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Speed under Sail, 1750--1850

Morgan Kelly and Cormac O Grada'’

Abstract
We measure technological progress in oceanic shipping by using a large
database of daily log entries from ships of the British and Dutch navies and East
India Companies to estimate daily sailing speed in different wind conditions
from 1750 to 1850. Against the consensus, dating back to North (1958, 1968), that
the technology of sailing ships was static during this period, we find that
average sailing speed in a moderate breeze (the usual summer conditions in the
North Atlantic) rose by one third between 1780 and 1830; with greater increases
at lower wind speeds. About one third of this improvement occurs when hulls
are first copper plated in the 1780s, but the rest appears to be the result of

incremental improvements in sails, rigging, and hull profiles.

Keywords: economic history, technology, transport

JEL classification: N, O, R

1 Unversity College Dublin. We would like to thank Peter Solar and Richard Unger for very helpful comments.



Speed under Sail, 1750—1850

1 Introduction

The square rigged sailing ship is a fundamental technology of pre-industrial world, giving
the inhabitants of the Atlantic periphery of Europe a decisive advantage over their Mediterranean
and Baltic neighbours in maritime trade and warfare; and allowing them to trade with and,
increasingly to subjugate, the inhabitants of other continents. It is therefore surprising that the
consensus among economic historians, going back to North (1958, 1968), is that there was little
improvement in maritime technology between the introduction of the Dutch fluyt (fly-boat) in

the early sixteenth century and the iron steamship in the mid-nineteenth century.

Existing efforts to measure technical progress in ocean shipping have been indirect,
focusing either on freight rates or, more rarely, on length of voyage. This paper measures daily
sailing speed in different wind conditions directly by making use of a large database, CLIWOC,
that compiles over 280,000 daily log book entries from ships of the British, Dutch, Spanish and
French navies and British and Dutch East India Companies between 1750 and 1850 giving
information about position, wind speed and direction, along with detailed information on the
type of ship. While intended for climatic reconstruction, these observations allow us to estimate
how the sailing speed in open water of precise categories of ship in different wind conditions
evolved between the mid-eighteenth and mid-nineteenth centuries. We focus on three categories
of ship for which CLIWOC provides extensive data: British East Indiamen, frigates of the Dutch

Navy, and warships of different rates of the Royal Navy.

Our results are striking. For ships sailing ahead of a moderate breeze (Beaufort Force 4, the
normal summer wind conditions in the North Atlantic) daily speed increased by around one third
between 1750 and 1830 from an average of 4.5 to 6 knots. This increase is not steady but occurs in
two bursts: the first during the 1780s when sailing speed improves by half a knot to 5 knots, and

the second after 1815. In stronger winds the increase is lower; while in light breezes increase it is



greater, with sailing speed almost doubling from 2.5 to nearly 5 knots. Ships were sailing faster in

light breezes in 1830 than they had been in moderate winds in 1750.

Such speeds were snail-like by later standards. The hybrid Sirius, a sail-assisted steamer,
which inaugurated the era of trans-Atlantic steam passenger shipping in 1837, made the westward
vogage at an average speed of eight knots; within two decades steamships were making the
crossing at a rate of thirteen knots. But by the standards of the early Industrial Revolution the
rates of improvement mentioned above are more than respectable. To what are they due? The
improvement in the 1780s coincides with the introduction of copper plating of hulls, which
protected against boring worms and slowed fouling of the hull by weed and barnacles. The
improvement in the post-Napoleonic period does not appear to be associated with any individual
major innovation and is likely to be due to incremental innovations in hull profiles, the design of

sails and rigging, and the setting of sails.

The rest of the paper is as follows. After a literature review, we review some of the major
improvements in maritime technology in Section 3. In Sections 4 and 5 we outline the data used
and engage in exploratory analysis to highlight the strong non-linearities and interactions present.
Section 6 presents our findings for the sailing speed of the three main classes of ships analysed,
while Section 7 presents shorter series for the Dutch East India Company and Spanish packet
boats. An Appendix presents data on the cost and longevity of Royal Navy ships between 1700 and

1815.

2 Literature Review

The cliometric literature on early modern economic growth began with North (1958, 1968)
and Walton (1966, 1967; see too Shepherd and Walton 1972). Using ocean going sailing ships as a
case study, North inferred positive productivity growth from a comparison of freight rates and

input prices on the North Atlantic c. 1660-1860. This productivity growth, he claimed, stemmed
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markets generated efficiency gains in terms of turnaround times, manpower, and load factors.

For North ocean freight shipping is the paradigmatic example of productivity growth in a
world of limited technological progress. Between the introduction of the Dutch fluyt (or fly-boat)
in the early sixteenth century and the steamship in the nineteenth, North argued, technological
progress in shipbuilding was minimal. Productivity change, reflected in declining freight rates,
was mainly due instead to ‘Smithian’ growth, i.e. extending the market in order to make efficiency
gains and to avail of technologies previously available but not commercially viable. North (1958)
already drew attention to the role of trade growth and particularly the development of backhaul
freight (whether in the form of colonial produce or immigrants) in increasing productivity; later
he and Walton would highlight the roles of quicker turnaround times and the public provision of
protection against pirates (compare Soderberg 2011). The modest secular growth in productivity
he found was, he claimed, the product of institutional changes and the growth of long-distance
trade. However, average ship speeds on the ocean registered no sustained increase ‘throughout
the whole Colonial period, up to the Revolutionary War’. North concedes that there was some
increase thereafter, but this was inferred by comparing two very different ship types: freighters

before 1775 and packet boats in 1818-17 (Walton 1967: 73-74; North 1968: 962-3).

North assumed that the long-distance transport of goods was a homogeneous output
whose price was measured by his freight rate index. These findings were heavily qualified in
Harley (1988), using a broader range of freight data from British sources: he attributes North’s
results to the dominant role of cotton, an atypical product, in his estimates of American export

freight rates; other rates fell little before the mid-nineteenth century.

North explicitly excluded any product differentiation linked to speed, by omitting data
associated with the clipper, which was ‘designed for speed’ and charged a considerable premium
for traffics with high inventory costs (North 1968: 967). Yet contemporary accounts suggest that
speed mattered to both traders and travellers before the advent of the clipper (Cotton 1949: 119-

23), and that efforts to increase it preceded the clipper by a century or two (Chapelle 1967). And



there is some evidence of improvements in ship speeds on the high seas (e.g. Klein 1978; Morgan
1993; Ville 1986: 386). Ronnback (2011), using the Transatlantic Slave Trade Database (TSTD2
2008), finds that the speed of slave ships plying the Middle Passage rose significantly in the early
modern era, corroborating earlier work by Klein (1978). He reckons that speeds increased at an
annual average of 0.3 per cent during the eighteenth century, so that a voyage taking ninety days
c. 1700 would have been achieved in sixty days a century later. The outcome was not due to
improved ships, but to mariners becoming more adept at using or avoiding seasonal winds. Solar
(2013) has found evidence of increasing speed for the ships of the East India Company between
the 1780s and the 1820s, while Solar and Ronnback (2013) and Solar and Hens (2013) extend the

findings of Rénnback (2011) and Solar (2013).

3 Technology

The Northian paradigm assumes that, insofar as the design of both warships and cargo
ships was concerned, ‘all the major breakthroughs’ had already been made by the mid-
seventeenth century. McGowan (1980: 5), one of the foremost authorities on the history of sailing
ships, concurs: ‘from the middle of the 15th century, when the development of the three-masted
ship of the northern tradition had made trans-oceanic voyages a commercial possibility, until the
first quarter of the 19th century, ships had changed remarkably little’. Unger (1997: XV, 32) sees
the same pattern for naval vessels: from the mid-seventeenth century until the advent of ‘cheaper
iron, steam engines and reliable breech-loading guns warship design was almost fixed'.
Technological advances in shipbuilding in this era, such as they were, involved incremental
refinements rather than revolutionary leaps forward (Gilfillan 1935; Unger 1997: 213; compare

Harley 1971).

However, in analyses of the European economy between the early sixteenth and nineteenth
centuries, shipping is usually numbered among the most dynamic sectors (Barbour 1930; Davis

1a072: Menard 1aa1: Shenherd and Walton 1a72: Unger 10a8. 2011). Eurone’s merchant fleet exnaned



from about one million tons around 1600 to 3.5 million tons by 1800, an average growth of about

one per cent per annum (Unger 1997: 258).

Trade grew in tandem: de Vries (2010) shows that the Europe-Asia trade grew by an
average of over one per cent per annum from around 1500 to 1800, while the much more
important Atlantic trade grew at least twice as fast. For comparison, Maddison reckons that GDP

in Western Europe grew by around 0.4 per cent per year between 1600 and 1820.”

Given such dynamism, the incentives to economize on inputs were considerable. And,
indeed, there were several well-documented local improvements. One such improvement was the
replacement of the whipstaff and the tiller by the ship’s steering wheel beginning in the 1690s
(McGowan 1980: 15-16; Rodger 2004: 221-2). By the end of the eighteenth century the ship’s wheel
was standard. Its use permitted finer adjustments to direction and increased the scope for taking
advantage changes of wind directions. McGowan (1980: 16-18) links the practice of adding
triangular headsails onto the standard three square rigging to the adoption of the steering wheel,
because the wheel allowed greater precision and the headsails permitted ships to sail closer to the
wind and, as a result, travel at greater speed. Rodger (2004: 222; compare Conway 1985: 21, 36-7, 55,
81) notes that these changes made ships easier to handle ‘with smaller crews in proportion to their
size’.

One the most famous improvements, dating from the 1770s, was the discovery that the
sheathing of ships’ hulls below the waterline with copper plates offered protection against
shipworm (Teredo navalis), a particular threat in warmer waters, while also reduced biological
fouling by weed and barnacles. Greater speeds at sea and less time spent being scraped clean in
dry dock resulted (Harris 1966; Rodger 2004). The decision to copper the entire Royal Navy was
taken in 1779. For naval ships an extra half knot was a huge gain at a time when the maximum

speed in battle was five or six knots; indeed, Admiral Rodney attributed his famous victory at

2 Rising from 65.5 billion to 158.9 billion 1990 international Geary-Khamis dollars. Maddison’s data are available

at wwrw oade nat/maddican/



Cape St. Vincent in January 1780 to his fleet’s copper bottoms. However, attaching copper plates
to the hull with iron bolts proved problematic, with electrostatic corrosion of the bolts causing
two big ships to founder off Newfoundland in 1782; and in 1786 it was decided to convert to
copper bolts. Rodger (2004: 344-5) estimates that coppering increased the operational strength of

the navy by one-third.

Nearly all ships trading to Asia and Africa (including the EIC fleet) were coppered by about
1790, and most ships trading to the West Indies, South America and the Gulf coast of the U.S.
were coppered by the early 18o0s; but cost precluded its adoption in colder waters: even by 1830
most ships on the North Atlantic route were not coppered. As a result, while most ships in the
relevant trades were coppered by 1800, overall rates were low, with 7 per cent of ships registered

in Britain sheathed in 1796 and 18 per cent in 1816 (Reese 1971; Staniforth 1985: 24-6; Solar 2013).

Navigation improved too. The backstaff or ‘Davis quadrant’, which allowed a ship’s latitude
to be reckoned with accuracy, appeared in the 1590s, followed by the more precise octant and
sextant in the early and mid-eighteenth centuries. ‘Dead reckoning’ and the lunar sextant offered
a means of determining longitudinal position. These methods were rather crude, however, and
sailors were inclined to ‘over-estimate rather than underestimate the number of leagues so as to
be warned of their approach to land, rather than running upon it suddenly’ (cited in Randles
1995:402).

The marine chronometer offered a more reliable solution. In 1714 a series of high-profile
disasters or near-disasters prompted the British House of Commons to offer a prize of £20,000 for
a reliable way to estimate longitude, and this led eventually to Harrison’s ‘sea watch’ (H4) in 1759
(Landes 1983: 146-62; compare Randles 1995). However, as with copper cladding, the relative
expense of these first chronometers limited their adoption: production remained craft-based and
it took some decades for a stable design to emerge. Chronometers did not become a standard
feature on ships of the Royal Navy until the mid-1820s, and their use did not become universal till

the mid-nineteenth century (Britten 1934: 230; Rodger 2004: 382-3). Thus, for half a century or



more, the lunar sextant contributed more to safety and productivity than the chronometer.

Other improvements during the age of sail included the increased availability of reliable
nautical aids and treatises on shipping navigation, (notably Seller’s Atlas Maritimus, 1670 and the
Nautical Almanac, 1767); the increased seaworthiness of bigger ships of a thousand tons or more;
better hull design; and, eventually, the development of faster ships such as the clipper. Indeed,
while North (1968) based his argument that the reduced risk of piracy allowed a marked
reduction in crew sizes between the 1720s and 1760s on data from Davis (1972: 74-76); Davis
himself attributed the reduction to ‘a technical advance of some magnitude’, which he tentatively

attributed to improved hull design and rigging.

The evolution of sails, rigging, and ship handling are described in detail in the standard
reference of Harland (1985). For instance, between the mid-seventeenth and mid-eighteenth
centuries, ships acquire jibs and staysails, while the topsails take over from the courses as the
main driving sails (pp. 36--37). At the same time, the tub-like shape of the broad-hulled vessels of
this era obviously ruled out the speeds achieved by the sharp-bowed, sleeker clippers of the

nineteenth century.

4 Data Sources

This paper derives ship speeds in different wind conditions from a new source. In the early
2000s the Climatological Database for the World’s Oceans (CLIWOC) assembled data from
British, Dutch, Spanish, and a very few French ships’ logbooks to chart oceanic weather
conditions from 1750 to 1850.%> Logbooks were an essential part of navigation: for each day, they
recorded position, time, bearings, weather conditions, wind direction and speed, distance covered
over the previous twenty-four hours, and other relevant details. Some logbooks could be quite

discursive, while others stuck mainly to quantitative data (Garcia Herrera et al. 2006; Kénnen and

3 The data and accompanying documentation are available online at
httn://xxrarar 1iom ac/infa/clivinc/clivine 18 htm T Whealar of al (DNNAN



Hoek 2006; Wheeler et al. 2006; Wilkinson 2005).

CLIWOC data run from 1750 to 1850. Daily observations on longitude and latitude allow
computation with elementary spherical trigonometry of daily distance sailed (course made good)
and bearing. CLIWOC also gives wind direction and estimated wind speed, translated by the
database compilers from verbal descriptions of wind conditions into the standard Beaufort scale:
not all of these translations are correct, as we shall see below. We omit observations that
CLIWOC identifies as coastal (where speed would have been constrained), days with no wind,

and days where position remained unchanged (in port or at anchor).

We end up with 14,374 observations from 1750 to 1829 for the EIC, and 24,066 from 1750 to
1827 for the Royal Navy. We omit observations with wind speeds below 1 knot or above 30, and

sailing speeds above 12 knots. We also exclude Royal Navy ships with more than 8o guns.

Note that the standard North Atlantic wind speed at 50 degrees north during the summer is Force
4, rising to Force 6--7 in winter (Sandwell and Agreen 1984). This means that sailing speed

observations for Moderate Breeze are the most relevant for London-New York voyages.



Figure 1 Daily positions for the East India Company, Dutch Frigates, and Royal Navy. In
the first two panels, observations before 1780 are blue, while those after 1820 are red.



Figure 1 plots the daily position for all observations for EIC ships and Dutch frigates (with
blue denoting observations before 1780 and red observations after 1820) and Royal Navy ships,
showing the circular courses taken by ships following oceanic winds and currents. In the case of
the EIC, it can be seen that ships are following the same course in both periods: Europeans had
already been sailing to the India Ocean for 250 years by 1750, so the best course had evidently
been learned before our period. Dutch ships change from mostly sailing to West Africa (where the
Dutch maintained a slaving outpost) before 1780 to Java after 1820. The bunching of daily sailing
speeds around the equator, and as ships made the difficult eastward run around southern Africa,

are evident.

East India Company

Aot i Hi o I
! 2 "i.;‘!."o ": LU l im

Speed Made Good (knots) Speed Made Good (knots) Speed Made Good (knots)

Figure 2 Raw observations of sailing speed for EIC, Dutch frigates, and Royal Navy

Figure 2 shows the raw data of daily distance covered, expressed as nautical miles per hour
(knots, where a nautical mile is a minute of longitude at the equator, or 1.8 kilometers), by year

for the East India Company (EIC), Dutch Frigates, and Royal Navy, with a locally weighted sum of



squares line added to show trends in the data. It is clear the there is some improvement in sailing
speed, at least for the EIC and Dutch Frigates, but that variability of observations is very large.
The three wars in this period (The Seven Years War, 1756-1763; the American War of
Independence, 1779-1784; and the Revolutionary and Napoleonic Wars, 1792-1814 excluding
temporary cessations) are shaded and stand out as episodes of lower sailing speed. It can also be
seen that data for the Royal Navy are sparse after 1815, which means that out conclusions about

sailing speed during this time must be tentative.

EIC: Wind Angle EIC: Wind Speed
r |: |: ‘I: _I‘: _vll _I‘: |: _|: |
. Dutch Frigates: Wind Angle Dutch Frigates: Wind Speed
l‘ I I‘ {I‘ _IH I _I‘ I‘ _I‘ I I
Royal Navy: Wind Angle Royal Navy: Wind Speed

Figure 3 Data on points of sail and wind speed

The wind conditions encountered in our sample are summarized in Figure 3. The wind
speed, in knots, is the midpoint of the Beaufort category that the compilers of CLIWOC thought
most closely fitted the original log observation. Observations above 34 knots, corresponding to
gale force, are not included. For the Royal Navy, it can be seen that the commonest condition is a
Moderate Breeze of 11-16 knots, Force 4, with Fresh Breezes of Force 5 and Light Breezes of Force
2 also common. For the East India Company, whose route took its ships through the South

Atlantic and to the edge of the Roaring Forties, higher winds of Force 6 and sometimes Force 7



occur. For both the EIC and Royal Navy, observations of Force 3 are largely absent and, we will see,
appear to be conflated with Force 2. For the Dutch observations, by contrast, Force 3 is the
commonest wind speed even though they are sailing in similar waters to the East India Company.
It is evident from estimated sailing speed below, that the Dutch Force 3 observations are, in most

cases, Force 4.

The wind angle is the angle of the wind recorded on the day, relative to the direction that
the ship headed on that day. An angle of zero degrees corresponds to heading straight into the
wind. It can be seen that the commonest point of sail was in front of the wind, as the ship
followed prevailing winds and currents, or at right angles to the wind. As well as the course made
good, we have the distance that the ship recorded that it sailed. When sailing in front of the wind,
the distance sailed is about twenty-five per cent higher than the distance covered, reflecting the
fact that the ship had to sail a few degrees off the wind to avoid being pooped by a following sea.
The ratio of distance sailed to course made good of course rises with the wind angle, but remains
constant through time: ships in our sample did not tack into the wind more efficiently as time

passed.

5 Exploratory Analysis

As the raw data on sailing speed through time in Figure 2 make apparent, the increase in
sailing speed through time is non-linear, making OLS estimates misleading. By way of a
preliminary data analysis we apply a semi-parametric analysis, where each explanatory variable is
fitted using a penalized spline (Wood 2006; 217--265). To explain average speed we include the
year of the observation, wind speed, and the angle of the wind relative to the ship’s course. As
well as wind, water currents strongly affected a ship’s progress. To allow for the fact that ships
moved at different speeds in identical wind conditions in different parts of the ocean, we include

latitude and longitude as explanatory variables.
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Figure 4 Penalized spline estimates of determinants of EIC sailing speed

We include the five variables of year, wind speed, wind angle, longitude and latitude in the
semi-parametric regression for the EIC summarized in Figure 4. (To simplify the presentation we
do not allow interactions between variables although they should be present, certainly for
longitude and latitude, but the purpose of the analysis for now is only to highlight possible non-
linearities in the data.) The shape of these functions represent spline transformations of the each
variable to produce an optimal fit. The numbers of knots chosen by the algorithm are listed on
the y-axis of each figure, with higher values denoting less smoothing. It can be seen that sailing
speed increases with wind speed (although the low number of observations at low wind speeds
cause some misbehavior), reaching a peak around 25 knots. This is the exact wind speed (Force 7)
at which ships would reef topsails (Harland, 1985 53); lowering other sails as wind increased.
Sailing speed rises gradually with angle to the wind, peaking at around 150 degrees. Sailing speed
rises as the ship heads south from England, dropping around the equator and picking up as it
heads into the south Atlantic, with markedly high speeds below 30 degrees reflecting the effect of

the strong Agulhas and Benguela currents on ships returning around Africa.

The time pattern is revealing. Sailing speed appears more or less constant until the 1780s,

and then rises sharplyv until the start of the Napoleonic wars. It then falls slightly but recovers and



grows strongly until the end of our sample period.

We also ran regressions with the speed of the ship and wind measured in logs rather than
in levels. These produced heavy lower tails of very large negative residuals, indicating

misspecification.

Classification Trees

To continue the exploratory analysis of the EIC data, in particular to look at potential
intereactions in the data, we employ a classification tree approach, using the unbiased recursive
partitioning framework of Hothrorn et al. (2006). This is a two-step procedure where the
covariate with the highest association with the dependent variable (based on a Strasser-Weber
permutation test) is chosen, and this covariate is then split to maximize the difference between
the dependent variable in the two subsets. The procedure continues until the p-value of the test
for independence between the dependent variable and the covariates, reported at each node, falls

below 5 per cent.
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Figure 5 Classification tree of EIC sailing speed in Moderate Breeze

Figure 5 gives the first three levels of a tree for EIC ship speed in Moderate Breeze. It shows
that the most important split occurs in 1786, with coppering, and that in both sub-periods the

most important split is the angle to the wind being greater or less than around 110 degrees.

6 Evolution of Sailing Speed

A notably successful evolution of classification trees is the random forest methodology of
Breiman (2001). Here, in a data set of size N, a large number of trees (in our case 1,000) is grown.
Each has N observations where the observations are chosen with replacement. At each node,

rather than searching over all explanatory variables for the best split, the algorithm picks m

variahles at random and chononses the enlit amono them Fach anlit is then chogen ag an averace



over all the trees grown. In this paper we use the Quantile Regression Forest variant of

Meinshausen (2006), implemented in the R package ‘quantregForest’.

As noted above, the estimates of wind speed are tentative. We therefore partition the data into
different wind speeds, analyzing each separately. This gave notably tighter confidence intervals

for sailing speed.

6.1 The East India Company

The EIC logbooks cover 311 voyages by 79 ships giving 15,840 usable observations. Figure 6
gives the estimated median and quartiles of sailing speed, assuming a wind angle of 180 degrees.
(The diagrams are calculated assuming that the ship is 50 degrees north, 10 degrees west.) It can
be seen that the largest increases in sailing speed occur in lower winds. In a light breeze, sailing
speed rises by over 8o per cent from 2.6 knots in 1750 to 4.75 knots in 1825 (as noted above, it
suggests that the estimated wind speed of Force 2 is too low, and the wind is more likely to have
been a Gentle Breeze of 7--10 knots). In particular, speed rises by 15 per cent, to 3 knots by the
early 1780s. With the introduction of coppering it jumps by 25 per cent to 3.75, and rises by
another 25 per cent after the Napoleonic period. The rise in speed associated with copper is of the
same order of magnitude as that estimated by Solar and Hens (2013) on the basis of on the length
of time taken by EIC ships, which would have sailed a good deal of their voyages in the lower

wind speeds of the tropics, to complete voyages.
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Figure 6 Median and quartiles of speeds of EIC ships sailing in front of winds of different strength

In a moderate breeze of 11-16 knots, the average wind found in the North Atlantic at the
latitude of Britain in the summer months, the rise in sailing speed is lower, increasing by a third
from 4.5 knots until the 1750s to 6 knots in the 1820s. Speed rises by around 10 per cent to 5 knots
with the introduction of coppering, and by a further 20 per cent after the Napoleonic period.
Moving to a Fresh Breeze, speed rises from 5.5 to 6 knots with the introduction of coppering, and
by a further half knot after 1815 giving a total rise of slightly under 20 per cent. Finally in Strong
Breezes, average speed only rises by about one half knot from 6 knots around the introduction of
coppering. In both Fresh and Strong Breezes, the fastest quartile of ships experiences about
double the rise in speed of average ships, with notable increases after 1815. Effectively, a ship can
sail as fast in a Light Breeze in the 1820s as it could in a Moderate Breeze in the early 1780s, with

the same comparison holding for fresh and moderate breezes.
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Figure 7 EIC sailing speed at 45 and 9o degrees to a moderate breeze.

When not sailing in front of the wind, Figure 7 shows that gains in sailing speed appear to occur
only after 1815 with no detectable impact when coppering is introduced. At 45 degrees, speed

improves from 3 to just over 4 knots; while at go degrees, speed rises from 4 to 5.5 knots.

6.2 Dutch Frigates

We have 12,933 observations for frigates (lightly armed, long-hulled, relatively narrow
vessels) of the Dutch navy. These extend our coverage to 1850, but with a gap from 1795 to 1814.
Figure 8 gives the speed of Dutch frigates in different wind speeds, supposedly corresponding to
Beaufort force 3 to 6, again sailing at 180 degrees, at 50 degrees north, 10 degrees west. As noted
above, the estimated wind speeds are questionable, with ships routinely sailing faster than the
wind in Light Breezes. However, the story is also one of increasing speeds. The pattern of increase
is similar to that recorded by the EIC with speed in Light Breeze increasing from 4 to 6 knots. In
Gentle Breeze, we observe a rise from 4 to nearly 5 knots, with a jump in speed from 4.5 to 5.5
knots in the 1780s (presumably due to coppering), and a steady rise after the Napoleonic gap until
1830. None of the series shows a perceptible rise between 1830 and 1850. In moderate breezes,
speed is steady at 6 knots until after 1815, increasing to 7.5 knots, but falling after 1840. In Fresh

Breeze, sailing speed is no faster than in Moderate Breeze, suggesting that the wind speed here is,



again, under-estimated: for EIC ships we saw that sailing speed peaks in Strong Breeze.
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Figure 8 Speed of Dutch frigates in different wind speeds

6.3 The Royal Navy

In contrast to the EIC, ships of the Royal Navy did not have an incentive always to sail as
fast as possible. In wartime, escorting convoys and patrolling for enemy shipping would usually
lead to a fall in sailing speed. While EIC ships were fairly homogeneous (Chatterton 1933; Sutton
1981)* the size of naval ships in our sample varies from third rate ships of the line, carrying 64 to
80 guns of 2,000 tons displacement (we exclude some observations for one larger second rate that
are somewhat faster than other ships in our sample) down to 4-gun sloops of 60 tons. The data
are based on 362 voyages by 4th rates, 386 by 3rd rates, 386 by sloops, 444 by sth rates, 729 by 6th
rate, and 7 by 2nd rates, producing 24,165 observations in all. Running a penalized spline shows
that, apart from the smallest ships, sailing speed does not vary with the number of guns: although
the theoretical upper limit of sailing speed increases with the length of a ship’s hull, the vessels in
our sample sailed far below their theoretical hull speeds. However, in computing random forests

we do include number of guns as a potential explanatory variable.

4 Althanoh cize tendad ta fall thranoh fime (Qalar 90 12)
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Figure 9 Speed of Royal Navy ships in different wind speeds

Figure 9 gives sailing speed for naval ships in light and moderate breezes, estimated
for a 50-gun ship. Two things are apparent. There are large drops in speed during the
three war episodes; and speed in light wind remains roughly constant. For moderate
winds, speed rises by 1.5 knots as it did for the EIC, with the same pattern of equal
increases occurring before the early 1770s, in the mid-1780s, and after 1815. Because the
starting speed is half a knot slower than the EIC at 4 knots, the percentage rises are

slightly larger.

The postwar rise is noteworthy but its suddenness is deceptive, since incremental
improvements during the previous two decades were camouflaged by wartime restrictions.
Indeed, this consideration affected both the Navy and EIC, since many ships would have

been traveling in convoys, and thus constrained by the speed of the slowest ship.

7 Other Ships

We also have 7,270 observations for Spanish paquetbotes (packet boats: lightly armed ships
for transporting mail) for the period to 1797, and 5,390 observations for ships of the Dutch East

India Company (VOC) ending in 1794 (On the VOC and its ships see Bruijn and Gaastra 1993).



Figure 10 gives estimated speed sailing ahead of the wind in a Moderate Breeze (we move the

Dutch wind speed one Beaufort force higher).

It can be seen that the Dutch sailing speed starts about the same as the British EIC speed at
4.5 knots but declines through time to 4 knots. The Spanish series starts at a very low level of 2.5
knots but rises to 3.5 in the mid-1780s. Unlike most other series, the Dutch VOC series shows no

rise in the 1780s.
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Figure 10. Speed of Dutch East Indiamen and Spanish packet boats in moderate breeze

8 Conclusions

North’s classic study of trans-Atlantic freight rates corroborates an image of pre-Industrial
Revolution Europe as an area of slow economic growth with little worthwhile technological
change. In this view such growth as did occur was the product of institutional change. North’s
claim is all the more striking since it concerns the most dynamic element of the early modern
economy, its foreign trade. We have presented evidence here of increasing speed of both military
and mercantile ocean-going vessels between the mid-eighteenth and mid-nineteenth centuries.
Although the gains are in a setting of speeds that were extremely low by later standards, this
evidence, which refers to oceans in both hemispheres, is consistent with modest and gradual

technological change between the mid-eighteenth and nineteenth-centuries. The significant



increase in speed implicit in ships’ logbooks implies that the measure of productivity change
employed in North’s classic paper may underestimate its true extent, since it ignores this

improvement in the quality of the service provided.



APPENDIX. The Cost and Longevity of Royal Navy Ships

Detailed records survive of the cost and operational history of most ships in the British
navy after 1714 and have been meticulously catalogued in Winfield (2007, 2008, 2010). Here we
look at the cost and operational life of British warships from 1715 to 1815, from the largest first

rates, down to fifth rates of 32-44 guns.

Of the 824 ships in our sample, 7 per cent were first or second rates of over 8o guns (we
combine first rates with second rates); 27 per cent were fourth rates, and 25 per cent fifth rates.
The largest category, accounting for 41 per cent of ships, was third rates of 64-8o guns. These were

the main ships of the line, intended for fleet actions against enemy navies.

The results of regressing log cost and log tons on the year of launching and log guns and an

interaction term, are shown in Table 1.

Cost Tons
(Intercept) -69.856 -39.985
(13.524Q* ( 5.818)***
Year 0.042 0.024
(0.008) (0.003)
Guns 13.105 0.363
(3-235) (1369)
Year:Guns -0.007 -0.005
(0.002) (0.001)
R* 0.907 0.959
Adj. R* 0.906 0.959
Num. obs. 552 797

*okk

P <0.001, p<0.01, p<0.05

Table 1. Cost and tonnage of British Warships

The cost of all categories increased markedly (Figure 11): on average a ship of any rate rose
in cost by 4.2 per cent each year from 1720 to 1815. The increase was driven largely by heavier
armament.1 Heavier guns required bigger ships, and the displacement of ships (calculated by
‘builder’s measure’, a traditional formula for volume based on the length and breadth of the ship)
rose by around 2.5 per cent per year. With third rates costing over £75,000 each (for comparison,
a farm labourer earned under £20 a year), the ships launched in 1812, the peak year of building
activity, cost £930,000. Naval expenditure represented a major budgetary challenge (Wilkinson

2004; Rodger 2004: 368-72, 640-6).
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Figure 1 Cost and tonnage of Royal Navy ships by rate

It might be expected that the greater cost of ships resulted in increased longevity. The
second panel of Figure 1 plots the lifetime of ships between when they were launched and retired
from service or lost. Between wars many ships were ‘laid up in ordinary’ with their masts and
rigging removed and some were literally forgotten about: eight ships that were listed for over sixty

years were excluded.

While longevity shows no pattern through time, the strong diagonal pattern of the data is
evident: ships are retired en masse so that a ship built one year later will have a lifetime that is
one year shorter. This reflects the acquisition cycle in the eighteenth century navy. Increased
funding in wartime led to a burst of orders for new ships that were completed mostly when the
fighting was ended. These replaced old ships and were used to fight the next war; being retired

after as new ships arrived.
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