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1 Introduction

Probability forecasts of a future event are routinely used in diverse fields of application. For

example, macroeconomists issue probability forecasts of an economic recession at varying

horizons in each quarter. Banks are required by regulators to evaluate the probabilities of

default associated with loans they have made. Assessing the efficacy of the probability fore-

casts is of utmost importance to guide the decision-makings in these contexts. Typically, a

number of scores, which are functions of the forecasts and actuals, are employed as evalua-

tion metrics. Lahiri and Yang (2013) provided a survey on these scores from the perspective

of economic forecasting. Among them, the Brier score (or the quadratic probability score) is

probably the most commonly used and it is the probabilistic analogue of the mean squared

error. A large body of literature on economic forecasting takes the Brier score as the primary

statistic to summarize the predictive performance of probability forecasts. Recent examples

include Lahiri et al. (2013), Levanon et al. (2014) and Rudebusch and Williams (2009), only

to name a few.

The Brier score is computed on the basis of a given sample on binary events and prob-

ability forecasts. Thus, the sampling uncertainty in estimating the score has to be properly

accounted for in order to make a statistically meaningful inference. When observations are

independently and identically distributed (i.i.d.) across the sample, Bradley et al. (2008)

derived approximations to the variances of the Brier score and related Brier skill score. In

macroeconomic forecasting, it is widely accepted that the sample displays positive serial

correlation as a consequence of the persistence in economic series, such as real GDP or in-

flation. One implication of serial correlation is that the usual sampling variance of the score

obtained by assuming independence is no longer valid. This phenomenon has been recog-

nized by Lahiri and Yang (2015) and Pesaran and Timmermann (2009) in various scenarios.

Wilks (2010) has shown that the failure to accommodate positive serial correlation will sig-

nificantly underestimate the standard error of the Brier (skill) score and the magnitude of

underestimation depends on the event probability and the quality of the forecast. To correct

the effects of serial correlation, Wilks proposed an adjustment factor, whose legitimacy is jus-
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tified by a simulation experiment. Though useful by itself under his specific data generating

process, Wilks’ adjusted variance might lose its ground when the underlying process deviates

a lot from the assumed process. The main contribution of our paper is to extend the variances

given in Wilks (2010) and to derive asymptotic variances of the Brier score and Brier skill

score in general settings with weak serial correlation.

The remainder of the paper is organized as follows. Section 2 develops the asymptotic

variance of the Brier (skill) score when the sample used to produce it is serially dependent.

In Section 3, we apply the proposed methodology to examine the quality of the Survey of

Professional Forecasters (SPF), with respect to its capacity of predicting real GDP declines

in the United States. Some concluding remarks are given in Section 4.

2 Asymptotic variances of the Brier score and Brier skill

score under weak serial correlation

Throughout the paper, Z is the binary variable to be predicted. When the target event occurs,

Z = 1, and Z = 0 otherwise. P is the probabilistic forecast of the target event. A macroeco-

nomic example of Z and P is given in Section 3. To measure how well the forecast is related to

the actual, Brier (1950) developed a score function based on a sequence {(Zt ,Pt) : t = 1, ...,T}

as BS ≡ 1
T ∑

T
t=1(Zt −Pt)

2. By construction, the Brier score BS lies strictly between 0 and 1,

and it has a negative orientation in that lower BS indicates higher accuracy of P. When P ex-

actly coincides with Z, that is, P is a perfect forecast, BS = 0. Another forecast, which is often

taken as the benchmark, is P= π≡P(Z = 1). In practice, the population probability P(Z = 1)

is rarely known, and thus it is usually replaced by its sample analogue Z̄ ≡ 1
T ∑

T
t=1 Zt . The

Brier score of this naive forecast is denoted as BS0 ≡ 1
T ∑

T
t=1(Zt − Z̄)2. A real-life forecast

with some skill is not perfect, yet it can beat the naive benchmark. Consequently, the Brier

score of a real-life forecast is often higher than 0 but lower than BS0.

Sometimes, it is likely to yield a misleading conclusion regarding the performance of P

if we merely look at the Brier score. For example, suppose P(Z = 1) is very close to 0, that
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is, the target event Z = 1 is rare. In this case, BS0 could be very close to 0 as well. To

see this, let BS0 ≡ 1
T ∑

T
t=1 Z2

t − 2 1
T ∑

T
t=1 Zt Z̄ + Z̄2 = Z̄(1− Z̄). With a rare event, Z̄ is very

small, which makes BS0 quite close to 0. Although the naive forecast seemingly performs

fairly well by its Brier score, it is clearly of no skill at all because this benchmark cannot

distinguish between the occasions when Z = 1 occurs and those when Z = 1 does not occur.

To circumvent this pitfall of the Brier score in the case of rare events, the Brier skill score

can be used. Given any forecast P, the Brier skill score is defined as BSS≡ BS0−BS
BS0

= 1− BS
BS0

and it is the improvement of the forecast P relative to the naive baseline. The Brier skill score

of the benchmark is 0. When P outperforms the benchmark, BSS > 0. Otherwise, BSS < 0.

Other details of BSS can be found in Stephenson (2000).

Define ΩT to be the covariance matrix of 1√
T
(∑T

t=1(Zt −Pt)
2,∑T

t=1(Zt −π)2)′. The i jth

component of a matrix A is denoted by Ai j. Let BS∗ ≡ E(Zt −Pt)
2, BS∗0 ≡ E(Zt − π)2 =

π(1−π) and BSS∗ ≡ 1− BS∗
BS∗0

. The goal of this section is to identify the asymptotic variances

of BS and BSS when the sample used to generate them is serially correlated. The following

assumptions are sufficient for this purpose.

Assumption 1 For each t, Pt ∈ [0,1] and Zt ∼ Bernoulli(π), where π ∈ (0,1).

Assumption 2 For some r′ > 1, the process {(Zt ,Pt) : t = 1, ...} is a mixing sequence with

either uniform mixing coefficient φm or strong mixing coefficient αm of size 2r′/(r′−1).

Assumption 3 (Zt ,Pt) is identically distributed across t.

Assumption 4 ΩT is positive definite for each T ∈ N and there exists ε > 0 and a natural

number N(ε) such that |ΩT |> ε for all T > N(ε).

Assumption 1 rules out the case of non-stochastic Z when π = 0 or π = 1, which is of no

interest. Assumption 2 allows for a certain degree of serial correlation in the sample, as long

as its dependence shrinks towards zero at the stated rate. The population Brier (skill) score is

not well defined unless Assumption 3 holds. Assumption 4 is required to ensure the existence

of a positive definite long run covariance matrix Ω in Lemma 1.

Lemma 1 Under Assumptions 1-4, there exists a symmetric positive definite matrix Ω such

that ΩT →Ω as T → ∞.

Theorem 1 Under Assumptions 1-4,
√

T
(

BS−BS∗
BS0−BS∗0

)
d→ N(0,Ω).

Collorary 1 Under Assumptions 1-4,
√

T (BS−BS∗) d→ N(0,Ω11).
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Collorary 2 Under Assumptions 1-4,
√

T (BSS − BSS∗) d→ N(0, 1
BS∗20

(Ω11 + BS∗2

BS∗20
Ω22 −

2BS∗
BS∗0

Ω12)).

Colloraries 1 and 2 present the asymptotic distributions of BS and BSS respectively. If

the data is independently identically distributed, ΩT = Ω, which is the covariance matrix

of ((Zt −Pt)
2,(Zt −π)2)′. However, in the presence of serial correlation, ΩT 6= Ω and Ω is

the sum of the covariance matrix of ((Zt−Pt)
2,(Zt−π)2)′ and its autocovariance matrices of

various orders. For example, Ω11 =Var((Zt−Pt)
2)+2∑

∞
m=1Cov((Zt−Pt)

2,(Zt+m−Pt+m)
2)

in Collorary 1. If the data exhibits positive autocorrelation, Cov((Zt−Pt)
2,(Zt+m−Pt+m)

2)>

0 for any m, and thus Ω11 >Var((Zt−Pt)
2). This implies that the conventional variance based

on independence assumption could underestimate the true uncertainty in estimating the Brier

score, and the degree of underestimation depends on the strength of autocorrelation.

The asymptotic variance of the Brier skill score in Collorary 2 is more complex. Mo-

tivated by Diebold and Mariano (1995) and Lopez (2001), an alternative expression of this

variance is given by

Ω11 +Ω22(1−BSS∗)2−2(1−BSS∗)Ω12

π2(1−π)2 ,

as shown in the appendix. As above, we can write Ωi j as the sum of two parts, that is, Ωi j =

Ω1
i j +Ω2

i j, where Ω1
i j is the variance part and Ω2

i j is the autocovariance part.1 Accordingly,

the asymptotic variance of BSS is

Ω1
11 +Ω1

22(1−BSS∗)2−2(1−BSS∗)Ω1
12

π2(1−π)2 +
Ω2

11 +Ω2
22(1−BSS∗)2−2(1−BSS∗)Ω2

12
π2(1−π)2 . (1)

In view of (1), the inflation in variance due to serial correlation is characterized by
Ω2

11+Ω2
22(1−BSS∗)2−2(1−BSS∗)Ω2

12
π2(1−π)2 , whose magnitude is determined by the event probability π,

the quality of the forecast BSS∗ and the strength of serial correlation in Ω2
i j. Consistent with

the simulation evidence in Wilks (2010), a lower π, other things being equal, induces a larger

inflation in variance.

To make use of Colloraries 1 and 2 to conduct statistical inference, the asymptotic vari-

ances must be estimated. For example, BS0 = Z̄(1− Z̄) can be used to estimate BS∗0. Similarly,

1For instance, Ω2
11 = 2∑

∞
m=1 Cov((Zt −Pt)

2,(Zt+m−Pt+m)
2).
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BS∗ is estimated by BS = 1
T ∑

T
t=1(Zt −Pt)

2. By Theorem 1, both BS0 and BS are consistent.

The long run covariance matrix Ω can be estimated in different ways. All estimators are

based on an appropriately chosen weighting scheme (kernel). The basic idea is to use a finite

sum of sample autocovariance matrices to approximate the population infinite sum, allowing

for the truncation lag to increase to infinity at an appropriate rate as the sample size grows.

Under some weak regularity conditions, these estimators can be shown to be consistent. See

Andrews (1991) and Newey and West (1987, 1994) for details.

3 An empirical illustration

In this section, we will use the Brier score and Brier skill score to assess the performance of

the probability forecasts of real GDP declines in the Survey of Professional Forecasters. The

main purpose here is to compare the asymptotic confidence intervals of BS and BSS using our

autocorrelation-robust variances with those constructed by assuming independence. In each

quarter since 1968:Q4, the respondents of this survey are asked to indicate the probability

they would attach to a decline in the level of real GDP in the current and the next four

quarters. The target variable is the same for all of these five horizons. Our sample spans

from 1968:Q4 to 2015:Q1. During this period, the fraction of real GDP declines is about

12.9%, meaning that it is a relatively uncommon event. Lahiri and Wang (2013) carried out

a comprehensive evaluation on the accuracy of these subjective forecasts.

Our robust analysis is motivated by Figure 1, which presents the autocorrelation func-

tions of SPF forecasts and actuals. Clearly, all series display positive autocorrelation. All of

the autocorrelation coefficients up to three-quarter lags are significantly different from zero.

Table 1 shows BS and BSS for SPF forecasts. As horizon rises, the performance of profes-

sional forecasters deteriorates, as reflected by rising BS and declining BSS. In this example,

the Brier score of the naive benchmark is about 0.116. As a result, the four-quarter-ahead

forecasts are even worse than this benchmark, as is obvious from its negative BSS. Two types

of 95% confidence intervals of BS and BSS are also given in Table 1.2 By ignoring the posi-

2To construct independent intervals, we use the sample covariance matrix of ((Zt −Pt)
2,(Zt −π)2)′ to es-
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tive serial correlation in Figure 1, the independent intervals are uniformly narrower than the

autocorrelation-robust intervals.

Table 1: Brier (skill) scores and their 95% confidence intervals

Statistic Q0 Q1 Q2 Q3 Q4
BS 0.062 0.083 0.098 0.115 0.119

Ind. (0.042,0.082) (0.062,0.105) (0.073,0.124) (0.084,0.146) (0.086,0.152)

Corr. (0.035,0.090) (0.049,0.117) (0.053,0.143) (0.064,0.166) (0.070,0.168)

BSS 0.446 0.259 0.126 0.013 -0.040

Ind. (0.258,0.635) (0.094,0.425) (0.006,0.245) (-0.056,0.082) (-0.109,0.030)

Corr. (0.196,0.696) (0.042,0.477) (-0.006,0.258) (-0.078,0.104) (-0.139,0.059)

Notes: “Ind.” is the 95% confidence interval based on independence assumption. “Corr.” is the 95% confidence interval with Ω being
estimated by Andrew’s approach.

4 Conclusions

This paper addresses the problem of correcting the effects of serial correlation on the sam-

pling properties of the Brier (skill) score, initially investigated by Wilks (2010). The proposed

asymptotic variance is more general and thus applicable in circumstances with weak serial

correlation. Using an empirical example with SPF probability forecasts, we confirm that

by ignoring the positive serial correlation, the conventional variance is too conservative to

account for the sampling uncertainty in estimating the Brier (skill) score.

timate Ω. Prior to calculating the robust intervals, the data is filtered by AR(1) prewhitening procedure as
advocated by Andrew and Monahan (1992). The quadratic spectral kernel is used in generating the robust
intervals
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Figure 1: Autocorrelation functions of SPF and Actuals

(a) Actuals (b) Q0

(c) Q1 (d) Q2

(e) Q3 (f) Q4

Notes: The dotted lines are 95% confidence band about the zero line. “Q0” is the current-quarter SPF
forecast. “Q1” is the one-quarter-ahead SPF forecast. All other notations are self-explained.
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Mathematical Appendix

Proof (Lemma 1): This lemma can be shown following the same reasoning in Lemma 1 of

Lahiri and Yang (2015).

Proof (Theorem 1): According to the central limit theorem for mixing sequences (cf. White

(2000)), 1√
T

(
∑

T
t=1((Zt−Pt)

2−E(Zt−Pt)
2)

∑
T
t=1((Zt−π)2−E(Zt−π)2)

)
converges in distribution to N(0,Ω). Since

√
T (BS0−BS∗0) =

1√
T ∑

T
t=1((Zt− Z̄)2−E(Zt−π)2), we have

√
T (BS0−BS∗0)−

1√
T

T

∑
t=1

((Zt−π)2−E(Zt−π)2)

=
1√
T

T

∑
t=1

((Zt− Z̄)2−E(Zt−π)2)− 1√
T

T

∑
t=1

((Zt−π)2−E(Zt−π)2)

=
1√
T

T

∑
t=1

((Zt− Z̄)2− (Zt−π)2)

=
1√
T

T

∑
t=1

(2Zt(π− Z̄)+ Z̄2−π
2)

= (Z̄−π)(
1√
T

T

∑
t=1

(−2Zt + Z̄ +π))

=
1√
T

T

∑
t=1

(Zt−π)(π− Z̄).

Since π− Z̄ = op(1) by law of large number and 1√
T ∑

T
t=1(Zt − π) = Op(1) by central

limit theorem,
√

T (BS0−BS∗0)−
1√
T ∑

T
t=1((Zt −π)2−E(Zt −π)2) = op(1). Consequently,

√
T
(

BS−BS∗
BS0−BS∗0

)
d→ N(0,Ω).

Proof (Collorary 1): It is a direct consequence of Theorem 1.

Proof (Collorary 2): Note that BSS = 1− BS
BS0

and BSS∗ = 1− BS∗
BS∗0

. The result follows from

Theorem 1 and the Delta method.

An alternative proof (Collorary 2): Note that the two competing forecasts to be compared

are Pt and Z̄. By Diebold and Mariano (1995),
√

T ( 1
T ∑

T
t=1((Zt − Z̄)2− (Zt −Pt)

2)−E(Zt −

π)2 +E(Zt −Pt)
2)

d→ N(0,Ω11 +Ω22− 2Ω12). Following the same line of Theorem 1, we
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have

√
T
( 1

T ∑
T
t=1((Zt− Z̄)2− (Zt−Pt)

2)−E(Zt−π)2 +E(Zt−Pt)
2

1
T ∑

T
t=1(Zt− Z̄)2−E(Zt−π)2

)
d→ N(0,Ω̃),

where Ω̃ =
(

Ω11 +Ω22−2Ω12 Ω22−Ω12
Ω22−Ω12 Ω22

)
. By the Delta method,

√
T (BSS−BSS∗) d→ N(0,

1
BS∗20

(1,−BSS∗)Ω̃(1,−BSS∗)′).

The result follows by noting that

1
BS∗20

(1,−BSS∗)Ω̃(1,−BSS∗)′ =
Ω11 +Ω22(1−BSS∗)2−2(1−BSS∗)Ω12

π2(1−π)2

=
Ω11 +Ω22−2Ω12 +BSS∗2Ω22−2BSS∗Ω22 +2BSS∗Ω12

π2(1−π)2

=
1

BS∗20
(Ω11 +Ω22−2Ω12 +Ω22−2

BS∗

BS∗0
Ω22 +

BS∗2

BS∗20
Ω22−2Ω22 +2Ω12 +2

BS∗

BS∗0
Ω22−2

BS∗

BS∗0
Ω12)

=
1

BS∗20
(Ω11 +

BS∗2

BS∗20
Ω22−2

BS∗

BS∗0
Ω12).
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R Code

library(RODBC)

library(sandwich)

channel <−odbcConnectExcel(”Datapath”)

sp f <−sqlFetch(channel,”sheetname”)

P <−sp f [,1]

Z <−sp f [,2]

obs <−nrow(sp f )

al pha <−0.05

BS <−mean((Z−P)2)

BS0 <−mean(Z)∗ (1−mean(Z))

BSS <−1−BS/BS0

Gradient <−matrix(nrow = obs,ncol = 2)

f or(iin1 : obs)Gradient[i, ] = c((Z[i]−P[i])2,(Z[i]−mean(Z))2)

AsyCovI = cov(Gradient)/obs

AsyCov = lrvar(Gradient, type = ”Andrews”, prewhite = T RUE,ad just = T RUE)

c(BS − qnorm(1 − al pha/2) ∗ sqrt(AsyCovI[1,1]),BS + qnorm(1 − al pha/2) ∗

sqrt(AsyCovI[1,1]))

c(BS − qnorm(1 − al pha/2) ∗ sqrt(AsyCov[1,1]),BS + qnorm(1 − al pha/2) ∗

sqrt(AsyCov[1,1]))

c(BSS− qnorm(1− al pha/2) ∗ sqrt(1/BS02 ∗ (AsyCovI[1,1]+ (BS/BS0)2 ∗AsyCovI[2,2]−

2 ∗ BS/BS0 ∗ AsyCovI[1,2])),BSS + qnorm(1− al pha/2) ∗ sqrt(1/BS02 ∗ (AsyCovI[1,1] +

(BS/BS0)2 ∗AsyCovI[2,2]−2∗BS/BS0∗AsyCovI[1,2])))

c(BSS− qnorm(1− al pha/2) ∗ sqrt(1/BS02 ∗ (AsyCov[1,1] + (BS/BS0)2 ∗ AsyCov[2,2]−

2 ∗ BS/BS0 ∗ AsyCov[1,2])),BSS + qnorm(1 − al pha/2) ∗ sqrt(1/BS02 ∗ (AsyCov[1,1] +

(BS/BS0)2 ∗AsyCov[2,2]−2∗BS/BS0∗AsyCov[1,2])))
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