
Kushnir, Alexey; Nichifor, Alexandru

Working Paper

Targeted vs. collective information sharing in networks

Working Paper, No. 152

Provided in Cooperation with:
Department of Economics, University of Zurich

Suggested Citation: Kushnir, Alexey; Nichifor, Alexandru (2014) : Targeted vs. collective information
sharing in networks, Working Paper, No. 152, University of Zurich, Department of Economics, Zurich,
https://doi.org/10.5167/uzh-95041

This Version is available at:
https://hdl.handle.net/10419/111212

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.5167/uzh-95041%0A
https://hdl.handle.net/10419/111212
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 
 

 
Working Paper No. 152 

 
 

Targeted vs. Collective Information Sharing 
 in Networks 

 
 
 

Alexey Kushnir and Alexandru Nichifor 
 
 

April 2014 
 

 

 

 

 
 
 

University of Zurich 
 

Department of Economics 
 

 
 

Working Paper Series 
  

ISSN 1664-7041 (print) 
 ISSN 1664-705X (online) 

 
 

 
 

 
 

 

 



Targeted vs. Collective

Information Sharing in Networks∗

Alexey Kushnir† Alexandru Nichifor‡

First draft: October 11, 2013

This version: April 4, 2014

Abstract

We introduce a simple two-stage game of endogenous network formation and informa-

tion sharing for reasoning about the optimal design of social networks like Facebook or

Google+. We distinguish between unilateral and bilateral connections and between tar-

geted and collective information sharing. Agents value being connected to other agents

and sharing and receiving information. We consider multiple utility specifications. We

show that the game always has an equilibrium in pure strategies and then we study how

the network design and the utility specifications affect welfare. Surprisingly, we find that

in general, targeted information sharing is not necessarily better than collective infor-

mation sharing. However, if all agents are either “babblers” or “friends”, irrespective of

whether the network is unilateral or bilateral, in equilibrium, targeted information sharing

yields higher welfare than collective information sharing.

JEL Classificaiton: D47, D85, C72, C62

∗We thank Nick Bedard, Antonio Cabrales, Sergio Currarini, Matt Elliot, Jacob Goeree, Maria Goltsman,
Jeanne Hagenbach, Bettina Klose, Michael König, Philippos Louis, Gregory Pavlov, Xavier de Plozo, Fernando
Vega-Redondo, Ron Siegel, Jingjing Zhang, and seminar participants at St. Gallen university for discussions
and useful suggestions. Kushnir gratefully acknowledges financial support from the European Research Council
(ERC Advanced Investigator Grant, ESEI-249433).
†ESEI Center for Market Design, Department of Economics, University of Zürich; alexey.kushnir@esei.ch.
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1. Introduction

Online social networks are used by roughly one in four people worldwide and the number of users

is estimated to reach almost 2 billions by the end of 2014 (eMarketer, 2013b). Excluding dating

websites, there are more than 200 notable social networking websites (for short, networks) that

are currently active. Among these networks, some have been more successful than others in

attracting a very large number of users.1 In particular, with more than 500 million users

each, Facebook and Google+ are by far the largest networks.2 However, even when restricting

attention to only these two networks, little is know about how various network design options

affect their success.

Facebook and Google+ esentially evolved over time, often following a “trial and error” ap-

proach, and their design was shaped by substantive lessons from both failures and successes.

In some cases, less prominent options that one network made available to its users have been

adopted by the other network, further developed, and then given prominent status. For exam-

ple, Facebook had an option called “friends lists”, which allowed a user to group a subset of his

friends into a list and then share information only with the people in this list. However, this

option was hidden deep in the user interface and Facebook did not take any steps to promote it

or to encourage its usage. Indeed, before 2010, only 5% of Facebook’s users have used “friends

lists” (Eldon, 2010). In contrast, on it’s launch in early 2011, Google+ showcased as one of

its main features an option that allowed users to group their contacts into meaningful groups

called “circles”. Furthermore, it encouraged its users to share information selectively using

these circles. Nowadays, although the friends list and the circles have roughly the same func-

tionality, the emphasis placed on these options by each network remains very different. This is

particularly interesting since these options are key in determining the information shared and

received by users, and thus significantly influence the network’s owner revenue from content

specific advertising. Note that these revenues are impressive by any metric.3

1For example, networks that are estimated to have in excess of 100 million registered users include specialized
networks such as Twitter (microblogging) or Linkedln (professional), or general networks such as Facebook,
Google+, Bebo, Habbo, Netlog, Orkut, Qzone, Renren or Tagged.

2Other measures include the number of daily or monthly active users. According to the company’s latest
official report, in December 2013, Facebook had on average 757 million daily active users. Google+ reportedly
attracted by mid 2013 around 359 million monthly active users representing 26% of all internet users worldwide
and is now the second largest network in terms of both registered and active users (eMarketer, 2013a).

3Facebook obtained in 2013 a revenue of $7.87 billion (Facebook, 2014). Google Inc., the company owning
and operating Google+, became on the 7th of February 2014 the second most valuable company in the world
with a market capitalization of $395.42 billion. Google Inc. monetizes user activity across its products, which
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We propose a new framework for reasoning about the optimal design of some of the options

that networks like Facebook and Google+ make available to their users. In particular, we are

interested in the design of the options that specify how agents may form connections and how

they may share information via connections. Our model consists of a simple two-stage game.

In the first stage, we consider a process of endogenous network formation in which agents

choose with what other agents to connect with. Given the type of connections that agents are

allowed to form, we distinguish between unilateral and bilateral networks.

In the second stage, after the connections are formed, each agent receives some private

information and has the option of sharing this information with his connections. Given the

constraints upon sharing information, we distinguish between targeted and collective informa-

tion sharing.

The network owner’s revenue is derived from advertisement, which is proportional with the

information shared and received in the network. Agents have quasilinear utilities from being

connected to other agents and for sharing and receiving information. For each of our designs,

we consider three utility specifications. In the most general specification, an agent who shares

an information might value the information shared differently than the agent who receives it.

We also consider two other special cases: a“babbler” network, a situation in which agents only

value sharing information, and a “friends” network, a situation in which the information shared

by one agent and received by another is valued identically by both of them.

We use subgame perfect Nash equilibrium as a solution concept for our two-stage game.

For all possible network designs and given the most general specification of the utility, we

derive agents’ equilibrium strategies and we show that for our two-stage game of endogenous

network formation and information exchange, an equilibrium is always guaranteed to exist. We

then turn to studying how the network design and the utility specifications affect the set of

connections, the welfare of the agents, and the revenue of the network owner in equilibrium.

Surprisingly, in sharp contrast with the economic intuition that flexibility should be welfare

enhancing, for the most general utility specification, for either unilateral or bilateral networks,

we show that targeted information sharing is not necessarily better than collective information

sharing for either the agents or the network owner. Thus, our result shows that in general there

is no unambiguous recommendation for what design options an owner seeking to maximize

include but are not limited to Google+. It does not provide public reports concerning its revenues from Google+
alone but it these revenues are undoubtedly important. More generally, companies in the United States alone
spent an estimated $6.1 billion in 2013 on ads in social media (BIA/Kelsey, 2014).
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his utility should choose. However, for babbler or friends networks, we prove that targeted

information sharing is always weakly better than collective information sharing for both the

agents and the network owner.

Given any babbler or friends network with either targeted or collective information sharing,

we also analyze the welfare implications of allowing for unilateral versus bilateral connections.

We find that for babbler networks with targeted information sharing, networks with unilateral

connections induce more connections and yield a weakly higher welfare than the networks with

bilateral connections. However, for babbler networks with collective information sharing, the

networks with unilateral connections yield a higher utility for every agent than the networks

with bilateral connections, but the comparison with respect to the set of connections and the

revenue of the owner of the network is ambiguous. Finally, we show that for friends networks

with either targeted or collective information sharing, when comparing networks with unilateral

connections versus networks with bilateral connections, the welfare effects are ambiguous.

2. Related Literature

Our modelling is in line with the game theoretical literature on multi-stage games with incom-

plete information (for an excellent textbook description, see Fudenberg and Tirole (1991)).

The first stage of our game connects with the literature on strategic network formation

(Bala and Goyal, 2000; Galeotti et al., 2006, 2010; Jackson and Wolinsky, 1996). Jackson and

Zenou (2013) provide an excellent overview of this literature. Closest to our work, Bala and

Goyal (2000) propose a non-cooperative model of network formation and they characterize the

architectures of the networks that arise in strong Nash equilibria. In contrast to their main

results, we compare the set of connections, the utilities of the agents, and the revenue of the

network, across the equilibria in different types of networks. We also assume that agents receive

benefits not only from incoming connections, i.e., through receiving information, but also from

outgoing connections, i.e., through sharing information. These type of benefits do not appear

neither in Bala and Goyal (2000) nor in any other known to us paper.

The second stage of our game is constructed around the idea of studying information sharing,

and idea that is inspired, although not directly relatable to, the studies on information sharing

or disclosure (Austen-Smith, 1994; Okuno-Fujiwara et al., 1990; Ostrovsky and Schwarz, 2010;

Pagano and Jappelli, 1993).

4



Finally, we note that social networks such as Facebook recently started to generate a lot

of interest in economic literature (Batzilis et al., 2013; Chen et al., 2011; Hartline et al., 2008;

Kleinberg and Ligett, 2013; Tarbush and Teytelboym, 2014, 2012). However, most of this

literature is centred around empirical investigations. Closest to our work, Kleinberg and Ligett

(2013) analyze information sharing and privacy in social networks. They study the behavior of

rational agents in a network where an information shared by an agent may spillover from the

agent who is the intended recipient to other agents, with potentially unpleasant consequences

for the agent who shared the information. In their model, the utility of an agent takes one of

two fixed values to reflect his relation with other agents, “friends” or “enemies”, with whom he

is in the same component. Thus, theirs is a simultaneous game concerned with the formation of

Nash stable components. In contrast, in our setting agents are simultaneously concerned with

the information shared and received. Our model is a multi-stage game with observed actions

and incomplete information in which we study not just what connections are formed among

agents but also what information gets shared. The network structure does not influence our

results.

3. Model

There is a (network) owner, denoted by 0, and a finite set of agents I = (1, ..., I). Let 2I

denote the power set of I. The owner sets the “rules” of the network. These rules specify how

agents may form connections among them and how they may share information via connections.

Agents have preferences over forming connections and sharing private information. Each agent

i has a constant value cij from being connected to agent j, values sharing his information sij(xi)

with agent j, and values receiving information rij(xj) from agent j. We consider multiple design

options for the rules that the owner may set. Once the rules are set, the agents play a two–stage

game of endogenous network formation and information exchange. The two–stage game and

the design options are as follows.

Stage 1 (network formation): Any two distinct agents i and j may form a connection ij.

Each agent i ∈ I chooses a subset of other agents Ni ∈ 2I\{i} with whom he wants to connect

with. We denote the choices of all agents except i as N−i. The choices of all agents are

N = {Ni}i∈I .

We consider two possible network designs. In networks with unilateral connections, for a
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connection ij to be formed, it is enough for agent i to choose another agent j. In contrast, in

networks with bilateral connections, for a connection ij to be formed, it is not enough for agent

i to choose another agent j; it also has to be the case that j chooses i. That is, we require

agents i and j to choose each other.

Observe that under both possible network designs the choices of all agents N determine

a finite network, where agents are the nodes and the connections formed are the edges. The

choices of all agents are revealed at the end of Stage 1. For simplicity, with some abuse of

the notation, we denote the resulting network by N . We denote by Ñ the set of all possible

networks.

Stage 2 (information sharing): Each agent i ∈ I observes some (private) information xi,

with xi independently distributed according to some function hi with support X i. We do not

restrict X i in any way. Each agent knows xi but not x−i. Let x ∈ X denote the profile of

information, where x = {xi}i∈I and X =
∏I

i=1 X
i. Any two agents who are connected may

exchange information between them. We define a binary action of agent i regarding sharing

his information xi with agent j via connection ij at network N as 1ij(x
i, N) : X i× Ñ → {0, 1},

where 1ij(x
i, N) = 1 if ij is an edge in N and agent i shares his information, and 1ij(x

i, N) = 0

otherwise.

We consider two possible information sharing designs. In networks with targeted informa-

tion sharing, an agent can select individually with whom to share his information among his

connections; formally, there are no restrictions on actions 1ij. In contrast, in networks with col-

lective information sharing, each agent can share his information only with all his connections

at once; formally, 1ij = 1ij′ for all j, j′ ∈ Ni with ij, ij′ being edges in network N .

We denote agent i’s actions at each possible history as 1i = {1ij(·, ·)}j∈I\{i}. The actions

at each possible history of all agents are 1 = {1i}i∈I .

Given the two stages described above a pure strategy of agent i is a pair (Ni,1i).

In our model, the network formation stage precedes the information sharing stage because

we consider that connection decisions are more long term than information sharing decisions.

Thus, we consider the long term decisions as fixed when short term decisions are made. The

flexibility of the design leads to four possible types of networks (Figure 1), allowing us to study

two distinct externalities that agents impose on each other. Roughly speaking, in networks with

bilateral connections, as each connection requires mutual consent, every two connected agents

directly influence each others’ payoffs as the information shared by one enters in the utility of
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the other. Thus, an agent i connected to another agent j, on top of the benefits from sharing

his information with j, receives an externality via the benefits that he obtains from receiving

information from j. In networks with collective information sharing, as each agent can only

share his information with all his connections at once, each connection involving an agent i

may influence his decision regarding potentially forming other connections. For example, an

agent i connected to another agent m may choose to connect or not with n not solely based on

her own intrinsic preferences, but also after taking into account the “compatibility” between m

and n.

3.1. Preferences

We define the utilities of the agents after and before observing their private information.

The ex-post quasilinear utility of agent i who has private information xi at network N , given

that at Stage 2 he follows action 1i while the other agents follow actions 1−i, is Ui(1i,1−i|xi, N),

and we define Ui(·) contingent upon the Stage 1 network design.

In networks with unilateral connections, each agent i has a constant value cij and shares his

information sij(xi) with each agent in j ∈ Ni. However, agent i can only receive information

rij(xj) from agents j such that i ∈ Nj. Thus, recalling that we did not restrict X i in any way,

and denoting by E the mathematical expectation operator, agent i’s utility is

Ui(1i,1−i|xi, N) =
∑
j∈Ni

(
cij + sij(xi)1ij(x

i, N)
)

+ E
∑
j:i∈Nj

rij(xj)1ji(x
j, N).

In networks with bilateral connections, agents in a connection ij have each a constant value,
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and they can freely share and receive information between them. With some abuse of notation

we denote agent i’s utility as

Ui(1i,1−i|xi, N) =
∑

(i,j):j∈Ni,i∈Nj

(
cij + sij(xi)1ij(x

i, N) + E(rij(xj)1ji(x
j, N))

)
.

The ex-ante utility of agent i at network N is Ui(N,1) = E Ui(1i,1−i|xi, N). This is agent

i’s utility before he observes his private information but after the network N is formed.

We assume that the utility of the network owner mainly comes as revenue from content

specific advertising, which is proportional to the amount of relevant information exchanged

among agents.4 Consequently, we define the utility of the network owner as the sum of agents’

ex-ante benefits corresponding to information exchange:

U0(N,1) = E
∑
i∈I

∑
j∈Ni

(sij(xi)1ij(x
i, N) + rij(xj)1ji(x

j, N)).

We assume that the network owner and the agents are all utility maximizers.

Next, we introduce two natural restrictions on the preferences of the agents.

First, consider an environment where agents value only sharing information, i.e., for each

i, j ∈ I with i 6= j, we require rij = 0. We call such agents “babblers”. A network in which all

agents are babblers is called a babbler network.

Second, consider an environment where the preferences for sharing and receiving information

coincide, i.e., for each i, j ∈ I with i 6= j, we require rij = sji. We call such agents “friends”.

A network in which all agents are friends is called a friends network.

3.2. Subgame Perfect Nash Equilibrium

To predict the outcome of our two–stage game, we use subgame perfect Nash equilibrium as a

solution concept. A profile of strategies (N,1) is a subgame perfect Nash equilibrium if

1. Ui(Ni, N−i,1) ≥ Ui(N
′
i , N−i,1) for each i ∈ I, each N ′i ⊆ I, and

4The content specific advertising attempts to gain attention by providing content related to the user’s
experience. Common examples include Facebook Sponsored Stories and Twitter Promoted Tweets. The content
specific advertising is usually called “native advertising” and currently accounts for 39% of the total US firms
expenditure on social media advertising (see BIA/Kelsey, 2013).
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2. 1i(x
i, N) ∈ argmaxSi∈Ωi(Ni)

Ui(Si,1−i|xi, N) for each xi ∈ X i, each N ∈ Ñ , where for

targeted information sharing Ωi(Ni) = {0, 1}Ni and for collective information sharing

networks Ωi(Ni) = {0, 1}.

For situations which result in identical payoffs, we assume that ties are broken consistently,

e.g., by employing the following tie-breaking rule: (1) if an agent is indifferent between forming

or not a connection with another agent, then he forms the connection, and (2) if an agent is

indifferent between sharing or not his information with the other agent(s), then he shares his

information.

For short, we refer to a subgame perfect equilbrium that satisfies the tie-breaking rule above

simply as an equilibrium.

4. Equilibrium Strategies

We start by analyzing the strategic behavior of the agents at the information sharing stage

given an existing network. At this stage all connections have been formed. Thus, the flow

of fixed benefits is determined and agents cannot influence receiving information.5 However,

agents may choose to share or not information.

Without loss of generality, assume that agent i is connected to Ni agents.

In networks with targeted information sharing, by maximising his ex-post utility, an agent

i shares information xi with an agent j ∈ Ni if and only if sij(xi) ≥ 0. Thus, for agent i, the

expected ex-ante utility from sharing information is

E
(∑
j∈Ni

max(sij(xi), 0)
)
. (1)

In networks with collective information sharing, an agent i shares information xi with all

agents j ∈ Ni if and only if
∑

j∈Ni
sij(xi) ≥ 0. Thus, for agent i, the expected ex-ante utility

5The assumption that agents cannot influence the benefits from receiving information can be relaxed. Alter-
natively, agents can decide to receive or block receiving information before the private information is realized
based on the expectation regarding the connected agent’s information distribution and the connected agent’s
information sharing strategy. In this case, we assume that the connected agent receives the same benefits from
information sharing independently on whether he is blocked or not.

9



from sharing information is

E
(
max(

∑
j∈Ni

sij(xi), 0)
)
. (2)

Given that the maximum function is a convex function, the following remark follows.

Remark 1. Given the same set of connections, each agent’s benefit from information sharing

in networks with targeted information sharing is weakly higher than in his benefit in networks

with collective information sharing.

Recall that our tie-breaking rule requires that if an agent is indifferent between sharing his

information with his connection(s), then he shares his information. Thus, for each subgame

at the information sharing stage, we have a Nash equilibrium. For networks with targeted

information sharing, the Nash equilibrium is unique. For networks with collective information

sharing, we may have a multiplicity of optimal sets, but the agents’ utility in equilibrium is

unique. For each information sharing design, we fix agents’ continuation payoffs to be equal

with their Nash equilibrium payoffs.

We now analyze the strategic behavior of the agents at the network formation stage.

In networks with unilateral connections, agent i cannot control what other agents connect

to him. Thus, he cannot influence the information that he receives. However, agent i can

choose the agents that he wants to connect with in order to send information.

In networks with unilateral connections and targeted information sharing, agent i decides

individually regarding each of the connections that he makes in order to send information and

chooses to connect with another agent j if and only if

cij + E(max(sij(xi), 0)) ≥ 0. (3)

In networks with with unilateral connections and collective information sharing, agent i

decides regarding the whole set of connections Ni that he makes in order to send information

by maximizing the following expression:

max
Ni⊆I

(∑
j∈Ni

cij + E(max(
∑
j∈Ni

sij(xi), 0))
)
. (4)
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Both optimization problems above are discrete maximization problems. Hence, both of

them are well defined. This establishes the existence of a subgame perfect Nash equilibria for

networks with unilateral connections.

In networks with bilateral connections the Nash equilibrium is a very weak equilibrium

concept, and the existence of an equilibrium is straightforward. Each agent establishing no

connection at the network formation stage and then following the actions that induce Nash

equilibrium payoffs at the information sharing stage is a subgame perfect Nash equilibrium for

both targeted and collective information sharing networks.

The above analysis proves the following theorem.

Theorem 1. For all possible network designs, the two-stage game of endogenous network

formation and information exchange has an equilibrium in pure strategies.

5. Welfare Analysis

In this section we analyze the welfare implications of various network designs and the implica-

tions over the set of connections in equilibrium. We start by showing that for general agent’s

characteristics, when comparing networks with targeted information sharing against networks

with collective information sharing, the welfare implications for the agents and for the owner

are unclear.

Example 1. Targeted versus collective information sharing.

Let 0 denote the network owner and let I = {1, 2, 3}. We assume that agents form the

complete network with either unilateral or bilateral connections. For each agent, the constant

value of being connected to another agent is null, i.e., cij = 0 for all i 6= j where i, j ∈ I.

For convenience, for each agent i ∈ I, we require X i be a subset of IR2 and we represent i’s

private information by a two-dimensional vector xi = (xi1, x
i
2) that is uniformly distributed

within the unit circle: {(xi1, xi2) : (xi1)2 + (xi2)2 ≤ 1}. Agents’ benefits from information sharing

and receiving are linear: sij(x) = sijx and rij(x) = rijx with sij, rij ∈ IR2 for all i 6= j. The

information sharing weights, which can be thought of as reflecting the agents’ preferences for

11
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Figure 2. Nodes represent agents. An arc reflects that the “tail” agent wants so share the part of

his private information that is specified on the label of the arc with the “head” agent.

sharing individual dimensions of their multidimensional private information, are: s12 = s23 =

s31 = (1, 0) and s13 = s32 = s21 = (0, 1). We specify the information receiving weights rij

later. Since agents are symmetric, we consider only agent 1, and for convenience, we omit the

specific index of the agent. Figure 2 gives a visual representation of our example so far. Next,

we analyze each agent’s incentives at the information sharing stage.

In networks with targeted information sharing, since s12 = (1, 0) and s13 = (0, 1), agent 1

prefers to share his information X = (x1, x2) with agent 2 if x1 ≥ 0 and with agent 3 if x2 ≥ 0

(see the left panel on Figure 3). Thus, the ex-ante utility for sharing information for agent 1 is

E(max(x1, 0)) + E(max(x2, 0)) = 2(2+
√

2)
3π

.

In networks with collective information sharing, since s12 = (1, 0) and s13 = (0, 1), agent

1 prefers to share his information X = (x1, x2) with agents 2 and 3 if x1 + x2 ≥ 0 (see the

right panel on Figure 3). Thus, the ex-ante utility for sharing information for agent 1 is

E(max(x1 + x2, 0)) = 4
√

2
3π

.

When comparing the two types of information sharing networks from agent 1’s perspective,

since 2(2+
√

2)
3π

> 4
√

2
3π

, his ex-ante utility from sharing information is higher under targeted

information sharing than under collective information sharing. However, recall that the ex-

ante utility of both the agents and the network owner includes not just the benefits from

sharing information, but also the benefits from receiving information. Next, we show that the

ex-ante utility from receiving information can be smaller in networks with targeted information

sharing than in networks with collective information sharing, which can lead to situations in

which the ex-ante utility for both the agents and the owner is smaller in networks with targeted

information sharing than in networks with collective information sharing.
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x1

x2

s12

s13

a) Targeted sharing

x1

x2

s12 + s13

b) Collective sharing

Figure 3. Targeted versus collective information sharing. Agent 1’s information X = (x1, x2) is

uniformly distributed within the unit circle. The left panel illustrates targeted information sharing:

agent 1 prefers to share with agent 2 his (private) information in the half circle filled with horizontal

lines, and agent 1 prefers to share with agent 3 his information in the half circle filled with vertical

lines. The right panel illustrates collective information sharing: agent 1 prefers to share with both

agents 1 and 2 his information in the half circle filled with diagonal lines.

Let the information receiving weights be rij = (1, 1) for all i 6= j. Given that agents 2

and 3 use the same information sharing strategies as agent 1, agent 1’s expected utility from

receiving information in the networks with targeted information sharing is E(x1 + x2|x1 ≥
0) + E(x1 + x2|x2 ≥ 0) = 4(1+

√
2)

3π
, while his expected utility from receiving information in

networks with collective information sharing is 2E(x1 +x2|x1 +x2 ≥ 0) = 8
√

2
3π

. Our calculations

are summarized in Table 1.

Agent’s benefits / Owner’s utility Targeted Collective

Sharing benefits: 2(2+
√

2)
3π

4
√

2
3π

Receiving benefits: 4(1+
√

2)
3π

8
√

2
3π

Owner’s utility: 8+6
√

2
π

12
√

2
π

Table 1. The utility of the agents and of the owner for targeted and for collective information sharing.

Table 1 shows that given an existing network (recall that we assumed that agents form the

complete network with either unilateral or bilateral connections), the utilities of the agents

and the utility of the owner may be smaller in networks with targeted information sharing

than in networks with collective information sharing. If we maintain the assumption that for

13



each agent the value of being connected to another agent is null and agents 2 and 3 have no

information to share, then the same example also applies to endogenously formed networks.

Hence, in general, there is no clear relation between the utility of the agents in networks with

targeted information sharing and their utility in networks with collective information sharing.

A similar statement applies for the owner. �

Example 1 shows that in general, for an owner who wishes to maximize his utility and who

may choose the rules of his network to correspond to either targeted information sharing or to

collective information sharing, it is not clear what type of network to choose. The unclarity

persists even if the network owner is not maximizing his own utility but instead is an altruistic

social planner who wishes to maximize the welfare of the agents. In the following subsections,

we restrict the utility functions of the agents such that all agents are either babblers or friends

(see the last paragraph of Section 3.1) and we compare [networks with targeted versus collective

information sharing] and [networks with unilateral versus bilateral connections].

5.1. Targeted vs. Collective Information Sharing

While our previous example shows that in general it is difficult to obtain unambiguous results,

the following theorem shows that in babblers or friends networks, flexibility is unambiguously

better. Intuitively, in babbler networks, because the information received is made irrelevant,

targeted information sharing can be thought of as a kind of perfect information sharing dis-

crimination.6 In friends networks, because the information shared by an agent and received by

another is identically valued by both agents, the interests of these agents are perfectly aligned.

Therefore, the individual optimum and the joint optimum coincide.

Theorem 2. Consider a babblers network or a friends network with unilateral (bilateral) con-

nections. In any equilibrium of the two-stage game with collective information sharing, {the

set of connections, each agent’s utility, and the utility of the owner} are weakly smaller than in

any (some) equilibrium of the two-stage game with targeted information sharing.

6Consider the following analogy. Imagine the information to be shared is a good to be sold and the utility
from sharing information is the price received for the good. Then, in babblers networks, targeted information
sharing corresponds to first degree price discrimination, whereas collective information sharing corresponds to
the law of one price.
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We prove Theorem 2 by proving a series of four lemmas that compare targeted versus collec-

tive information sharing in: babbler networks with unilateral connections (Lemma 1), babbler

networks with bilateral connections (Lemma 2), friends networks with unilateral connections

(Lemma 3), and in friends networks with bilateral connections (Lemma 4).

Lemma 1. Consider a babbler network with unilateral connections. In any equilibrium of the

two-stage game with collective information sharing, {the set of connections, each agent’s utility,

and the utility of the owner} are weakly smaller than in any equilibrium of the two-stage game

with targeted information sharing.

To prove this lemma, let us consider a babblers network with unilateral connections. Let

us consider some equilibrium of the two-stage game with collective information sharing. Then,

the optimal set of agent i’s unilateral connections N∗i solves the maximization problem in (4).

Assume |N∗i | ≥ 2 and let k ∈ N∗i . We can then write the following set of inequalities

∑
j∈N∗i \k

cij + E(max(
∑

j∈N∗i \k

sij(xi), 0)) + cik + E(max(sik(xi), 0)) ≥

∑
j∈N∗i

cij + E(max(
∑
j∈N∗i

sij(xi), 0)) ≥ (5)

∑
j∈N∗i \k

cij + E(max(
∑

j∈N∗i \k

sij(xi), 0)).

The first inequality follows from the convexity of the maximum function and the second from

the optimality of the set N∗i . Comparing the first and the third expressions we deduce that

cik + E(max(sik(xi), 0)) ≥ 0, (6)

which by inequality (3) implies that agent i is connected to agent k in any equilibrium of

the two-stage game with targeted information sharing.7 Hence, the set of connections in any

equilibrium of the two-stage game with collective information sharing is a subset of the set of

connections in any equilibrium of the two-stage game with targeted information sharing.

Let us now compare agent i’s utility from being connected to the set of agents N∗i in the

7Note that for |N∗i | < 2 there is no distinction between collective and targeted information sharing.
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networks with collective and targeted information sharing. Since agent i can better tailor his

information sharing decisions when information sharing is targeted, his utility is greater for the

latter network, i.e.,

∑
j∈N∗i

cij + E
(
max(

∑
j∈N∗i

sij(xi), 0)
)
≤
∑
j∈N∗i

cij + E
(∑
j∈N∗i

max(sij(xi), 0)
)
. (7)

When information sharing is targeted, agent i might also be connected to some agents k ∈ I\N∗i .

These connections, however, necessarily satisfy (6) and, hence, agent i’s utility in any equilib-

rium of the two-stage game with collective information sharing is smaller than in any equilibrium

of the two-stage game with targeted information sharing. Summing across all agents, we also

obtain that the revenue of the network owner utility in any equilibrium of the two-stage game

with collective information sharing is smaller than in any equilibrium of the two-stage game

with targeted information sharing. �

Lemma 2. Consider a babbler network with bilateral connections. In any equilibrium of the

two-stage game with collective information sharing, {the set of connections, each agent’s utility,

and the utility of the owner} are weakly smaller than in any equilibrium of the two-stage game

with targeted information sharing.

To prove this lemma, let us consider a babblers network with bilateral connections. Let us

consider some equilibrium of the two-stage game with collective information sharing. Then,

the optimal set of agent i’s unilateral connections N∗i solves the maximization problem

max
Ni⊆N∗−i

(∑
j∈Ni

cij + E(max(
∑
j∈Ni

sij(xi), 0))
)
, (8)

which is analogue to the maximisation problem (4) in Lemma 1. The proof then follows by the

same arguments as in Lemma 1. �

Lemma 3. Consider a friends network with unilateral connections. In any equilibrium of the

two-stage game with collective information sharing, {the set of connections, each agent’s utility,

and the utility of the owner} are weakly smaller than in any equilibrium of the two-stage game
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with targeted information sharing.

To prove this lemma, let us consider a friends network with unilateral connections. Let us

consider some equilibrium of the two-stage game with collective information sharing. Let N∗

denote the set of connections in this equilibrium. As agents cannot influence the benefits from

receiving information, the strategic decision of each agent is influenced only by the constant

value of a connection and by the benefits from sharing information. But then, when considering

only the benefits from information sharing, the same arguments as in Lemma 1 apply and the

same conclusions obtain, i.e., if agent ik ∈ N∗, then agent i is connected to agent k in any

equilibrium of the two-stage game with targeted information sharing, the set of connections in

any equilibrium in the former game is smaller, and agents derive smaller benefits from sharing

information in the two-stage game with collective information sharing.

Let us now consider the benefits from receiving information. Consider some agent k who is

among i’s connections, k ∈ N∗i . But then, as we established above, in any equilibrium of the

two-stage game with collective information sharing agent k derives smaller benefits from sharing

information with i than in any equilibrium of the two-stage game with targeted information

sharing

E
(
ski(xk)1∗ki(x

k, N∗)
)
≤ E

(
max(ski(xk), 0)

)
, (9)

where 1∗ki is an optimal information sharing strategy, i.e., 1∗ki(x
k, N∗) = 1 if

∑
l∈N∗k

skl(xk) ≥ 0

and 0 otherwise. Since agents i and k are friends, this implies that i also enjoys smaller benefits

from receiving information when information is shared collectively. Overall, in any equilibrium

of the two-stage game with collective information sharing, agent i obtains a smaller utility than

in any equilibrium of the two-stage game with targeted information sharing. Summing across

all agents, the same comparison for the utility of the network owner follows straightforwardly.�

Lemma 4. Consider a friends network with bilateral connections. In any equilibrium of the

two-stage game with collective information sharing, {the set of connections, each agent’s utility,

and the utility of the owner} are weakly smaller than in any equilibrium of the two-stage game

with targeted information sharing.

To prove this lemma, let us consider a friends network with bilateral connections. Let us

consider some equilibrium of the two-stage game with collective information sharing. Let N∗

denote the set of connections in this equilibrium. Since now agent i needs the approval of other
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agents to form connections, the optimal set of i’s connections N∗i solves

max
Ni⊆N∗−i

(∑
j∈Ni

cij + E(max(
∑
j∈Ni

sij(xi), 0)) + E(
∑
j∈Ni

sji(xj)1∗ji(x
j, N∗))

)
, (10)

where 1∗ji(x
j, N∗) = 1 if

∑
l∈N∗j

sjl(xj) ≥ 0 and 0 otherwise. Consider an agent k who is among

agent i’s connections k ∈ N∗i . We then have the following set of inequalities

∑
j∈N∗i \{k}

cij +E(max(
∑

j∈N∗i \{k}

sij(xi), 0)) + E(
∑

j∈N∗i \{k}

sji(xj)1∗ji(x
j, N∗))

)
+

cik +E(max(sik(xi), 0)) + E(max(ski(xk), 0)) ≥∑
j∈N∗i

cij +E(max(
∑
j∈N∗i

sij(xi), 0)) + E(
∑
j∈N∗i

sji(xj)1∗ji(x
j, N∗))

)
≥ (11)

∑
j∈N∗i \{k}

cij +E(max(
∑

j∈N∗i \{k}

sij(xi), 0)) + E(
∑

j∈N∗i \{k}

sji(xj)1∗ji(x
j, N∗))

)
,

where we have 1∗ji(x
j) = 1 if

∑
l∈N∗j

sjl(xj) ≥ 0, and 0 otherwise. The first inequality follows

from convexity of the maximum function. Here we also use that agents are friends: the infor-

mation agent i prefers to receive from k coincides with the information that k prefers to share

with i. The second inequality follows from the optimality of set N∗i : agent i does not want to

drop any of his connections. Comparing the first inequality with the third, we obtain

cik + E(max(sik(xi), 0)) + E(max(ski(xk), 0)) ≥ 0. (12)

Hence, each agent i proposing the set of connections N∗i and following his optimal strategies

is an equilibrium of the two-stage game with targeted information sharing and bilateral con-

nections. In this equilibrium, agents also receive at least as large benefits from sharing and

receiving information. The same comparison holds for the revenue of the network owner. Thus,

for any equilibrium of the two-stage game with collective information sharing, there exists some

equilibrium of the two-stage game with targeted information sharing that results in at least the

same set of connections, delivers larger utility to each agent, and yields a higher utility for the

owner of the network. �
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5.2. Unilateral vs. Bilateral Connections

In this subsection, we compare unilateral versus bilateral connections when agents are babblers

or friends. Unlike Theorem 2 in Subsection 5.1, however, agents being babblers or friends leads

to different implications. We first consider babblers networks, and then friends newtorks.

Theorem 3. Consider a babbler network.

i. When information sharing is targeted, in any equilibrium of the two-stage game with uni-

lateral connections, {the set of connections, each agent’s utility, and the utility of the

owner} are weakly larger than in any equilibrium of the two-stage game with bilateral

connections.

ii. When information sharing is collective, in any equilibrium of the two-stage game with uni-

lateral connections, each agent’s utility is larger than in any equilibrium of the two-stage

game with bilateral connections. The comparison with respect to the set of connections

and the utility of the network owner is ambiguous.

To prove i.), let us consider a babblers network with targeted information sharing. Let us

consider some equilibrium of the two-stage game with bilateral connections. In this equilibrium,

if agents i and j form a bilateral connection ij, then they choose each other. Hence, the following

inequalities are satisfied:

cij + E(max(sij(xi), 0)) ≥ 0,

cji + E(max(sji(xi), 0)) ≥ 0.

Thus, in any equilibrium of the two-stage game with unilateral connections, agent i establishes

a unilateral connection with j, and j establishes a unilateral connection with i. Hence, the set

of connections in any equilibrium of the two-stage game with bilateral connections is a subset of

the set of connections in the two-stage game with unilateral connections, and the implications

regarding each agent’s utility and the utility of the owner immediately follow.

To prove ii.), let us consider a babblers network with collective information sharing. For

each agent, the set of connections formed in any equilibrium of the two-stage game with bi-

lateral connections is also available in the two-stage game with unilateral connections. Thus,
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Figure 4. Bilateral versus unilateral connections in babblers networks with collective information

sharing. Nodes represent agents and arcs represent connections. The number of connections and the

utility of the network owner can be smaller in networks with unilateral connections than in networks

with bilateral connections.

in any equilibrium of the two-stage game with unilateral connections, each agent has a weakly

larger utility than in any equilibrium of the two-stage game with bilateral connections. The

implications for the set of connections and the revenue of the network owner, however, can be

ambiguous, as the following example illustrates. �

Example 2. Bilateral versus unilateral connections in babblers networks with

collective information sharing.

Let us consider a babblers network with collective information. Let I′ = {a, 1, 2, 3} ∪ {0}.
Agent a has a constant value from connecting to 1, but not to the other agents, i.e., ca1 =

1, ca2 = ca3 = 0; agent a prefers to share information with 1 that is opposite to the information

he prefers to share 2 and 3, i.e. sa1 = (−1,−1), sa2 = (1, 1), sa3 = (1/2, 1/2); agent a’s

information is distributed such that if he optimally shares with 1 his utility is E(max(−x1 −
x2, 0) = 1, and if he optimally shares with 2 and 3 his total utility is 3/2E(max(x1+x2, 0) = 3/2.

Agent 1 prefers to remain unconnected and to not share anything, i.e., c1a = c12 = c13 =

−∞, s1a = s12 = s13 = (0, 0). Agents 2 and 3 prefer to share any information and they prefer

to be connected only with a, i.e., c2a = c3a = 1, and the constant value from connecting to any

other agent are infinitely negative.

In the two-stage game with bilateral connections, agent a cannot connect with 1 because 1

blocks the connection. Thus, in the equilibrium with the largest number of connections, agent

a connects 2 and 3 (see the left panel on Figure 4), and the utility of the network owner is 3/2.

20



In the two-stage game with unilateral connections, in the unique equilibrium, agent a con-

nects to 1 and obtains a large fixed benefit, i.e., the constant value, from this connection. Agent

a does not want to connect to 2 and 3 because they impose a negative externality: agent a’s

utility from connecting to all three agents is 1.5 compared to his utility of 2 from connection

to agent 1 only (see the right panel on Figure 4). Also, note that the utility of the owner of

the network is null as there is no information shared among the agents.

Thus, overall, the network with bilateral connections may have an equilibrium with more

connections and may generate a higher utility for the owner. �

Next, we compare networks with unilateral and bilateral connections when agents are

friends.

Theorem 4. Consider a friends network with targeted (collective) information sharing. The

comparison in terms of {the set of connections, each agent’s utility, and the utility of the net-

work owner} between an equilibrium of the two-stage game with unilateral connections and some

equilibrium of the two-stage game with bilateral connections is ambiguous.

Let us consider a friends network wither either targeted or collective information sharing.

The result that the equilibrium of a two-stage game with unilateral connections can yield more

connections, a higher agent’s utility, and more utility for the owner, than an equilibrium of a

two-stage game with bilateral connections is straightforward.

Below, we show that there may exist an equilibrium of the two-stage game with bilateral

connections which may have more connections and yield a higher utility for the agents and for

the owner than the the unique equilibrium of a two-stage game with unilateral connections.

Intuitively, we provide an example of a setting with only two agents (hence, targeted and

collective information sharing coincide) in which the agents fail to agree on a connection in

the unique equilibrium of the two-stage game with unilateral connections, whereas there exists

and an equilibrium of the two-stage game with bilateral connections in which a connection is

formed.

Let us consider two symmetric agents. Each agent has negative fixed benefits from estab-

lishing the connection equal to −1.5. The agents are friends and enjoy sharing and receiving

the same type of information. We assume that when agents share information optimally, their

benefits from sharing and receiving information are equal to 1. Agent utilities from various

21



0

−0.5

1

0.5

0

1

−0.5

0.5

a) Unilateral connections

0

0.5

0

0.5

b) Bilateral connections

Figure 5. Unilateral versus bilateral connections in friends networks. Nodes represent agents, arcs

represent possible connections, and the numbers represent agents’ utilities for the respective possible

connections. In the two-stage game with unilateral connections, no connection is the unique equilib-

rium. In the two-stage game with bilateral connections, the possible connection depicted may be an

equilibrium.

network configurations for both unilateral and bilateral networks are depicted on Figure 5.

Consider the two-stage game with unilateral connections. Forming the connection is costly

for each agent: fixed benefits are −1.5 and benefits from information sharing equal only 1.

Hence, each agent prefers to drop his connection independently of the action of the other

agent. Thus, in equilibrium, no connection is formed.

Consider the two-stage game with unilateral connections. Now each agent realizes that if

he drops his connection he does not obtain benefits from receiving information. Thus, both

agents connecting to each other is an equilibrium. �

6. Conclusion

We introduced a new model for reasoning about the design of some of the most important

options that networks make available to their users. Our model is deliberately parsimonious.

We employ what we believe is the minimal formalism needed for a first–order approximation

of the most important options related to network formation and information sharing that are

made available by online social networks such as Facebook or Google+ to their users. Apart

from the design options, our model is also the first to allow users’ preferences to account for
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not just the information shared but also for the one received.

Surprisingly, we found that in general, enhancing and promoting the tools for targeted

information sharing is not necessarily in the benefit of the users or in the benefit of the owner

of the network. Finding out what combination of network design options is best suited for the

owners of networks such as Facebook or Google+ depends on the preferences of the typical user

of the network. Pinning down the preferences of the typical user is a delicate empirical question

which we can’t answer with certainty in absence of direct access to data but we conjecture that

a friends network with bilateral connections is best suited to proxy today’s real life online social

networks. For this environment, we found that in equilibrium targeted information sharing is

at least as good as collective information sharing, which may explain why Google+ chose to

refine and emphasize its “circles” option.

While we aimed to keep our model as general as possible, we did make some simplifying

assumptions.

First, we required each agent’s utility be separable in terms of benefits from information

sharing and receiving. Our proofs, however, use only the implication stated in Remark 1: given

the same set of connections, each agent derives higher benefits from targeted information sharing

compared with collective information sharing. Hence, any non-separable utility specification

that satisfies the above implication should lead to the same results.

Second, we used a very permissive notion of Nash equilibrium to analyze the network forma-

tion. We conjecture that our main results extend to other solution concepts such as pair-wise

stability Jackson and Wolinsky (1996), bilateral rationality Kim and Wong (2007), set-wise sta-

bility Echenique and Oviedo (2006) or coalition-proof Nash equilibrium Dutta and Mutuswami

(2005).

Finally, we considered targeted and collective information sharing, which are two extreme

types of information sharing. The possibility of sharing information with each of the connections

relates to the assumption there is no costs associated to writing personal messages. In the

presence of such costs, each agent might prefer to form several groups of agents to share similar

information with, i.e. a “family” group, a “work” group, etc. We believe that our analysis

extends to the environment with several, but limited number of groups. We leave this question

for future research.
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