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Abstract Optimal rank-order tournaments have traditionally been studied

using a �rst-order approach. The present analysis relies instead on the con-

struction of an �upper envelope�over all incentive compatibility conditions.

It turns out that the �rst-order approach is not innocuous. For example, in

contrast to the traditional understanding, tournaments may be dominated

by piece rates even if workers are risk-neutral. The paper also o¤ers a strik-

ingly simple characterization of the optimal tournament for quadratic costs

and CARA utility, as well as an extension to large tournaments.
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1 Introduction

The economic analysis of rank-order tournaments present itself today as a

tremendously successful research area that has experienced a steady increase

in interest since its very beginnings.1 On the theoretical front, it has of-

ten been crucial to characterize the optimal tournament (Lazear and Rosen,

1981; Nalebu¤ and Stiglitz, 1983; Akerlof and Holden, 2012). This task has

most commonly been accomplished using the so-called �rst-order approach,

i.e., by replacing a continuum of incentive compatibility conditions in the

�rm�s design problem with a single marginal condition. However, the �rst-

order approach is not generally valid, and as a consequence, the properties

of the optimal tournament have sometimes been discussed under somewhat

restrictive or even indistinct conditions.2

In this paper, an alternative route to the analysis of optimal rank-order

tournaments is taken. The approach entails the construction of an �upper

envelope�over all incentive compatibility conditions, which is then added as

an inequality constraint to the relaxed problem. Thereby, the optimal tour-

nament may be characterized as the solution of an optimization problem with

a �nite number of constraints. Of course, the thereby reformulated problem

remains di¢ cult. However, in contrast to the original problem, techniques

from Milgrom and Segal (2002) may be applied to derive key properties of

the optimal tournament even if the �rst-order approach is invalid or di¢ cult

to justify.

1See, e.g., the evidence provided by Connelly et al. (2014). For an introduction to the
economics of tournaments, see Prendergast (1999, Sec. 2.3).

2Useful discussion of the scope and limitations of the �rst-order approach in tournament
theory can be found in McLaughlin (1988) and Gürtler (2011).
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The main result of this paper is that the �rst-order approach to tour-

nament design is not innocuous. Speci�cally, it is found that traditional

conclusions regarding the e¢ ciency of rank-order tournaments are not uni-

versally valid and sometimes too optimistic. In fact, tournaments may be

substantially less e¢ cient than suggested by the existing literature. Further,

with additional structure imposed on the cost and utility functions, the opti-

mal tournament may be characterized in explicit terms even if the �rst-order

approach is invalid. The paper also considers an extension to tournaments

with many contestants and a single winner, which may be seen as an equi-

librium analysis complementing prior work.

The observation that the �rst-order approach is not generally valid in

a moral hazard setting is due to Mirrlees (1975). Subsequent research on

the �rst-order approach may be roughly divided into two strands. A �rst

strand of literature is concerned with formulating su¢ cient conditions for

the �rst-order approach (Rogerson, 1985; Jewitt, 1988; Sinclair-Desgagné,

1994; Conlon, 2009; Ke, 2013). A second strand of literature has aimed at

eliminating restrictive assumptions from the standard model of moral hazard

(Mirrlees, 1986; Araujo and Moreira, 2001; Ke, 2012; Kadan and Swinkels,

2013). The present paper di¤erentiates itself from these contributions al-

ready by its focus on rank-order tournaments. However, also the approach

is di¤erent. For example, the present paper does not employ a Lagrangian

function. Some implications of this point will be discussed in the conclusion.

The remainder of this paper is structured as follows. Section 2 introduces

the set-up, and discusses existence. The envelope approach is presented in

Section 3. A characterization of the optimal tournament is presented in
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Section 4. Section 5 discusses the case of more than two contestants. Section

6 concludes. All proofs have been relegated to an Appendix.

2 Set-up and existence

Considered is a market environment in which risk-neutral �rms hire workers

to produce output of per-unit value V > 0. Given a wage W and an e¤ort

level � � 0, a worker�s utility is de�ned as U(W ) � C(�), where U is twice

di¤erentiable with U 0 > 0, U 00 � 0, and C is four times di¤erentiable with

C 0 � 0, C 00 > 0, C 0(0) = 0, and C 0(�) ! 1 as � ! 1.3 Worker j�s

output (j = 1; 2) is the sum of his e¤ort �j and a random component "j, i.e.,

qj = �j + "j.4 For contestants k 6= j, it will be assumed that the distribution

function G of the di¤erential error term � � "k�"j is symmetric with respect

to the origin and allows a twice di¤erentiable density g = G0 > 0 such that

g0 and g00 are bounded. Given prizes W1 � W2, worker j�s expected utility is

then given as

U(W1)prob[qj > qk] + U(W2)(1� prob[qj > qk])� C(�j) (1)

= U(W2) + (U(W1)� U(W2))G(�j � �k)� C(�j).

In the usual dual formulation, �rms choose prizes and an e¤ort level so as

to maximize a worker�s expected utility subject to zero-pro�t and incentive

3The additively separable form of the utility function ensures tractability. As discussed
in McLaughlin (1988), alternative speci�cations of the worker�s utility function tend to
produce similar conclusions under the �rst-order approach. It is conjectured that the
same is true for the additional settings considered in the present paper.

4The introduction of a common additive shock would not change the conclusions.
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compatibility conditions:

max
W1�W2
��0

U(W1) + U(W2)

2
� C(�) (2)

s.t.

�V =
W1 +W2

2
(3)

(U(W1)� U(W2))G(b�� �)� C(b�) (4)

� (U(W1)� U(W2))G(0)� C(�) (b� � 0)
A solution (W �

1 ;W
�
2 ; �

�) of problem (2-4) will be referred to as an optimal

tournament associated with G.

Under the �rst-order approach (FOA), the continuum of incentive com-

patibility conditions (4) is replaced by the necessary marginal condition

g(0)(U(W1)� U(W2)) = C 0(�): (5)

The relaxed problem is known to allow a solution (W FOA
1 ;W FOA

2 ; �FOA) that

can be approximated by replacing utility and cost functions with their re-

spective second-order Taylor expansions. For example, the e¤ort level and

the prize spread may be approximated by

C 0(�FOA) � V

1 + sC 00=4g(0)2
(6)

and

W FOA
1 �W FOA

2 � g(0)V

g(0)2 + sC 00=4
, (7)

respectively, where s = �U 00=U 0 denotes the worker�s Arrow-Pratt coe¢ -

cient of absolute risk aversion, and marginal utility is normalized to unity

at mean income.5 Moreover, if the worker�s expected utility function in the
5For further details including proofs of equations (6) and (7), see McLaughlin (1988,

p. 231).
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corresponding tournament is, say, strictly concave, then (W FOA
1 ;W FOA

2 ; �FOA)

solves the unrelaxed program. In particular, in the risk-neutral case, C 0(�FOA) =

V , and the resulting allocation of resources is e¢ cient.

When the worker�s expected utility function is not strictly concave, how-

ever, then condition (5) need not be su¢ cient for incentive compatibility. In

that case, the optimal e¤ort level �FOA in the relaxed program may be merely

a local maximum of the worker�s expected utility function.6 In other words,

the tournament that uses the prize structure (W FOA
1 ;W FOA

2 ) need not pos-

sess a symmetric pure-strategy Nash equilibrium. In particular, �� 6= �FOA,

i.e., the �rst-order approach is not justi�ed. Notwithstanding, as pointed out

by Green and Stokey (1983, fn. 3), it may still be feasible for the �rm to

design the tournament in such a way that a symmetric pure-strategy Nash

equilibrium exists. In fact, as shown in the Appendix, this can always be

done in an optimal way.

Proposition 1. An optimal tournament exists (i.e., even if the �rst-order

approach is not justi�ed).

The proposition raises the question of how the optimal tournament looks

like in settings not traditionally considered. This question is addressed in

the following sections.

3 Side-stepping the �rst-order approach

This section describes the envelope approach to rank-order tournaments that

has been outlined in the Introduction. Note �rst that one may add the
6Indeed, checking the local second-order condition shows that �FOA cannot be, say, a

local minimum or a saddle point.
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equality constraint

U(W1)� U(W2) = �(�) �
C 0(�)

g(0)
(8)

to problem (2-4) without a¤ecting the solution. Incentive compatibility (4)

then becomes equivalent to

�(�)(G(b�� �)�G(0)) + C(�)� C(b�) � 0 (b� � 0). (9)

Consider now the �upper envelope�of the individual constraints in (9), i.e.,

'(�) = maxb��0 f(G(b�� �)�G(0))�(�) + C(�)� C(b�)g . (10)

By the Inada conditions, the maximum in (10) is indeed attained. Problem

(2-4) may now be reformulated as

max
��0

U(�) (11)

s.t. '(�) � 0, (12)

where U(�) denotes indirect utility, i.e., the value of the �rm�s objective

function (2) under the condition that the prize structure (W1;W2) is de�ned

implicitely through (3) and (5).7 The reformulated problem (11-12) is still

not standard, because ' may have kinks. However, using the tools provided

by Segal and Milgrom (2002), it can be shown that ' is monotone increasing

7It is not hard to check that U(�) is well-de�ned for any � � 0. Indeed, using (3) to
eliminate W2 in (5), one obtains

U(W1)� U(2V ��W1) =
C 0(�)

g(0)
.

Di¤erentiating the left-hand side with respect to W1, and noting that U 0 > 0, shows that
there is at most one solution. Further, since U 00 � 0, the left-hand side approaches �1
as W1 ! �1. By continuity, there is a unique solution.
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provided that marginal costs are logconcave.8 Moreover, since '(0) = 0,

monotonicity implies that the feasible set in problem (11-12) is a closed

interval whose left endpoint is zero. Hence, the following result is obtained.

Proposition 2. Suppose that C 0 is logconcave. Then �� � �FOA. In partic-

ular, if the �rst-order approach is not justi�ed, then �� < �FOA.

Proposition 2 shows that the �rst-order approach to tournament design is not

innocuous, in the sense that it has the potential to cause a bias in the level of

e¤ort considered to be implementable. Indeed, when the usual equilibrium is

disrupted, then there necessarily exists at least one e¤ort level �� 6= �� such

that the worker�s expected utility from choosing �� equals the equilibrium

utility.9 This type of constraint tends to make it harder for the �rm to

elicit a high level of e¤ort from the worker, and thereby lowers the optimally

implemented level of e¤ort relative to the solution obtained through the �rst-

order approach.

To understand why an assumption on costs is needed, note that raising

� has altogether three e¤ects on the envelope constraint (12). First, C(�)

increases, which tightens the constraint. Second, U(W1)� U(W2) increases,

which loosens the constraint. Finally, deviations become less likely to win,

which also loosens (12). However, if costs are not excessively convex then

the change to the prize structure remains su¢ ciently moderate compared

8It should be noted that logconcavity of marginal costs is a very mild assumption that
is consistent with both convex marginal costs (Chan et al., 2009) and concave marginal
costs (Akerlof and Holden, 2012). Also, marginal costs cannot be globally logconvex under
the Inada conditions imposed. Still, it remains an assumption, of course.

9If g is strictly unimodal, then the second-order condition at �� implies �� < ��, as
one would expect.
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to the di¤erential of the other two e¤ects, tipping the balance in favor of a

tightening constraint.

The size of the potential welfare loss captured by Proposition 2 is not

negligible. To the contrary, as will become clear below, tournaments may be

quite ine¤ective as an incentive device.10

4 An explicit characterization

This section presents a complete characterization of the optimal tournament

in a standard setting. Speci�cally, it will be assumed that costs are quadratic,

i.e., that C(�) = c�2=2 for some c > 0, and that workers exhibit a con-

stant absolute risk aversion, i.e., that either U(W ) = �e�sW=s for s > 0 or

U(W ) =W . These assumptions are made for tractability and can be relaxed.

Indeed, as discussed below, the main features of the optimal tournament do

not depend on these assumptions.

To describe the equilibrium in cases where the �rst-order approach is not

valid, it proves useful to take a comparative statics perspective with respect

to the dispersion of the di¤erential error term. Thus, for a given distribution

function G and an arbitrary parameter � > 0, one de�nes a new distribution

function G�(z) � G(z=�), where a larger � corresponds to a more dispersed

distribution of the di¤erential error term. E.g., if G is standard normal, then

G�(z) is normal with mean zero and standard deviation �.

Denote by �FOA(�) the optimal e¤ort level in the relaxed problem associ-

ated with G�. As discussed in Section 2, this solution can be approximated

10To mitigate the welfare loss, �rms might decide to use deliberately inaccurate perfor-
mance measures (O�Kee¤e et al., 1984), or to induce mixed-strategy equilibria (Nalebu¤
and Stiglitz, 1983, Appendix). Both options are excluded here, however.
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in the case of risk aversion and fully solved in the case of risk neutrality. The

optimally implemented e¤ort ��(�) may now be characterized as follows.

Proposition 3. Suppose that costs are quadratic and that workers have

CARA utility (which includes the case of risk-neutrality as a limit case).

Then, there is a threshold value �� > 0 such that, for any � > 0, the optimal

tournament associated with G� implements the e¤ort level

��(�) = minf �
��
� �FOA(��); �FOA(�)g. (13)

As the proposition shows, the optimal tournament will be shaped by the

envelope constraint (12) once the level of individual-speci�c uncertainty falls

below a certain level. In particular, the usual comparative statics result that

e¤ort is decreasing in � (Lazear and Rosen, 1981, p. 853; McLaughlin, 1988,

fn. 5) breaks down. Instead, the optimally implemented e¤ort level ��(�) is

strictly unimodal in the case of risk aversion, and piecewise linear in the case

of risk neutrality where �FOA(�) is a constant.

Denote by W FOA
1 (�) and W FOA

2 (�) the optimal prizes for the relaxed

problem. Using the usual second-order Taylor expansion of utility around

mean income, the prize spread implementing the optimal e¤ort level can be

shown to satisfy

W �
1 (�)�W �

2 (�) � minf
�

��
; 1g �

�
W FOA
1 (�)�W FOA

2 (�)
�
, (14)

where the approximation is accurate for � � ��.11 Thus, also the prediction

of the prize spread may be biased under the �rst-order approach. In partic-

11To see this, note that the necessary �rst-order condition (5) implies W1 � W2 �
c��=U 0g(0) for the respective solutions of the unrelaxed and the relaxed problems.
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ular, as � gets smaller, the optimal prize spread diminishes much faster than

the �rst-order approach would suggest.12

The worker�s problem has a unique global maximum for � > ��, but

there will be at least one additional global maximum at some �� for � � ��.

Even under the assumptions of Proposition 3, the cardinality of the set of

maximizers may be large (possibly in�nite). However, assuming in addition

that g is strictly bell-shaped,13 one can convince oneself that the worker�s

objective function allows at most two local maxima. In those cases, the

threshold value �� may be computed numerically by exploiting the �rst-order

condition at �� as well as the worker�s indi¤erence between �� and ��. For

example, in the case of a standard normal distribution and risk neutrality,

�� � 0:2 � V=c.

Notably, constraint (12) may come into play in response to changes in V

or c, i.e., even if the information structure does not change. As discussed in

the next section, an increase in the number of contestants may have a similar

e¤ect.

5 Large tournaments

This section considers an extension to tournaments with more than two con-

testants. Attention will be restricted to the special case of a single winner.

Denote by F and f the distribution and density functions associated

12When the assumptions of Proposition 3 are relaxed, one can still show that ��(�) =
�FOA(�) for � su¢ ciently large and that ��(�) ! 0 as � ! 0. Thus, even though the
homogeneous relationships re�ected in (13) and (14) tend to break down for cost functions
that do not exhibit a constant elasticity, the characterization result captures, in its essence,
a more general fact.
13I.e., there is some r > 0 such that g00(z) ? 0 if jzj ? r.
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with an individual error term " (assumed i.i.d. across players). Considering

a tournament between n workers, and provided that all opponents of some

given player j exert the same e¤ort level �, worker j�s probability of winning

may be represented as

Gn(�j; �) =

Z +1

�1
F (�j + "� �)n�1dF ("). (15)

The problem of the �rm is only slightly modi�ed:

max
W1�W2
��0

U(W1) + (n� 1)U(W2)

n
� C(�) (16)

s.t.

�V =
W1 + (n� 1)W2

n
(17)

(U(W1)� U(W2))Gn(b�; �)� C(b�) (18)

� (U(W1)� U(W2))Gn(b�; �)� C(�) (b� � 0)
The optimal tournament satis�es, in particular, the necessary �rst-order con-

dition for a symmetric pure-strategy Nash equilibrium,

U(W1)� U(W2) = �n(�) �
C 0(�)

gn
, (19)

where

gn = (n� 1)
Z +1

�1
F (")n�2f(")2d". (20)

An approximation for the solution of the relaxed problem, �FOAn , can be

found as before. However, as pointed out by McLaughlin (1988, p. 241), it is

in general very di¢ cult to tell if the �rst-order approach is valid for large n.

To side-step the �rst-order approach, one de�nes again the �upper enve-

lope,�which reads in this case

'n(�) = maxb��0 f(Gn(b�; �)�Gn(�; �))�n(�) + C(�)� C(b�)g . (21)

11



Then, as above, one can show that if marginal costs are logconcave, then the

optimally implemented e¤ort ��n in the tournament between n workers and

the corresponding optimal e¤ort level �FOAn in the relaxed problem satisfy

��n � �FOAn . Thus, also in tournaments with more than two contestants, the

�rst-order approach, if invalid, would tend to overstate implemented e¤ort

levels.

Additional conclusions can be obtained by focusing, as Nalebu¤ and

Stiglitz (1983) do, on the incentive compatibility condition at the speci�c

e¤ort level b� = 0. In the case of the normal distribution at least, one may
then characterize the limit behavior of ��n as follows.

Proposition 4. Suppose that F is normal. Then, as the number of con-

testants n increases above all �nite bounds, the optimally implemented e¤ort

level ��n goes to zero.

The result above characterizes the limit behavior of a sequence of optimal

tournaments in a setting where it is a priori not clear if the �rst-order ap-

proach is applicable. It follows from the proposition that the �rst-order

approach is indeed invalid in large tournaments in the case of risk-neutrality.

Even though Proposition 4 holds also under the assumption of risk-aversion,

no conclusion is possible about the validity of the �rst-order approach in

large tournaments for the case of risk-aversion. However, this fact only sup-

ports the usefulness of the envelope approach because it delivers results also

in situations where su¢ cient conditions for the �rst-order approach may be

di¢ cult to �nd.
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6 Conclusion

In this paper, it has been shown that the �rst-order approach, if used exclu-

sively, may lead to a positively biased assessment of the e¢ ciency of rank-

order tournaments. In particular, tournaments may not be very suitable as

compensation schemes when performance is a relatively good signal of e¤ort.

Intuitively, prize structure and performance measurement are complements,

forcing �rms to reduce the former when the latter improves. In the settings

studied above, the prize structure is so unrewarding that the avoidance of

cheating becomes a binding constraint. Individual contracts such as piece

rates may then dominate the optimal tournament even when workers are

risk-neutral.14

Regarding further research, one issue might be the question of whether the

theoretical issues discussed in this paper may constitute a practical reason for

not using tournaments. For example, Lazear and Rosen (1981, p. 848) argue

that in the case of risk-neutrality, the tie between individual contracts and

tournaments is broken by di¤erential costs of information and measurement.

The present analysis obviously provides an alternative hypothesis. Another

interesting issue would be the extension of the present analysis to more than

two prizes or to the case of heterogeneous contestants. Finally, it might be

worthwhile to explore whether the comparably simple approach outlined in

Section 3 could be applied to other settings in contract theory and mechanism

design.

14With this type of observation, the present paper takes the same line as, e.g., Chaigneau
et al. (2014), who show that the su¢ cient statistics theorem fails to hold when the �rst-
order approach is dropped in a standard principal-agent problem.
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7 Appendix

Proof of Proposition 1. By Jensen�s inequality, condition (3) implies

(U(W1) + U(W2))=2 � U(�V ). Hence, from the Inada conditions, there is

a � > 0 such that implementing � =2 [0; �] is never optimal. Via (5) and

(3), there is similarly a W > 0 such that W1;W2 =2 [�W;W ] are never

optimal. Thus, one may replace the feasible set by the bounded subset

I = f(W1;W2; �) 2 [�W;W ]2 � [0; �] : (3), (4), and W1 � W2g. But I 6= ?

for W su¢ ciently large, because then (U(0); U(0); 0) 2 I. Moreover, I is

closed as an intersection of closed sets. �

The following lemma is used in the proof of Proposition 2.

Lemma A.1. De�ne

 (�; b�) � @

@�
f�(�)(G(b�� �)�G(0)) + C(�)� C(b�)g (22)

= �0(�)(G(b�� �)�G(0))��(�)g(b�� �) + C 0(�), (23)

where �0(�) = C 00(�)=g(0). Then the family f (�; b�)gb��0 is equidi¤erentiable
at any � � 0.

Proof. Since g is a density with bounded �rst and second derivatives,

@2 (�; b�)
@�2

= �000(�)(G(b�� �)�G(0))� 3�00(�)g(b�� �) (24)

+ 3�0(�)g0(b�� �)��(�)g00(b�� �) + C 000(�) (25)

exists and is bounded in b�, for any � � 0. It follows that the family

f@ (�; b�)=@�gb��0 is equicontinuous at any � � 0. Using the Mean Value

Theorem, as in Milgrom and Segal (2002, p. 587), f (�; b�)gb��0 is now seen
to be equidi¤erentiable at any � � 0. �

14



Proof of Proposition 2. Denote by X(�) the set of maximizers in problem

(10). Using Lemma A.1, it follows from Milgrom and Segal (2002, Th. 1&3)

that ' is right-hand di¤erentiable at any � � 0 with

'0(�+) � lim
"!0+

1

"
('(�+ ")� '(�)) �  (�; b�), (26)

for any b� 2 X(�).15 Moreover, as a consequence of local and global optimality
conditions,

�(�)g(b�� �)� C 0(b�) � 0, (27)

and

�(�)(G(b�� �)�G(0)) + C(�)� C(b�) � 0, (28)

for any b� 2 X(�). Suppose � > 0. Then, using inequalities (27) and (28) to
put a lower bound on (23) shows that

'0(�+) � �C
00(�)

C 0(�)
(C(�)� C(b�))� C 0(b�) + C 0(�) � �(�; b�) (29)

for any b� 2 X(�). By assumption, C 00=C 0 is weakly decreasing. Therefore,

for any b� � �,

C 00(�)

C 0(�)
(C(�)� C(b�)) = C 00(�)

C 0(�)

Z �

b� C 0(e�)de� (30)

�
Z �

b� C 0(e�)C 00(e�)
C 0(e�) de� (31)

= C 0(�)� C 0(b�). (32)

Hence, �(�; b�) � 0 in this case. Using completely analogous arguments, one
shows that, similarly, �(�; b�) � 0 if b� > �. Thus, '0(�+) � 0 for any � > 0.

Note also that ' is continuous on R+, as a consequence of Berge�s theorem. It
15Intuitively, the value function increases by at least as much as the value at any given

global maximum.
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follows that ' is monotone increasing (Royden, 1988, Sec. 5). Hence, noting

that '(0) = 0, the feasible set of problem (11-12) is an interval [0; �#], for

some �# � 0. But �FOA is a global optimum of U . Therefore, �� � �FOA,

proving the �rst assertion. The second assertion is now immediate. �

For the following three lemmas, the assumptions of Proposition 3 are im-

posed.

Lemma A.2. ��(�) 6= �FOA(�) for some � > 0.

Proof. As in the proof of Proposition 1, there is a � > 0 such that �FOA(�) �

� for any � > 0. Hence, the �rst-order condition

U(W1)� U(W2) =
C 0(�)

g�(0)
=
�c�

g(0)
� �c�

g(0)
, (33)

with g�(z) � g(z=�)=�, implies thatW FOA
1 (�)�W FOA

2 (�) vanishes as � ! 0.

As a consequence, the approximation in

�FOA(�) � V=c

1 + s�c=4g(0)2
(34)

becomes arbitrarily accurate, so that �FOA(�) ! V=c. On the other hand,

from incentive compatibility with respect to a deviation to b� = 0,
0 � (G�(��)�G�(0))

C 0(�)

g�(0)
+ C(�)� C(0) � � c��

g(0)
+
c�2

2
, (35)

where the second inequality follows from G� � 1. Hence, � � 2�=g(0), and

therefore, ��(�) ! 0 as � ! 0. Thus, for any � > 0 su¢ ciently small,

��(�) 6= �FOA(�), which proves the lemma. �

Lemma A.3. U is strongly pseudoconcave in �.
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Proof. Total di¤erentiation of equations (3) and (5), and subsequently

solving the resulting system of linear equations, yields

dW1

d�
=
2V u02 + c=g(0)

u01 + u02
, (36)

dW2

d�
=
2V u01 � c=g(0)

u01 + u02
, (37)

where u01 � U 0(W1) and u02 � U 0(W2). Therefore,

@U

@�
= 2V

u01u
0
2

u01 + u02
+

c

2g(0)

u01 � u02
u01 + u02

� c�. (38)

Di¤erentiating (38) with respect to �, and assuming that @U=@� = 0, one

obtains

@2U

@�2
=

2V

u01 + u02

�
u001u

0
2

dW1

d�
+ u01u

00
2

dW2

d�

�
+
c=2g(0)

u01 + u02

�
u001
dW1

d�
� u002

dW2

d�

�
� c�

u01 + u02
�
�
u001
dW1

d�
+ u002

dW2

d�

�
� c, (39)

where u001 � U 00(W1) and u002 � U 00(W2). Hence, using (36-37) and @U=@� = 0

another time, one arrives at

@2U

@�2
= (�2s) � 2V

2u01u
0
2 + c2=4g(0)2 � c2�2

u01 + u02
� c, (40)

where s = �u001=u01 = �u002=u02 � 0. It follows that @2U=@�2 < 0 if � �

1=2g(0). Otherwise, i.e., if � > 1=2g(0), then @U=@� = 0 implies

2V u01u
0
2 = c�(u01 + u02)�

c

2g(0)
(u01 � u02) (41)

= c(�� 1

2g(0)
)u01 + c(�+

1

2g(0)
)u02 (42)

� c�u02. (43)

Hence, 2V u01 � c�. Similarly, using u02 � u01, one �nds

2V u01u
0
2 = c(�� 1

2g(0)
)u01 + c(�+

1

2g(0)
)u02 � 2c�u01, (44)
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so that V u02 � c�. Multiplying the two inequalities, one arrives at 2V 2u01u
0
2 �

c2�2. It follows that @2U=@�2 < 0, which proves the claim. �

Lemma A.4. �FOA(�) is continuous and strictly decreasing in �.

Proof. Di¤erentiating (38) with respect to � and exploiting that @U=@� = 0,

one obtains

@2U

@�@�
=

2V

u01 + u02

�
u001u

0
2

dW1

d�
+ u01u

00
2

dW2

d�

�
+
c�=2g(0)

u01 + u02

�
u001
dW1

d�
� u002

dW2

d�

�
� c�

u01 + u02
�
�
u001
dW1

d�
+ u002

dW2

d�

�
+

c

2g(0)

u01 � u02
u01 + u02

. (45)

But, from equations (3) and (33), it is immediate that

dW1

d�
= �dW2

d�
=

c�

g(0)(u01 + u02)
. (46)

Simplifying the right-hand side of (45) using (46), one arrives at

@2U

@�@�
= � s�c2�

2g(0)2(u01 + u02)
� sc2�2(u02 � u01)

g(0)(u01 + u02)
2
� c(u02 � u01)

2g(0)(u01 + u02)
< 0. (47)

Since U is strongly pseudoconcave with respect to �, the claim follows. �

Proof of Proposition 3. By Lemma A.2, there is a e� > 0 such that ��(e�) 6=
�FOA(e�). Hence, the envelope constraint must be binding in the reformulated
problem associated with Ge�. Since marginal costs are logconcave, it follows
from the proof of Proposition 2 that � � ��(e�) is equivalent to

(Ge�(b�� �)�Ge�(0))C 0(�)
ge�(0) + C(�)� C(b�) � 0 (b� � 0): (48)

Let � > 0. Then, with � � �=e�, purely algebraic manipulation exploiting
the homogeneity of the cost function shows that

(Ge�(b�� �)�Ge�(0))C 0(�)
ge�(0) + C(�)� C(b�)

=
1

�2

�
(G�(b�� � ��)�G�(0))

C 0(��)

g�(0)
+ C(��)� C(b��)� , (49)
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where �� � �� and b�� � �b�. Hence, �� � ���(e�) is equivalent to
(G�(b�� � ��)�G�(0))

C 0(��)

g�(0)
+ C(��)� C(b��) � 0 (b�� � 0). (50)

Invoking Lemma A.3, it follows that

��(�) = minf�e���(e�); �FOA(�)g (51)

for any � > 0. By Lemma A.4, there is a unique �� such that

��e� ��(e�) = �FOA(��). (52)

Moreover,

��(�) =
�e���(e�) = �

��
�FOA(��) (53)

if � � ��, and ��(�) = �FOA(�) if � > ��. �

Proof of Proposition 4. Consider the speci�c deviation to b� = 0. For any
� � 0, we have

'n(�) � (Gn(0; �)�Gn(�; �))
C 0(�)

gn
+ C(�)� C(0) (54)

� �C
0(�)

ngn
+ C(�)� C(0), (55)

since Gn(�; �) = 1
n
. For ��n to constitute an equilibrium in the tournament

between n workers, it is necessary that 'n(��n) � 0. Hence,

C(��n)� C(0)

C 0(��n)
� 1

ngn
: (56)

Because f 0(") = �"f(")=�2 in the case of the normal distribution, integrating

19



by parts yields

ngn = n

Z +1

�1
(n� 1)F (")n�2f(")2d" (57)

= �n
Z +1

�1
F (")n�1f 0(")d" (58)

=
n

�2

Z +1

�1
"F (")n�1f(")d" (59)

w 1

�

p
2 lnn, (60)

where the asymptotic relationship for the mean extreme of n identically and

independently distributed normal variables has been taken from David and

Naragaja (2003, Sec. 10.5). But, as in the proof of Proposition 1, Jensen�s

inequality implies

U(W1) + (n� 1)U(W2)

n
� U(�V ) (61)

for any n. Hence, ��n � � for any n. Since ngn ! 1 for n ! 1, it follows

from (56) that, indeed, ��n ! 0 for n!1. �
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