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Abstract
Real life applications of yardstick regulation frequently refer to historical cost
data. While yardstick regulation cuts the link between firms’ own costs and
prices firms may charge in a static setting, it does not do so in a dynamic set-
ting where historical cost data is used. A firm can influence the price it will be
allowed to charge in the future if its behavior today can affect future behavior
of other firms that determines the price this firm will be able to charge later
on. This paper shows that, assuming that slack, inflation of costs, is beneficial
to firms, a trade-off between short term profit through abstinence from slack
and the benefit of slack in (infinitely) many periods arises. A ratchet effect
that yardstick regulation was meant to overcome can occur and firms can re-
alize positive rents because of the use of historical cost data, even if firms are
identical. Equilibria with positive slack can exist without any collusion be-
tween firms or threat. Moreover, this problem is more severe if the firm with
the lowest costs of all other firms instead of the average firm is the yardstick.
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1 Introduction

Natural monopolies are frequently subject to regulation. As ‘natural’ competition
does not force prices towards a perfect competition outcome, often regulatory agen-
cies jump in to ‘regulate’ profit, prices or revenue. Under traditional rate of return
regulation, allowed profit of a firm is linked to capital employed. The well known
result of Averch and Johnson (1962) is that this regulation provides incentives for
the firms to employ an inefficient input mix and not to engage in cost minimiz-
ing behavior — in other words, to produce with some slack. Incentive regulation is
meant to address this issue. Price cap regulation, originally suggested by Littlechild
(1983), decouples costs incurred and prices allowed to be charged by fixing or cap-
ping prices, no matter what costs are. Thus, the firm becomes the residual claimant
of all costs not incurred and so, has a strong incentive to produce without slack if
profit is worth more to the firm than slack is. Necessarily, the question of how the
price cap should be defined arises. If the regulator takes into account profits made
and costs incurred, the incentive structure is much less clear cut, as e.g. Train (1991)
points out. The basic idea of yardstick regulation, as described by Shleifer (1985),
solves this problem by using information on costs of other comparable firms to define
prices a firm is allowed to charge. In a static world and in every period prices and
costs for each individual firm are, as a consequence, completely independent of each
other. In the absence of collusion, yardstick regulation fosters efficient production,
especially if firms and circumstances of production are very similar. Tangeras (2002,
p. 232) summarizes: “the regulator is able to extract all surplus from firms and reach
full efficiency if technologies are perfectly correlated.” This paper shows that this
property does not carry over into a dynamic setting if historical cost data is used.
A firm can influence the price it is allowed to charge in the future via its effect on
the behavior of other firms. Consequently, without any collusion a ratchet effect can
occur under yardstick regulation using historical cost data as a result of individual
and independent decision making of firms.

The contribution of this paper is twofold: In a simple dynamic model with
three firms, we show that every firm can affect the price it is allowed to charge
if this price is a function of the costs of the other two firms in the period before.
By this we highlight a feature of real world applications of yardstick regulation
that has not received much attention both in academic literature and in regulatory
practice: historical costs are used to define constraints. Furthermore, we compare
two variants of yardstick regulation: either the firm with the lowest costs of all firms
but the evaluated one, or the average of the other firms can be used as the yardstick.
Intuitively, orientation at the best seems to be the tougher form. However, we show
that choosing this scheme might lead to higher slack and a worse situation for society.



A well cited example of the use of average performance for regulation is the
Prospective Payment System of Medicare (originally Shleifer, 1985), whereas e.g. the
German regulation for electricity networks follows a best practice/frontier approach.
Yardstick mechanisms are also used in the regulation of, for instance, the water
industry in the UK (Cowan, 2006) or railway services in Japan (Mizutani et al.,
2009)." Real life examples of yardstick regulation usually have in common that the
price of a service offered is set and known before customers use the service. For
instance, at the start of a regulatory period prices or constraints are defined based
on observations of costs from the regulatory period before.

Aspects of yardstick regulation that are subject to debate or known drawbacks
are collusion among firms (e.g. Tangeras, 2002; Potters et al., 2004), investment
behavior (e.g. Dalen, 1998; Sobel, 1999) and the potential inability of a regulator to
commit to a regulatory scheme for the future (Faure-Grimaud and Reiche, 2005).
Moreover, quality might be adversely affected under incentive regulation in general,
which makes additional quality regulation necessary (see Sappington, 2005, for a
survey). Firms may also lack comparability necessary for the implementation of
yardstick regulation (e.g. Laffont and Tirole, 1993). In this paper, we abstract from
these issues and show that the desired outcome, i.e. efficient production, might still
not be reached.

We derive our results in a dynamic model with three firms, an infinite horizon
and discrete time. As we are interested in the long run effects of the use of historical
cost data under yardstick regulation, we focus on the analysis of resulting steady
state equilibria. In order to formalize the absence of collusion and Folk Theorem
arguments in our result, we define punishment-free Markov-perfect steady state
equilibria: these are Markov-perfect steady state Nash equilibria such that firms do
not (coordinatedly) choose a uniform slack that is individually optimal for every
firm only because of other firms choosing this slack. We show that such equilibria
with positive slack, i.e. inefficient production and positive rents for firms, can exist.
Furthermore, we show that the highest slack that can exist in such a steady state
equilibrium is higher if the firm with the lowest costs of all other firms instead of
the average of the other firms is used as the yardstick.

In this paper, the modelling of slack, i.e. lack of costly effort, differs from a major
part of the contributions to the debate on incentive regulation, represented especially
by Laffont and Tirole (1993) or Laffont (1994): in these models costly effort reduces

'While this paper focuses on yardstick regulation of firms, in particular natural monopolies,
relative performance measures can be used in a broader range of settings where asymmetric infor-
mation structures are present. For instance, voters may judge incumbent politicians relative to the
performance of other politicians in other jurisdictions (Besley and Case, 1995) or workers might
be paid based on their ordinal position of performance among their colleagues (Lazear and Rosen,
1981).



costs of production. In our model, inefficiency costs, slack, are added to real, nec-
essary costs of efficient production and producing with slack offers nonmonetary
benefit to the firms. The instantaneous payoff function used is very similar to the
one in Blackmon (1994). This is done as it allows for straightforward interpretation
of the results and explicitly models the idea that yardstick regulation is meant to
solve the inefficiency problem of traditional rate of return regulation. However, this
is not a substantive difference but only a different way of presentation.

A key structural element of our model is the time horizon used. In models
considering only two periods, the effect driving our results is not present: under
yardstick regulation using historical cost data current choices of a firm do not affect
the price this firm can charge in the current and the next period. The direct effect
is only visible from the next but one period onward. Like Meran and Hirschhausen
(2009) we use dynamic programming techniques to account for long run effects of the
decisions of firms. However, we come to differing conclusions. The main difference
between their model, which is expanding the model of Shleifer (1985), and our
approach leading to these differing results is that Meran and Hirschhausen (2009)
do not allow the firms to benefit from slack and consequently firms do not gain from
keeping costs high.

The remainder of this paper is structured as follows: Section 2 explains the
model setup. In Section 3 all possible punishment-free Markov-perfect steady state
equilibria are characterized, existence is proven and the two regulatory schemes are
compared with respect to equilibrium outcomes. Section 4 concludes.

2 Description of the model

2.1 Firms

There are three firms, labelled j = 7,0, z, each producing a homogeneous output
normalized to one. The output is bought by the consumers. For example, one
could think of demand for electricity which is very inelastic with respect to price
or demand for some crucial medical treatment. These firms could be thought of as
catering three comparable regions with electricity grids as local monopolists. The
only way they interact in ‘competition’ is via the regulation imposed on them. In
every period, the regulator assigns a price to each of the firms. Fach firm must
not charge more than this price for its output, so the regulator defines a price cap
which is equivalent to a revenue cap under the assumption of completely inelastic
demand. As demand does not react to price in this setting, all firms always charge
the maximum price they are allowed to.

Whereas the firms’ output is directly observable the underlying cost structure is



unknown to the regulator. Each firm verifiably reports its costs to the regulator who
cannot distinguish between ‘real’ necessary cost, C' > 0, and slack, Stj > 0, defined
as additional costs due to inefficient use of resources, and only observes the sum of
both. C' does not change over time and is the same for all firms. This is equivalent to
assuming that the regulator correctly and completely accounts for all heterogeneity
between firms and (exogenous) circumstances of production.? Each firm chooses its
slack and may choose different slacks in different periods. For instance, slack can be
interpreted as a lack of (costly) effort from managers, oversized offices or all kinds
of ‘unnecessary’ costs that might occur under rate of return regulation. As slack is
inefficient production by definition, the regulator maximizing the utility of society
desires to avoid all slack without explicit consideration of a target function.

If firm j chooses a positive slack in period ¢, it realizes a nonmonetary utility
denoted by B(S7). B is twice continuously differentiable with B(0) =0, 1 > B’ > 0
and B” < 0. Accordingly B(S}) < S/ for all $/ > 0. If the sum of necessary costs
and slack is smaller than the price the firm is allowed to charge, it additionally
realizes a profit. The marginal benefit from an additional unit of profit is constant
and normalized to 1. Increasing profit and decreasing slack are two sides of the
same coin as they add up to a constant: the price a firm charges less necessary
costs. Hence, it is sufficient to explicitly consider just one of the two as the other
one emerges as the residual. The instant payoff function of firm j is in every period
given by

F) =P/ —C — S/ + B(S)). (1)

Firms care about profit and slack only. They discount next period’s utility with 9,
0 < 0 < 1, and maximize their intertemporal utility:

> 0'F (2)
t=0

Firms need to break even at all times, so that C' + S/ < P/. Slack is ‘expensive’
not only from the perspective of the regulator or society: one marginal unit of
additional profit always results in higher instantaneous utility for the firm than an
additional marginal unit of slack would. The only reason why Stj > 0 could be
an optimal choice of j is that it can affect the price j is allowed to charge in later
periods.

We consider an infinite number of periods in order to avoid unrealistic effects

2In Shleifer’s (1985) one-period model accounting completely and correctly for heterogeneity
leads to the efficient equilibrium.



of last rounds in which all slack is zero.> Every period there is only one choice

per firm to be taken: the slack the firm chooses. The regulatory rule and break
even condition are common knowledge, and so are the prices of the current period.
Using this knowledge, firms can anticipate how their choice of slack will affect future
behavior of the other firms. Accordingly all three current prices are state variables
for all j.

Strategies are anonymous, so if firms o and z initially do the same, firm i reacts
to a change in behavior of o with constant behavior of x just as it would react
to a change vice versa. Simple renaming o into x and z into o does not affect
the behavior of 7. Firms simultaneously choose their slack every period without
observing the current choice of the other firms.

Only Markov-perfect strategies® are considered, so firms react to the state vari-
ables they observe and do not care about the history of states. We exclude collusion
between firms as well as arguments based on Folk Theorems,® which can be seen as
a form of collusive behavior, from the analysis as yardstick regulation is obviously
highly vulnerable to collusion. This paper does not strive to offer solutions for this
issue but proceeds to show that even if all collusive behavior can be avoided, un-
coordinated individual utility maximization by firms can result in equilibria with
positive slack. Therefore we restrict our attention to strategies that are not based
on collusion or coordination and exclude that firms coordinatedly choose a uniform
slack that is otherwise not an optimal choice for any individual firm.

2.2 Regulatory rules

The price a firm is allowed to charge is derived from costs realized by the other two
firms in the previous period. We separately look at two regulatory schemes: average
yardstick regulation under which average costs of the other firms are used as the
yardstick, and frontier yardstick regulation or best practice regulation under which
only the costs of the best performing firm of all others, i.e. the firm with the lowest
costs, are the yardstick. For example, the price that firm ¢ is allowed to charge in
period t 4 1 is accordingly a function of the slack o and x are choosing in ¢ in both
cases:

P}y = R'(S7,Sp). (3)

31t is easy to show that a finite horizon and the corresponding backward solution will result in
zero slack starting in the very first period.

4The corresponding concept of Markov-perfect equilibria goes back to Maskin and
Tirole (1988 a and b).

5See e.g. Osborne and Rubinstein (1994) for a description of trigger strategies and Folk Theo-
rems.



Under frontier yardstick regulation the price is given by
Pl =min(C + S¢,C + SF) = C +min(SY, SF) (4)

and under average yardstick regulation by

Pgﬂzéz(c+5g’)zc+325gﬂ (5)
J#i

J#

Regulatory rules for the other firms and periods are defined analogously. Since
necessary costs are constant, C can be factored out under both regulatory regimes
and can be normalized to zero. This is equivalent to interpreting P} '+1 as the amount
by which the price i may charge in ¢t + 1 is greater than necessary costs C.% In the
first period of yardstick regulation, prices are exogenously given: they could be
derived from some regulatory rule that was in place before yardstick regulation was
implemented.

Lemma 1. Under both regulatory rules, slacks and prices converge to a steady state
wn which all firms choose the same slack and realize zero profits due to requlatory
mechanics. This slack may be zero.

Proof. See appendix.

As long as not all firms choose the same slack and this slack is equal to the price
they are allowed to charge (C' is normalized to zero), the highest slack chosen in ¢
cannot be chosen by any firm anymore in ¢ 4 2 at the latest. Accordingly, there is a
downward drift of the highest slack, whenever firms choose differing slacks. As slack
cannot become negative, convergence is assured.

3 Equilibrium analysis

It is easy to show that equilibria with very high slack could exist, given initial prices
are sufficiently high, if firms punish other firms’ uncooperative behavior. Unilateral
punishment conditioned on other firms’ past behavior is precluded, by restricting our
attention to Markov-perfect strategies. However, firms could follow a Markov-perfect
strategy which includes extreme slacks, e.g. zero slack, if they observe a specific
vector of prices. From the proof of Lemma 1, it directly follows that under frontier
yardstick regulation, every firm can force all firms into a steady state equilibrium
with zero slack by choosing zero slack once. This is the worst possible steady state

6Necessary costs C' remain, however, unknown to the regulator.



from the perspective of all firms. Therefore, if at least one firm chooses zero slack,
all other firms can choose zero slack, and thereby the highest feasible instantaneous
profit without adversely affecting future payoffs. Consequently, the best response
to other firms choosing an extreme slack could be choosing the same extreme slack.
In the spirit of the Folk Theorem (a threat of) ‘joint mutual punishment’, i.e. firms
each choosing an extreme slack because of other firms choosing this slack, could be
used to implement equilibria with very high slack. Such equilibria would involve
aspects of a coordination game.

The analysis of corresponding equilibria does not offer much additional insight
as yardstick regulation is known to be highly vulnerable to collusion. Joint mutual
punishment, that no firm would do unilaterally, can be seen as a form of collusion.
To this end, we explicitly exclude all sorts of joint mutual punishment, collusion or
coordination from our analysis and show that steady state equilibria with positive
slack that are ‘punishment-free’ can still exist. Therefore, we restrict our atten-
tion to the subset of Markov-perfect equilibria satisfying the following definition:
Let f{(Py), f°(Py) and f*(Py) be the Markov-perfect strategies of firms 7, o and x
respectively, and P; be the vector of prices valid for firms 7,0 and x in period t.
Consider a Markov-perfect equilibrium (f'(Py), f°(P¢), f*(Py)). It is called punish-
ment-free if for all Py where f/(Py) = f*(P:), with j,k = i,0,2 and j # k, at
least one strategy f'(Py) = f(Py), with [ = 4,0, z, is also the best response to all
m = 1,0, x, with m # [, choosing S;" > f™(Py).

In a punishment-free equilibrium, firms do not choose a uniform slack that is
optimal if and only if other firms also choose this slack and that is not an optimal
choice of slack for any firm if all other firms choose higher slacks. Thus, whenever
firms choose the same slack, for at least one firm, this slack must remain optimal
if all but this firm choose higher slacks instead. In other words, we exclude that
firms choose a uniform slack that is for each firm optimal only because of other firms
doing so.

Below we implicitly define an optimal value of slack each, denoted by 5%, that
maximizes intertemporal utility given current prices under the respective regulatory
regime that can characterize a steady state equilibrium. Furthermore, we derive a
unique level of slack, S™* under frontier yardstick regulation and S4* under average
yardstick regulation, which offers the highest intertemporal utility for the firms
under the respective regime and that can exist in a punishment-free Markov-perfect
steady state equilibrium, given that prices are sufficiently high. As will be shown,
SM+ is implicitly defined by

B =1-§ (6)



and S4* by
L

1—360

B =1- (7)

Equations (6) and (7) summarize the respective tradeoff between the marginal
benefit of reducing slack in the current period and the corresponding marginal costs
from adversely affecting future payoff each firm faces every period under both reg-
ulatory schemes.

We show that every S*e[0, SM*] and S*¢[0, S4*], under frontier yardstick regula-
tion and average yardstick regulation respectively, can occur in a punishment-free
Markov-perfect steady state equilibrium, provided that the initial prices are high
enough. Conversely, no other slack is possible in such an equilibrium.

3.1 Optimal slack

Assume there exists a steady state equilibrium consistent with the triple of pu-
nishment-free Markov-perfect strategies of firms i, 0 and x, denoted by f{(Py), f°(Py)
and f*(Py) respectively. By definition, strategies need to be optimal in equilibrium.
Firms decide on their slack considering their discounted utility in all periods to come
given they decide optimally in all future periods given future states. The Principle
of Optimality” is used to find the resulting optimal level of slack for firm 7. So firm
i solves the following maximization problem:

Ji(Pt) = Ji(Ptia Py, Ptx) = max_[F(PZ, SZ) + 5Ji(Pt+1)]7 (8)

Si<p}

where J? denotes the value function of firm ¢ and Py ; is the vector of prices in
t+ 1. By Theorem 6.4 and the relaxed Assumption 6.3, i.e. (weak) concavity of the
instant payoff function, of Acemoglu (2009) the value function is (weakly) concave
in the state variables. Thus, the problem is well-behaved. While the state in ¢ is
given, the state in ¢ 4+ 1 is determined by the regulatory rule. Plugging the general
form of this rule in leads to

T(Py) = max[F(P,, 8) + 7' (RS2, 87), /(S SPL R (SL Sl (9)

t—="1

Just as firm ¢, firms o and x maximize their intertemporal utility given the state
variables they observe. So

57 = [°(Pe) (10)

"See e.g. Acemoglu (2009) or Stokey, Lucas with Prescott (1989) for a detailed description.




and
Sf = [*(Py) (11)

describe the optimal slack of o and z given Py, i.e. S7 and S} satisfy the respective
versions of (9).
Assuming that o and x follow f°(Py) and f*(Py), respectively, we obtain with (9)

J{(Py) = max | F(F, S)
i<H (12)

F0H(R(f2(PL), f*(PL), R(S], *(Py), ¥ (S5, (V) )|
As this is a constrained maximization problem, we rewrite (12) as

J(Py) = max (P S))

+oJ! (Ri(fo(Pt),fx(Pt)),RO(SZ,fm(Pt)),Rx(Sf,f"(Pt))) (13)
+ NP = 5)]
with the complementary slackness conditions
Al >0and A\(P! — S}) = 0. (14)

The corresponding first order condition (FOC) for the maximum problem is given
by:

Fy(P,S}) + 03(Peya) - RY(S, S7) + 0J3(Peya) - RI(S),57) = Ap=0. (15)

Accordingly numbers as the lower index mark derivatives and the number describes
the argument with respect to which the derivative is taken. The upper index de-
scribes the function from which the derivative is taken. If the lower index includes
a ‘t’, it is a time index. So, R9(S!,S?) describes how the price o may charge in
t 4+ 1 reacts to a marginal change of the slack of 7 in . We only need to look at
derivatives to the left, i.e. reductions of slack, as starting from a steady state no
firm can increase its slack without violating the break even constraint. Accordingly,
throughout this paper, all derivatives are to be understood as left hand side deriva-
tives, i.e. reductions of the respective variable. The corresponding derivatives of the
regulatory rules are given in the appendix.
Now let

Si = ['(Py) (16)



describe the optimal slack of firm i given Py, i.e. f{(Py)
Inserting this into (13) leads to:

J'(Py) = F(P/, f'(Py))

is the solution to (15).

+ 87 (R(f2(Py), f2(PL), B(F{(PL), [(P), BE(f{(P), f(Py)) (17)

+ AP = [1(Py)).

Taking the derivative to the left with respect P} we find with Envelope Theorem:

Ji(Py) = F(F], )
+ 001 (Poga) - Ry (S, S7) - f7(Py) + 61 (Pega) -
+0J5(Peya) - R3(S}, SF) - fT(Py) + 0 J5(Pyya) -
+ AL

Analogously we find

J5(Pe) = 0J1(Peya) - Ri(S7,SF) - f5(Pe) 4+ 6J1(Peya) -

+0J5(Pera) - R3(S5;, 57) - f3 (Py) + 0J5(Ps1)

and

Jy(Py) = 0J](Peyr) - R{(SP,SF) - [9(Py) + 6.J; (Pesr)
+0J5(Pey1) - B3(SE,SY) - f5(Pe) + 0J3(Peya) -

Updating (19) and (20) by one period yields

Jy(Pei1) = 01 (Peya) - RISy, SF) - /5 (Peya)
+6J1(Pey2) - R5(SP1, Siv1) - f3 (Peya)
+6J5(Pey2) - R5(Sti1, Siv1) - f3 (Peya)
+0J5(Peya) - Ry(Siiy, SP1) - 13 (Piya)

and

Ji(Pei1) = 0J{(Peya) - RU(SP, SE) - f9(Pesa)
+ 0J1(Pey2) - R5(S71, S¢1) - f3 (Pega)
+0J3(Peya) - B5(Stiq, Sta) - f3 (Piya)
+6J3(Pey2) - R5(Si1,5701) - f5(Peya).

10

CR3(S,57) - f3(Py)

Ry (S7,S7) - f5 (Py)

R5(S7.87) - fi(Py)

Ri(s.50) - frg

Ry(S7, S) - [ (Pe)

(19)

(20)

R3(S;,S7) - f3(Pe).

(21)

(22)



Plugging (21) and (22) into the FOC (15) leads to

+ORY(S;, SE) - (81 (Puia) - RSP, Sta) - f5(Pesa)

+0J1(Per2) - By (571, Sta) - f5 (Poa)

+ 6J3(Posa) - RSty Stin) - f5 (Peca)

+33(Pesa) - B3(Siyr, S2in) - f5(Pena)) )
+ORE(SE S7) - (071 (Pesa) - Ri(SEi0, SE) - f5(Pusa)

+0J1(Pera) - By (71, SE1) - f5 (Poa)

+ 6J3(Pesa) - RSty Stin) - fi (Pesa)

+ 3S3(Pesa) - R (St i) - F(Peca) )

Y

In equation (23), we clearly see the consequence of the use of historical cost data
under yardstick regulation: The price that firm ¢ can charge in the future is influ-
enced by its behavior today. The choice of slack of 7 in ¢ does not only define its
instantaneous payoff, implicitly represented by Fy (P}, S?), but also affects the prices
o and z can charge in t + 1 via the regulatory rule, R°(S!, S¥) and R®(S},S?) re-
spectively. Firms o and x choose their slack in ¢ + 1 based on the state they observe
and under the restriction that they have to break even according to their strategies,
f°(P¢y1) and f*(Pyiq1). The slacks o and x choose in t + 1, via the regulatory rule,
then affect P?, and P7, and determine the price i is allowed to charge in ¢ + 2,
P},,. These three prices are the arguments of the value function of ¢ and in period
t, firm ¢ discounts the effects in t + 2 with 62.

From Lemma 1, we know that in every steady state all firms choose the same
slack. Thus, starting from a steady state unilateral reduction of the slack of i
affects the price o and z may charge in the following period the same way so that

11



RY(S!, S¥) = R¥(S?,52).8 This reduces (23) to

+ ORY(S), S7) - (1 (Pesa) - RSP, SEr) - [£5(Pusa) + f5(Pra)
+0J1(Peya) - Ry(SP1, SE) - [fs (Peyn) + f5 (Peia)] (24)
+ 3J3(Pesa) - BY(Sir S7) - [f5 (Pesa) + i (Puya)
+ 8J3(Pura) - B5(SEi, S0) - [F5(Pesa) + £ (Peia)])

Y

From Lemma 1 it also follows that, due to regulatory mechanics, in all steady
states all firms realize zero profits, i.e. all firms choose the slack that is equal to
the maximum price that each firm may charge. So, starting from a steady state a
marginal unilateral reduction of the slack of 7 in ¢ leads to P2, = Pj,, < P},,. Fol-
lowing a punishment-free strategy, the two other firms, o and z, will under both reg-
ulatory schemes reduce their slack the next period by exactly the resulting marginal
reduction of their respective price, given the price they face is not higher than the
unique optimal slack SM* and S4*, respectively. We formalize this in the following
Lemma, considering reductions of slack only for both regulatory regimes:

Lemma 2.

(i) Frontier yardstick regulation:

If Pty = Py < Py and Py = Py < SMx,

then f3(Pyia) + f5 (Pt+1) f5(Pes1) + f5(Peya) = 1.
(17) Avemge yardstick requlation:

If Py = Py < Py and Py = Py, < < 84,

then f3(Pei1) + f§(Pes1) = f3(Pera) + f5 (Pt+1) = 1.

Proof. See appendix.

Intuitively, Lemma 2 means the following: Starting from a steady state, a firm
has to reduce its slack if the price that this firm can charge is reduced as it needs
to break even. Given that the firm would not voluntarily unilaterally deviate from
the steady state equilibrium, it cannot increase its intertemporal payoff by deviating
even more than necessary. The fact that another firm also has to reduce its slack
by the same amount does not cause additional effects in this case.

8We extensively deal with the derivatives of the regulatory rules in the appendix.
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With Lemma 2, equation (24) reduces to
0= Fy (P, S;)
+OR(SE S7) - (071(Pusa) - [RY (S, S + Ra(STy SE)]
+0J3(Pes2) - R5(Sii1, SE11) (25)
+ 0J3(Pusa) - R3(Sty1 501 )
— A

To show how the solutions to this equation differ under both regulatory schemes we
need to look at them separately.

Frontier yardstick requlation. From Lemma 1 it followed that in all steady state
equilibria firms choose the same slack and the slack is equal to each firm’s price due
to regulatory mechanics. Therefore, in such a steady state ¢ will choose the same
slack every period, i.e. Si,; = S; = S*. Every period i could deviate by reducing
its slack.” So, S* must solve the FOC in every period. Now assume i marginally
reduces its slack in t. From the FOC, it directly follows that it cannot be optimal
for i to choose a higher slack in ¢ + 1 than in t. With S < S, ,, the slacks of 0 and
x would have to be smaller than the one ¢ chooses in ¢ + 1 from the regulatory rule
and the break even constraint. Accordingly, in ¢+ 1 the left hand side derivatives of
the regulatory rule with respect to the slack of ¢ drop to zero if S} < Si,;. It follows
that S} < S;., cannot describe an optimal strategy of i: the FOC would not hold
int+1as [5(P/,S}) = B — 1 is smaller than zero and )., is nonnegative from
the complementary slackness conditions. We conclude that ¢ marginally reduces its
slack in periods ¢ and ¢t + 1, so that S} = S;,; < S7 = Sf. From the regulatory rule,
equation (4), the prices o and x may charge in ¢ + 1 decrease to PY,, = Pf, = 5]
and given S; = S;,,, there is no additional effect on Py, = P, from the forced
change in the behavior of 0 and x in t+ 1: The prices o and x may charge in ¢+ 2 are
given by P2, = min(Sy,, Sf,,) and Pf, = min(S;,, S{,). So, if 0 and z decrease
their slack in ¢ + 1 to Sy = Sy, ,, they neither change P?,, nor Pf,. Consequently,
in this situation the left hand side derivatives of the regulatory rule are given by
RS(S§+1> ir+1) = R5( §+17 f+1) = 0.1

Intuitively, ¢ decides about its slack in ¢, knowing that its slack in ¢ + 1 will be
the same as in ¢. Hence, deciding about slack in ¢ and ¢ 4 1, firm ¢ knows that
P?, and P%, are equal to Sy, for all Sf,, > S;,, and S¢,, > S; ., respectively.
Accordingly, the only price in ¢ + 2 that is changed as a consequence of the induced
reduction of the slack of o and x to Sp,, = S¥,, = S;,, = S; is the price that firm ¢

9No firm can increase its slack in a steady state because of the break even constraint.
Derivatives would be greater than zero for further decreases of their slack though.
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itself can charge in t+2, P/, ,. Further, R} (S7,,, S¥. )+ R5(SP 1, Sfq) = 1is always
true under frontier yardstick regulation (see appendix) and therefore equation (25)
reduces to

0= FQ(PZ’ SZ) + 5R?(SZ7 Stl) ) 5‘]i(Pt+2) - )‘zzt (26)

We consider unilateral reductions of the slack of i starting from a steady state so
that R{(S;,Sf) = 1. Furthermore, with J{(P¢i2) = 1+ X},, (Lemma 4 in the
appendix) and Fy(P}, Si) = B’ — 1, it follows:

0=B —1+8(1+A\,,) — A (27)
As the optimization problem is the same in every period in a steady state equilib-
rium, A} = A\, , = A. Solving for B’ yields the implicit solution for S*:

B'=1-8+(1-8)A\ (28)

This condition summarizes the tradeoff between marginal benefits and marginal
costs of decreasing slack. The less patient firm ¢ is, so the more weight it puts on
instantaneous payoff, i.e. the smaller § is, the greater is B’ and with B” < 0 the
smaller is the slack i chooses. Therefore, if § decreases, the firm cares less about
slack in the future but grasps profit today. A more detailed intuition based on an
infinite geometric series is given in the appendix. If A > 0, the constraint must be
binding from the complementary slackness conditions. For equation (28) to hold,
the greater A is, the greater must be B’ and, as B” < 0, the smaller must be the
slack. If the constraint is binding, firm 7 has to choose a smaller slack than it would
otherwise do. Conversely, if A is zero, the solution to the constrained maximization
problem is equal to the solution to the unconstrained maximization problem, i.e.
the slack S™* that firm i chooses in equilibrium if all prices are sufficiently high.
Consequently, the implicit definition for SM* is given by

B ' =1-04° (29)

Average yardstick requlation. Under this regulatory regime, all relevant deriva-
tives of the regulatory rule are always % as each price is the average of two slacks
(see appendix). As furthermore in all steady state equilibria, the FOC must hold
in every period, we can update the FOC, equation (15), by one period and plug it

into (25) to find

0= FQ(Pt ’ St) + 65 ’ <5J1(Pt+2) - FQ(Pt+17 t+1) + )\t+1) - )\t‘ (30)
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Applying the same reasoning as above with Si; = S; = S*, Ji(Pyy2) = 1+ X4,
Fy(Pl,S)) =B —land A=)\ = X, = A\, we find

g1 12 1o 12 1o
0=B/(1—30)+1(50" + 50— 1) + A(50* + 56 — 1), (31)

and solving for B’, it follows the implicit solution for S*:

(-39 —10) + A1 -1~ 10)

B =
Y

(32)

Under average yardstick regulation, B’ also decreases in ¢ and hence the slack 4
chooses increases in the weight the firm puts on future payoff. Again B’ increases
in A so the slack chosen if the constraint is binding is smaller than the slack chosen
if all prices are sufficiently high. The solution to the corresponding unconstrained
maximization problem, i.e. the slack S4* firm ¢ chooses in equilibrium if all prices
are sufficiently high, does not include \. So, S4* is implicitly defined by

B =1--—2—. (33)

Inspection of equations (28) and (32) reveals that no slack higher than SM* and
S4* can exist in a steady state under the respective regulatory regime. As B” < 0
and A is nonnegative from the complementary slackness conditions, neither (28) nor
(32) could hold in any steady state with slack greater than SM* and S4* respectively.
In such a steady state, marginal benefits of unilaterally reducing slack would be
greater than marginal costs of doing so. Consequently, firm ¢ would unilaterally
deviate by reducing its slack, which contradicts the existence of such punishment-
free Markov-perfect steady state equilibria. This leads to the following proposition
that is directly derived from the analysis above:

Proposition 1.
(i) In any punishment-free Markov-perfect steady state equilibrium under frontier
yardstick regulation the slack is between 0 and SM*, S*e[0, SM*].

it) In any punishment-free Markov-perfect steady state equilibrium under average
i) 1 ishment Mark t steady stat libri d
yardstick regulation the slack is between 0 and S**, S*e[0, S4*].

3.2 Steady state equilibria

From Lemma 1, it followed that there cannot exist any asymmetric steady state
equilibrium. It is straightforward that the analysis above can analogously be done
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for firms o and x. Taking the optimal strategies of firms o and z as given, we show
that it is optimal for 7 to follow the same strategy. By doing this, we prove the
existence of the equilibria characterized above.

Assume optimal Markov-perfect strategies of firms o and = under frontier yard-
stick regulation are given by

fO(Pt) = fx(Pt) =5 = min(sM*a Pti7 Ptov Ptx)' (34>

So, firms o and x choose S™* or at least one firm j = 7,0,z cannot choose any
higher slack without violating the break even constraint given P;. In the latter
case, this firm’s choice of slack would remain optimal if the other firms chose higher
slacks instead.!! Furthermore, in all steady states with slack greater than S™*, firms
would unilaterally deviate by reducing slack. Consequently, if the above strategies
constitute an equilibrium, it is punishment-free.

Given the above strategies, it cannot be optimal for firm ¢ to choose any slack
greater than SM* as it could reduce its slack to S™* without affecting any price in
t+1. As Fy(P}, Si) < 0, this would result in higher instantaneous and intertemporal
payoff. The same is true for any S; > S? = S7 as i’s slack does not affect future
prices if S! > S° = S¥ from the regulatory rule. Accordingly the FOC cannot hold
for S; > S¢ =S¥ as Fy(Pf,S}) < 0 and \! is nonnegative from the complementary
slackness conditions. Thus, it is never optimal for ¢ to choose a slack higher than
o and x under frontier yardstick regulation, and the optimal strategy of i given Py
and the strategies of o and x must satisfy f/(Py) < min(S™*, P}, P?, PF).

We now show that this inequality holds with equality: As the value function
is concave in the state variables, F' is strictly concave in slack and the left hand
side derivative of the regulatory rule with respect to the slack of ¢ must be equal
to one in all steady states with S* > 0, A > 0 in all steady states with S* < S,
Accordingly the steady state described by SM* is strictly preferred by firm i over
all other steady states with lower slack. (Obviously all steady states with positive
slack are preferred by i over the one with zero slack.)

From the concavity of the value function and the strict concavity of F' concern-
ing slack, it also follows that A decreases in the steady state value of slack for all
S* < SM* As a consequence, firm i never unilaterally deviates by reducing slack
from a situation where all firms choose the same slack, given Si < SM*: If firm ¢
unilaterally reduces its slack starting from such a situation in ¢, the constraint is
not binding in that period, so A! needs to be zero from the complementary slack-
ness conditions. With the concavity of the value function and strict concavity of
F with respect to slack this cannot be optimal as the FOC could not hold. Then

11n the notation of the definition of punishment-free Markov-perfect equilibria, p. 7, this firm
facing the lowest price is labelled firm .
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fi(Py) = S* = min(SM* Pf P?, P?) is the optimal strategy given the strategies of
o and x. As min(SM* P} P?, P*) can take on every value between zero and S™*
depending on initial prices, existence of a punishment-free Markov-perfect steady

state equilibrium under frontier yardstick regulation is established for every slack
S*el0, SM+].

Assume further that optimal strategies of firms o and x under average yardstick
regulation are given by

f(Pe) = f*(Py) = S* = min(S™, P}, PY, PY). (35)

With the same reasoning as above, it follows that if these strategies constitute an
equilibrium, it is punishment-free. The strategies given by equations (34) and (35),
differ only by the unique optimal value of slack, given prices are sufficiently high.
Accordingly the corresponding proof for average yardstick regulation is very similar
to the one above. It is not optimal for firm ¢ to choose a slack higher than the
one o and x choose given their above strategies: First, note that under average
yvardstick regulation, all relevant derivatives of the regulatory rule are equal to %
as every price is the average of the slacks of the other two firms of the period
before. Now consider Si > S? = S¥: neither o nor x would choose a higher slack
in t + 1 than in ¢ as then min(P/,,, P2, P7,) = Pi, =S¢ = S¢. Tt follows that
the highest possible slack from ¢ + 2 on would not be greater than Sy = S} for all
slacks S} > S = S¥. As Fy(P},S;) < 0, i could increase its instantaneous and
intertemporal payoff by decreasing its slack and choosing S{ = S? = S¥. The rest of
the proof is a straightforward repetition of the arguments above using S4* and the
corresponding derivatives of the regulatory rule.

We summarize these findings in the following proposition:

Proposition 2.

(1)

Under frontier yardstick regulation, the triple of strategies (f'(Py), f°(Py), f*(Pt))
with f1(Py) = S* = min(SM*, P} P?, PF), j = i,0,x, constitutes a punishment-
free Markov-perfect steady state equilibrium. Every slack S*e[0, SM*| can ezist in
equilibrium and SM* offers the highest intertemporal payoff for firms.

(1)

Under average yardstick regulation, the triple of strategies (fi(Pt), f"(Pt),f“"”(Pt))
with fi(Py) = S* = min(S4*, P!, P?, P¥), j = i,0,, constitutes a punishment-
free Markov-perfect steady state equilibrium. Every slack S*e[0,S**] can exist in
equilibrium and S** offers the highest intertemporal payoff for firms.
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It is important to note that the regulator cannot induce the zero slack steady
state by simply setting all prices to zero. In our analysis, necessary costs have been
normalized to zero. However, the reason why regulatory schemes like yardstick regu-
lation exist essentially is that the regulator does not know how large necessary costs
of production are. Otherwise, she could directly mandate optimal prices without
applying yardstick regulation. By exogenously setting too low prices in the first
regulatory period, the regulator risks firms going bankrupt, as they cannot break
even anymore. While it is not explicitly modeled in this paper, it seems reasonable
that it is crucial to the regulator that firms subject to regulation, producing without
slack, can cover their real and necessary costs. One could think of a large welfare loss
outside of the model that is associated with firms, that provide essential services,
not being able to cover their real and necessary costs.

Given this restriction and that no slack higher than S™* and S“4* under the
respective regime can exist in a steady state, it seems reasonable that the regulator
initially sets prices which are relatively high. Therefore, comparing the upper ends
of the intervals of feasible steady state slacks seems particularly relevant.

3.3 Comparative dynamics

From Propositions 1 and 2, we know that every slack between 0 and S™* under fron-
tier yardstick regulation and between 0 and S4* under average yardstick regulation
can describe a steady state equilibrium. Furthermore, we know that there cannot
exist punishment-free Markov-perfect steady state equilibria with higher slack under
the respective regulatory regime. By comparing the implicit solutions for S™* and
54 we find that all punishment-free Markov-perfect steady state equilibria under
average yardstick regulation can be equilibria under frontier yardstick regulation
while the reverse is not true. This leads to the following proposition:

Proposition 3. The highest slack that can be realized in a punishment-free Markov-
perfect steady state equilibrium is greater under frontier yardstick requlation than
under average yardstick requlation.

Proof. S#* is implicitly defined by (33) and the corresponding value under frontier
yvardstick regulation, S™* is implicitly defined by (29). As B’ > 0 and B” < 0,
SMx* > G4 if the following inequality holds:

152
1— 2
1

> 142 (36)

Rearranging yields
1>0.
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Hence, inequality (36) always holds. ]

Intuitively, orientation at the performance of ‘the best’ of all other firms rather
than the average of all other firms to define constraints for a firm under yardstick
regulation seems to be the tougher regulation. Incentives to produce efficiently,
i.e. without slack, should be strong. Proposition 3 questions this intuition. Using
historical cost data of other firms allows each firm to influence the own yardstick.
As this influence is greater under frontier yardstick regulation all firms could be less
willing to ‘push’ the other firms because they will have to ‘push back’ in return.

4 Conclusion

While Shleifer’s (1985) version of yardstick regulation uses current performance of
other firms to find current constraints for an evaluated firm, real life applications of
yvardstick regulation frequently define constraints, e.g. prices allowed to be charged,
ex ante based on data from the regulatory period(s) before. This use of historical
cost data in yardstick regulation enables a firm to affect the price it can charge in the
future. Affecting other firms’ constraints and thus behavior, the current performance
of a firm is directly linked to its own future constraints.

This analysis showed in a simple model framework that inefficient steady state
equilibria in which all firms choose positive slack can exist under yardstick regulation
without any form of collusion if historical cost data is used. Furthermore, the highest
slack that can exist in a punishment-free Markov-perfect steady state equilibrium
is higher under frontier yardstick regulation, where the firm with the lowest costs
of all but the evaluated firm defines the yardstick, than if the average of all other
firms is used. This challenges the perception that incentives to produce efficiently
are strongest if the best of all other firms is the yardstick in a yardstick regulation
using historical cost data.
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Appendix

Proof of Lemma 1

As regulatory rules are anonymous and C' is normalized to zero, only 5 relevant
different cases can be distinguished, potentially with indices changed and updated
though:

() Pti =PP=Pr=8 =8 =57
(I =Sy > 57
(II1
(IvV

(V

The reasoning is explained below in detail for case (II) under frontier yardstick reg-
ulation and average yardstick regulation, the remaining is then a straightforward
application along these lines.

) S
)S’>SO Sy
)Sl>SO>S$
) S

— St <P =P =P

Case (I):

If all three prices and all three slacks are the same in ¢ the regulatory rule does not
force any change. Prices in t + 1 are the same as in ¢t and the same slack as in ¢ is
possible for all firms.

Frontier yardstick requlation
Case (II):

Pl =Fly =S <P, =5 =5

=
Si <SP
S0 < ST
St < Si= 5

=
Siis < Pl < SF
S0y < Py < 5
Sty < Py < 5
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then either case (I) or one of the cases (II)-(V) applies.

Under frontier yardstick regulation, the price that a firm is allowed to charge is
the minimum of the slacks the other two firms chose in the period before. There-
fore, if firms ¢ and o choose the same slack in ¢ and firm = chooses a smaller one,
the price 7 and o are allowed to charge in ¢ + 1 is equal to S} while Py | is equal to
the slack ¢ and o choose in ¢t. In ¢t + 1,  may, consequently, choose any slack that is
not greater than P7, = S; = S7. The slack ¢ and o can choose is not greater than
P!, = P?,, = S} and hence smaller than P7, = S} = 5. In ¢t + 2, the price i, o
and x may charge is not greater than the smallest slack in ¢, i.e. Sf. Only one firm,
x, can choose a higher slack than this in ¢t + 1. But even if it does so, the smaller
one of any two slacks chosen in ¢ 4+ 1 cannot be greater than Sf. In ¢t + 2, either
all three firms choose the same slack and this slack is equal to the price they may
charge or one of the cases (II) to (V) applies.

Case (III):

SZH < Ptl+1 = Stx = Sto
7?+1 SPt:—l :SZC:StO
1 S Phy =50 =5/

then either case (I) or one of the cases (II)-(V) applies.

Case (IV):

Pl =50
Pt0+1 - Stm
Ptgil = Sf
=
1 S50
S0y < S
1 <S¢

=
Lo <Py <57
2 < Py < 57
fo < Py <57
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then either case (I) or one of the cases (II)-(V) applies.
Case (V):
Pti—l-l: tgrl:Pti1:S§:Sf:Stm

then either case (I) or one of the cases (II)-(V) applies.

Awverage yardstick requlation

Case (II):
i SY + 57
tJrl: 2
. Si 4 S
Pt+1: : 9 .
. St S0 ; .
t+1 — t2 t:St:St
=
A §o 1 g A
SZ+1§%<52
Si4 S
St < L <8
x Si+SO 1 0 x T
SE < t2 L =8 =57 [and Sy = 57
=

Sy + SF+ Sy + 57

Stya < Plp < <5 =57

- 4
SO 4+ S7 4 84 §° :
Spa < Py < SIS g,
SO 4 57 4 81 SF .
St < Py < SOOI 5o sy

So the highest slack chosen in ¢t cannot be chosen by anyone in ¢t + 2. Then either
case (I) or one of the cases (II)-(V) applies.
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Under average yardstick regulation, the price that a firm may charge is equal to
the average of the slacks that the other two firms chose in the period before. So,
if firms 7 and o choose the same slack in ¢ and firm = chooses a smaller slack, the
price ¢ and o are allowed to charge in ¢ 4+ 1 is smaller than the one z may charge
and smaller than the slack ¢ and o choose in ¢t. Accordingly both have to choose a
smaller slack in ¢t + 1. In ¢+ 1,  may choose a slack that is greater than SY but
not greater than the slack ¢ and o choose in ¢t. In ¢ 4 2, all prices are smaller than
the greatest slack in ¢ so that this slack cannot be chosen anymore. Then either
all three firms choose the same slack and this slack is equal to the price they may
charge or one of the cases (II) to (V) applies.

Case (III):
7 SO+S$ [*) T
Pla= : 9 : =5/ =5
. SZ+SI
Pt+1: ! 2 !
e
=T
=
Q SO—{_S:E 0 T i
t+1§%25t:5’t <5
St Sz :
S < P02t < S fand 57, 2 57)
T Si+So Q T T
t+1§%<’5’t [and t+1§ ¢

So the highest slack chosen in ¢ cannot be chosen by anyone in ¢ + 1. Then either
case (I) or one of the cases (II)-(V) applies.

Case (IV):
. S04 s
Pt+1 =t 9 :
. Sz + Sm
Pt+1 = : 2 :
. SISy
t+1 — 9
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=

7 SO_{_S:B 1
t+1§% St

St 4 87 ,
St <t <)
e SIS,
t—HS% St

So the highest slack chosen in ¢ cannot be chosen by anyone in ¢ + 1. Then either
case (I) or one of the cases (II)-(V) applies.

Case (V):
, S? + SF Si 4 Sz Si 4§ ,
Pla=2020 _pg, =2 pr IO g go
2 2 2
=
Z+1 §PZ+1:SZ:S;’:S§

St < Pl = 57 =Si =5
F S Pha = ST =Si=5;

Then either case (I) or one of the cases (IT)-(V) applies.

As long as slacks differ in period ¢, in t + 2 at the latest, the highest slack of
t cannot be chosen by any firm anymore under both regulatory regimes. (Under
frontier yardstick regulation, at the latest in ¢ 4 2, no slack higher than the smallest
of t can be chosen.) Consequently, the maximum of the three slacks monotonically
decreases, potentially with a delay that is not greater than two periods. Furthermore,
all slacks are bounded below at zero. It follows that slacks necessarily have to
converge. As the price for each firm is in every period the minimum or the average
of the slacks of the other two firms in the period before, prices converge too. Prices
and slacks cannot converge to different values so that profits of all firms must be
zero in every steady state. 0]

Derivatives of the regulatory rules

Frontier yardstick requlation

We focus on the example of the price firm i can charge in £ + 1. The corresponding
derivatives regarding reductions of slack for the other firms and for all other periods
are found analogously. The regulatory rule is given by (4):

Pj,, = C +min(S}, 57) = R'(S7, S7).
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The relevant left hand side derivatives for Sy # S} are given by

: IR (S?, SY) 1 for S < S7
Ri(G oFy — _ 37
(57, 57) 05y 0 for Sy > S¥ (37)

and

ORI(S?, S2) {0 for S < S2 (38)

Ri SO, Sx — —
(5%, 57) OSF 1 for S¢ > Sf
Starting from S; = S} and for a constant slack of the respective other firm, the
left hand side derivative is equal to one for both firms. However, the price firm 7 is
allowed to charge in ¢t + 1 is reduced by one marginal unit if either firm o or firm x
or both firms simultaneously reduce their respective slack in ¢ by one marginal unit.
In particular, slightly abusing notation, we have

_ OR(SY,SF) | OR'(SY,SY)

Ri(S?,SF) + RL(S?,SF) = 957 - o5 =1 for all S?,S¥. (39)

For simultaneous reductions of the slacks of both firms, we are clearly not holding
the respective other slack constant. However, as for simultaneous changes in the
slacks it is unimportant for our result whether the change of the slack of firm o or of
x or of both change the constraint of firm ¢, we refrain from introducing additional
notation that does not provide further insights.

To derive (39) for Sf = S¥ and simultaneous changes of slack of o and z, let

So =504 ¢
and

Sf=S7+¢,
where € # 0.

For Sy = S and :S? = :S? we see that

min(S7, S7) = S = S7 and min(S7, SF) = §¢ = 57,
then

min(S¢, 57) — min(S?, %) = e.
In analogy to the definition of the derivative, we find

lim min(Sy + €, SY + €) — min(Sy, S7)

e—0 €

=1.
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Average yardstick requlation
The regulatory rule is given by (5):

P, = %Z (C + sg’) —C+ % N OS] = RSP, SP).
J#i

J#

Consequently, all changes in slack of any firm will result in changes in the prices the
other two firms may charge in the following period by half of the magnitude of the
aforementioned change. Spelled out for the price firm ¢ can charge in ¢ + 1 this is

, , 1
Ry(S7, 57) = By(S7, 57) = 5 (40)

Under average yardstick regulation, all other derivatives of the regulatory rule with
respect to one of the two relevant slacks are equal to %, too.

Proof of Lemma 2

Recall the FOC, equation (15),

Fy(P},S}) + 0J3(Peya) - RY(S, S7) + 0J3(Peya) - RI(S), S7) — A =0
and complementary slackness conditions (14):

A >0 and (P! — S = 0.

Assume firms are in a steady state so that Pf = P? = P* = S/ = 52 = S and
P} < SM* under frontier yardstick regulation and P! < S4* under average yardstick
regulation. If ¢’s choice of slack is optimal, the FOC and complementary slackness
conditions must hold.

Now, assume one of the other firms, e.g. firm o, instead chooses a marginally
smaller slack in ¢ so that P/, = P, < P2, and P/, < S™* under frontier
yardstick regulation and P/ ; < S4* under average yardstick regulation. From the
break even condition, we know that 7 has to reduce its slack by at least the marginal
change of the price that it may charge in ¢ + 1 so that the left hand side derivative
of f'(P¢y1) with respect to i’s own price cannot be smaller than one. Clearly, the
sum of the left hand side derivatives f{(P¢i1)+ fi(Pty1) > 1 too. (Throughout this
paper, we are only considering reductions of slack.)

As we require equilibria to be punishment-free, this equation holds with equality
and Si,, = P/,,. To show this, we fix the slacks o and z at their respective highest
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admissible value of slack in t + 1, S7 , = P72, and S7, = P} ,. Consequently,
the respective left hand side derivatives of the regulatory rule for firm ¢ are the
same as in a steady state as ¢ cannot choose a slack higher than its price and thus

11 = min(S;,, 57,1, 5,). If firm ¢ decreases its slack by even more than the
marginal change of its price to any §i+1 < P}, ,, the constraint is not binding in
t + 1. It follows that Aj,; = 0 from the complementary slackness conditions. With
Si.q < S, it also follows that Fy(Pf,, S} 1) > Fa(P}, Si) as F is strictly concave in
slack. Besides, the value function is concave in the state variables so that Ji(Pyy2)
and J:(P,2) are not smaller than the corresponding derivatives in the initial steady
state, where the FOC held, as prices are not greater than in that steady state. Hence,
the FOC cannot hold in ¢ + 1 so that S}, is not the optimal choice of i. Thus, i
does not unilaterally reduce its slack by more than what is forced by the reduction
of its price in this setting, i.e. Sj,; = P/;.

We can apply the same reasoning as above for firms o and x to show that no
firm unilaterally chooses a slack in ¢ 4+ 1 that is smaller than P/, = P, if the
other two firms choose their respective highest admissible slack here. As we re-
quire equilibria to be punishment-free, firms do not coordinatedly choose a uniform
smaller slack because of other firms choosing this uniform slack. It follows that
[i(Pei1) + fa(Pyyq) = 1 in this setting.

Symmetrically the same reasoning applies for all firms with indices changed. [J

From the proof above, we can clearly point out the vulnerability of yardstick
regulation against the threat of joint mutual punishment and collusion in general. As
shown above, it is not optimal in this case for firm ¢ to unilaterally choose any slack
smaller than the price that it can charge in t+1. However, for example, if at least one
other firm chose a smaller slack than this slack under frontier yardstick regulation,
it would be optimal for ¢ to do so too. As this applies for all firms, allowing for
coordination like joint mutual punishment could lead to fi(Pi1) + fa(Pey1) > 1.
This would give room to equilibria with much higher slack than S™* under frontier
yardstick regulation and S4* under average yardstick regulation by increasing costs
of reducing slack for all firms.
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Lemma 3.

(i) Frontier yardstick regulation:

If Pl = P* < P? and P} < S™* then fi(Py) = 0.
(i1) Average yardstick requlation:

If Pl = P* < P? and P! < 8%, then fi(P;) = 0.

Proof. Assume firms are in a steady state so that P/ = P? = P* = S/ = S? = S
and P < SM* under frontier yardstick regulation and Pf < S4* under average
yardstick regulation. As i’s choice of slack is optimal, the FOC, equation (15), and
complementary slackness conditions (14) must hold.

Now, assume that instead the price relevant for one of the firms, e.g. firm o, is
higher F: > P! = P*. Applying the same reasoning as in the proof of Lemma 2,
it follows that no firm unilaterally chooses a smaller slack than P/ = P? in this
setting. Furthermore, in a punishment-free equilibrium, firms do not coordinatedly
choose a uniform (lower) slack that no firm would choose unilaterally if all other
firms were to choose higher slacks. Firm ¢ cannot choose any slack higher than its
price because of the break even constraint: this implies that S} = P;.

Hence, the optimal slack of firm i is the same for P, > P/ = P¥ and P? = P! =
P2 with P! < SM* under frontier yardstick regulation and P! < S4* under average
vardstick regulation. Tt directly follows that fi(Py) = 0 in this setting. O

An intuition for Lemma 3 under frontier yardstick regulation is the following:
Firm ¢ knows that the lowest slack in ¢ describes an upper bound for all slacks and
prices from t + 2 onwards. So, as long as the slacks of the other two firms are not
smaller than the one ¢ chooses, this upper bound is the same for every slack o and
x choose and all prices o and x face. Thus, the marginal benefits and costs of a
reduction of slack do not depend on these prices in this setting. Consequently, the
decision of 7 is not affected. Again, the same reasoning applies for P/ = P? < P7 as
well as for firms o and x with changed indices.
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Lemma 4.

(i) Frontier yardstick regulation:

If Py = Py < Plyy and Pfy = Py < S™, then J{(P*2) =1+ A,
(i1) Average yardstick requlation:

If P,y = Ply < Pjyy and PPy = Pfy < S, then J{(P*™2) =1+ A,

Proof. Recall equation (18):

Ji(Py) = Fi(P}, S})
+0J{(Pey1) - RU(S?, SF) - f1(Py) +6J1(Pega) - Ry(S7,S7) - f1(Py)
+0J5(Peya) - R3(S;, ) - fT(Py) +0J5(Peya) - R3(S;, S7) - f7(Py)
+ A

The way the value function of 7 is affected by a change of the price that firm ¢
may charge depends on how the other two firms react to this change. Using Lemma
3 for the reactions of o and x, inserting F;(P},S!) = 1 and updating (18) by two
periods complete the proof. O

Intuitively, Lemma 4 says that if firms are in the steady state equilibrium de-
scribed by SM*, under frontier yardstick regulation, or S4*, under average yardstick
regulation, and A = 0, they would not change their slack if their price was higher,
but would realize a positive profit that period. Consequently, the discounted sum of
the utility of 7 increases by 1 if the price that firm 7 is allowed to charge in t increases
by one unit. In any steady state equilibrium with a slack smaller than S™* or S4*,
respectively, we have A\ > 0. Hence, firms would like to move to a steady state
equilibrium with higher slack, but cannot do so because of the (binding) break even
constraint. Reductions of the prices firms can charge then have a larger impact on
the intertemporal payoff.

Intuition for SM* based on geometric series

When firm ¢ decides on the slack in ¢, it considers that its slack defines an upper
bound for all prices from ¢ 4+ 2 onwards under frontier yardstick regulation given
S! < min(S?, S¥). From the proof of Lemma 2, we know that o and x choose the
highest slack that they are allowed to, given P2, = Pf,, < P}, and P, = P7, <
SM* "in their optimal decision. Firm i has to trade off profit in ¢ and t + 1 against
slack in ¢, + 1, + 2, ..., 00 when it decides about S! = SM*. (As the price i may
charge in ¢ + 1 is unaffected by S, it can ‘cash in’ the profit from reducing slack
twice.) In the steady state equilibrium described by S™*, implicitly defined by (29),
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marginal costs of reducing slack and marginal benefits of doing so must be equal to
each other, so that

1+5-1:§:52-B’.

Z=0

With 6 < 1, it follows that

1
1+6-1=B——.
+ T

Rearranging yields
B =1-§,

which replicates the implicit definition of S™* given by equation (29).
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