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Auctioning risk: The all-pay auction
under mean-variance preferences∗

Bettina Klose♮ Paul Schweinzer♯

Abstract

We analyse the all-pay auction with incomplete information and variance-averse bidders. We
characterise the symmetric equilibrium for general distributions of valuations and any number
of bidders. Variance aversion is a sufficient assumption to predict that high-valuation bidders
increase their bids relative to the risk-neutral case while low types decrease their bid. Con-
sidering an asymmetric two-player environment with uniform valuations, we show that a more
variance-averse type always bids higher than her less variance-averse counterpart. Utilising
our analytical bidding functions we discuss all-pay auctions with variance-averse bidders from
a designer’s perspective. We extend our basic model to include noisy signals and allow for the
possibility of variance-seeking preferences and type-dependent attitudes towards risk.
(JEL C7, D7, D81. Keywords: Auctions, Contests, Mean-Variance preferences.)

1 Introduction

In economic contests players make irrecoverable investments in order to increase their chances of

winning a prize. As such the nature of a bid in an all-pay auction is very similar to choosing a lottery.

A high bid corresponds to lower payoffs in both the states of winning and losing, but increases the

likelihood of the positive state. A low bid yields a lower probability of winning, but payoffs in

both states are higher. Although the all-pay auction is therefore a model of risky choices, typical

analyses focus on risk-neutral players, i.e., the maximisation of expected payoffs. Mean-variance

preferences (Markowitz, 1952) have long been successfully applied to portfolio choice investment

problems where asset managers evaluate alternative portfolios on the basis of the mean and variance

of their return. It therefore may be surprising that the mechanism design literature and, specifically,

the large literature on auctions has not yet addressed the decision making problem of players endowed

with mean-variance preferences over their wealth. The present paper attempts to close this gap by
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institutions and for financial support through the University of York Research and Impact Support Fund. Klose
gratefully acknowledges the financial support from the European Research Council (ERC Advanced Investigator
Grant, ESEI-249433) and the Swiss National Science Foundation (SNSF 100014 135257). Schweinzer appreciates the
generous hospitality of CESifo, Munich. ♮University of Zurich, Department of Economics, Blümlisalpstr. 10, CH-8006
Zurich, Switzerland, bettina.klose@econ.uzh.ch. ♯Department of Economics, University of York, Heslington,
York YO10 5DD, United Kingdom, paul.schweinzer@york.ac.uk. (22-Jun-2014)



fully characterising bidding and revenue-optimal sales behaviour in one of the standard auction types,

the all-pay auction. This auction type may be viewed as a natural candidate because it exposes a

bidder to the inherent risk of either winning the object (potentially at a bargain) or losing one’s bid

without gaining anything.

We offer a group of motivational examples underpinning the relevance of this approach. All of

our examples have two random components: i) the ‘endogenous’ variance centred on the bidding

process, i.e., the tension between winning a prize (consisting of a private valuation minus the own

bid) and paying the own bid for sure, and ii) the ‘exogenous’ variance of the prize (or outside option)

itself. As our leading example we consider the research and design competition on ‘wearable tech,’

widely argued to be the ‘next big thing’ in consumer electronics.1 Technology firms Apple, Google,

Samsung and others compete on the first breakthrough in this market. In the smartwatch war, these

giants were beaten to the market by puny Pebble Technology Corp, a crowdfunded startup from

California.2 Similarly extreme asymmetries in budgets can be seen in the glasses market where the

highly publicised Google Glass market entry was preempted by Vuzix, a comparably small technology

firm from Rochester, New York. Both cases have in common that deep pockets firms compete in

the same market with firms whose budgets they dwarf. This opens the door to predatory pricing

strategies and thus induces very different risk preferences among competitors.3

A further and distinct set of examples lies in the practice of introductory offers (‘burning money’)

with which firms try to ascertain uncertain future market shares through certain upfront losses. Our

setup is as applicable to an entrepreneur’s choice of team composition as it is to the research portfolio

selection of heads of R&D or similar institutions. Similarly, our model seems to fit well with patent

races under rivalry as analysed, for instance, by Dasgupta (1986) in a full information setup. Finally,

the classical portfolio selection problem seems to be related as, clearly, portfolio choice is usually

based on mean-variance considerations and anecdotal evidence is available which underlines all-pay

aspects of fund managing practice.4

What is a general motivation to consider risk aversion in winner-pay auctions? A bidder in a

(first-price) winner-pay auction controls, through her bid, both the probability of winning and the

amount she wins. A risk averse bidder is willing to sacrifice some of this payoff (the individual

value minus her bid) for a higher probability of winning (through a higher bid). Hence, in a first-

price, winner-pay auction, risk aversion causes an increase in equilibrium bids relative to the risk

neutral case.5 In all-pay auctions, in addition, increasing one’s bid has the direct negative effect of

increasing the certain payment independently of both other effects. In consequence, a low valuation

1 For sources, see Wired, Why Wearable Tech Will Be as Big as the Smartphone, 17-Dec-2013 and NBC news,
Samsung’s Galaxy Gear marks official start to smartwatch war, 4-Sep-2013.

2 Pebble is a crowd funding success story, it “set out to raise $100,000. After 37 days, it had raised $10,266,845,
which is the highest amount ever secured on the [Kickstarter] platform.” Wired, How Pebble kickstarted a trend,
23-Jan-2014.

3 For early accounts of predatory pricing and its effects on risk see, for instance, Tesler (1966) or Milgrom and
Roberts (1982).

4 “Five-star funds. Four-star funds. Those seem to be the only mutual funds people want to buy.” Investors
Business Daily, “Making Money in Mutuals: Don’t Focus too Narrowly on Star Ratings,” by A. Shell, 22-Jun-
1998, cited in Bagnoli and Watts (2000). Hence, although all funds invest efforts, only the most highly ranked
funds obtain significant investments.

5 See Maskin and Riley (1984).
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bidder under risk aversion wants to decrease her losses while a risk averse, high-type bidder wants

to increase her probability of winning through more aggressive bidding in the all-pay auction.

Apart from intellectual curiosity, we field three main arguments in order to justify the attention

we place on mean-variance preferences in this paper. First, the typically employed risk-neutral,

expected payoff analysis of auctions simply ignores any risk considerations; compared with that, a

mean-variance analysis certainly represents progress. Second, if all relevant probability distributions

have the same elliptic form, then the mean and variance represent a sufficient statistic to identify the

true distribution of returns. Then, the mean-variance approach does not differ from a full account

of expected utility using a general representation of risk aversion. Third, financial practitioners make

the vast majority of their day-to-day portfolio choice decisions on the basis of the mean and variance

of portfolios. It would seem likely that this group could benefit from a similar representation of their

choices for auctioning activities.

Literature

To the best of the authors’ knowledge there are no existing papers which analyse auctions or incom-

plete information contests under mean-variance preferences. Most existing work on risk aversion in

contests applies to full information Tullock contests.6 An attempt to model mean-variance prefer-

ences in this full information case is Robson (2012) who derives an ‘irrelevance result’ in the sense

that for two-player Tullock contests bidding behaviour is not affected by the introduction of an

aversion to variance. A more general analysis in terms of risk aversion of the same setup is Cornes

and Hartley (2012b) who focus on existence questions of both symmetric and asymmetric Nash

equilibria (for the case of loss aversion see Cornes and Hartley, 2012a). The only existing works

on risk aversion for the incomplete information all-pay auction of which we are aware are Fibich,

Gavious, and Sela (2006), Cingottini and Menicucci (2006), and Parreiras and Rubinchik (2010).7

Fibich, Gavious, and Sela (2006) show that an analytic characterisation of equilibrium strategies

cannot be usually obtained for von Neumann-Morgenstern risk-averse players. Thus, contrasting

our fully analytical approach, they turn to perturbation analysis to obtain revenue rankings for the

case that players are ‘almost’ risk neutral. Esö and White (2004) show that under special conditions

on valuations, decreasingly absolute risk averse players prefer the first-price auction to the all-pay

auction. Fibich, Gavious, and Sela (2006) extend this ranking to the case of general risk aversion for

independent valuations. Their results are limited, however, by the fact that they cannot generally

obtain analytic forms of the equilibrium bidding strategies of risk averse players. We can overcome

this limitation at the price of focusing attention to the class of linear mean-variance preferences.

Cingottini and Menicucci (2006) study an environment composed of ex-ante symmetric bidders

sharing the same preferences exhibiting constant absolute risk aversion. They find that it is revenue-

optimal for the seller to exclude all but two randomly chosen competitors. Their result, which is

6 An analysis of the (repeated) full information case for more general success probabilities is Ireland (2004).
7 It may be worth pointing out that the analysis of risk-aversion in Lazear and Rosen (1981) also boils down to
mean-variance preference analysis as their output noise term is fully characterised by the mean and variance of
the Normal distribution.
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contrary to the monotonicity of revenue in the risk neutral case, is obtained provided that bidders

are either highly risk averse or very likely to possess a particular, known valuation.

Parreiras and Rubinchik (2010) analyse bidding behaviour in contests where three or more players

draw their valuations from asymmetric supports and may have asymmetric attitudes toward risk.

They find that these ex-ante asymmetries may lead to player drop-out or, for sufficiently risk-averse

players, the use of discontinuous ‘all-or-nothing’ strategies. Thus, both cases exhibit behaviour

which is very different from the standard ex-ante symmetric equilibrium case. Although the authors

cannot explicitly determine the equilibrium bidding functions in general, they construct a simple

check for whether or not a particular bid can be part of a player’s equilibrium strategy. This test is

used to establish the above participation conclusions.

Papers relating to the analysis of risk aversion in general winner-pay auction environments are

Maskin and Riley (1984) and Matthews (1987), both discussing risk-averse bidders’ behaviour in

auctions, Esö and White (2004), analysing precautionary bidding in auctions, and Esö and Futó

(1999), who derive the revenue-optimal strategy for a risk-averse seller, and Hu, Matthews, and

Zou (2010) who discuss reserve prices. The existing analyses of asymmetric auctions, for instance

Amann and Leininger (1996), Lizzeri and Persico (2000), Maskin and Riley (2000), Fibich, Gavious,

and Sela (2004), Parreiras and Rubinchik (2010), Kirkegaard (2012), or Kaplan and Zamir (2012),

typically employ asymmetric distributions (or supports) while we use our idiosyncratic variance-

aversion parameter. Next to Parreiras and Rubinchik (2010), to the best of the authors’ knowledge,

this is the only paper to analyse bidding in a contest when players are asymmetric in their degree of

risk-aversion.

In terms of revenue and payoff analysis, Matthews (1987) compares payoffs for risk averse

behaviour when bidders exhibit constant and increasing absolute risk aversion (CARA and IARA,

respectively). For CARA, he finds that bidders are indifferent between first- and second-price auc-

tions, while for IARA bidders prefer the first-price auction. Smith and Levin (1996) show that this

ranking can be reversed under decreasing absolute risk aversion.

The present paper is dealing with variance aversion which, in general, is different from risk

aversion.8 Mean-variance preferences can be transformed into expected utility form under certain

assumptions on the location, scale, and concordance parameters of the environment. For the precise

relation of von Neumann-Morgenstern preferences to mean-variance preferences, see, for instance,

Sinn (1983), Kroll, Levy, and Markowitz (1984), Mayer (1987), or, more recently, Eichner (2008),

or Eichner and Wagener (2009). A recent survey and discussion of the differences between the

approaches is presented by Markowitz (2012).

2 The model

There is a seller with one indivisible object for sale. The seller’s valuation of the item is (normalised

to) zero. There are n ≥ 2 potential buyers with valuations θi, i ∈ N = {1, 2, . . . , n}, respectively.
The own valuation is private information of each buyer and all players’ valuations, θi, i ∈ N , are

8 For a discussion of the differences see, for instance, Rothschild and Stiglitz (1970).
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assumed to be independent draws from the same increasing and absolutely continuous distribution

F . Let f(·) = F ′(·) represent the associated probability density function and [
¯
θ, θ̄] = [0, 1] its

support.

After realising their own valuations of the object, θi, all players simultaneously submit their bids,

bi, i ∈ N . The player with the highest bid receives the object and all players forgo their bids. Player

i’s payoff is given by

πi(bi, b−i; θi) =











θi − bi if bi > bj∀j 6= i,
1
m
θi − bi if i ∈ Q = {j ∈ N |bj = maxk∈N bk}, m = |Q|,

−bi if ∃j : bi < bj .

When buyers have mean-variance preferences, they maximise an objective function ui(µi, σ
2
i ), which

is increasing in the expected payoff, µi, and decreasing in the variance of their payoff, σ2
i . For our

analytical investigation we use the following simple linear representation of mean-variance prefer-

ences9
(1)ui(µ(b, θi), σ

2(b, θi)) = µ(b, θi)− νiσ
2(b, θi),

where the parameter νi ∈ [0, 1/2] accounts for player i’s variance-aversion.10 The case of νi = 0

represents the standard case of risk-neutral expected payoff maximisation. Bounding the degree of

variance aversion from above guarantees the existence of a pure strategy equilibrium.

Provided a player’s knowledge of her own type, her bid can be interpreted as choosing a lottery

with two possible outcomes. If the player submits the highest bid, she will receive her valuation of

the prize (represented by her type) minus the cost of her bid. In all other events, she will loose her

bid. Note that the payoff difference between these two outcomes remains fixed for any bid and is

just equal to the player’s type. However, selecting a higher bid does not only decrease the respective

payoffs for both outcomes, but also moves probability mass from the loosing to the winning outcome.

In section 5 we discuss various ways to generalise this model. We introduce exogenous noise

to the model through independent shocks on the winning and losing outcomes. In this case, a

player’s type is merely a noisy signal of her true valuation for the prize which will only be realised

after the contest. We further consider the effects of variance seeking behaviour in contests and

type-dependent risk preferences, i.e. ex-ante symmetric players have private information about their

type (θi, νi).

9 A large body of empirical and theoretical work employs variants of this simple form on the basis of both tractability
and testability. For discussions see, for instance, Tsiang (1972), Coyle (1992), Saha (1997) or the textbook
treatment in Sargent and Heller (1987, p154–5). Recently, Chiu (2010) discusses the applicability of mean-
variance preferences of this form to a large set of problems in finance and economics in choice theoretic terms.
For an easy generalisation to the case of mean plus any monomial function of the variance see the discussion in
the appendix.

10 In section 5.2 we extend the range of admissible values of ν to [−1/2,+1/2].
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3 Bidding behaviour

3.1 The symmetric case: n identical bidders

Under the first-price, all-pay auction, a type-θi bidder’s expected payoff when issuing a bid of b is

given by

(2)π(b, β; θi) =

∫ β−1(b)

0

· · ·
∫ β−1(b)

0

θif(θ1) · · ·f(θn−1)dθ1 · · · dθn−1 − b

where β(θ) is the tentative symmetric equilibrium bid issued by a type-θ player. We conjecture that

the function β(θ) is non-decreasing and denote the highest type who submits a bid no higher than

b by θ = β−1(b). It is well known, for instance from Milgrom (2004, p119), that the strategies

(3)βrn(θ) = θ(F (θ))n−1 −
∫ θ

0

(F (ϑ))n−1dϑ,

maximise (2), hence constituting a symmetric equilibrium if players simply maximise their expected

payoffs (i.e., νi = 0 for all i ∈ N ).

With mean-variance preferences, symmetric players with ν ≡ ν1 = · · · = νn choose a bidding

function which maximises (1), taking into account their payoff variance in addition to their expected

payoff. These are given for the first-price, all-pay auction as

(4)

µ(b, θi) = θi(F (β−1(b)))n−1 − b;

σ2(b, θi) = (F (β−1(b)))n−1 (θi − b− µ)2 + (1− (F (β−1(b)))n−1) (−b− µ)2

= (F (β−1(b)))n−1(1− (F (β−1(b)))n−1)θ2i .

Inserting these back into the player’s objective11 and rearranging gives

(5)ui(b, θi) = θi(F (β−1(b)))n−1(1− νθi + νθi(F (β−1(b)))n−1)− b.

The first-order condition for maximisation of (5) with respect to b is12

(8)θi
(

1− νθi + 2νθi(F (β−1(b)))n−1
)

(n− 1)(F (β−1(b)))n−2f(β−1(b))
∂β−1(b)

∂b
= 1.

In the symmetric equilibrium b = β(θi), this yields the first-order differential equation

(9)β ′(θi) = θi
(

1− νθi + 2νθi(F (θi))
n−1
)

(n− 1)(F (θi))
n−2f(θi).

11 Note that in our model using the modified mean-variance approach due to Blavatskyy (2010) would lead to qualita-
tively the same results since the mean absolute semideviation is r(b, θi) = (F (β−1(b)))n−1(1−(F (β−1(b)))n−1)θi.

12 The second-order condition for the case of two players is

(6)
2θiν − 4θiνF (θi)− 1

θ2i f(θi)(1− θiν + 2θiνF (θi))2
< 0.

The condition for the general case of n > 2 players is more involved and relegated to the appendix. In our model
θiν ≤ 1

2
< 1, therefore, a sufficient condition for the general second-order condition to hold is that

(7)F (θ)n−1 ≥ 1

2
− 1

2ν(θ + 1)
.

This condition (7) generally holds if ν is sufficiently small such that θν ≤ 1

2
for all θ in the support of the type

distribution F (·), but otherwise imposes a restriction on the distribution of types and/or the number of players.
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This differential equation together with the boundary condition β(0) = 0 is solved (through repeated

integration by parts) by the bidding function

βmv(θi) =θi(F (θi))
n−1 −

∫ θi

0

(F (ϑ))n−1 dϑ− νθ2i (F (θi))
n−1+

νθ2i (F (θi))
2(n−1) + ν

∫ θi

0

2ϑ(F (θ))n−1 dϑ− ν

∫ θi

0

2ϑ(F (θ))2(n−1) dϑ

=βrn − ν

(

θ2i
(

F (θi)
n−1 − (F (θi))

2(n−1)
)

−
∫ θi

0

2ϑ
(

(F (ϑ))n−1 − (F (ϑ))2(n−1)
)

dϑ

)

=βrn − ν

∫ θi

0

ϑ2(n− 1)(F (ϑ))n−2f(ϑ)
(

1− 2(F (ϑ))n−1
)

dϑ.

(10)

Two comments are in order before we proceed with our analysis. First, note that, from (9), βmv

is a strictly increasing function for any ν > −1 confirming our tentative monotonicity conjecture.

Second, it is worthwhile to pay some attention to the second order condition of this problem.

Intuitively, as players become very variance averse, bidding zero along with the resulting certain

payoff of zero becomes more attractive. However, there cannot exist a pure strategy equilibrium

in which all types bid zero. Therefore, in order to be able to solve for the desired increasing

bidding function, we need to bound the variance aversion parameter. Inequality (7) illustrates how

the distribution of types places an upper bound on the degree of variance-aversion which we may

consider and vice versa. Interpreting Hν(θ) =
1
2
− 1

2ν(θ+1)
as a c.d.f. with support in [1−ν

ν
,+∞] and

an atom of size 1
2
at infinity, condition (7) states that Hν first order stochastically dominates F n−1.

As ν increases Hν increases in the sense of first order stochastic dominance and (7) fails as ν grows

too large. Higher degrees of variance aversion may be considered when F places sufficient mass on

low types.

In order to confirm that the strategies (10) are indeed the symmetric equilibrium, we show that

no profitable deviation exists. A player’s utility from any bid b is provided in (5). Consider a player

of type θ who bids βmv(z), z ∈ [0, 1] against opponents who bid according to βmv and their true

type.13 Then by (5) and (10)

ui(βmv(z), θ) =θ(1− νθ)F n−1(z) + νθ2F 2n−2(z)− zF n−1(z) +

∫ z

0

F n−1(ϑ)dϑ

+ ν

∫ z

0

ϑ2(n− 1)F n−2(ϑ)f(ϑ)(1− 2F n−1(ϑ))dϑ.

Hence, setting z = θ (i.e., bidding according to (10)) is optimal if

∂ui(βmv(z), θ)

∂z
= θ(1− νθ)(n− 1)F n−2(z)f(z) + νθ22(n− 1)F 2n−3(z)f(z)− F n−1(z)

− (n− 1)zF n−2(z)f(z) + F n−1(z) + νz2(n− 1)F n−2(z)f(z)(1 − 2F n−1(z))

= (θ − z)(n− 1)f(z)F n−2(z)(1− ν(θ + z) + 2ν(θ + z)F n−1(z))

13 Bids below βmv(0) are not feasible and any bid b > βmv(1) is strictly dominated by βmv(1) as b yields strictly
lower expected payoff µ(b, θ) < µ(βmv(1), θ) without reducing the payoff variance as winning probabilities are
identical under both strategies.
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is positive for z < θ, negative for z > θ and zero at z = θ. This is the case if the factor (1− ν(θ +

z) + 2ν(θ + z)F n−1(z)) is non-negative for all (θ, z) ∈ [0, 1]2 and always holds if ν ≤ 1
2
.

Our next result shows that low types submit lower bids under mean-variance preferences, while

high types submit higher bids under mean-variance preferences than if they were to maximise ex-

pected payoff only.

Proposition 1 (Single-crossing). Either βmv(θ) ≤ βrn(θ) for all θ ∈ [0, 1] or there exists a θ̂ in the

support of F such that βmv(θ) ≤ βrn(θ) for θ ≤ θ̂, βmv(θ̂) = βrn(θ̂) and βmv(θ) > βrn(θ) for θ > θ̂.

Proof. Note that the symmetric equilibrium strategy can be written as

βmv(θ) = βrn − ν

∫ θ

0

G(ϑ)H(ϑ)dϑ,

where G(ϑ) = ϑ2(n−1)(F (ϑ))n−2f(ϑ) and H(ϑ) = 1−2(F (ϑ))n−1. F is a cumulative distribution

function with density f , therefore G(ϑ) ≥ 0 for all ϑ ∈ [
¯
θ, θ̄]. H(ϑ) is a continuous and decreasing

function with H(
¯
θ) = 1 and H(θ̄) = −1. Hence,

∫ θ

0
G(ϑ)H(ϑ)dϑ > 0 for sufficiently small θ > 0

and if
∫ θ̄

0
G(ϑ)H(ϑ)dϑ = 0 for any θ̂ > 0, then

∫ θ

0
G(ϑ)H(ϑ)dϑ < 0 for all θ > θ̂.

This result is qualitatively in line with Propositions 1 and 2 in Fibich, Gavious, and Sela (2006).

The intuition is that low-valuation bidders expect to lose in a symmetric equilibrium and therefore

decrease their bids in order to keep their variance low. High-valuation bidders, by contrast, are likely

to win and therefore increase their bids in line with variance compression. Proposition 1 says that

there is only a single type of bidder who submits the same equilibrium bid for any value of ν.14 From

(10) it is evident that this type θ̂ does not depend on the variance aversion parameter ν, but is fully

characterised by the distribution of types, F , and number of players, n.

Our proposition 1 shows that variance-aversion alone is sufficient to observe the bidding behaviour

found by Fibich, Gavious, and Sela (2006) for general risk-aversion as modelled by a utility function

that is concave in payoffs. It is not obvious that the simple mean-variance approach would yield this

qualitatively identical finding to the full account of all moments. The main advantage we obtain

from knowing equilibrium bidding functions is our ability to further investigate the impact that

variance-aversion has on auction characteristics that are relevant from a designer’s perspective such

as revenue or bidder participation. While the general approach of Fibich, Gavious, and Sela (2006)

results in the same qualitative observations regarding the bidding function, it does not allow for such

an analysis. Fibich, Gavious, and Sela (2006) use perturbation analysis, therefore considering only

infinitesimally risk averse (i.e., almost risk neutral) players. Our analysis generalises the analysis to

players with a significant variance aversion parameter.

Corollary 1. As the number of participating bidders n expands,

1. the convexity of the bidding function βmv(θ) increases, i.e., low types decrease their bids and

high types increase their bids relative to the case with a lower number of bidders;

14 This distortion of bids seems to correspond to experimental evidence. Both Barut, Kovenock, and Noussair
(2002) and Noussair and Silver (2006) report bidding behaviour along these lines in all-pay auctions with private
valuations. Moreover, gender differences in competitions à la Gneezy, Niederle, and Rustichini (2003) can be
explained by our (a)symmetric risk-aversion result.
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Figure 1: Equilibrium bidding functions for the all-pay auction under mean-variance preferences for uniformly
distributed types, ν = 1/4, and n ∈ {2, 4, 8, 16, 32, 64} players, respectively (sorted in the colours of the
rainbow from red to violet).

2. the type θ̂ who issues the same bid under mean-variance and risk-neutral von Neumann-

Morgenstern preferences shifts to the right.

Proof. Consider the derivative of (9) with respect to n

(11)θf(θ)F (θ)n−3 [(1− θν)F (θ)(1 − κ) + 2θνF (θ)n(1− 2κ)]

where κ = −(n − 1) log(F (θ)). Notice that log(F (θ)) ≤ 0 and log(F (θ)) is strictly increasing in

θ with log(F (θ)) → −∞ as θ approaches the lower bound of the support of its distribution and

log(F (θ)) → 0 as θ approaches the upper bound of the support of its distribution. Therefore, for

sufficiently small θ, (11) becomes negative. Similarly, for θ sufficiently large, (11) is positive.

Corollary 1 shows that the comparative statics of equilibrium bidding in the number of participants

in an all-pay auction qualitatively do not differ whether bidders are risk neutral or symmetrically

variance averse. However, as shown in the second part of the corollary, the convergence to a

distribution where only high types submit positive bids is faster the more variance averse the bidders

are.

3.1.1 Examples

The uniform distribution

In the following, we exemplarily illustrate our findings for the case of n players when values are drawn

from a uniform distribution over the interval [0, 1]. In this case, the expression for the objective of

a bidder with mean-variance preferences simplifies to

(12)ui(b, θi) = θi(β
−1(b))n−1(1− νθi + νθi(β

−1(b))n−1)− b

9



which determines the symmetric equilibrium bidding functions as

(13)b∗ = β(θi) =
n− 1

n
θni + ν

(

n− 1

n
θ2ni − n− 1

n+ 1
θn+1
i

)

+ C

for some constant C which is zero because a type-0 will not make a positive bid. Figure 2 compares

this equilibrium bidding behaviour with that under standard risk-neutral von Neumann-Morgenstern

preferences for two players. As seen before, the bidding behaviour of low-intermediate valuation

types is more aggressive under expected payoff maximisation while high types submit higher bids

under mean-variance preferences.

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

θi

β(θi)

βrn(θi)

βmv(θi)

β̂mv(θi)

Figure 2: Equilibrium bidding functions for the all-pay auction under risk-neutrality (dashed, β(θi) = θ2i /2)
and mean-variance preferences (ν = 1/2, solid). The dotted bidding function results under mean-variance
preferences if the prize itself is risky ε̂− δ̂ = 1

4 .

Other distributions

The table below displays the symmetric, two-player equilibrium bidding functions for the most com-

monly used distribution functions when players have mean-variance preferences and values are i.i.d.

according to the specified distribution.

Distribution F (θ) β(θ)

Uniform[0,b] θ/b θ2i (θiν(3θi − 2b) + 3b)/6

Power[0,1] θα
α
(

θα+1

i (−(α+ 1)θiν + α+ 2) + (α+ 2)νθ2α+2

i − (α+ 2)
(

02α+2ν + 0α+1
))

(α + 1)(α+ 2)

Beta(2,2)

∫ θ

0
u(1− u)du

∫ 1

0
u(1− u)du

θ3i (3θi((2θi(5((7θi − 20)θi + 14)θi + 14)− 35)ν − 35) + 140)/70

Quadratic-U 4(θ − 1/2)
3 + 4(1/2)

3 θ2i ((θi(8(θi(3(7θi − 20)θi + 70)− 42)θi + 105)− 14)θiν + 14(3θi − 4)θi + 21)/14

Table 1: Two-player equilibrium bidding functions.
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3.2 Two asymmetric bidders

This section presents our results on all-pay auctions between bidders who are not identical in terms

of their risk preferences. Consider the following uniform, two-players setup featuring asymmetric

degrees of variance aversion νi where player i ∈ {1, 2} maximises

(14)ui(µ(b, θi), σ
2(b, θi)) = µ(b, θi)− νiσ

2(b, θi), νi ∈ R+.

We consider the particular case of ν1 = 0 and ν2 = ν, i.e., bidder 1 is risk-neutral while bidder 2 is

variance-averse. Therefore, we get

(15)
u1(θ1, b1) = β−1

2 (b1)θ1 − b1,

u2(θ2, b2) = β−1
1 (b2)θ2 − ν

(

θ22β
−1
1 (b2)(1− β−1

1 (b1))
)

− b2

with the pair of first-order conditions

∂u1(θ1, b1)

∂b1
=

1

β ′
2(β

−1
2 (b1))

θ1 − 1 = 0

⇔ β ′
2(β

−1
2 (b1)) = θ1, (16)

∂u2(θ2, b2)

∂b2
=

1

β ′
1(β

−1
1 (b2))

(

θ2 − νθ22(1− 2β−1
1 (b2))

)

− 1 = 0

⇔ β ′
1(β

−1
1 (b2))− 2νθ22β

−1
1 (b2) = θ2 − νθ22 . (17)

In equilibrium, b1 = β1(θ1) and b2 = β2(θ2). Thus, we substitute β−1
1 (b1) = θ1 into (16) to obtain

(18)β ′
2(β

−1
2 (b)) = β−1

1 (b).

Taking the derivative of β−1
1 (b) and applying (16) gives

(19)β ′
1(β

−1
1 (b)) =

β ′
2(β

−1
2 (b))

β2
′′(β−1

2 (b))

where we use b as variable from the joint support of β1(·) and β2(·).15 Substituting (19) and (18)

into (17) yields the following second-order differential equation in β2

(20)
β ′
2(β

−1
2 (b))

β2
′′(β−1

2 (b))
− 2νθ2β ′

2(β
−1
2 (b)) = θ − νθ2.

This differential equation can be solved using the boundary condition β2(0) = 0 to obtain

(21)

β2(θ2) =
1

2
√
1 + 4cν

[√
1 + 4c

(

−1 + θν +
√

1 + θν(−2 + θν + 4cθν) + log(2)
)

+ log
(

1−
√
1 + 4c

)

−
√
1 + 4c log

(

1− θν +
√

1 + θν(−2 + θν + 4cθν)
)

− log
(

1− ν
(

θ + 4cθ +
√
1 + 4c

√

1
ν2

+ θ
ν
(−2 + θν + 4cθν)

))]

for yet undetermined constant of integration c. In order to solve for the first player’s bidding function,

we solve (18) for
(22)β1(θ) = β2

(

(β ′
2)

−1(θ)
)

15 The standard argument applies that in the two-player, all-pay auction the supports of both players’ bidding
functions coincide.
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where

(23)(β ′
2)

−1(θ) =
θ

ν(θ − θ2 + c)
.

From an argument similar to the one used in a standard (risk-neutral) all-pay auction follows that

the two bidding functions β1(·) and β2(·) must share the same support. Intuitively, in equilibrium,

no player’s type can submit a strictly higher bid than the other player’s highest type as such a bid

does not affect the payoff variance (the player wins with certainty), but strictly lowers the expected

payoff. Setting β1(1) = β2(1) implies that the only possible value for the constant of integration is

(24)c =
1

ν
.

Substituting this constant into (21), we obtain the following pair of bidding functions

(25)

β1(θ) =
log(1− θ2ν + θν)

2ν
− θ2

θν(θ − 1)− 1

+
1

2
√

ν(4 + ν)

(

log
(

1−
√

4+ν
ν

)

− log

(√
4+ν
ν

+θ
(

4+θ
(

ν+
√

ν(4+ν)
))

−1

θν(θ−1)−1

))

,

β2(θ) =
1

2ν

[

θν − 1 +
√

1− 2θν + θ2ν(4 + ν) +
√

ν
4+ν

log
(
√

4+ν
ν

− 1
)

− log
(

1
2

(

1− θν +
√

1− 2θν + θ2ν(4 + ν)
))

− √

ν
4+ν

log

(

θ(4 + ν)− 1 +
√

(4+ν)(1−2θν+θ2ν(4+ν))
ν

)]

,

which are illustrated for the case of ν = 1/2 in figure 3.
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βi(θ)
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β2(θ)

βsym
mv (θ)

βsym
rn (θ)

c1c2c0
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0.01

0.02

0.03

θ
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Figure 3: Comparison of asymmetric and symmetric bidding under mean-variance preferences for ν = 1/2.

As the figure shows, each positive risk-neutral player type bids less than the corresponding type of

her variance-averse opponent. While the ν-variance-averse, asymmetric bidder with bidding function

β2(·) always bids more than symmetric risk-neutral bidders βsym
rn , the asymmetric risk-neutral bidder

with bidding function β1(·) (competing with a variance-averse player) bids up to a cutoff-type c2

below the symmetric risk-neutral bidders and, for types higher than c2, she bids above. Similarly, the

asymmetric variance-averse bidder (competing with a risk-neutral bidder) bids up to a cutoff-type c1

above the symmetric ν-variance-averse bidders (βsym
mv ) and bids below for types higher than c1. Both

12



properties are qualitatively similar to the single-crossing property with cutoff θ̂ = c0 from proposition

1. The generally high bids of the variance-averse bidder cause low types of the risk-neutral bidder

to bid less in comparison to their strategy when faced with risk-neutral opponents. High types of

the risk-neutral bidder, on the other hand, increase their bid in reaction to their variance-averse

opponent’s strategy.

4 Revenue valuation

The classical reference for revenue valuation in winner-pay auctions under risk aversion is Holt

(1980) who discusses a procurement setup. Revenue equivalence between the standard auction

formats breaks down with risk averse bidders. While second-price bidders maintain their dominant

strategies of bidding their values, first-price competitors increase their bids with respect to the

standard, risk-neutral case. This is due to the fact that raising one’s bid in a first-price auction can

be seen as partial insurance against loosing. From a risk averse seller’s point of view, the first-price

auction is preferable to a second-price format because it exposes the seller to less revenue risk.16

In this section we limit attention to uniformly distributed bidder valuations because our objective

lies in the derivation of a series of concrete revenue ranking results. The results, however, are

qualitatively similar for the other distributions listed in the table of section 3.1.1. The seller’s

expected revenue R depends on the bidder’s preferences. In the case of risk-neutral bidders with

von Neumann-Morgenstern preferences, the seller expects to earn

(26)E[Rrn] = n

∫ 1

0

n− 1

n
θn dθ =

n− 1

n+ 1
.

If the bidders exhibit mean-variance preferences, then the seller can expect

(27)
E[Rmv] = n

∫ 1

0

n− 1

n
θn + ν

(

n− 1

n
θ2n − n− 1

n+ 1
θn+1

)

dθ

=
n− 1

n+ 1
+ ν

(

n− 1

2n + 1
− n(n− 1)

(n+ 1)(n+ 2)

)

.

The revenue limit for n → ∞ is 1− ν/2.

Holding the number of players fixed, expected revenue is strictly increasing in ν for the two-

players case and strictly decreasing in ν for all n > 2. This is illustrated in figure 4 and summarised

in corollary 2.

Corollary 2. For n = 2, the expected revenue is strictly greater if bidders exhibit mean-variance

preferences than if they are expected payoff maximisers. For all other n, this relationship is reversed.

A consequence of this corollary is that the auctioneer’s revenue in the (first-price) all-pay auction

dominates that of the second-price auction for two bidders but is strictly lower for all other numbers

of auction participants. The reason is that the dominant-strategy equilibrium revenue of a second-

price auction is invariant with respect to the bidders’ variance aversion ν and, hence, second-price

16 For references, see Milgrom (2004, p123).
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revenue is given by (26). To see this more formally, consider a bidder’s mean-variance optimisation

problem in the second-price auction

(28)max
b

∫ β−1(b)

0

(θi − β(θj)) dθj − ν

(

∫ β−1(b)

0

((θi − β(θj))− µ)2 dθj +

∫ 1

β−1(b)

(0− µ)2 dθj

)

.

Supplying the candidate β(θi) = θi and β−1(b) = b gives the first-order condition

(29)(b− θi)
(

ν2(b(b− 2θi − 1) + θi)− 1
)

= 0

in which the first term is solved by the equilibrium β(θi) = b = θi. (The second term only gives

solutions outside of [0,1].) This argument can be made independent of the distribution of bidder

valuations.
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0.40

0.50
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E[Rmv]

ν = +1/2

ν = −1/2

Figure 4: Revenue for ν ∈ {−1
2 ,−1

3 ,−1
4 , 0,

1
4 ,

1
3 ,

1
2} players, respectively (sorted in the colours of the

rainbow from red to violet) and ν = 0 in black for n ∈ [2, 64]. The analysis of variance seeking behaviour
(i.e., negative ν) is presented in section 5.2.

If the seller himself also considers the revenue variance in addition to the revenue’s mean, then

his preference may be reversed. In the case of risk-neutral bidding, the seller’s revenue variance is

(30)V[Rrn] = n

∫ 1

0

(

βrn(θ)−
E[Rrn]

n

)2

dθ =
n(n− 1)2

(2n + 1)(n+ 1)2
.

The bidders behaving according to mean-variance preferences cause a revenue variance of

(31)

V[Rmv] = n

∫ 1

0

(

βmv(θ)−
E[Rmv]

n

)2

dθ

=
n(n− 1)2

(1 + 2n)2

(

1 + 2n

(1 + n)2
+ ν

7 + n(21− 4n(n− 3))

(1 + n)2(2 + n)(1 + 3n)

+ ν2 74 + n(151 + 8n(n− 3)(n− 1))

(2 + n)2(3 + 2n)(2 + 3n)(1 + 4n)

)

.

The rate of V[Rmv]/V[Rrn] is given by

(32)1 +
(7 + (7− 2n)n)ν

(2 + n)(1 + 3n)
+

(1 + n)2(74 + n(151 + 8(n− 3)(n− 1)n))ν2

(2 + n)2(1 + 2n)(3 + 2n)(2 + 3n)(1 + 4n)
.

For n = 2, 3, 4, this ratio is greater than one and increasing in ν. For n ≥ 5 the variance ratio is

decreasing in ν and below one. This implies the following corollary.
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Corollary 3.

n = 2 n = 3, 4 n ≥ 5

E[R] E[Rmv] > E[Rrn] E[Rmv] < E[Rrn] E[Rmv] < E[Rrn]

V[R] V[Rmv] > V[Rrn] V[Rmv] > V[Rrn] V[Rmv] < V[Rrn]

Therefore, for n = 3, 4, a seller with both types of preferences will prefer bidders maximising

expected payoff. In all other cases, a variance-averse seller may prefer bidders with mean-variance

preferences, where the exact ranking depends on the degree of the seller’s variance aversion.

4.1 Optimal reserve prices

Corollary 2 shows that with only two bidders the expected revenue of an all-pay auction is strictly

increasing in the degree of variance aversion, although the opposite relationship is true for any other

number of players. We now introduce an exogenous reserve price pr > 0 into our revenue analysis

to show that this ordering can be reversed by choosing an optimal reserve price.17

In the symmetric equilibrium, either one of two symmetric, variance-averse players will participate

in the auction if their utility at bidding pr equals

(33)ui(µ(b = pr, θi), σ
2(b = pr, θi)) = µ(pr, θi)− νσ2(pr, θi) = 0,

where
(34)µ(pr, θi) = θiθi − pr, and σ2(pr, θi) = θi(θi(1− θi))

2 + (1− θi)(θiθi)
2.

The first participating type in the contest with reserve price pr, θr who solves (33) is implicitly

defined by
(35)pr = θ2r + (θr − 1)θ3rν.

The solution to this equation, θ−1
r (pr), gives this type as a function of the reserve price.18 Only if a

player’s type θi is at least as high as θ−1
r (pr), she will participate in the auction. Her maximisation

problem (39) gives the bidding function βr(θ) as equivalent of (42) as solution to

(36)βr(θ) =

∫ θ

θ−1
r (pr)

ϑ(1− νϑ+ 2νϑ2) dϑ+ pr.

The seller’s expected revenue when setting reserve price pr is now

(37)E[Rmv(pr)] = 2

∫ 1

θ−1
r (pr)

βr(ϑ) dϑ;

it is shown for various ν in figure 5.

As evident from the figure, the revenue-maximising reserve price p∗r is lower when players are

more variance-averse.

Corollary 4. The highest expected revenue achievable by optimally setting a reserve price in a

symmetric two-player all-pay auction is decreasing in the degree of variance aversion. The revenue

maximizing reserve prize, p∗r, is decreasing in the degree of bidders’ variance aversion, ν.

17 Whether sellers actually set reserve prices optimally is debatable, Davis, Katok, and Kwasnica (2011) investigate
this question in the context of winner-pay auctions in a laboratory experiment and find amongst other possible
explanations that risk-aversion can explain parts of the observed data.

18 As the explicit form of θ−1
r (pr), (59), is rather unappealing it is relegated to the appendix (as are all following

expressions which are based on it).
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Figure 5: Seller’s expected revenue (in the colours of the rainbow from red ν ∈ {1/2, 1/3, 1/4, 1/8} green)
as a function of the reserve price pr under variance-averse bidding compared to the case of risk-neutral
bidding ν = 0 (black).

5 Generalisations

5.1 Exogenous shocks

Another way to influence investments more subtly—and also in environments where it is not feasible

to set reserve prices or restrict the number of contest participants—is via the controlled disclosure of

information. To motivate the analysis of exogenous noise we return to the stylised example from the

introduction. Consider an R&D company engaging in costly research outlays in order to obtain some

(patentable) innovation first among a group of competitors. The endogenous variance is grounded,

as before, in the uncertain spread between certain outlays and probabilistic winning. The exogenous

component may be seen as market uncertainty in case of winning: the competitors in the smartwatch

war cannot be entirely certain about the market perception and success of their future products. In

fact, firms often invest in market research long before launching new products in order to get a more

precise signal of future success in new product markets. For the purpose of analysing the effect of

the precision of signals, we extend the basic model analysed in section 3 with exogenous noise. In

a similar fashion to Esö and White (2004) we consider the possibility that the final value of the

object may further be influenced by an exogenous shock, ε ∼ W (0, ε̂2), which is distributed over

some compact interval with mean zero and variance ε̂2. Similarly, a player’s valuation of the state in

which she does not win the object may be subject to another independently distributed exogenous

shock δ ∼ L(0, δ̂2).19

After realising their own (expected) valuations of the object, θi, all players simultaneously submit

their bids, bi, i ∈ N . The player with the highest bid receives the object and all players forgo

their bids. Consider expected valuations distributed E[R] ∼ W [θi, ε̂
2], where the distribution W is

19 As an example of an interaction in which a discrimination between shocks is natural consider patent races where
firms are already in the market. Here, the success of one firm certainly affects the market prospects of the losers.
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elliptical, i.e., completely determined by mean θi and variance ε̂2 ∈ [0, 1].20 Similarly, we allow for

the case that a player’s valuation, if she does not win the object, is subject to another exogenous

shock δ ∼ L(0, δ̂2). In the case of R&D competition, δ̂2 reflects the uncertainty in the company’s

forecast of the residual demand after the innovation. The exogenous shocks realise after the auction

stage has ended and player i’s payoff is given by

πi(bi, b−i; θi) =











θi + ε− bi if bi > bj∀j 6= i,
1
m
(θi + ε) + m−1

m
δ − bi if i ∈ Q = {j ∈ N |bj = maxk∈N bk}, m = |Q|,

δ − bi if ∃j : bi < bj .

Notice that neither of these exogenous noise variables have any effects on equilibrium bidding

behaviour in the standard model of buyers with risk-neutral von Neumann-Morgenstern utility, who

simply maximise expected payoffs. In the following we discuss how bidding strategies of buyers with

mean-variance preferences are affected by noisy signals. The player’s objective changes from (1)

into

(38)ui(µ(b, θi), σ
2(b, θi)) = µ(b, θi)− ν

(

σ2(b, θi) + ε̂2F (β−1(b))n−1 + δ̂2(1− F (β−1(b))n−1)
)

for ν ∈ [0, 1
2
]. Inserting back the expressions for the mean and variance (4), her objective is

(39)
ui(b, θi) = (F (β−1(b)))n−1

[

θi
(

1− νθi + νθi(F (β−1(b)))n−1)− νε̂2
)]

+ (1− (F (β−1(b))))n−1δ̂2 − b.

The first-order condition for maximisation of this expression with respect to b is

(40)

[

θi
(

1− νθi + 2νθi(F (β−1(b)))n−1
)

− ν(ε̂2 − δ̂2)
]

×

(n− 1)(F (β−1(b)))n−2f(β−1(b))
∂β−1(b)

∂b
= 1.

In the symmetric equilibrium b = β(θi) for all i ∈ N , this yields the first-order differential equation

(41)β ′(θi) = θi
(

1− νθi + 2νθi(F (θi))
n−1
)

(n− 1)(F (θi))
n−2f(θi)

− (n− 1)(F (θi))
n−2f(θi)ν(ε̂

2 − δ̂2).

This differential equation is solved by the bidding function21

(42)β̂mv(θi) =

{

0 if θi ≤ θ0

βmv(θi)− (F (θi))
n−1ν(ε̂2 − δ̂2) if θi > θ0

20 Elliptical distributions are a generalisation of the normal family containing, among others, the uniform, Student-t,
Logistic, Laplace, symmetric stable, and Normal distributions. A detailed presentation of these distributions is
available in Fang, Kotz, and Ng (1987).

21 Note that the bidding function (42) constitutes an equilibrium in both cases, whether a zero bid is interpreted
as abstaining from the contest and hence results in a winning probability of zero, or the winner is determined
through efficient tie-breaking (i.e., ties are broken in favour of the player with the highest valuation for the prize)

in the event that all players bid zero, which happens with strictly positive probability if ε̂2 − δ̂2 > 0 and F has
full support [0, 1]. Which of these cases is more appropriate depends on the exact environment to be modelled.
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where βmv(θi) is defined in (10) and the ‘cutoff type’ θ0 is implicitly defined as the solution to

(43)
θ0(F (θ0))

n−1 −
∫ θ0

0

(F (ϑ))n−1dϑ

−ν

∫ θ0

0

ϑ2(n− 1)(F (ϑ))n−2f(ϑ)
(

1− 2(F (ϑ))n−1
)

dϑ− (F (θ0))
n−1ν(ε̂2 − δ̂2) = 0

for which a closed form solution is generally unavailable. As we restrict bids to be non-negative,

the resulting bidding function is still invertible over the relevant region. Similarly to the common

practice of normalising the valuation of the outside option to zero, (42) shows that there is a degree

of freedom to normalise the variance of one of the two possible outcomes. In the remainder we

therefore normalise δ̂2 ≡ 0 for simplicity.

Corollary 5. Introducing exogenous noise ε̂2 > 0 on the prize rotates the optimal bidding schedule

down, causing low-type bidders to abstain from participating in the auction.

Consequently, it lies in the interest of an effort maximizing contest designer to minimise ε̂2− δ̂2,

i.e., reveal as much information about the prize as feasible, while possibly keeping the loser’s payoff

uncertain.

5.1.1 Example

We conclude this section with our usual uniform, two-bidders example. Consider the equilibrium

bidding function

(44)b∗ = β̂(θi) =
θ2i
2

− ν

(

θ3i
3

− θ4i
2

+ θiε̂
2

)

.

The bidding behaviour this suggests for the case of a stochastic prize parameterised by ε̂2 = 1/4,

is shown as dotted line in figure 2. Consider now a case in which we auction two objects valued

θ1 > θ2 with exogenous prize variance ε̂1 > ε̂2. If (full demand) bidders submit separate bidding

functions for each object, then we can get cases where the bid for the high-value/high-risk object

is below that of the low-value/low-risk object as exhibited by the dashed pair of bidding functions

relative to their solid counterparts in figure 6.

5.2 Variance seeking

Up to this point of our analysis we have focussed on players who aim to avoid variance in their

payoffs. Although risk aversion is a much more common assumption in economic studies, empirical

studies have found risk seeking behavior in multiple environments including investment games and

inventive activities (see e.g., Åstebro, 2003). In this section, we point out that the approach using

mean-variance preferences is equally applicable when players are variance seeking and briefly discuss

the effects of such preferences on our results in section 3. Variance seeking preferences are captured

by a negative parameter, ν ∈ (−1/2, 0), in our basic model (1). Following the same analytical

steps as before, we find that (10) still describes the symmetric equilibrium bidding functions when n

players have symmetric mean-variance preferences with variance seeking parameter ν ∈ (−1/2, 0).
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Proposition 2 shows that in the equilibrium of the symmetric all-pay auction with variance seeking

players low types bid more and high types bid less than their counterparts in the symmetric all-pay

auction with risk neutral players.

Proposition 2 (Single-crossing II). In an all-pay auction with n symmetric players, who each max-

imise (1) with ν ∈ (−1/2, 0),

1. the strategies

(45)βmv(θi) = βrn − ν

∫ θi

0

ϑ2(n− 1)(F (ϑ))n−2f(ϑ)
(

1− 2(F (ϑ))n−1
)

dϑ

constitute the symmetric equilibrium, and

2. either βmv(θ) ≥ βrn(θ) for all θ ∈ [0, 1] or there exists a θ̂ in the support of F such that

βmv(θ) ≥ βrn(θ) for θ ≤ θ̂, βmv(θ̂) = βrn(θ̂) and βmv(θ) < βrn(θ) for θ > θ̂.

Proof. The proof is the same as in section 3.

Figure 6 illustrates this observation graphically. It further shows that from a contest designer’s

point of view it is strongly beneficial to introduce even a small amount of exogenous noise when

players have variance seeking preferences. In our model this effect can be achieved both by a higher

degree of uncertainty about the value of the prize and by less uncertainty in the event of losing the

contest.

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

θi

β(θi)

βrn(θi)

β ε̂
mv(θi)

βmv(θi)

Figure 6: Equilibrium bidding functions for the all-pay auction under risk-neutrality (solid black, βrn) and
risk-seeking behaviour (ν ∈ {−1/4,−1/2}, solid, red and blue, resp.). The dotted bidding functions exhibit
risky prizes ε̂− δ̂ = 1/10.
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5.3 Type-dependent variance preferences

In this section we further generalise our model to account for systematic differences in risk prefer-

ences. In section 3.2 we analyse bidding behaviour of two players who ex-ante differ in their risk

attitudes. We take these variance aversion parameters as exogenously determined and assume that

prize values are independently drawn from the same distribution. This model accurately captures

bidding strategies when the mean-variance preference parameters are fixed. Contrary to this classical

understanding of preferences, empirical and experimental studies suggest that the same player may

indeed show different risk attitudes when facing different tasks and in particular when operating in

different payoff spaces. In the spirit of Post and Levy (2005), who test a model of locally risk-seeking

agents whose risk attitudes differ in bear and bull markets, we generalise our model such that risk

preferences systematically differ with a player’s valuation of the prize. In order to study this case,

we change the simple objective (1) to

(46)ui(µ(b, θi), σ
2(b, θi); ν, λ, t) = µ(b, θi)− ν(θi − t)λσ2(b, θi),

for λ ∈ {2n + 1|n ∈ N} ∪ {0} and reference point t ∈ (0, 1).22 Note that setting λ = 0 takes us

back to the case of type-independent mean-variance preferences as displayed in objective (1); in all

other cases, for ν > 0, types θ < t enjoy variance while types θ > t are variance averse. Type θ = t

is risk neutral. A higher parameter λ represents more pronounced differences in variance preference

towards the extremes, while a lower parameter λ corresponds to more uniformly increasing variance

aversion. For the case where ν < 0, this interpretation is reversed.

Taking the derivative with respect to player i’s bid b, we obtain the first-order condition

2θ2i ν(n− 1)β(−1)(b)2n(θi − t)λ − β(−1)(b)3β ′ (β(−1)(b)
)

− θi(n− 1)β(−1)(b)n+1
(

θiν(θi − t)λ − 1
)

β(−1)(b)3β ′ (β(−1)(b))

(47)

in which we assume that the unknown function β(θi) is invertible. Setting zero and supplying the

symmetric equilibrium condition b = β(θi), this simplifies to

(48)β ′(θi) = (n− 1)θn−1
i

(

1 + (θi − t)λθiν
(

2θn−1
i − 1

))

.

A type-zero player still optimally bids zero. The first-order differential equation (48) is then solved

for boundary condition β(0) = 0 by

(49)βν,θ(θi; ν, λ, t) =
n− 1

n
θni − ν(n− 1)tn+1(−t)λ

∫

θi
t

0

xn(1− x)λ
(

1− 2tn−1xn−1
)

dx.

This formulation allows for changes of variance-preferences based on endogenous, type-dependent

considerations. Our main motivation in this section is to illustrate that the introduction of mean-

variance considerations into the standard auction analysis allows for simple analytical predictions

even in relatively complex environments in which solutions based on full von Neumann-Morgenstern

preferences seem entirely out of reach.

22 The limiting cases of t ∈ {0, 1} are already covered by the previous analysis.
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Figure 7: Type-dependent equilibrium bidding functions βν,θ(θ; 0, 0, 1/2) (blue),βν,θ(θ; 1/2, 1, 1/2) (red),
βν,θ(θ;−1/2, 1, 1/2) (gold) for two players. The bidding functions do not intersect for θ > 0.

6 Concluding remarks

We present first results for the study of all-pay auctions if buyers or sellers are endowed with

mean-variance preferences. We fully characterise the symmetric equilibrium bidding functions of

the all-pay auction with n identical bidders when bidders maximise an additively separable function

of their expected payoff and payoff variance. Our first proposition shows that consideration of

mean-variance preferences suffices to derive the qualitative properties of the bidding function which

Fibich, Gavious, and Sela (2006) obtain in their analysis of a similar environment but considering any

von Neumann-Morgenstern utility function which entails risk aversion. These qualitative properties

seem to correspond well to experimental data. As such, all our results based on this bidding

function appear relevant even when payoff distributions are not fully characterised by their first two

moments. Eisenhuth and Ewers (2012) observe similar effects on equilibrium bidding behaviour in

their analysis of loss-averse players. Most standard models of loss-aversion are equivalent to our

model of mean-variance preferences because the wedge between the winning and losing payoff is

exogenously determined by a player’s type in the all-pay auction.

In our model of mean-variance preferences, players choose a strategy that maximises the differ-

ence between their expected payoff and the payoff variance, which is weighted by a parameter, ν,

representing the players’ degree of variance aversion. One major advantage of this approach is that

we obtain closed form solutions for the bidding functions with just a single parameter representing

risk aversion. Thus, we can perform comparative statics. Furthermore, this functional form allows us

to relax the standard assumption of identical preferences. We exemplary solve for the bidding func-

tions in an all-pay auction with one expected payoff maximiser and one bidder with mean-variance

preferences. In contrast to the symmetric equilibrium, we find that the mean-variance bidder of a

given type always bids more than her risk neutral opponent of the same type. Although the analysis

is only provided for the case of two bidders, the result would look similar if more general sets of
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n1 risk neutral and n2 mean-variance bidders were competing. Similarly, we conjecture that the

qualitative findings from our benchmark case would carry over if the first bidder type was not risk

neutral, but just less variance averse than her opponent.

Having obtained the (symmetric) equilibrium bidding function we then turn to the seller’s per-

spective and consider effects of the number of bidders, their degree of variance aversion, and an

optimally set reserve price. Corollary 2 shows that the influence of variance aversion on expected

revenue depends on the number of players. In particular, we find that considering n ≥ 3 reverses

the ranking found for the two-player case. This finding suggests that under risk-aversion the gener-

alisation from the two-player case to the general case may not always be as intuitive as it is often

the case under risk neutrality.

With the exception of the analysis of bidding behaviour of n ex-ante identical players, much of

our analysis focuses on the case of valuations that are i.i.d. draws from the uniform distribution over

[0, 1]. The resulting simplification of otherwise lengthy expressions and the possibility to analytically

obtain solutions has caused us to make this assumption. However, qualitatively similar results can

be obtained for other standard distributions.

Appendix

A. Generalised mean-variance preferences

Throughout the paper we use simple preferences of the form

(50)ui(µ(b, θi), σ
2(b, θi)) = µ(b, θi)− νσ2(b, θi), with ν ∈ [0, 1].

In this appendix, we generalise this expression to the form mean plus a monomial function of the

variance as follows

(51)ui(µ(b, θi), σ
2(b, θi)) = µ(b, θi)− νσ2(b, θi)

κ, with κ > 0

allowing for both concave and convex transformations of the variance term. Going through the same

steps as in the derivation of the original symmetric bidding function of subsection 3.1 we obtain, for

two bidders with uniformly distributed valuations, the equilibrium bidding function

(52)β(θ) =
θ2

2
− κνκ+1 [B(θ; 3κ, κ)− 2B(θ; 3κ+ 1, κ)]

where B(θ; a, b) represents the incomplete Euler Beta function defined as

(53)B(θ; a, b) =

∫ θ

0

ta−1(1− t)b−1dt.

This illustrates that, although we choose a particularly simple form of preferences for presentational

purposes, nothing stops us from using more involved functional preference representations.
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B. Second-order condition

The second-order condition is obtained by twice differentiating the objective (2) and supplying (9)

for ∂β−1(b)
∂b

and ∂2β−1(b)
∂b2

= − β′′(θ)
β′(θ)3

. The resulting expression simplifies to

(54)F (θi)
5−2nF (θi)

2(θiν − 2θiνF (θi)− 1) (1− 2θiν + 4θiνF (θi)
n−1) + θif(θi)D

(n− 1)2θ2i f(θi) (F (θi)− θiνF (θi) + 2θiνF (θi)n)
3

where

(55)D = (θiν − 1)F (θi)((n− 2)(1− θiν) + 2(n− 3)θiνF (θi))
− 2θiνF (θi)

n((2n− 3)(1− θiν) + 4(n− 2)θiνF (θi)),

which, under the sufficient condition (7), is negative.

C. Explicit forms used in revenue derivation

This appendix shows the explicit form of some of the equations kept for presentation reasons from

the main text. Define

(56)A =
3

√

27prν2 − 2− 72prν +
√

4(12prν − 1)3 + (2 + 9pr(8− 3ν)ν)2,

(57)B =

√

3− 8

ν
+

4 21/3(12prν − 1)

νA
− 2 22/3A

ν
,

and

(58)C =
√
3B − 3−

√
6

√

3− 8

ν
+

2 21/3(1− 12prν)

νA
+

22/3A

ν
− 3

√
3(ν − 4)

νB
.

Then the inverse of (35) is given explicitly as

(59)θ−1
r (pr) =

3−
√
3B +

√
6

√

3− 8
ν
+ 2 21/3(1−12prν)

νA
+ 22/3A

ν
− 3

√
3(ν−4)
νB

12
.

The explicit version of (36) is

(60)βr(θi) =
3pr + θ2i (3− 2νθi + 3νθ2i ) + ν

(

C
12

)3

6
.

Finally, the explicit version of the revenue of the all-pay auction with two symmetrically variance-

averse players with parameter ν and reserve price pr (37) is

(61)Revmv(pr) =
10 + 39pr + ν + 3prC + (4 + ν)

(

C
12

)3 −
(

C
4

)2

30
.

In principle, the derivative of the last expression with respect to pr gives an explicit version of the

revenue-optimal reserve price p∗r . This derivation is not shown here for reasons of economy of space.
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