated in the lower panel of Figure 1. Note that the perturbation does not modify

the levels of utility of people with skills below w− δw. The following definition summarizes

the prototypical allocation perturbation we just described.

Definition 1. A prototypical allocation perturbation P(∆U, δw; w, θ) is the following infinitesimal

change in the allocation specific to group θ. Income Y(·, θ) is changed only for skill levels in the small

interval [w− δw, w], by an average amount ∆Y that verifies (19). Such a perturbation does not trigger

any change in utility for skill levels below w− δw. It implies a uniform change in utility equal to ∆U

for all skill levels above w to maintain incentive compatibility (13c) within-group θ.

To obtain the optimal structural tax formula, we compute the first-order effects such a pro-

totypical allocation perturbation P(∆U, δw; w, θ) has on the Lagrangian (18). To save on no-

tations, we from now on use the more compact notation 〈w, θ〉 when the various functions are

evaluated for types (w, θ) at income Y(w, θ), utility U(w, θ) and consumption c = C(w, θ).

Lemma 5. A perturbation P(∆U, δw; w, θ) induces a first-order change in the Lagrangian (18) equal

to:
19This equality is only valid as a first-order approximation when ω 7→ Y(ω, θ) is continuous in the left of ω =

w and δw and ∆Y are small enough to consider that for (y, ω) ∈ [Y(w− δw)− |δY | , Y(w) + |δY |] × [w− δw, w],
approximating vyw(y; ω, θ) by vyw(Y(w, θ); w, θ) is a second-order error.
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Figure 1: A perturbation of the optimal allocation

{
T′ 〈w, θ〉

1− T′ 〈w, θ〉
vy 〈w, θ〉

−w vyw 〈w, θ〉
w f (w|θ)
u′ 〈w, θ〉 +

∫ ∞

w

(
ΦU 〈x, θ〉

λ
− 1

u′ 〈x, θ〉

)
f (x|θ)dx

}
dµ(θ) ∆U.

(20)

Proof: The perturbation P(∆U, δw; w, θ) implies two first-order changes on the Lagrangian

(18). First, it modifies ω 7→ Y(ω, θ) only within [w− δw, w]. Using the second equality in (17),

the change in Y(·, θ) implies a first-order change in the Lagrangian (18) equal to:

(
1−

vy 〈w, θ〉
u′ 〈w, θ〉

)
∆Y f (w|θ)δw dµ(θ) =

1−
vy 〈w, θ〉
u′ 〈w, θ〉

−vyw 〈w, θ〉 f (w|θ)dµ(θ) ∆U (21a)

=
T′ 〈w, θ〉

1− T′ 〈w, θ〉
vy 〈w, θ〉

−w vyw 〈w, θ〉
w f (w|θ)
u′ 〈w, θ〉 dµ(θ) ∆U

where the right-hand side of the top line is obtained using (19), and the second line is obtained

using (5). Second, the perturbation P(∆U, δw; w, θ) does not modify ω 7→ U(ω, θ) below

w− δw but it modifies by ∆U the utility levels U(x, θ) of individuals with skills x ≥ w. Using

the first equality in (17), the change in U(·, θ) implies a first-order20 change in the Lagrangian

(18) equal to:21 ∫ ∞

w

(
ΦU 〈x, θ〉

λ
− 1

u′ 〈x, θ〉

)
f (x|θ)dx dµ(θ) ∆U. (21b)

Adding (21a) and (21b) yields (20). �

Optimal Structural Tax Formula

We now characterize the optimal structural tax formula which expresses the optimal marginal

tax rates as a function of the primitives of the model:

20The change in utility levels U(ω, θ) for skill levels ω within [w− δw, w] has an absolute valued bounded by
δw |∆U|. It is thus of second-order, provided that the size δw of the skill interval is small enough.

21To follow the non-welfarist approach of Saez and Stantcheva (2013), one only needs to substitute their general-
ized social welfare weights for the term ΦU<x,θ>

λ .
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Proposition 1. Under Assumptions 1 and 2, the optimal structural tax formula verifies:

T′ 〈w, θ0〉
1− T′ 〈w, θ0〉

·
∫

θ∈Θ

vy 〈W(w, θ), θ〉
−W(w, θ) vyw 〈W(w, θ), θ〉 W(w, θ) f (W(w, θ)|θ) dµ(θ)

= u′ 〈w, θ0〉 ·
∫∫

θ∈Θ,x≥W(w,θ)

(
1

u′ 〈x, θ〉 −
Φu 〈x, θ〉

λ

)
f (x|θ)dx dµ(θ) (22a)

for all w ∈ R+ and: ∫∫
θ∈Θ,x∈R+

(
Φu 〈x, θ〉

λ
− 1

u′ 〈x, θ〉

)
f (x|θ)dx dµ(θ) = 0. (22b)

Proof: We consider a prototypical perturbation P(∆U, δw(θ0); w, θ0) in the reference group θ0.

We first determine how this perturbation affects the allocations in the other groups θ 6= θ0.

The function ω 7→ Y(ω, θ0) is modified only within the interval [w− δw(θ0), w]. So, accord-

ing to Equation (15c), this perturbation does not modify the pooling function ω 7→ W(ω, θ)

outside the interval [w− δw(θ0), w]. Therefore, ω 7→ Y(ω, θ) is not modified outside the inter-

val [W(w− δw(θ0), θ), W(w, θ)]. The perturbation P(∆U, δw(θ0); w, θ0) in the reference group

thus triggers a perturbation of the prototypical form P(∆U(θ), δw(θ); W(w, θ), θ) in all other

groups θ, where δw(θ) is given by W(w, θ)− δw(θ) = W(w− δw(θ0), θ).

We now need to determine the size ∆U(θ) of the perturbations P(∆U(θ), δw(θ0); w, θ0) in

the other groups. To do so, consider two individuals, one in the reference group θ0 with a skill

level x above w and one in another group θ with a skill level W(x, θ). Both individuals pool at

the same income level Y(x, θ0) both before and after the perturbations. The perturbations do

not modify their income, but modify their utility levels by ∆U for the individual in the reference

group and by ∆U(θ) for the other individual. These changes in utility occur only through

changes in consumption levels, which need to be identical to preserve incentive compatibility.

Hence, one must have ∆U(θ) = ∆U. Therefore, a perturbation P(∆U, δw(θ0); w, θ0) triggers a

perturbation P(∆U, δw(θ); W(w, θ), θ) in each of the other groups.

To determine the total effect the prototypical perturbation in group θ0 has on the Lagrangian,

we sum (20) across all groups. If the initial allocation is optimal, this perturbation must imply

no first-order effect on the Lagrangian, which leads to (22a) since T′ 〈W(w, θ)〉 and u′ 〈W(w, θ)〉
are identical across individuals who pool at the same income Y(w, θ0).

To derive (22b), we consider a perturbation of the optimal allocation that uniformly in-

creases u(C(w, θ)) by an amount ∆U for all types (w, θ) ∈ R+ ×Θ without perturbing income

Y(x, θ). This perturbation maintains incentive-compatibility (11). Using the first equality in

(17), it affects the Lagrangian (18) by:

∫
θ∈Θ


∫

x∈R+

(
ΦU 〈x, θ〉

λ
− 1

u′ 〈x, θ〉

)
f (x|θ)dx

 dµ(θ) · ∆U.

This impact has to be equal to zero at the optimum, which leads to (22b). �
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The optimal formulas of Proposition 1 depend only on structural parameters (the utility

function and its derivatives, the social welfare function and the distributions of characteristics).

Like in the model with one dimension of heterogeneity (see e.g., Saez (2001)), obtaining such a

structural tax formula is crucial if one wants to implement the model with data.22

Equation (22a) states that any prototypical tax perturbation induces zero first-order effect

on the government’s Lagrangian. The term vy/(−w vyw) under the integral in the left-hand

side of (22a) is equal to θ/(1 + θ) when the preferences are isoelastic as in (9), in which case it

becomes policy-invariant. Equation (22b) measures the welfare impact of uniformly increasing

the utility of all individuals. It thus plays the role of the transversality condition at the bottom

of the distribution in providing the initial value of the right-hand side of (22a). In combination

with the budget constraint (6), it determines the Lagrange multiplier of the budget constraint

λ and the initial value of U(0, θ0).

The tax formula of Proposition 1 generalizes to multidimensional individual characteristics

the structural optimal income tax formula derived by Mirrlees (1971). When the unobserved

heterogeneity has only one dimension, Equations (22a) and (22b) simplify to:

T′ 〈w〉
1− T′ 〈w〉 ·

vy 〈w〉
−w vyw 〈w〉

w f (w) = u′ 〈w〉
∫ ∞

w

(
1

u′ 〈x〉 −
ΦU 〈x〉

λ

)
f (x) dx (23a)

0 =
∫ ∞

0

(
1

u′ 〈x〉 −
ΦU 〈x〉

λ

)
f (x) dx. (23b)

The literature obtains these necessary conditions in constructing a Hamiltonian and ap-

plying the Pontryagin principle, as we do in Appendix A.4. Comparing these equations with

Equations (22a) and (22b) makes clear that reducing the tax problem to one dimension of het-

erogeneity implies that the integrals over θ-groups disappear. With multidimensional hetero-

geneity, one needs to aggregate the terms of the formula for individuals of the different groups

who pool at the same level of income. This is made possible thanks to our characterization of

the pooling function in Lemmas 3 and 4.

Signing Optimal Marginal Tax Rates

With multidimensional heterogeneity, the literature has highlighted that negative marginal

tax rates can become optimal. In Boadway, Marchand, Pestieau, and del Mar Racionero (2002),

Choné and Laroque (2010) and Lockwood and Weinzierl (2014), individuals differ along their

skills and preferences for effort, and the social planner has weighted utilitarian preferences (see

(8b)). In this context, individuals who pool at the same income level Y(w, θ0) are characterized

by different social marginal utilities of consumption ΦU(U(W(w, θ)); w, θ) · u′(C(W(w, θ))).

The social marginal utility of consumption is decreasing in skill within each group θ due to the

concavity of the social welfare function. However, the average social marginal utility of con-

sumption may not be decreasing in income because it requires to aggregate the social marginal

22The optimal tax formula derived by Saez (2001) “cannot be directly applied using empirical income distribu-
tion because the income distribution is affected by taxation. Therefore, it is useful to come back to the Mirrlees
formulation and use an exogenous skill distribution to perform numerical simulations.” (Saez, 2001, p. 223)
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utilities of individuals across groups. This composition effect in the average social marginal util-

ities may reduces marginal tax rates (Lockwood and Weinzierl, 2014) and may even induce

them to become negative (Boadway, Marchand, Pestieau, and del Mar Racionero, 2002, Choné

and Laroque, 2010). For instance, this happens when some groups undervalued in the social

objective are overrepresented at low income levels. In this case, individuals at the bottom of the

income distribution receive lower social welfare weights than individuals with larger income

levels. This yields negative marginal tax rates at the bottom of the income distribution.

The following proposition points out that in the absence of composition effects in the social

welfare weights, the marginal tax rates cannot be negative. We investigate the sign of marginal

tax rates with Benthamite preferences (see (8a)) and under maximin. With these preferences,

composition effects (in the social welfare weights) cannot exist.

Proposition 2. Under Benthamite social preferences (8a) and maximin, optimal marginal tax rates are

positive.

Proof: Let u′ 〈w, θ0〉 I(w) denote the right-hand side of (22a). Under Benthamite preferences,

Φu = 1 and we get: I(w)
def≡
∫

x≥W(w,θ)

(
1

u′〈x,θ〉 −
1
λ

)
·
(∫

θ f ( x| θ) dµ (θ)
)

dx. The derivative of

I(w) has the sign of 1/λ − 1/u′ 〈x, θ〉, which is decreasing in w because of the concavity of

u(·). Moreover, lim
w 7→∞

I(w) = 0 and Equation (22b) implies that I(0) = 0. Therefore, I(w) first

increases and then decreases. It is thus positive for all (interior) skill levels. Since vyw < 0 from

(1), optimal marginal tax rates are positive under Benthamite preferences.

Under maximin, one has U(x, θ) > U(0, θ) for all x > 0 from (13a). This implies that,

within each group, the most deserving individuals are those whose skill w = 0. The max-

imin objective therefore implies Φu 〈x, θ〉 = 0 for all x > 0. Thereby, I(w)
def≡
∫

x≥W(w,θ)
1

u′〈x,θ〉 ·∫
θ f ( x| θ) dµ (θ) dx for all x > 0, which again leads to positive marginal tax rates. �

Proposition 2 shows that introducing an endogenous pooling function does not invalidate

the result of positive marginal tax rates found in Mirrlees (1971) with a one-dimensional het-

erogeneity and Benthamite social preferences. In our general framework, the only possibility

for optimal marginal tax rates to be negative is if welfare weights increase with income due to

a composition effect.

V Elasticity-Based Optimal Tax Formula

This section rearranges the first-order conditions for the government’s problem displayed

in Proposition 1 to obtain a characterization of the optimal marginal tax rates in terms of suffi-

cient statistics. This is what we call an elasticity-based optimal tax formula.

Individual Behavioral Elasticities

First, we define a set of individual elasticities. To this aim, we consider a specific compen-

sated tax reform around income Y(w, θ). This reform changes the marginal tax by a constant
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amount τ around Y(w, θ), while leaving unchanged the level of tax at income Y(w, θ). The

tax function is then changed to T(Y) − τ · (Y − Y(w, θ)). The income response effect is de-

fined as the response to a small lump-sum change ρ in tax liability, so the tax function becomes

T(Y, θ)− τ(Y−Y(w, θ))− ρ. Individuals of type (w, θ) then solve the following program:

max
y

u (y− T(y) + τ(y−Y(w, θ)) + ρ)− v(y; w, θ). (24)

The first-order condition can be written as Y (Y(w, θ), 0, 0; w, θ) = 0 where:

Y (y, τ, ρ; w, θ)
def≡
(
1− T′ (y) + τ

)
· u′ (y− T(y) + τ(y−Y(w, θ)) + ρ)− v′y (y; w, θ) .

The second-order condition is Yy(Y(w, θ), 0, 0; w, θ) ≤ 0 with:

Yy(Y, 0, 0; w, θ) = −T′′(Y) · u′(Y− T(Y)) + (1− T′)2 · u′′(Y− T(Y))− vyy(Y; w, θ). (25)

Following the literature that gives the optimal tax formula in terms of sufficient statistics, we

need to assume further regularity conditions in addition to Assumptions 1 and 2:

Assumption 3. The tax function T(·) is twice differentiable and, for all (w, θ) ∈ R+ ×Θ, the second-

order condition holds strictly: Yy (Y(w, θ), 0, 0; w, θ) < 0.

Because we assume Yy (Y(w, θ), 0, 0; w, θ) < 0, we can apply the implicit function theorem

to Y (Y(w, θ), 0, 0; w, θ) = 0. Provided that the sizes of the changes in w, τ and ρ are small

enough for the maximum of program (24) to change only marginally, one has for x = w, τ, ρ,

that ∂Y/∂x = −Yx/YY evaluated at (Y(w, θ), 0, 0; w, θ). This leads directly to the following

three definitions. The total compensated elasticity of income with respect to the retention rate

1− T′(.) is defined as:23

ε(w, θ)
def≡ 1− T′ (Y(w, θ))

Y(w, θ)

∂Y
∂τ

= −
vy

Y(w, θ) ·Yy
> 0 (26a)

which is positive since vy > 0 and Yy < 0. The elasticity of income with respect to skill w is:

α(w, θ)
def≡ w

Y(w, θ)
Ẏ(w, θ) =

w vyw

Y(w, θ) Yy
> 0 (26b)

which is positive because of the within-group single-crossing condition 1 and because Yy <

0. In sum, Assumptions 1 and 3 imply that w 7→ Y(w, θ) is differentiable with a positive

derivative, which is a part of Assumption 2. In this sense, Assumption 3 is more demanding in

terms of regularity than Assumption 2. Note that we did not need Assumption 3 to obtain the

structural tax formula in Section IV. The total income response effect to a lump-sum change in

tax liability is defined as:

η(w, θ)
def≡ ∂Y

∂ρ
= −

u′′ · vy

u′ ·Yy
≤ 0 (26c)

23When defining this elasticity, we assume that the tax level is unchanged at earnings level Y(w, θ) so that we call
it a “compensated ”elasticity.
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which is non-positive due to the additive separability of individual preferences (1). Leisure is

therefore a normal good.

Elasticities and income response (26a)-(26c) differ from those in the optimal tax literature by

the presence, in their denominators, of a term T′′ (Y(w, θ)) · u′(C(w, θ)) which is incorporated

in YY (see Equation (25)). This term accounts for the nonlinearity of the income tax schedule.

An exogenous change in either w, τ, or ρ induces a direct change in earnings ∆1Y(w, θ). How-

ever, this change in turn modifies the marginal tax rate by ∆1T′ = T′′ (Y(w, θ)) × ∆1Y(w, θ),

thereby inducing a further change in earnings ∆2Y(w, θ). Therefore, a circular process takes

place: The income level determines the marginal tax rate through the tax function, and the

marginal tax rate affects the income level through the substitution effect. Our definitions of

behavioral and income responses capture the total effect (i.e., including the circular process) of

slightly modifying either the marginal tax rate, the skill level or the income level. The term

T′′ (Y(w, θ)) · u′(C(w, θ))) testifies about this. The literature instead considers only the direct

effects by assuming that marginal tax rates are exogenous in the computation of behavioral and

income responses, thereby taking T′′(Y(w, θ)) = 0 in Equations (26a)-(26c). In this case, the tax

schedule is locally linear hence total and direct responses coincide.

Conditional and Unconditional Income Densities

We define h(·|θ) as the conditional density of income y within group θ and we call H(·|θ)
its associated CDF. From Lemma 1, we know that H(Y(w, θ)|θ) = F(w|θ). Differentiating in

skill w both sides of the previous equality and using (26b), we get:

h(Y(w, θ)|θ) = f (w|θ)
Ẏ(w, θ)

⇔ Y(w, θ) h(Y(w, θ)|θ) = w f (w|θ)
α(w, θ)

. (27)

Our pooling function W(w, θ) enable us to express the income density at any income level as

a function of individual characteristics w and θ. The unconditional income density at income

y = Y(w, θ0) is the mass of individuals endowed with distinct w and θ who earn the same

income Y(w, θ0). It is equal to:

ĥ(Y(w, θ0))
def≡
∫

θ∈Θ
h (Y(W(w, θ), θ)|θ) dµ(θ). (28)

The unconditional income density simply aggregate across all groups the conditional in-

come densities of individuals who earn the same income level Y(w, θ0).

Mean behavioral elasticities and mean marginal social weights

We can also define the mean total compensated elasticity at income level Y(w, θ0) as:

ε̂(Y(w, θ0))
def≡
∫

θ∈Θ ε (W(w, θ)|θ) h (Y(W(w, θ), θ)|θ) dµ(θ)∫
θ∈Θ h (Y(W(w, θ), θ)|θ) dµ(θ)

. (29)
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This is the mean of the total compensated elasticities ε(w, θ) across individuals who earn Y(w, θ0).

We can also define the mean total income effect at income level Y(w, θ0) as:

η̂(Y(w, θ0))
def≡
∫

θ∈Θ η (W(w, θ)|θ) h (Y(W(w, θ), θ)|θ) dµ(θ)∫
θ∈Θ h (Y(W(w, θ), θ)|θ) dµ(θ)

. (30)

This is the mean of total income effects across all individuals who earn the same income

Y(w, θ0). In order to define the mean marginal social weight, we first define the (endogenous)

marginal social weight associated with workers of type (w, θ), expressed in terms of public

funds as:

g(w, θ)
def≡ Φ′u (U(w, θ); w, θ) ·U ′

c (C(w, θ), Y(w, θ); w, θ)

λ
. (31)

Intuitively, the government values giving one extra dollar to a worker (w, θ) as a gain of

g(w, θ) in terms of public funds. Using the latter definition, we can define the mean marginal

social weight at income Y(w, θ0):

ĝ(Y(w, θ0))
def≡
∫

θ∈Θ g (W(w, θ)|θ) h (Y(W(w, θ), θ)|θ) dµ(θ)∫
θ∈Θ h (h (Y(W(w, θ), θ)|θ) |θ) dµ(θ)

. (32)

It gives the average of the marginal social weights of people with distinct characteristics

w and θ who earn the same income level Y(w, θ0). Intuitively, it tells us how the government

values giving one extra dollar to individuals who earn Y(w, θ0).

Optimal Elasticity-Based Tax Formula

In Appendix A.5, we rearrange the first-order conditions (22a) and (22b) of our structural

optimal tax formula displayed in Proposition 1 to obtain the optimal marginal tax rate in terms

of the mean compensated elasticity, mean income effect, mean marginal social weights and the

unconditional income density.

Proposition 3. Under assumptions 1, 2 and 3, the optimal tax schedule satisfies:

T′ (y)
1− T′ (y)

=
1

ε̂(y)
· 1− Ĥ(y)

yĥ(y)
·
(

1−

∫ ∞
y [ĝ(z) + η̂(z) · T′(z)] · ĥ(z)dz

1− Ĥ(y)

)
(33a)

1 =
∫ ∞

0

[
ĝ(z) + η̂(z) · T′(z)

]
· ĥ(z)dz. (33b)

Equations (33a)-(33b) generalize the usual elasticity-based optimal tax formula with indi-

viduals who differ solely through a skill parameter to the case where individual characteristics

are multi-dimensional. Shifting from the model with one-dimensional heterogeneity to the

model with multi-dimensional heterogeneity entails replacing, in the tax formula, the marginal

social weight, the behavioral and income responses by their means calculated over the indi-

viduals (w, θ) who earn the same income level. Importantly, we determine the conditions (As-

sumptions 1, 2 and 3) under which the elasticity-based tax formula in the one-dimensional

context carries over to heterogeneous populations.
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Our formulation of the optimal tax formula in (33a)-(33b) differs from the optimal tax for-

mula in (Saez, 2001, Equation (19)) in the way the circularity process is taken into account. Saez

(2001) was the first to understand that the circular process has to be taken into account to inter-

pret the optimal conditions of Mirrlees (1971) in terms of empirically meaningful magnitudes.

Instead of taking into account the circular process by considering the total compensated elas-

ticity and total income effects as we do, Saez (2001) uses the standard definitions of these direct

elasticities along a linear tax schedule, without the term T′′ u′ in Y ′y . His formula then has to

rely on a virtual income density that corrects the real income density for this circularity process.

This difference is a matter of presentation since the product of the real income density times our

total compensated elasticity is equal to the product of the direct compensated elasticity times

the virtual income density. We however prefer our formulation for the following reasons. First,

we think the circularity process is also a behavioral response. Our definitions thus amount to

using the total behavioral effects, including those induced by the circularity process and not

only the direct effect when marginal tax rates are erroneously considered as independent of the

labor supply decisions. Second, with multidimensional heterogeneity, we need to aggregate

the different behavioral responses across individuals who pool at the same income level. In

Equations (29) and (30), we weight total behavioral responses with real income density, which

is natural. What should be the correct averaging procedure with Saez (2001)’s virtual income

density remains unintuitive. Third, the optimal formula in Saez (2001) depends both on the vir-

tual income density (when interacted with the compensated elasticity and the income effect)

and on the true income density at the optimum (when interacted with social welfare weights),

which looks very obscure at first glance.

Formula (33a) expresses the optimal tax rate in terms of three elements: one for behavioral

responses to taxes, one for the shape of the income distribution and one for social preferences

and income effects. We provide below the intuition behind these elements and emphasize the

specificities driven by multidimensional heterogeneity.

In line with Ramsey (1927)’s inverted elasticity rule, optimal marginal tax rates are ceteris

paribus larger in absolute terms at income levels where the mean compensated elasticity of

labor supply ε̂(y) is lower. In our context, this elasticity is endogenous for different reasons.

Firstly, it depends on the curvature of the income tax function, since the circularity process is

encapsulated in the expression of the elasticity. This is also the case with one dimension of

heterogeneity (Saez, 2001, Jacquet, Lehmann, and Van der Linden, 2013). Secondly, the set of

types (w, θ) that pool at any income level is endogenous. Therefore, the mean elasticity ε̂(y)

increases when, among individuals (w, θ) such that Y(w, θ) = y, the proportion of individuals

with an elasticity ε(w, θ) larger than the average ε̂(y) increases. This composition effect on the

compensated elasticity is a novel insight of our setting.

According to the second term in the right hand-side of (33a), the optimal marginal tax rate

at a given income y increases in absolute terms with the distribution term (1− Ĥ(y))/(yĥ(y))

at that income level. Intuitively, a nonzero marginal tax rate at income level y distorts labor
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supply decisions of individuals who earn this income level. The larger the income density ĥ(y)

or the income level y, and the larger the induced distortions. Moreover, deviating from zero

marginal tax rate at income level y modifies the tax liability for all the 1− Ĥ(y) individuals

with income above y, which triggers the magnitude of the equity effects. Empirically, the dis-

tribution term varies with income except at the top. This is due to the well-known fact that

the top tail is very closely approximated by a Pareto distribution (Diamond, 1998, Saez, 2001).

Since the income distribution is typically unimodal, the distribution term is decreasing beyond

the mode hence marginal tax rates are decreasing beyond the mode. Finally, it is worth stress-

ing that the distribution term of the income distribution is endogenous, for two main reasons.

The first is the endogeneity of the elasticity α(w, θ) of income with respect to the level of skill

due to the curvature of the tax function.24 The second reason is that the set of individuals (w, θ)

who pool at any income level is endogenous, so the distribution term may also be affected by a

composition effect, as in Cremer, Gahvari, and Lozachmeur (2010) and Mankiw and Weinzierl

(2010).

According to the third term of the right hand-side of (33a), optimal marginal tax rates vary

with the mean of social welfare weights ĝ(z) and the mean of income effects η̂(z) · T′(z) for

income levels z above y. The larger ĝ(z), the more the government values the well-being of

people at this level of income z hence, the lower should be the marginal tax rate they face. The

larger the mean income effect η̂(z)(< 0) in absolute value for income z above y, the higher

should be the marginal tax rate faced by individuals who earn y. Intuitively, an increase in the

level of tax paid by workers with income higher than y induces them to work more through

income effects. Note that the mean social welfare weight ĝ(z) and the mean income effect

η̂(z) · T′(z) typically vary with earnings. One exception is under a maximin, where ĝ(z) = 0.

Another exception is with quasilinear individual preferences which rule out income effects so

that η̂(z) · T′(z) = 0. Composition effects are also an additional source of endogeneity for ĝ(·)
and η̂(·), as discussed in Boadway, Marchand, Pestieau, and del Mar Racionero (2002) and

Choné and Laroque (2010).

Equation (33b) is the elasticity-based version of the transversality condition (22b). If income

effects were assumed away, this condition implies that the weighted sum of social welfare

weights is equal to 1. If conversely income effects are present, a uniform increase in tax liability

triggers a positive income response hence a change in tax revenue proportional to the marginal

tax rate which explains the presence of the term η̂(z)T′(z).

24 From (27), we have:
1− H(Y(w, θ)|θ)

Y(w, θ) · h(Y(w, θ)|θ) = α(w, θ) · 1− F(w|θ)
w · f (w|θ)

which links the distribution term based on the (exogenous) conditional skill density (in the right hand-side) and the
distribution term based on the (endogenous) income density (in the left hand-side). Even when θ is homogeneous,
the nonlinearity of the income tax schedule implies that the elasticity of income with respect to skill α(w, θ) depends
on the curvature of the tax schedule and is thus endogenous.
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Optimal tax rates on top incomes

This section studies the implications of multidimensional heterogeneity for the optimal

asymptotic marginal tax rates. To this aim, we follow, in this section, the usual assumptions

that lead to the asymptotic tax formula of Piketty and Saez (2013). We consider iso-elastic indi-

vidual preferences (see Equation (9)) and assume away income effects so that

U (c, y; w, θ) = c− θ

1 + θ

( y
w

) 1+θ
θ

. (34)

We moreover assume that the social marginal weight is asymptotically nil (i.e. lim
y 7→∞

ĝ(y) = 0).

By taking the optimal tax formula (33a) to its limit for high income levels, we retrieve the

formula of Piketty and Saez (2013) for the optimal asymptotic marginal tax rate:

τ∗ =
1

1 + ε̂∗ p∗
where p∗ = lim

y 7→∞

1− Ĥ∗(y)
y · ĥ∗(y)

(35)

where τ∗ stands for the optimal asymptotic marginal tax rate and ε̂∗ is the asymptotic compen-

sated elasticity in the optimal economy. From now on, the variables at the optimum are marked

with an asterisk and we use the subscript zero to indicate that a variable is considered in the

actual economy.

We now emphasize that the sufficient statistics Ĥ∗(y), ĥ∗(y) and ε̂∗ which are necessary to

implement the optimal asymptotic marginal tax rate (35) are distinct from the sufficient statis-

tics estimated in the actual economy. For this reason, calibrating the optimal asymptotic tax

rates using (35) and estimations from the actual economy can be misleading. To illustrate this

point, assume that, in the actual economy, the income density within group θ is described by a

Pareto density of the form:

h0(y|θ) = kθ · y−(1+pθ) (36)

where kθ is the scale parameter and pθ is the Pareto parameter with pθ > 1. Both parameters

can vary across groups. First-order condition (5) and Equation (34) imply that individuals of

type (w, θ) who face the asymptotic marginal tax rate τ earn income

y(w, θ) = (1− τ)θw1+θ . (37)

Inverting the latter expression, we can write the skill level of individuals belonging to group θ

and earning income y in the optimal economy as

w = y
1

1+θ (1− τ∗)
− θ

1+θ .

The latest two equations allow us to write the income earned in the actual economy by an

individual who earns y in the optimal economy as:

Ỹ0(y, θ) =

(
1− τ0

1− τ∗

)θ

· y
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Differentiating both sides of H∗(y|θ) = H0(Ỹ0(y, θ)|θ) in y and using (36), we obtain a descrip-

tion of how the asymptotic income density is transformed between the actual economy that is

used for calibration and the optimal one:

h∗(y|θ) = kθ ·
(

1− τ∗
1− τ0

)θpθ

· y−(1+pθ). (38)

Within each group θ, income remains Pareto distributed asymptotically with the same Pareto

parameter pθ . This is because the tax function is asymptotically linear. Therefore, from (26b)

and (25), the skill elasticity of income, α(w, θ), is asymptotically identical in the actual and in

the optimal economy (see also Foonote 24). However, the scale parameter of the Pareto density

is different because individuals earning the same income in the actual economy where the tax

rate is τ0 and in the optimal economy where the tax rate is τ∗ are not endowed with the same

skill level. If the tax rate is higher in the optimal economy, a given income level corresponds to

a higher skill level, which corresponds to a lower income density at the optimum (see Equation

(38)). Because this shift in income density is triggered by labor supply responses, it is larger

when the labor supply elasticity θ is larger (see (38)).

This difference in optimal and actual income densities results in distinct optimal and actual

asymptotic compensated elasticities. Consider first the case where the Pareto parameter pθ is

identical across groups and equal to p. Then, according to (29) and (38), the optimal asymptotic

compensated elasticity is given by:

ε̂(y) =
∫

θ∈Θ
θ ·

kθ ·
(

1− τ∗

1− τ0

)θp

∫
θ̃∈Θ kθ̃ ·

(
1− τ∗

1− τ0

)θ̃p

· dµ(θ̃)

· dµ(θ) (39)

and differs from its value in the current economy. For instance, when the initial asymptotic tax

rate τ0 is lower than the optimal one τ∗, the rise of marginal tax rate from τ0 to τ∗ implies that a

given income level is reached by individuals endowed with a higher skill level, as it can be de-

duced from (37). Along the upper tail of the Pareto income distribution, these individuals, who

have a larger income, are less numerous. In other words, the conditional income density at this

level of income is lower. This shift is stronger for groups with a higher compensated elasticity

θ as it can be seen from (38). The rise in the asymptotic tax rate then reduces the relative weight

of high-elasticity groups relative to low-elasticity groups which triggers a composition effect (see

(39)). This effect reduces the asymptotic compensated elasticity (see (39)) and thereby increases

the optimal asymptotic marginal tax rate (see (35)). The reverse occurs when the initial tax rate

is above the optimal one.

This composition effect is however quantitatively limited. Consider for instance the case

where the economy is composed by two groups of equal size, so that kθ1 µ(θ1) = kθ2 µ(θ2).

Consider that θ1 = 0.2 for the low-elasticity group and θ2 = 0.6 for the high-elasticity group.

Moreover, assume the Pareto parameter is p = 1.5. Then, neglecting multidimensional hetero-

geneity leads to (39) being reduced to ε̂(y) = θ. In the absence of multidimensional hetero-
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geneity, one does not observe two distinct values θ1 = 0.2 and θ2 = 0.6 but simply an average

value of θ = 0.4. The compensated elasticity is then ε̂(y) = 0.4, and from (35), we obtain an op-

timal asymptotic marginal tax rate equal to 1/(1 + 1.5× 0.4) = 62.5%. Now if the asymptotic

marginal tax rate in the actual economy is τ0 = 40%, then the composition effect implies that

the asymptotic compensated elasticity is only ε̂∗ = 0.369 and the optimal asymptotic marginal

tax rate is equal to τ∗ = 64.4%.25 The latter is 1.9 percentage points higher than the optimal

asymptotic tax rate obtained when neglecting this composition effect. Obviously, this differ-

ence shrinks as the asymptotic marginal tax rate in the actual economy gets closer to 62.5%.

Consider now that the Pareto parameter pθ differs across groups. In this context, we show

that taking into account the composition effect drastically modifies the optimal asymptotic tax

rate. The group with the fatter upper tail (i.e. with the lowest Pareto parameter pθ) has a share

equal to 1 for asymptotically high income levels. The relevant elasticity for computing the op-

timal asymptotic marginal tax rate ε̂∗ is therefore the one of the group with the fatter upper

tail. The latter can be dramatically different from the one estimated from the average response

among, say, the top 1%. Consider as an illustration the case where the economy is composed

by two groups of equal size in the top 1% of the population with θ1 = 0.2 and θ2 = 0.6. If

the high-elasticity group has a Pareto parameter p2 slightly above 1.5, while the low-elasticity

group has a Pareto parameter p1 slightly below 1.5, the optimal asymptotic marginal tax rate

is 1/(1 + 1.5× 0.6) = 52.6% (from (35)) instead of 1/(1 + 1.5× 0.4) = 62.5% if one mistakenly

calibrates the optimal tax formula from the mean compensated elasticity among the top 1%.

If conversely the low-elasticity group has a Pareto parameter slightly below the high-elasticity

group, the optimal asymptotic marginal tax rate is 1/(1 + 1.5× 0.2) = 76.2%. Therefore, het-

erogeneity in the asymptotic Pareto parameter across groups induce much substantial compo-

sition effects that can lead to very big difference in the optimal asymptotic marginal tax rates.

Given the lack of empirical evidence concerning difference in Pareto parameters across groups

with different labor supply elasticities, one can be skeptical of asymptotic marginal tax rates

calibrations based on the mean across the top percentile of the income distribution, see e.g.

Saez, Slemrod, and Giertz (2012) and Piketty and Saez (2013).26 Our theoretical analysis thus

calls for a change of focus in the empirical analysis: Since individuals are heterogeneous along

multiple dimensions, one needs to estimate the elasticity of the group whose distribution has

the fatter Pareto tail.
25To obtain the values of τ∗ and ε̂, we numerically solve Equations (35) and (39).
26Saez Slemrod and Giertz (2012) and Piketty and Saez (2013) derive an optimal tax formula for all income above a

threshold as a function of the mean taxable income elasticity above this threshold and of the Pareto coefficient. Their
implicit assumption is that the elasticity of taxable income and the local Pareto coefficient are roughly constant, so
their formula is robust to change in the threshold. Our argument is that such implicit assumptions can lead to
misleading policy prescriptions, in particular if the Pareto coefficients are different between high-elasticity and
low-elasticity groups.
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VI Numerical Illustration

This section numerically implements the optimal nonlinear income tax formula of Propo-

sition 1, so as to emphasize the role played by multidimensional heterogeneity. It documents

the quantitative impact on the optimal marginal tax rates of erroneously assuming identical

behavioral elasticities across individuals who pool at the same income level. The numerical

exercises we propose consider the case presented in Subsection II.2.d where individuals choose

not only their income but also how much income they evade. The optimal tax profile is then

derived for a given tax enforcement.

To calibrate the model, we need to specify individual and social preferences and the dis-

tributions of individual characteristics. Regarding individual preferences, we assume away

income effects with u(c) = c (as in e.g., Atkinson (1990) and Diamond (1998)) and the disutil-

ity of income is given by v(y, w; θ) = (y/w)1+ 1
θ . This specification implies that θ is the direct

taxable income elasticity. For social preferences, we assume Bergson-Samuelson preferences

with φ(.; w, θ) = log(.). We consider two dimensions of unobservable heterogeneity among

individuals: the elasticity of taxable income θ and the skill w.

We calibrate the model from the subsample of singles without kids taken from the CPS

data (2013). Beside heterogeneous income, people who earn the same income have distinct

elasticities of taxable income θ. We proxy this difference by indexing each individual’s elasticity

θ on whether she is salary workers or self-employed. The latter have much fewer possibilities to

adjust their labor supply or to evade their income than the self-employed (see e.g., Sillamaa and

Veall (2001), Saez (2010), Kleven, Knudsen, Kreiner, Pedersen, and Saez (2011)). We therefore

assume two distinct and empirically plausible taxable income elasticities θ that depend on the

occupation: θ = 0.6 for the self-employed and θ = 0.2 for the salary workers. We can then

recover the skill distribution in each group from individuals’ first-order condition (5).27

We investigate two scenarii, as shown in Figure 2. In the first scenario, that we call the

multidimensional scenario, individuals differ along both their skill levels and their elasticities

θ. In the second scenario, that we call the Mirrlees scenario, individuals differ only along their

skill levels. Salary workers and self-employed have the same elasticity θ which is assumed to

be equal to the sample mean of the direct elasticities θ in the first scenario.

To obtain the optimal tax profiles from our directly implementable tax formula (22a), we

use an algorithm which is detailed in Appendix B. The optimal marginal tax rates in the two

scenarii are shown on Figure 2 with the percentage of the marginal tax rate on the left-hand side

vertical axis. The horizontal axis represents annual pre-tax income y in US dollars. We observe

significant differences between the shape of tax profiles obtained in the Mirrlees scenario and

in the multidimensional scenario. This is due to variations in the share of self-employed along

the income distribution represented on the right-hand side vertical axis. This share matters

27To approximate an unbounded skill distribution, we run simulations over the income range [$0; $1, 000, 000] but
we show results only for income below $250, 000. Moreover, we exogenously add a mass point at the highest income
level to ensure that each conditional income density mimics a Pareto unbounded distribution for high income.

31



5
10

15
20

25
30

40
50

60
70

0 50,000 100,000 150,000 200,000 250,000
Pre-tax Income

Skills and Taxable Income Elasticities differ
Only skill differ (Mirrlees model)
Share of self employed (right scale)

Marginal Tax Rate %

Figure 2: Simulations results

modifies the mean compensated elasticity only in the scenario with heterogeneous elasticity.

From the first term in the right-hand side of (33a), we know that a larger mean elasticity reduces

the marginal tax rate, ceteris paribus. In the lower part of the income distribution, the share

of self-employed is relatively large. This drives up the mean elasticities at these income levels

hence, it slightly reduces the optimal marginal tax rates. Similarly, in the upper part of the

income distribution, the share of self-employed is sharply increasing with income. Therefore,

the marginal tax rates are drastically reduced. The reduction of marginal tax rate reaches up to

10 percentage points when heterogeneous elasticities are taken into account. These numerical

results put the stress on the need for including multidimensional heterogeneity when deriving

optimal tax policies.

VII Concluding Comments

This paper proposes a method to characterize the nonlinear income tax schedules that one

should implement when individuals differ not only in terms of skills, but also in terms of many

other characteristics, in particular their taxable income elasticities. We obtain an optimal tax for-

mula in terms of the structural primitives of the model (the individual and social preferences

and the distributions of characteristics). It allows us to show that, despite multidimensional

heterogeneity, optimal marginal tax rates remain positive under Benthamite and maximin so-

cial objectives. We also derive an elasticity-based optimal tax formula which is expressed in

terms of empirically meaningful sufficient statistics, i.e. the mean compensated elasticity and

income response, the income density and the social welfare weight at any income level. This

elasticity-based formula is not only useful to discuss empirically the direction of desirable tax

reforms, it also enables us to argue that calibrating the asymptotic tax formula from the estima-

tions of the sufficient statistics among top income earners is misleading when the asymptotic

Pareto parameter differ between low-elasticity and high-elasticity groups. The literature typi-
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cally estimates the mean elasticity of labor supply among people at the very top of the income

distribution (see Saez, Slemrod, and Giertz (2012) for a survey). However, to derive the optimal

tax rate for very high income earners, one should rather estimate the distinct elasticities of labor

supplies at the very top as well as the Pareto parameters by group of people having identical

elasticity. We also numerically implement our structural tax formula using the CPS 2013. As

an illustration, we consider that individuals differ along their skills and their taxable income

elasticities. As a proxy for the latter, we use the indicator of whether individuals are salary

workers or self-employed. This numerical exercise exemplifies how neglecting other sources

of unobserved heterogeneity beside skills can be misleading.

The paper also shows that many policy relevant adverse selection problems can be solved

with our method. It allows one to derive optimal tax policies in presence of real labor supply

responses and tax avoidance, in terms of joint taxation of couples, and more generally for any

tax problem for which the tax function depends on the sum of different sources of income. Be-

yond optimal taxation, it also applies to nonlinear pricing problems with consumers who differ

along several unobserved dimensions. In our research agenda, we plan to use this framework

to study the above set of policy relevant problems.

A Theoretical Proofs

A.1 Proof of Lemma 1

U(c,y;wL,q) 
=U(cL,yL;wL,q)

U(c,y;wH,q)=
U(cL,yL;wH,q)

cL=C(wL,q)

yL=Y(wL,q)

c

y

Figure 3: Proof of Lemma 1

Figure 3 displays the indifference curves of individuals belonging to the same group θ

but endowed with two distinct skill levels wL < wH. These indifference curves are labeled

U (c, y; wL, θ) and U (c, y; wH, θ) and intersect at the bundle (C(wL, θ), Y(wL, θ)) that the gov-

ernment designs for individuals of type (wL, θ). The within-group single-crossing assumption

implies that the indifference curve of the low-skilled workers is steeper than the one of the

high-skilled worker. To respect the incentive constraints (12), the government needs to assign a
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bundle (C(wH, θ), Y(wH, θ)) to the high-skilled workers that is above the indifference curve of

the high-skilled workers U (c, y; wH, θ) (otherwise, the individuals of type (wH, θ) would pre-

fer the bundle (C(wL, θ), Y(wL, θ)) to the bundle (C(wH, θ), Y(wH, θ)) designed for them) and

below the indifference curve of the low-skilled workers (otherwise, individuals of type (wL, θ)

would prefer the bundle (C(wH, θ), Y(wL, θ)) to the bundle (C(wH, θ), Y(wH, θ)) designed for

them). Consequently, the bundle (C(wH, θ), Y(wH, θ)) designed for the high-skilled workers

should be located in the non-shaded area in Figure 3, which implies that Y(wL, θ) ≤ Y(wH, θ).

A.2 Proof of Lemma 2

Following, e.g., Salanié (2005), from the taxation principle, individuals choose the type w′, θ′

that they want to mimic, i.e. they solve:

max
w′,θ′

U
(
C(w′, θ′), Y(w′, θ′); w, θ

)
Function (w′, θ′) 7→ U (C(w′, θ′), Y(w′, θ′); w, θ) admits a partial derivative with respect to w′

that is equal to:

Ċ(w′, θ′) Uc
(
C(w′, θ′), Y(w′, θ′); w, θ

)
+ Ẏ(w′, θ′) Uy

(
C(w′, θ′), Y(w′, θ′); w, θ

)
The first-order condition implies that this expression must be nil at (w′, θ′) = (w, θ). Using (2)

leads to (13b). Differentiating in w both sides of U(w, θ) = U (C(w, θ), Y(w, θ); w, θ) leads to:

U̇(w, θ) = Uc (C(w, θ), Y(w, θ); w, θ) Ċ(w, θ) +Uy (C(w, θ), Y(w, θ); w, θ) Ẏ(w, θ)

+ Uw (C(w, θ), Y(w, θ); w, θ)

=

(
Ċ(w, θ)

Ẏ(w, θ)
−M (C(w, θ), Y(w, θ); w, θ)

)
Uc (C(w, θ), Y(w, θ); w, θ) Ẏ(w, θ)

+ Uw (C(w, θ), Y(w, θ); w, θ)

where the second equality follows (2). Using Uw = −vw, (13a) holds if and only if (13b) holds.

A.3 Proof of Lemma 4

We first show that there exists at most one allocation (w, θ) 7→ (C(w, θ), Y(w, θ)) that verifies

Assumption 2 and such that (C(w, θ0), Y(w, θ0)) = C(w, θ0), Y(w, θ0)). We next show that this

allocation verifies the whole set of incentive constraints (11).

To build the entire incentive compatible allocation (w, θ) 7→ (C(w, θ), Y(w, θ)), we must

obviously choose (C(w, θ0), Y(w, θ0)) = C(w, θ0), Y(w, θ0)) for any skill level in the reference

group θ0.

For each group θ, Y(·; θ) verifies Assumption 2 if and only if its reciprocal Y−1(·; θ) is dif-

ferentiable with a strictly positive derivative and maps R+ into R+. Let then y ∈ R+ be an

income level. As Y(·, θ0) satisfies Assumption 2, there exists a unique skill level w such that

y = Y(w, θ0). Then according to Lemma 3, among individuals of group θ, only those of skill
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W(w, θ) are assigned to the income level y = Y(w, θ0).28 Therefore, Y−1(·; θ) must be defined

by:

Y−1(·; θ) : y
Y−1(·,θ0)7−→ w = Y−1(y, θ0)

W(·,θ)7−→ Y−1(y, θ)

Hence, Y−1(·, θ) is differentiable and is defined over R+. It admits a positive derivative ev-

erywhere and takes value on the whole R+ if and only if W(·, θ) does. Therefore, Y(·, θ) is a

differentiable increasing function with positive derivatives that maps R+ onto R+.

We now show that C(w, θ) is also uniquely determined for any skill level ω and group θ.

This is because we know from above that for each type (ω, θ), there exists a single skill level

such that Y(ω, θ) = Y(w, θ0). Incentive compatibility then requires that C(ω, θ) also needs

to be equal to C(w, θ0). This ends the proof that, given an incentive-compatible allocation

w 7→ (C(w, θ0), Y(w, θ0)) defined with the reference group that verifies Assumption 2, there

exists at most a unique allocation (w, θ) 7→ (Y(w, θ), C(w, θ)) that can be incentive-compatible.

We now verify that this allocation does verify the entire set of incentive constraints (11).

We first show that this allocation satisfies the within-group incentive constraints. Note that

the allocation (w, θ) 7→ (Y(w, θ), C(w, θ)) is built in such a way that one has:

Y(ω, θ) = Y(w, θ0) and C(ω, θ) = C(w, θ0)

if and only if ω = W(w, θ) and (15b) holds. Differentiating in w both sides of the above equa-

tions, we obtain:

Ẏ(W(w, θ), θ) = Ẏ(w, θ0) and Ċ(W(w, θ), θ) = Ċ(w, θ0).

Rearranging terms leads to:
Ċ (w, θ0)

Ẏ (w, θ0)
=

Ċ (W(w, θ), θ0)

Ẏ (w, θ0)
.

As w 7→ (C(w, θ0), Y(w, θ0)) is assumed to verify the within-group incentive-compatible con-

straints in Equation (13b), we know that the left-hand side of the above equation is equal to

M (C(w, θ0), Y(w, θ0); w, θ0). Using the definition of W(·, θ), we have that w 7→ (C(w, θ), Y(w, θ))

also verifies Equation (13b). From Lemma 2, it thus verifies the within-group incentive con-

straints in Equation (12).

We now verify whether the inequality (11) is verified for any (w, w′, θ, θ′) ∈ R2
+ ×Θ2. We

know there exists ω ∈ R+ such that

Y(ω, θ) = Y(w′, θ′) and C(ω, θ) = C(w′, θ′)

The incentive constraints in (11) are therefore equivalent to:

U (C(w, θ), Y(w, θ); w, θ) ≥ U (C(ω, θ), Y(ω, θ); w, θ)

and the latter is verified as w 7→ (C(w, θ), Y(w, θ)) also satisfies Equation (13b). Therefore, from

Lemma 2, it satisfies the entire set of incentive constraints (12).
28Hence function W(·, θ) coincides with the pooling function W(·, θ; θ0).
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A.4 Equations (23a) and (23b)

When the unobserved heterogeneity is one-dimensional, only within-group incentive con-

straints (12) need to be considered. Under the first-order approach, only the first-order incen-

tive constraint (13a) is considered. Taking Y(w, θ) as the control variable and U(w, θ) as the

state variable, the Hamiltonian is:(
Y(w, θ)− C (Y(w, θ), U(w, θ); w, θ) +

Φ (U(w, θ); w, θ)

λ

)
· f (w|θ)− q(w|θ) · vw (Y(w, θ); w, θ) .

Using (17), the necessary conditions are:

0 =

(
1−

vy 〈w, θ〉
u′ 〈w, θ〉

)
· f (w|θ)− q(w|θ) · vyw 〈w, θ〉 (40a)

−q̇ (w|θ) =

(
ΦU 〈w, θ〉

λ
− 1

u′ 〈w, θ〉

)
· f (w|θ) (40b)

0 = q(0|θ) (40c)

0 = lim
w 7→∞

q(w|θ) (40d)

Combining (40b) with (40d) leads to

q(w|θ) =
∫ ∞

w

(
ΦU 〈w, θ〉

λ
− 1

u′ 〈w, θ〉

)
· f (ω|θ)dω. (40e)

Combining (2), (5), (40a) and (40e) leads to (23a). Combining (40c) with (40e) leads to (23b).

A.5 Proof of Proposition 3

Dividing (26a) by (26b) we get:

ε(w, θ)

α(w, θ)
= −

v′y 〈w, θ〉
w · v′′yw 〈w, θ〉 . (41)

Plugging (26a) into (26c) leads to:

η(w, θ) = Y(w, θ) · u′′ 〈w, θ〉
u′ 〈w, θ〉 · ε(w, θ).

It is then straightforward to obtain:

η̂(Y(w, θ0)) = Y(w, θ0) ·
u′′ 〈w, θ0〉
u′ 〈w, θ0〉

· ε̂(Y(w, θ0)). (42)

Let y ∈ R+. According to Assumption 2, there exists a single skill level w such that y =

Y(w, θ0). From (5), we know that:

1− T′ 〈w, θ〉 =
v′y 〈w, θ〉
u′ 〈w, θ〉 . (43)

The term in the left-hand side integral of (22a) can be rewritten as:

vy 〈W(w, θ), θ〉
−W(w, θ) vyw 〈W(w, θ), θ〉 W(w, θ) f (W(w, θ)|θ) =

ε (W(w, θ), θ)

α (W(w, θ), θ)
·W(w, θ) f (W(w, θ)|θ)

= ε (W(w, θ), θ) Y(w, θ0) h(Y(w, θ0)|θ).
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The first equality is obtained using Equations (41). The second equality uses (27). It implies

with (29) that Equation (22a) can be rewritten as:

T′ 〈w, θ0〉
1− T′ 〈w, θ0〉

· ε̂ (Y(w, θ0)) ·Y(w, θ0) · ĥ(Y(w, θ0)) = J(w) (44)

where J(w) is defined by the right-hand side of (22a). J(·) admits for derivative J̇(w) where:

J̇(w) = Ċ(w, θ0)
u′′ 〈w, θ0〉
u′ 〈w, θ0〉

J(w) +∫
θ∈Θ

{
ΦU 〈W(w, θ), θ〉 u′ 〈W(w, θ), θ〉

λ
− 1
}

Ẇ(w, θ) f (W(w, θ)|θ) dµ(θ)

=
∫

θ∈Θ
{g (W(w, θ), θ)− 1} · Ẇ(w, θ) · f (W(w, θ; θ0)|θ) · dµ(θ) + Ċ(w, θ0) ·

u′′ 〈w, θ0〉
u′ 〈w, θ0〉

· J(w)

where (31) has been used. Deriving with respect to the skill w both sides of (14) and of

C(w, θ0) = Y(w, θ0)− T (Y(w, θ0)), we get that:

Ẇ(w, θ) =
Ẏ (w, θ0)

Ẏ (W(w, θ), θ)
and Ċ(w, θ0) =

(
1− T′ (Y(w, θ0))

)
Ẏ(w, θ0).

We thus obtain:

J̇(w) =

 ∫
θ∈Θ

{g (W(w, θ), θ)− 1} f (W(w, θ)|θ)
Ẏ(W(w, θ), θ)

dµ(θ) +
(
1− T′ 〈w, θ0〉

) u′′ 〈w, θ0〉
u′ 〈w, θ0〉

J(w)

 Ẏ(w, θ0).

Using (27) and (44), J̇(w) can be rewritten as:

J̇(w) =

 ∫
θ∈Θ

{g (W(w, θ), θ)− 1} h (Y(w, θ0)|θ) dµ(θ)

+ T′ (Y(w, θ0))Y(w, θ0)
u′′ (C(w, θ0))

u′ (C(w, θ0))
ε̂(Y(w, θ0))ĥ(Y(w, θ0))

)
Ẏ(w, θ0).

Using (42) and (32), we get:

− J̇(w) =
{

1− ĝ(Y(w, θ0))− η̂(Y(w, θ0)) · T′ (Y(w, θ0))
}
· ĥ (Y(w, θ)) · Ẏ(w, θ0).

As J(w) =
∫

x≥w(− J̇(x))dx, we get

J(w) =
∫

x≥w

{
1− ĝ(Y(x, θ0))− η̂(Y(x, θ0)) · T′ (Y(x, θ0))

}
· ĥ (Y(x, θ)) · Ẏ(x, θ0) · dx.

Changing variables by posing z = Y(x, θ0), we get

J(w) =
∫

z≥Y(w,θ0)

{
1− ĝ(z)− η̂(z) · T′ (Y(z))

}
· ĥ (Y(x, θ)) · dz. (45)

Plugging (45) into (44) gives (33a). Combining (22b) and (45) leads to (33b).
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B Numerical simulations

The calibration is based on the March 2013 supplement CPS distribution of adjusted gross

income among singles without dependent. We approximate an unbounded income distribution

by considering income until $1, 000, 000, but showing results only until $250, 000. Because of

top coding of income in the CPS, we extend it with an exogenous mass at income $1, 000, 000

to mimic a Pareto density with power −(1 + p) = −2.5.

We use an algorithm based on a discrete grid of the income distribution, whose 2, 001 el-

ements are denoted yi and are evenly distributed. The different steps of the kth loop are the

following, where integrals with respect to skill are approximated by right Riemann sums.

1. Given a tax function Tk(·), find from the individual’s first-order condition (5) for each

income level yi and each group θ the skill level wi(θ) such that:

1− T′k(yi) =
v′ (yi; wi(θ), θ)

u′(yi − Tk(yi))

2. For each group, use a kernel density estimation to approximate the conditional skill den-

sity f (·|θ) and extend this density by a mass at the highest income to approximate an

unbounded Pareto tail at the top. As the algorithm actually considers a bounded income

distribution, normalize each conditional skill-density f (·|θ) to ensure that the algorithm

consider a total mass of µ(θ) over all income levels yi.

3. Use (22b) to compute the Lagrange multipliers λ.

4. Use (22a) to update marginal tax rate to T′k+1(yi) through:

T′k+1(yi)

1− T′k+1(yi)
·
∫

θ∈Θ

{
−

v′y (yi; wi(θ), θ)

wi(θ) v′′yw (yi; wi(θ), θ)
wi(θ) f (wi(θ)|θ)

}
dµ(θ) = u′(yi − Tk(yi)) ·∫

θ∈Θ

{∫
ω≥wi(θ)

(
1

u′ (yi − Tk(yi))
− Φ′u(u(yi − Tk(yi))− v(yi; wi(θ), θ))

λ

)
f (ω|θ)dω

}
dµ(θ)

5. Update Tax liability Tk+1(yi) to satisfy the budget constraint (6).

6. Go back to Step 1 until maxi
{∣∣T′k(yi)− T′k+1(yi)

∣∣} < 0.1%.
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ROCHET, J.-C., AND P. CHONÉ (1998): “Ironing, Sweeping, and Multidimensional Screening,”

Econometrica, 66(4), 783–826.

ROCHET, J.-C., AND A. STOLE, LARS (2002): “Nonlinear Pricing with Random Participation,”

The Review of Economic Studies, 69(1), pp. 277–311.

40



ROTHSCHILD, C., AND F. SCHEUER (2013): “Redistributive Taxation in the Roy Model,” The

Quarterly Journal of Economics, 128(2), 623–668.

(2014a): “Optimal Taxation with Rent-Seeking,” NBER Working Papers 17035.

(2014b): “A Theory of Income Taxation under Multidimensional Skill Heterogeneity,”

NBER Working Papers 19822.

SAEZ, E. (2001): “Using Elasticities to Derive Optimal Income Tax Rates,” Review of Economic

Studies, 68, 205–229.

(2010): “Do Taxpayers Bunch at Kink Points?,” American Economic Journal: Economic

Policy, 2(1), 180–212.

SAEZ, E., J. SLEMROD, AND S. H. GIERTZ (2012): “The Elasticity of Taxable Income with Re-

spect to Marginal Tax Rates: A Critical Review,” Journal of Economic Literature, 50(1), 3–50.

SAEZ, E., AND S. STANTCHEVA (2013): “Generalized Social Marginal Welfare Weights for Op-

timal Tax Theory,” NBER Working Papers 18835.
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