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Abstract

The distinction of risk vs uncertainty as made by Knight has important implications for policy
selection. Assuming the former when the latter isrelevant can lead to wrong decisions. With theaid
of a stylized model that describes a bank’ s decision on how to allocate loans, the authors discuss
decision making under Knightian uncertainty. They use the info-gap robust satisficing approach to
derive a trade-off between confidence and performance (analogous to confidence intervals in the
Bayesian approach but without assignment of probabilities). They show that this trade off can be
interpreted as a cost of robustness and that the robustness analysis can lead to areversal of policy
preference from the putative optimum. They then compare this approach to the min-max method
which is another main non-probabilistic approach available in the literature.
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1 Introduction

The economic circumstances since the start of the crisis in 2007 to the present are charac-
terized by high levels of uncertainty. What do we mean by high uncertainty and what does it
imply for policy design or decision making? High uncertainty can mean one of two things: ei-
ther high stochastic volatility around known (or well estimated) average future outcomes, or at
least partial ignorance about relevant mechanisms and potential outcomes. The first implies
that uncertainty can be probabilistically measured (what Frank Knight called ‘risk’), whereas
the second implies that it cannot (what Knight called ‘true uncertainty’ and is now known as
Knightian uncertainty). We often conflate these two concepts when discussing ‘uncertainty’
in general. However, it is crucial to distinguish between them for three reasons. First, the
relevant methods for decision making depend on which of the two notions of ‘high’ uncertainty
we address. Designing policies under the assumption of probabilistically measurable risk can
lead to serious policy mistakes if the underlying uncertainty is non-probabilistic, Knightian.
Second, one’s measures of confidence differ under risk or Knightian uncertainty. Finally, the
use of contextual understanding is different when dealing with risk or Knightian uncertainty. In
a probabilistic setting contextual understanding can be used, for example, to select an appro-
priate probability distribution. In a Knightian setting contextual understanding can be used to
intuit a trend or to sense a pending change that is not yet manifested in data.
This paper will make the following points:

e When uncertainty is probabilistically measurable risk, it is possible to design policies that
are optimal on average or in some quantile sense. Policy design under risk is based on
first principles as expressed by economic theory. The theory underlies policy choices
that are designed to optimize specified substantive outcomes (e.g. minimize a high
quantile of the inflation, maximize average growth, etc.).

¢ Under Knightian uncertainty it is not possible to optimize stochastic outcomes because
at least some probabilities are unknown. Furthermore, it is unreliable to attempt to opti-
mize substantive outcomes because the underlying models are poorly known. Instead,
under Knightian uncertainty one aims to prevent bad results from occurring or at least
prepare for them. Building buffers in the financial system, applying unorthodox monetary
policies in the monetary system are policies of this type; they aim to provide intervention
tools to deal with or prevent bad outcomes from arising, irrespective of how likely they
might be.

¢ A non-probabilistic concept of robustness is used to evaluate the confidence in achiev-
ing an outcome under Knightian uncertainty. We will discuss info-gap robustness and
compare it with the min-max robustness concept.

Decision making under risk relies on known probability distributions of outcomes. Pol-
icy design becomes then a question of identifying the most likely occurrence (or perhaps a
quantile of the occurrence) given the underlying models, and applying measures that optimize
the outcome. Risks around those most likely occurrences are described probabilistically, and
confidence in one’s actions in turn is best captured with statistical intervals. An obvious ex-
ample is the forecasts that central banks present and the confidence intervals around them.



The resulting fan charts (first used by the Bank of England) are stochastic simulations in un-
derlying variables under assumed probability distributions. Confidence then is defined as the
probability of ranges of events.

However, probabilities are measures of frequencies of events that have happened in the
past, and therefore, in real time we are not necessarily confident that they represent accurate
descriptions of the future. In 2007 most forecasts of, for example growth in most countries,
were presenting confidence bands that were quite different from ex post outcomes. The corre-
sponding confidence was no more than simply a false sense of certainty. Naturally, 2007 was
the start of two of the most difficult years for forecasting in the past 20 to 30 years. Point esti-
mates were revised both frequently and by substantive amounts and confidence bands were
a mechanical tool void of economic significance. If one were to look at other times, one would
not necessarily see equal revisions in forecasts and the corresponding confidence intervals
would have been useful.

How could we have done it differently? The lesson that the 2007 exercise has taught us
is that even though models do serve us satisfactorily most of the time, there will be times that
they fail us, and they may even fail us spectacularly. It is on these occasions that probabilities
do not provide reliable assessment of, or confidence about, the outcomes. Relying on them
provides a false sense of security that can lead to wrong policy decisions. The problem is
that the moments at which standard models fail us are moments of crisis and are not known
in advance. And importantly, it is difficult to distinguish between times that models serve us
well and times that they don’t.* What does this mean for policy making or more generally
for decision making? How can we evaluate confidence in these decisions? In this paper we
provide an info-gap approach to decision making under Knightian uncertainty. With the aid
of a simplified bank loan allocation example we will describe how the decision problem is
handled in the presence of Knightian uncertainty. The info-gap approach will allow the bank
to rank different portfolios in a way that it can pick those that provide satisfactory outcomes
for the greatest range of adverse future contingencies. Robustness provides a measure of
confidence.

The paper is organized as follows. Section 2 briefly reviews some literature in the eco-
nomics of Knightian uncertainty. It discusses how policies change as we account for Knight-
ian uncertainty. Section 3 uses a simple example of bank loan decisions to illustrate method-
ological implications of info-gap theory for decisions under Knightian uncertainty. Section 4
compares info-gap and min-max decision methodologies. Section 5 concludes.

2 Risk versus uncertainty: Implications for policy making

2.1 Risk versus uncertainty

Frank Knight (1921) distinguished between ‘risk’ (for which probability distributions are known)
and ‘true uncertainty’ (for which probability distributions are not known). Knightian uncertainty
reflects ignorance of underlying processes, functional relationships, strategies or intentions of
relevant actors, future events, inventions, discoveries, surprises and so on. Info-gap models
of uncertainty provide a non-probabilistic quantification of Knightian uncertainty (Ben-Haim,
2006, 2010). An info-gap is the disparity between what you do know and what you need to

4See Ahir, H. and P. Loungani, (2014) for a recent article on how difficult it is to predict turning points.



know in order to make a reliable or responsible decision. An info-gap is not ignorance per
se, but rather those aspects of one’s Knightian uncertainty that bear on a pending decision
and the quality of its outcome. Under risk we are confident—at least probabilistically—of the
underlying model or combination of models that describe the economy. By contrast, under
Knightian uncertainty, the social planner lacks important knowledge of how the system works.
The planner starts with a number of models that may be relevant, but cannot identify the likeli-
hood with which they describe the economy. When designing policy under risk, the knowledge
of underlying probability distributions permits the identification of policies that are optimal on
average or satisfy other quantile-optimality requirements. This is not possible under Knightian
uncertainty because one lacks knowledge of the underlying distributions. But if one cannot de-
sign policy based on the principle of outcome-optimality, what other principles can one follow
and what would these policies look like?

Two approaches have been widely used as alternatives to outcome-optimization based on
a reliably known (possibly probabilistic) model: 1) robust control (also called min-max) and 2)
info-gap. Neither requires knowledge of probabilities. The overarching principle behind these
two approaches is to find policies that are robust to a range of different contingencies.

The literature on robust control relies on identifying and then ameliorating worst outcomes
(Hansen et al 2006, Sargent and Hansen 2008 and Williams 2007). The planner considers a
family of possible models, without assigning probabilities to their occurrence. Then that model
is identified which, if true, would result in a worse outcome than any other model in the family.
Policy is designed to minimize this maximally bad outcome (hence ‘min-max’ is another name
for this approach). The appeal of this technique is that it provides insurance against the worst
anticipated outcome. However, this technique has also been criticized for two main reasons.
First, it is unnecessarily costly to assume that the worst will happen all the time (irrespective
of how it is defined). Second, the worst may be expected to happen rarely and therefore it is
an event that planners know the least about. It is odd to focus the policy analysis on an event
that is the least known (Sims 2001). Confidence in robust control is not measured explicitly.
It manifests itself in the following form: the planner will have maximally ameliorated the worst
that is thought to be possible. The optimization is not of the substantive outcome (growth,
employment, etc.) but rather of ameliorating adversity. In this sense min-max is robust to
uncertainty.

The second approach is called info-gap (Ben-Haim 2006, 2010) and relies on the principle
of robust satisficing.® The principle of satisficing is one in which the planner is not aiming at
best outcomes. Instead of maximizing utility or minimizing worst outcomes, the planner aims
to achieve an outcome that is good enough. For example, the planner tries to assure that
loss is not greater than an acceptable level, or growth is no less than a required level. When
choosing between alternative policies, the robust-satisficing planner will choose the policy that
will satisfy the critical requirement over the greatest spectrum of models.®

Min-max and info-gap methods are both designed to deal with Knightian uncertainty, but
they do so in different ways. The min-max approach requires the planner to identify a range of
events and processes that could occur, acknowledging that likelihoods cannot be ascribed to

The technical meaning of “satisficing” as “to satisfy a critical requirement” was introduced by Herbert Simon
(1955, 1957, 1997).

®Satisficing is a strategy that seems to maximise the probability of survival of foraging animals in adverse
conditions (i.e. uncertainty) Carmel and Ben-Haim 2005. There are circumstances for which this can also be
proven for economic examples (see Ben-Haim and Demertzis, 2008).



these contingencies. The min-max approach is to choose the policy for which the contingency
with the worst possible outcome is as benign as possible: ameliorate the worst case. The
info-gap robust-satisficing approach requires the planner to identify the worst consequence
that can be tolerated, and to choose the policy whose outcome is no worse that this, over the
widest possible range of contingencies. Both min-max and info-gap require a prior judgment
by the planner: identify a worst model or contingency (min-max) or specify a worst tolerable
outcome (info-gap). However, these prior judgments are different, and the corresponding
policy selections may, or may not, agree.”

2.2 How do policies change as we account for uncertainty?

A vast literature has analyzed how policies designed to handle risk differ from those designed
to handle Knightian uncertainty. In the case of designing policy under risk the most famous
result is that of Brainard in his seminal paper (Brainard 1967) in which he showed that ac-
counting for Bayesian uncertainty, in a specific class of problems, implies that policy will be
more cautious.® In terms of policy changes it therefore means smaller but possibly more per-
sistent steps, and is known as the ‘Brainard attenuation’ effect. At the limit, as risk becomes
very large, the social planner abandons the use of the instrument and is faced with policy
inaction.® As the social planner is more and more uncertain of the results of policy, it is used
less and less. This result has been very popular with policy makers as it appeals to their sense
of caution when they lack sufficient information or knowledge.®

By contrast, policies derived under the principle of min-max (or robust control), and di-
rected against non-probabilistic uncertainty, tend to be comparatively more aggressive. The
policy steps taken are typically larger in size by comparison to either risk-based policies or
outcome-optimal policies in the absence of uncertainty. The intuition is that under Knightian
uncertainty, and when addressing a worst case, there is little knowledge about the transmis-
sion mechanisms, and it is therefore important to strongly exercise available tools in order to
learn about and manage the economy. It is not surprising that this runs against some policy
makers’ natural inclination to be cautious and avoid introducing volatility.

It is here that info-gap robust satisficing provides a useful operational alternative. At the
heart of the method for dealing with uncertainty lies a fundamental choice: that between ro-
bustness against uncertainty and aspiration for high-value outcomes. As we become more
ambitious in our aspirations, we need to compromise in the degree of confidence that we can
have about achieving these aspirations. Conversely, if we require high confidence in achieving
specified goals, then we need to reduce our ambitions. Info-gap is a method developed with
the specific aim of capturing this trade-off. Confidence is quantified with robustness to uncer-
tainty. The trade-off quantifies the degree of robustness with which one can pursue specified
outcome requirements. Policies therefore are not automatically more or less aggressive. It de-
pends very much on the decision maker’s preferences. Furthermore, the decision maker can

"Further discussion of this comparison appears in Ben-Haim, Dacso, Carrasco and Rajan, 2009. See also
section 4 here.

8This is for uncertainty in the coefficients that enter the model multiplicatively, not the residuals which enter the
model additively.

9To be fair, this attenuation effect does not hold always but also depends on the cross-correlations of error terms
in the assumed model. It is possible therefore, that the policy is more aggressive than that under no uncertainty
and Brainard did acknowledge that.

°As Blinder (1988, p.12) wrote, there tends to be “a little stodginess at the central bank.”



rank alternative policies: between policies of similar ambitions, those that provide the greater
robustness (greater confidence) are preferred. In section 4 we will compare and contrast the
policy implications of min-max with robust-satisficing.

3 An informative trade-off: Robustness vs performance

In this section we use a highly simplified example to illustrate how a decision maker deals with
the inability to measure uncertainty, to come to informed decisions. We provide a framework,
based on info-gap theory, that allows us to derive a trade-off between confidence in outcomes
and performance requirements. Decision makers who are ambitious in terms of requiring
high-performance outcomes will have to settle for their choices being appropriate only across
a small range of events or contingencies (i.e. having low robustness). On the other hand, if
the decision maker wants the comfort of knowing that policies chosen will function across a
wide range of contingencies (high robustness), then relatively low performance outcomes will
have to be accepted.

Consider a bank that aims to give out loans to potential borrowers. Part of the problem that
it faces is that the premium it requires depends on the risk type of the recipient agents, where
risk here refers to their likelihood to default. However, assessing this probability is subject to
Knightian uncertainty and therefore the bank is not in the position to price risk based on well
defined underlying distributions. Furthermore, correlations exist between the solvencies of dif-
ferent borrowers which are significant even when they are small. Inter-borrower correlations
are typically assumed to be zero though this is quite uncertain, potentially leading to over-
optimistic estimates of bank invulnerability (Ben-Haim, 2010, section 4.1). In evaluating or
designing the bank’s loan portfolio, the following two questions (among others) are pertinent.
First, some of the uncertainty in assessing default probabilities can be reduced. How much re-
duction in uncertainty is needed to substantially increase the bank’s confidence? How should
uncertainty-reduction effort be allocated among different borrower profiles as characterized by
their estimated default probabilities? Second, what loan-repayment programs should be used
for clients with different default-probability profiles? We describe how info-gap can help banks
to allocate loans and, in section 4, compare it with the robust control (min-max) approach.

3.1 Formulation

Consider a bank that plans a number of loans, all with the same duration to maturity. The po-
tential borrowers are of different risk types but all borrowers of the same risk type are identical.

Let:
N :  number of years to loan maturity
K :  number or risk-types

frn © repaymentin year n of risk type k

I matrix of f, values

wy = number (or fraction) of loans of risk-type &

w : vector of wy, values

Ny :  number of years at which default could occur

tj :  year at which default could occur, for j =1,..., Ny

prj ©  probability that a client of risk-type % will default at year ¢;
p: matrix of default probabilities py;

i: discount rate on loans



In case of default at ¢;, no payment is made in that year and in all subsequent years,
forj = 1...N;. We define ty, = N + 1, so “default” at year ¢y, means that the loan is
entirely repaid and default has not occurred. We also assume that py; ... pry, is @ normalized
probability distribution, so that the probability that borrowers of risk-type & do not default is:

Ny-1
PeNg=1— > Dy (1)
j=1

The present worth (PW) of the entire loan portfolio, assuming no defaults, is:

N K
PW =3 (1+0)"" wyfin, 2
n=1 k=1

The no-default present worth of a single loan of risk-type % is:

N
PWi=3"(1+1) " fin 3)

n=1
Egs. (2) and (3) can be combined to express the total no-default present worth as:

K
PW = Z kaWk. (4)
k=1
We first formulate the probabilistic expected value of the present worth. We then define
the info-gap uncertainty of the probabilistic part of the model. The expected PW of a single
loan of risk-type k is:

Ng—1 ti—1 Ng—1 N
E(PWy) = > prj > (1440 frn + (1 - > pkj) S @+ frm (5)
= =1

n=1 n=1
N Ny—1 N
= L+ fon— D> ry > (L4497 frm (6)
n=1 j=1 n=t;
mkj
= PWy— > piejPWy; (7)
j=1

where P, is defined in eq.(3) and P, is defined in eq.(6).
From eq.(7) we obtain the following expression for the expected PW of the entire portfolio:

K - Ng—1 .

E(PW) =Y wp | PWir— > piPWy; | . (8)
k=1 j=1

We note that the expected present worth, E(PW), depends on the distribution of risk types,

expressed by the vector w, and on the repayment plans for the various risk types, expressed

by the matrix f, and on the matrix, p, of default probabilities.

3.2 Info-gap uncertainty and robustness

The info-gap model for uncertainty in the default probabilities employs estimated default prob-
abilities, py;. Each estimated probability is accompanied by an assessment of its accuracy,

7



sk, expressing a judgment such as “The probability could be about p;; = 0.02 plus or minus
sk = 0.07 or more.”!! This judgment of the error could come from an observed historical vari-
ation but, under Knightian uncertainty, the past only weakly constrains the future and the error
estimate does not entail probabilistic information (such as defining a confidence interval with
known probability). Or the error estimate could be a subjective assessment based on contex-
tual understanding. The error estimate s;; does not represent a maximal possible error, which
is unknown. s;; describes relative confidence in the various probability estimates and does
not imply anything about likelihoods.

There are many types of info-gap models for representing Knightian uncertainty (Ben-Haim
2006, 2010). The following info-gap model is based on the idea of unknown fractional error of
the estimates, and is applied to the uncertain probabilities of default. This info-gap model is
an unbounded family of nested sets, U/(h), of probability distributions p.

Definition 1 Info-gap model of uncertainty. For any value of h, the set U(h) contains all
mathematically legitimate probability distributions whose terms deviate fractionally from their
estimates by no more than h:

Ng
j=1
The value of the fractional error, h, is unknown, and the range of uncertainty in p increases as
h increases, thus endowing h with its name: horizon of uncertainty.

The performance requirement, at the bank’s discretion, is that the expected value of the
present worth be no less than a critical value PW,.:

E(PW) > PW.. (10)

Definition 2 Info-gap robustness. Robustness is the greatest horizon of uncertainty up to
which the expected present worth of the portfolio is guaranteed to be no less than the critical
value PW,, i.e.:

WPWe,w, f) = max{h: ( min E(PW)) > PWC}. (11)
peU (h)

Robustness is the greatest value of h up to which eq.(10) will be fulfilled for all realizations
of pinU(h).

If probability estimates p; were accurate (i.e. no Knightian uncertainty), then the bank
would be able to give out loans in ways that would maximize the expected present worth of
the portfolio. As these estimates become unreliable due to Knightian uncertainty, the bank
becomes less confident that the loans would achieve the ex ante expected present worth.
Intuitively, the robustness in eq.(11) answers the following question: how wrong can the es-
timated probability py; be, in units of s;;, and still achieve outcomes that are no worse than
PW,?'2 |t will be evident shortly that, if the bank wants higher confidence in the sense that its
choices are robust to a larger range of probability outcomes, then it will have to settle for lower

" Subject of course to the probabilistic requirements of non-negativity and normalization.
2Note that the error estimates s,; are somewhat analogous to deviations around the mean in the Bayesian
case, but without employing probabilities.



critical present worth PWW,.. Appendix A derives the robustness function for the special case
where borrowers can default only at the mid point to maturity. Through explicit parameteriza-
tion we can then compare different portfolios so that the bank can choose between them, to
either reduce uncertainty or improve outcomes.

3.3 Numerical Example

3.3.1 Formulation

The bank is designing a loan portfolio for (N =)10-year loans and has identified low and high-
risk potential borrowers (therefore K = 2). The bank must decide what fractions of its portfolio
to loan to low- and high-risk clients. These fractions are denoted w, and w- respectively.'® The
bank must also specify the annual repayment schedule for low- and high-risk clients, denoted
by fi1, ..., fi,10 for low-risk clients and by f21, ..., f210 for high-risk clients. That is, client of
risk-type k returns the sum f; ,, at the end of the n-th year.

If default were not a possibility, then the bank could assess any proposed portfolio by
evaluating the discounted present worth (PW) based on a minimal acceptable rate of return.
However, default is definitely possible, though assessing the probability of default for each
risk type, at each time step, is highly uncertain. The bank has made estimates for default
probabilities at the mid-point of the loan maturity (therefore ¢; = 5 is the single potential
default time and N; = 2). The 10-year repayment plan for the low-risk clients is constant
at fi, = 0.1 forn =1,...,10. We consider two different 10-year repayment plans for the
high-risk clients. Both plans decrease in equal increments over time. The first high-risk plan is
f2(1) = (0.12,...0.08) and the second high-risk plan is f2(2) = (0.14,...0.10). The total nominal
repayments for f; and fz(l) are the same, while the total nominal repayment for f2(2) is greater.
Further we assume that:

e The discount rate is 7 = 0.07.

e The vector of estimated default probabilities is p = (0.02,0.05). Thus the high-risk
clients are assumed to be two and a half times as likely to default as the low-risk clients
but these are highly info-gap-uncertain: the true values may be much better or much

14
worse.

e We consider two different vectors of error estimates of these probabilities, correspond-
ing to lower and greater precision in the estimated probabilities. The lower-precision
case is s = (0.10,0.15) and the higher-precision case is s = (0.05,0.08). Knightian
uncertainty accompanies all probability estimates, and these error estimates appear in
the info-gap model of eq.(9).

e We consider two different risk-type distributions, expressed by the vector w. The pre-
ponderantly low-risk distribution is w) = (0.7,0.3), and this will be used in the case

3Note that under no uncertainty, the bank would be able to allocate optimally w: , w2 by demanding a repayment
that leaves it indifferent between the two types of borrowers. In the presence of uncertainty it cannot do that though
and needs to consider alternative portfolios.

"“There are of course other relevant uncertainties, such as delayed or partial payments, correlations between
client defaults, etc. Furthermore, the bank may wish to evaluate a proposed portfolio with a quantile analysis
of the PW rather than with the expected PW. This simple example—illustrating the info-gap robust-satisficing
methodology and to comparing it with the min-max approach—uwill ignore these additional issues.



where the estimated default probabilities are less well know, as expressed by s(!). The
preponderantly high-risk distribution is w(® = (0.3,0.7), to be used with 5.

e We consider two different portfolios, P; = (w®, £{", s} and Py = (w®, £{¥, s@).

The concept of Knightian uncertainty is quantified, in info-gap theory, with an unbounded
family of nested sets of possible realizations of the uncertain entity. In the example discussed
in this section, the default probabilities are uncertain and eq.(9) is the info-gap model of uncer-
tainty. The bank has estimates of these probabilities for each client risk-type, as well as error
measures of these estimates, though these error measures are insufficient to specify proba-
bilistic confidence intervals, and do not specify maximum possible error. The basic intuition
of the info-gap model of uncertainty is that the fractional error of each estimated probability
is bounded, but the value of this bound is unknown. That is, the analyst has probability esti-
mates, knows the errors of these estimates are bounded, but does not know the magnitude of
the bound. In other words, a worst case cannot be identified.!®

We now explain the idea of robustness. The default probabilities are unknown and the
estimates are highly uncertain. However, we are able to assess any proposed portfolio by
asking: how large an error in the estimated default probabilities can occur without causing the
PW to fall below an acceptable level? That is, how robust is the proposed portfolio to error
in the estimated default probabilities? If a proposed portfolio is highly robust, then acceptable
PW will be obtained even if the estimated default probabilities err greatly. Such a portfolio
would be more attractive than one whose robustness is low and thus highly vulnerable to error
in the estimates. In other words, portfolios are prioritized by their robustness for satisfying a
PW criterion, not by their predicted PWV.

15 T 15

Robustness
2
Robustness

[$)]

0 0 >
03 04 05 06 07 08 03 04 05 06 07 08
Critical Present Worth Critical Present Worth

Figure 1: Robustness curve Figure 2: Robustness curves
for loan portfolio P;. for loan portfolios P; (solid)
and P; (dash).

3.3.2 A robustness curve

Fig. 1 shows a robustness curve for portfolio P;. The horizontal axis is the critical present
worth: the lowest value of PW that would be acceptable to the bank. (The PW has the same
units as the client repayments, fi,.) The vertical axis is the robustness: the greatest fractional
error in the estimated probabilities of default that do not jeopardize the corresponding critical

5One could argue that default probabilities all equal to unity is the worst possible case. That is true by definition
but does not reflect the bank’s knowledge of its specific situation.

10



PW. For instance, at a critical PW of 0.6, the estimated default probabilities can err by a
factor of 3 without jeopardizing the PW requirement.

Three concepts can be illustrated with this figure: trade off, cost of robustness, and ze-
roing. The negative slope demonstrates that the robustness decreases as the required PW
increases. This expresses a trade off: as the requirement becomes more demanding (as
critical PW increases) the robustness becomes lower. More demanding requirements are
more vulnerable to Knightian uncertainty than lax requirements. This is a generic property of
info-gap robustness functions, and is sometimes called “the pessimist’s theorem”.

The curve in fig. 1 expresses this trade off quantitatively, and the slope can be thought of
as a cost of robustness. A very steep negative slope implies that the robustness increases
dramatically if the requirement, critical PW, is slightly reduced, implying a low cost of robust-
ness. A gradual negative slope implies the opposite and entails large cost of robustness.
From fig. 1 we see that the cost of robustness is relatively high when the critical PW is large
(lower right). The cost of robustness actually becomes zero at the upper right when the slope
is infinite. The robustness rises to infinity at low values of critical PW in fig. 1. Specifically, the
robustness is infinite if the required present worth is less than the least possible value (this
least possible value occurs when all risk-types default at midterm).

At the lower right end of the graph in fig. 1 we see that the robustness vanishes for large
critical values of PW. More precisely, the robustness is zero if the required present worth
exceeds the value based on the estimated default probabilities (eq.(18) in the appendix). This
is called the zeroing property and it states that a required PW that exceeds the estimated
PW has no robustness to Knightian uncertainty because default probabilities may exceed the
estimated values. While this is perhaps not surprising, it entails two methodological conclu-
sions. First, the estimated PWW should not be used to prioritize alternative portfolios (because
the estimated value has no robustness against Knightian uncertainty). Second, the Knightian
uncertainty may in fact motivate a preference reversal. We explore these two methodological
conclusions in fig. 2, where we plot both portfolios P; (solid curve) and P, (dashed curve).

3.3.3 Which portfolio for the bank’s performance requirement? A preference reversal

Figure 2 shows robustness curves for portfolios P; (solid) and P (dash). In P; the prepon-
derance of clients are low-risk, while in P, the preponderance are high-risk. The estimated
default probabilities are the same for both portfolios, but less effort was invested in verifying
the estimates for P; than for P2, which might be justified by noting that the preponderance of
clients in P; are low-risk in any case. The repayment plan for low-risk clients are constant in
time and the same in both portfolios. The repayment plans for high-risk clients decrease in
time by moving more of the debt to early payments. Furthermore, in P, the repayments are
greater than in P;.

Fig. 2 shows that robustness vanishes at a greater value of critical PW for P; than for Ps,
as seen from the horizontal intercepts of the robustness curves. From the zeroing property,
this means that P;’s estimated PW is greater than Py’s. If these estimates were reliable (which
they are not due to the Knightian uncertainty) then we would be justified in preferring P, over
P». The Knightian uncertainty motivates the first methodological conclusion: do not prioritize
portfolios according to their estimated PWs.

The predicted PW's are not a basis for portfolio selection because those predictions have
zero robustness. Hence, we “migrate” up the robustness curve, trading critical PW for robust-
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ness. At the lower right end of the curves we see that the cost of robustness is greater for P;
than for P, (P, has steeper negative slope). The differences in slopes and intercepts result
in crossing of the robustness curves. This creates the possibility for a reversal of preference
between the two portfolios. For instance, suppose the bank requires a PW no less than 0.7.
From the solid curve we see that the robustness of P; is 1.0 which exceeds the robustness
of P, which is 0 at this PW requirement. The robust-satisficing decision maker would prefer
P1. However, if the bank can accept a PW of 0.6, then P is more robust against Knigh-
tian uncertainty than P;. The robust-satisficing prioritization would now prefer P, over P;.
The robust-satisficing method implies that the prioritization depends on the decision maker’s
outcome requirement, and thus may change as that judgment changes.

It is important to understand why this reversal occurs. Portfolio P; has relatively more low-
risk clients than portfolio P,. Consequently, given the parameterization assumed, P; would
generate higher expected present worth if there were no Knightian uncertainty and would be
the portfolio to choose. However, it is also the portfolio that is less precisely measured. As
discussed above, more effort has gone into estimating default probabilities for portfolio P, as
expressed by the lower s. In other words, while P, would be worse than P; if there were
no Knightian uncertainty, the assessment of P is less uncertain. Thus P, has lower esti-
mated expected present worth (intercept further left), but P, also has lower cost of robustness
(steeper slope). In short, there is a dilemma in the choice between P; and P,. The dilemma
is manifested in the crossing of the robustness curves. This crossing has the effect that, for
moderate ambitions (anything below PW, = 0.65), portfolio P, satisfies these ambitions for a
greater range of default probabilities. The choice between the portfolios (and the resolution of
the dilemma) depends on the decision maker’s choice of the critical present worth. A value
less than 0.65 is more robustly achieved with P, and this portfolio would be chosen, while a
value greater than 0.65 would lead to choosing P;.
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Figure 3: Robust-satisficing Figure 4: Robust-satisficing
and min-max agree. and min-max disagree.

4 Robust satisficing vs min-max

We now use figs. 3 and 4 to compare the min-max and robust-satisficing decision methodolo-
gies, identifying situations in which they agree or disagree. We explained earlier that min-max
and robust-satisficing require different judgments to be made by the decision maker. Min-max
requires specification of worst case probability estimates, which is equivalent to assessing a
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maximum possible uncertainty (vertical axis). Robust-satisficing requires identification of a
worst acceptable outcome (horizontal axis). Let Up.x denote the min-max assessment of the
maximum uncertainty, and let PW, denote the robust-satisficing lowest acceptable PWV.

Figs. 3 and 4 shows robustness curves for portfolios P; (solid) and Ps (dash), from the
lower-right portion of fig. 2. A robust-satisficing decision maker’s least acceptable present
worth, PW,, is labeled on the horizontal axis. The thin vertical line on fig. 3 shows that
this analyst would prefer P; (solid) over P, because P; is more robust against Knightian
uncertainty for this requirement. A min-max decision maker’s maximum possible uncertainty,
Unax, is labeled on the vertical axis. The thin horizontal line shows that this analyst would
also prefer P; (solid) over P, because the worst outcome at U,,.x is better with ;. The min-
maxer and the robust-satisficer agree on the prioritization of the portfolios, but for different
reasons because their initial judgments differ. The min-maxer tries to ameliorate the maximal
uncertainty; the robust-satisficer tries to achieve no less than an acceptable outcome.

Fig. 4 shows the same robustness curves but with a different judgment by the min-max an-
alyst, who now identifies greater maximum possible uncertainty. The min-maxer now prefers
Py (dash) because, at this larger Unax, the worst outcome for P, is better than for P;. The
robust-satisficer would probably not dispute that uncertainty could be as great as Uy,.x. How-
ever, portfolio P is less robust than P, for the specified critical outcome PW,, so the robust-
satisficer still prefers P; (solid). Now min-max and robust-satisficing prioritize the portfolios
differently.

The central ideas illustrated in this example are zeroing, trade off, preference reversal,
and the situations in which min-max and robust-satisficing agree or disagree. Zeroing states
that predicted outcomes (estimated PW in our example) have no robustness against Knigh-
tian uncertainty and therefore should not be used to prioritize the options. Trade off means
that robustness increases as the performance requirement becomes less demanding. Ro-
bustness can be “purchased” by reducing the requirement, and the slope of the robustness
curve quantifies the cost of robustness. The potential for preference reversal between op-
tions arises when their robustness curves cross each other. The robust-satisficing analyst’s
preference between the options depends on the outcome requirement. Finally, min-max and
robust-satisficing both attempt to manage non-probabilistic Knightian uncertainty, but they are
based on different initial judgments by the analyst, and they may either agree or disagree on
prioritization of the options.

5 Conclusion

We have explored some of the implications of Knightian uncertainty for policy selection. Our
main claim is that Knight’s non-probabilistic “true uncertainty” requires very different manage-
ment than is required for handling probabilistic risk. We used a simplified bank-loan example
to illustrate the method of info-gap robust satisficing, and we compared this with the method of
min-max. Both methods are non-probabilistic and both employ concepts of robustness. The
choice between these methods hinges on the prior judgments that the analyst can make. Info-
gap robust satisficing requires specification of outcome requirements (e.g. minimum accept-
able present worth, or maximum acceptable unemployment, etc.). Info-gap robust-satisficing
requires the decision maker to specify performance requirements. In contrast, min-max fo-
cuses on judgment of uncertainty and requires the analyst to specify the worst contingency.
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The min-max method then ameliorates this worst case, and does not require specification of
an outcome requirement. Info-gap, in turn, does not presume knowledge of a worst case.

The info-gap robust satisficing methodology quantifies an irrevocable trade-off between
confidence (expressed as robustness to uncertainty) and performance (embodying the deci-
sion maker’s outcome requirement). This trade-off can be interpreted as a cost of robustness:
robustness can be enhanced in exchange for reducing the performance requirement. The
robustness curve characterizes any proposed policy as a monotonic plot of robustness versus
performance requirement, where the slope reflects the cost of robustness and the horizontal
intercept reflects the putative error-free outcome.

If the robustness curves of two alternative policies do not cross one another, then one
policy is more robust than the other for all feasible outcomes. That robust-dominant policy is
preferred. In this case, the putative optimum policy (whose estimated outcome is better) is
also the robust-preferred policy.

If the robustness curves of two alternative policies cross one another, as seen in fig. 2, then
the robustness analysis can lead to a reversal of policy preference from the putative optimum.
The policy that is more robust (and hence preferred) at high performance requirement, will be
less robust (and hence not preferred) at lower requirement. Info-gap robust-satisficing leads
to policy selection that will achieve the performance requirement over the greatest range of
Knightian uncertainty.
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A A Special Case: One Default Time

We consider a special case for simplicity, N; = 2, meaning that if default occurs then it hap-
pens at time ¢;. We derive an explicit analytical expression for the inverse of the robustness
function, h, thought of as a function of the critical present worth, PWW,, at fixed loan portfolio
(w, f). The analytical expression for the general case is accessible but more complicated and
is unneeded to achieve the goals of this example.

Definition 3 Define a truncation function: x+ = z ifx < 1 and z+ = 1 otherwise.

Definition 4 Let m(h) denote the inner minimum in the definition of the robustness function,
eq.(11).

A plot of m(h) vs h is identical to a plot of PW, vs h(PW,). Thus m(h) is the inverse
function of A(PW.). Given that N, = 2, the expectation of the present worth, eq.(8), becomes:

K
E(PW) = Z W (ﬁﬁ/k —pmﬁﬁ/m) - (12)
k=1

From eq.(12) and the info-gap model of eq.(9) we see that the inner minimum in eq.(11) is
obtained, at horizon of uncertainty h, when the probability of default of each risk type, px1, is
as large as possible. Thus:

K
m(h) =" wi (PWy = [pg1 + sah] " PWt ), (13)
k=1
and m(h) decreases piecewise-linearly as h increases. Hence, since m(h) is the inverse of
the robustness function, hL(PW,), we see that h(PW,) decreases piecewise-linearly as PW,
increases.

To explore the significance of this we first define several quantities. Let E(PW) denote the
expectation of the present worth with the estimated probabilities, from eq.(12) with px; rather
than py; (recall that N; = 2):

K
E(PW) = Z Wi (ﬁﬁ/k _ﬁklﬁ/f/kl) . (14)
k=1

Let Eq denote the expectation of the present worth when each probability of default equals
unity (eq.(8) with px; = 1 and Ny = 2):

K
Eo= wy (PWk - Pw,ﬂ) . (15)
k=1
Note that:
Eo < E(PW). (16)
Finally,

Definition 5 Define h...x as the value of horizon of uncertainty, h, beyond which all the prob-
abilities terms [py1 + sp1h|t in eq.(13) equal unity:

1 —pr
Amax = max ———.

17
1<k<K  Sp1 ( )
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Now we find, from egs.(13)—(15), that:

E(PW) ifh=0
m(h) = { piece-wise linearly decreasing  if 0 < h < hpax (18)
EO |f hmax < h

From this relation we see that the robustness function has the following form:

0, PW,. < Eg
h(PW.) = { piece-wise linearly decreasing, Eo < PW,. < E(PW) (19)
0, PW, > E(PW).

This special case is explored with a numerical example in section 3.3.
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