
Aradillas-Lopez, Andres; Rosen, Adam M.

Working Paper

Inference in ordered response games with complete
information

cemmap working paper, No. CWP36/14

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Aradillas-Lopez, Andres; Rosen, Adam M. (2014) : Inference in ordered response
games with complete information, cemmap working paper, No. CWP36/14, Centre for Microdata
Methods and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2014.3614

This Version is available at:
https://hdl.handle.net/10419/111375

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2014.3614%0A
https://hdl.handle.net/10419/111375
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Inference in Ordered 
Response Games 
with Complete 
Information.

Andres Aradillas-Lopez
Adam M. Rosen

The Institute for Fiscal Studies 
Department of Economics, UCL 

cemmap working paper CWP36/14



Inference in Ordered Response Games with Complete Information.∗

Andres Aradillas-Lopez†

Pennsylvania State University

Adam M. Rosen‡

UCL and CeMMAP

August 29, 2014

Abstract

We study econometric models of complete information games with ordered action spaces,

such as the number of store fronts operated in a market by a firm, or the daily number of flights

on a city-pair offered by an airline. The model generalizes single agent models such as ordered

probit and logit to a simultaneous equations model of ordered response, allowing for multiple

equilibria and set identification. We characterize identified sets for model parameters under

mild shape restrictions on agents’ payoff functions. We then propose a novel inference method

for a parametric version of our model based on a test statistic that embeds conditional moment

inequalities implied by equilibrium behavior. Using maximal inequalities for U-processes, we

show that an asymptotically valid confidence set is attained by employing an easy to compute

fixed critical value, namely the appropriate quantile of a chi-square random variable. We apply

our method to study capacity decisions measured as the number of stores operated by Lowe’s

and Home Depot in geographic markets. We demonstrate how our confidence sets for model

parameters can be used to perform inference on other quantities of economic interest, such

as the probability that any given outcome is an equilibrium and the propensity with which

any particular outcome is selected when it is one of multiple equilibria, and we perform a

counterfactual analysis of store configurations under both collusive and monopolistic regimes.
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1 Introduction

This paper provides set identification and inference results for a model of simultaneous ordered

response. These are settings in which multiple economic agents simultaneously choose actions from

a discrete ordered action space so as to maximize their payoffs. Agents have complete information

regarding each others’ payoff functions, which depend on both their own and their rivals’ actions.

The agents’ payoff-maximizing choices are observed by the econometrician, whose goal is to infer

their latent payoff functions and the distribution of unobserved heterogeneity. Given the degree of

heterogeneity allowed and the dependence of each agent’s payoffs on their rivals’ actions, the model

generally admits multiple equilibria. We remain agnostic as to the selection of multiple equilibria,

thus rendering the model incomplete, and its parameters set identified.

Although our model applies generally to the econometric analysis of complete information games

in which players’ actions are discrete and ordered, our motivation lies in application to models of

firm entry. Typically, empirical models of firm entry have either allowed for only binary entry

decisions, or have placed restrictions on firm heterogeneity that limit strategic interactions.1 Yet

in many contexts firms may decide not only whether to be in a market, but also how many shops

or store fronts to operate. In such settings, the number of stores operated by each firm may

reflect important information on firm profitability, and in particular on strategic interactions. Such

information could be lost by only modeling whether the firm is present in the market and not

additionally how many stores it operates. Consider, for example, a setting in which there are

two firms, A and B, with (a, b) denoting the number of stores each operates in a given market.

Observations of (a, b) = (1, 3) or (a, b) = (3, 1) are intrinsically different from observations with

e.g. (a, b) = (2, 2), the latter possibly reflecting less firm heterogeneity or more fierce competition

relative to either of the former. Yet each of these action profiles appear identical when only firm

presence is considered, as then they would all be coded as (a, b) = (1, 1).

Classical single-agent ordered response models such as the ordered probit and logit have the

property that, conditional on covariates, the observed outcome is weakly increasing in an unobserv-

able payoff-shifter. Our model employs shape restrictions on payoff functions, namely diminishing

marginal returns in own action and increasing differences in own action and a player-specific unob-

servable, that deliver an analogous property for each agent. These restrictions facilitate straightfor-

ward characterization of regions of unobservable payoff shifters over which observed model outcomes

are feasible. This in turn enables the transparent development of a system of conditional moment

equalities and inequalities that characterize the identified set of agents’ payoff functions.

When the number of actions and/or players is sufficiently large, the characterization of the

identified set can comprise a computationally overwhelming number of moment inequalities. While

ideally one would wish to exploit all of these moment restrictions in order to produce the sharpest

1See e.g. Berry and Reiss (2006) for a detailed overview of complications that arise from and methods for dealing
with heterogeneity in such models.
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possible set estimates, this may in some cases be infeasible. We thus also characterize outer sets

that embed a subset of the full set of moment inequalities. Although less restrictive, the use of

these inequalities can be computationally much easier for estimation and inference. As shown in our

application such outer sets can sometimes be used to achieve economically meaningful inference.

In our application we apply a parametric version of our model to study capacity decisions

(number of stores) in geographic markets by Lowe’s and Home Depot. We show that if pure-

strategy behavior is maintained, a portion of the parameters of interest are point-identified under

mild conditions. We provide point estimates for these and then apply a novel inference procedure

to construct a confidence set for the entire parameter vector by additionally exploiting conditional

moment inequalities implied by the model.2 In applications primary interest does not always rest

on model parameters, but rather quantities of economic interest which can typically be written

as (possibly set-valued) functions of these parameters. We illustrate in our application how our

model also allows us to perform inference on such quantities, such as the likelihood that particular

action profiles are equilibria, and the propensity of the underlying equilibrium selection mechanism

to choose any particular outcome among multiple equilibria.

This reveals a number of substantive findings within the context of our particular application.

We find that when entry by only Lowe’s is one of multiple equilibria, there is a much higher

propensity for Lowe’s to be the sole entrant than there is for Home Depot to be the sole entrant

when that outcome is one of multiple equilibria. Additionally we find a greater propensity for

the symmetric outcome (1, 1) to obtain when it is one of multiple equilibria than it is for either

(0, 1) or (1, 0) to occur when either of those are one of multiple equilibria. Among an array of

counterfactual experiments performed under different equilibrium selection rules, we find that those

favoring selection of more symmetric outcomes produced features that better match the observed

data than do alternative selection rules favoring entry by one firm over the other. We also perform

experiments to investigate what market configurations would occur under counterfactual scenarios

in which (i) the firms behave cooperatively, and (ii) each firm is a monopolist. Our results indicate

that if Lowe’s were a monopolist it would operate in many geographic regions where currently only

Home Depot is present, while in contrast there are many markets in which only Lowe’s is currently

present where Home Depot would choose not to open a store. It thus appears that many more

markets would go unserved were Home Depot to be a monopolist than if Lowe’s were a monopolist.

Our method for inference is a criterion function based approach as advocated by Chernozhukov,

Hong, and Tamer (2007), which is computationally attractive for the model at hand. Specifically,

our criterion function is a quadratic form in the point-identified components of the parameter vec-

2Other recent papers that feature set identification with a point-identified component but with different approaches
include Kaido and White (2014), Kline and Tamer (2013), Romano, Shaikh, and Wolf (2014), and Shi and Shum
(2014). The first of these focuses primarily on consistent set estimation, with subsampling suggested for inference.
The other three papers provide useful and widely applicable approaches for inference based on unconditional mo-
ment inequalities, but do not cover inference based on conditional moment inequalities with continuous conditioning
variables, as encountered here.
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tor, which exploits moment equalities implied by the model, and an additional term that captures

violations of conditional moment inequalities. Characterization of the asymptotic behavior of the

first part is standard. The second component of the quadratic form, denoted R̂ (θ), relies on an

unconditional mean-zero restriction implied by the conditional moment inequalities. We show that

the asymptotic behavior of this part is determined by a sum of U-processes, and we use results

from Hoeffding (1948) and Sherman (1994) to characterize its asymptotic distribution. Because

our criterion function is a quadratic form, symmetric around an inverse variance estimator, it is

asymptotically distributed chi-square when evaluated at any θ in the region of interest. If none of

the conditional moment inequalities are satisfied with equality with positive probability at any such

θ, then only the first component of our quadratic form contributes to the asymptotic distribution,

which is chi-square with degrees of freedom equal to the dimension of the first component. If,

however, any of the conditional moment inequalities are satisfied with equality with positive prob-

ability at any θ in the region of interest, then the second component of our quadratic form makes

a non-negligible asymptotic contribution, and the degrees of freedom of the limiting chi-square

distribution is increased by one. Thus, the use of critical values from this distribution achieves

asymptotically valid inference, see Section 5 for details. Inference based on conditional moment in-

equalities is an active area of research and other possible approaches for estimation and/or inference

include those of Andrews and Shi (2013), Chernozhukov, Lee, and Rosen (2013), Lee, Song, and

Whang (2013, 2014), Kim (2009), Ponomareva (2010), Armstrong(2011a,b), Chetverikov (2012),

and Armstrong and Chan (2013).

The paper proceeds as follows. In Section 1.1 we discuss the related literature on simultane-

ous discrete models, with particular attention to econometric models of games. In Section 2 we

define the structure of the underlying complete information game and shape restrictions on payoff

functions. In Section 3 we derive observable implications, including characterization of the iden-

tified set and computationally simpler outer sets. In Section 4 we provide specialized results for

a parametric model of a two player game with strategic substitutes, including point identification

of a subset of model parameters. In Section 5 we then introduce our approach for inference on

elements of the identified set. In Section 6 we illustrate how our inference method can be applied

to behaviorial restrictions other than pure strategy Nash Equilibrium. In particular, we consider

behaviorial restrictions that impose rationalizability, and nest Nash Equilibrium in both pure and

mixed strategies. In Section 7 we apply our method to model capacity (number of stores) decisions

by Lowe’s and Home Depot. Section 8 concludes. All proofs are provided in the Appendix.

1.1 Related Literature

We consider an econometric model of a discrete game of complete information. Our work follows the

strand of literature on empirical models of entry initiated by Bresnahan and Reiss (1990, 1991a),

and Berry (1992). Additional early papers on the estimation of complete information discrete games
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include Bjorn and Vuong (1984) and Bresnahan and Reiss (1991b). These models often allow the

possibility of multiple or even no equilibria for certain realizations of unobservables, and the related

issues of coherency and completeness have been considered in a number of papers, going back at

least to Heckman (1978), see Chesher and Rosen (2012) for a thorough review. These issues can

be and have been dealt with in a variety of different ways. Berry and Tamer (2007) discuss the

difficulties these problems pose for identification in entry models, in particular with heterogeneity

in firms’ payoffs, and Berry and Reiss (2006) survey the various approaches that have been used to

estimate such models.

The approach we take in this paper, common in the recent literature, is to abstain from imposing

further restrictions simply to complete the model. Rather, we work with observable implications

that may only set identify the model parameters, a technique fruitfully employed in a variety

of contexts, see e.g. Manski (2003), Manski (2007), and Tamer (2010) for references to numerous

examples. In the context of entry games with multiple equilibria, this tact was initially proposed by

Tamer (2003), who showed how an incomplete simultaneous equations binary choice model implies

a system of moment equalities and inequalities that can be used for estimation and inference.

Ciliberto and Tamer (2009) apply this approach to an entry model of airline city-pairs, employing

inferential methods from Chernozhukov, Hong, and Tamer (2007). Andrews, Berry, and Jia (2004)

also consider a bounds approach to the estimation of entry games, based on necessary conditions for

equilibrium. Pakes, Porter, Ho, and Ishii (2006) show how empirical models of games in industrial

organization can generally lead to moment inequalities, and provide additional inference methods for

bounds. Aradillas-López and Tamer (2008) show how weaker restrictions than Nash Equilibrium, in

particular rationalizability and finite levels of rationality, can be used to set identify the parameters

of discrete games. Beresteanu, Molchanov, and Molinari (2011) use techniques from random set

theory to elegantly characterize the identified set of model parameters in a class of models including

entry games. Galichon and Henry (2011) use optimal transportation theory to likewise achieve a

characterization of the identified set applicable to discrete games. Chesher and Rosen (2012) build

on concepts in both of these papers to compare identified sets obtained from alternative approaches

to deal with incompleteness and in particular incoherence in simultaneous discrete outcome models.

What primarily distinguishes our work from most of the aforementioned papers is the particular

focus on a simultaneous discrete model with non-binary, ordered outcomes. Simultaneous binary

models are empirically relevant and have also proved an excellent expository tool in this literature.

However, as discussed above, the extension to ordered action spaces is important from a practical

standpoint. Relevant examples of such outcomes include the number of store fronts a firm operates

in a market, or the number of daily flights an airline offers for a particular city-pair.

Also related are a recent strand of papers on network economies faced by chain stores when

setting their store location profiles, including Jia (2008), Holmes (2011), Ellickson, Houghton, and

Timmins (2013), and Nishida (2012). These papers study models that allow for the measurement
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of payoff externalities from store location choices across different markets, which, like most of

the aforementioned literature, our model does not incorporate. On the other hand, our model

incorporates aspects that these do not, by both not imposing an equilibrium selection rule and by

allowing for firm-specific unobserved heterogeneity.3

Some other recent papers specifically consider alternative models of ordered response with en-

dogeneity. Davis (2006) also considers a simultaneous model with a game-theoretic foundation. He

takes an alternative approach, employing enough additional structure on equilibrium selection so

as to complete the model and achieve point-identification. Also related is Ishii (2005), who studies

ATM networks. She uses a structural model of a multi-stage game that enables estimation of banks’

revenue functions via GMM. These estimates are then used to estimate bounds for a single param-

eter that measures the cost of ATMs in equilibrium. Chesher (2010) provides set identification

results for a single equation ordered response model with endogenous regressors and instrumental

variables. Here we exploit the structure provided by the simultaneous (rather than single equation)

model. Aradillas-López (2011) and Aradillas-López and Gandhi (2013) also consider simultaneous

models of ordered response. In contrast to this paper, Aradillas-López (2011) focusses on non-

parametric estimation of bounds on Nash outcome probabilities, and Aradillas-López and Gandhi

(2013) on a model with incomplete information. The parametric structure imposed here allows

us to conduct inference on economic quantities of interest and perform counterfactual experiments

that are beyond the scope of those papers.

2 The Model

Our model consists of J economic agents or players J = {1, ..., J} who each simultaneously choose

an action Yj from the ordered action space Yj = {0, ...,Mj}.4 Each set Yj is discrete but Mj

can be arbitrarily large, possibly infinite. Y ≡ (Y1, ..., YJ)′ denotes the action profile of all J

players, and for any player j ∈ J we adopt the common convention that Y−j denotes the vector of

actions of j’s rivals, Y−j ≡ (Y1, ..., Yj−1, Yj+1, ..., YJ)′. As shorthand we sometimes write (Yj , Y−j)

to denote an action profile Y with jth component Yj and all other components given by Y−j .

We use Y ≡ Y1 × · · · × YJ to denote the space of feasible action profiles, and for any player j,

Y−j≡ Y1 × · · · × Yj−1 × Yj+1 × · · · × YJ to denote the space of feasible rival action profiles.

The actions of each agent are observed across a large number n of separate environments,

3Of the papers in this literature, only Ellickson, Houghton, and Timmins (2013) and Nishida (2012) also allow
an ordered but non-binary within-market action space. Nishida (2012), in similar manner to Jia (2008), employs an
equilibrium selection rule to circumvent the identification problems posed by multiple equilibria. We explicitly allow
for multiple equilibria, without imposing restrictions on equilibrium selection. Ellickson, Houghton, and Timmins
(2013) allow for multiple equilibria and partial identification, but employ a very different payoff structure. In partic-
ular, they model unobserved heterogeneity in market-level payoffs through a single scalar unobservable shared by all
firms. In our model, within each market each firm has its own unobservable.

4The action labels 0, ...,Mj are of ordinal but not cardinal significance.
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e.g. markets, networks, or neighborhoods. The payoff of action Yj for each agent j is affected by

observable and unobservable payoff shifters Xj ∈ Xj ⊆ Rkj and Uj ∈ R, respectively, as well as

their rivals’ actions Y−j . We assume throughout that (Y,X,U) are realized on a probability space

(Ω,F ,P), where X denotes the composite vector of observable payoff shifters Xj , j ∈ J , without

repetition of any common components. We use P0 to denote the corresponding marginal distribution

of observables (Y,X), and PU to denote the marginal distribution of unobserved heterogeneity

U = (U1, ..., UJ)′, so that PU (U) denotes the probability that U is realized on the set U . We assume

throughout that U is continuously distributed with respect to Lebesgue measure with everywhere

positive density on RJ . The data comprise a random sample of observations {(yi, xi) : i = 1, ..., n}
of (Y,X) distributed P0. The random sampling assumption guarantees identification of P0.5

For each player j ∈ J there is a payoff function πj (y, xj , uj) mapping action profile y ∈ Y and

payoff shifters (xj , uj) ∈ Xj × R to payoffs satisfying the following restrictions.

Restriction SR (Shape Restrictions): The collection of payoff functions (π1, ..., πJ) belong to a

class of payoff functions Π = Π1 × · · · ×ΠJ such that for each j ∈ J ,

πj (·, ·, ·) : Y × Xj × R→ R satisfies the following conditions.

(i) Payoffs are strictly concave in yj :

∀yj ∈ Yj , πj ((yj + 1, y−j), xj , uj)− πj ((yj , y−j), xj , uj)

< πj ((yj , y−j), xj , uj)− πj ((yj − 1, y−j), xj , uj) ,

where by convention πj (−1, xj , uj) = πj (Mj + 1, xj , uj) = −∞.

(ii) For each (y−j , x) ∈ Y−j×X , πj ((yj , y−j) , x, uj) exhibits strictly increasing differences in (yj , uj),

namely that if u′j > uj and y′j > yj , then

πj
((
y′j , y−j

)
, x, uj

)
− πj ((yj , y−j) , x, uj) < πj

((
y′j , y−j

)
, x, u′j

)
− πj

(
(yj , y−j) , x, u

′
j

)
. �

Restriction SR(i) imposes that marginal payoffs are decreasing in each player’s own action yj . It

also implies that, for any fixed rival pure strategy profile y−j , agent j’s best response correspon-

dence is unique with probability one. Restriction SR(ii) imposes that the payoff function exhibits

strictly increasing differences in (yj , uj). It plays a similar role to the monotonicity of latent utility

functions in unobservables in single agent decision problems, implying that the optimal choice of yj

is weakly increasing in unobservable uj , as in classical ordered choice models. This restriction aids

in our identification analysis by guaranteeing the existence of intervals for uj within which any yj

maximizes payoffs for any fixed (y−j , x).

We focus attention on models where the distribution of unobserved heterogeneity is restricted

5We impose random sampling for simplicity and expositional ease, but our results can be generalized to less
restrictive sampling schemes. For instance our identification results require that P0 is identified, for which random
sampling is a sufficient, but not necessary, condition.
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to be independent of payoff shifters, as is common in the literature. This restriction can be relaxed,

see e.g. Kline (2012), though at the cost of weakening the identifying power of the model, or

requiring stronger restrictions otherwise.

Restriction I (Independence): U and X are stochastically independent, with the distribution of

unobserved heterogeneity PU belonging to some class of distributions PU . �

In our model a structure satisfying Restrictions SR and I is defined as collection of payoff

functions (π1, ..., πJ) ∈ Π and a distribution of unobserved heterogeneity PU ∈ PU . The goal of

identification analysis is to deduce which structures (π, PU ) ∈ Π×PU , and what relevant features

of these structures, i.e. functionals of (π, PU ), are admitted by the model and compatible with

the distribution of observables P0. For our identification analysis, the classes Π and PU may each

be parametrically, semiparametrically, or nonparametrically specified. If these classes are both

parametrically specified, then Π and PU may be indexed by a finite dimensional parameter vector,

say θ. Then each θ in some given parameter space Θ represents a unique structure (π, PU ), and

identification analysis reduces to deducing which θ ∈ Θ have associated structures (π, PU ) that are

compatible with P0.

3 Equilibrium Behavior and Observable Implications

In order to close the model and relate structures (π, PU ) to the distribution P0 of (Y,X), we must

additionally specify how players possessing payoff functions π play joint action profiles Y . We

assume in this paper that players have complete information, and thus know the realizations of all

payoff shifters (X,U) when they choose their actions. That is, there is no private information.6

What then remains is to specify a solution concept for the underlying complete information game.

We restrict attention to Pure Strategy Nash Equilibrium (PSNE) as our solution concept to

simplify the exposition. Yet our inference approach applies to other solution concepts too (see

Section 6 below). This is due to the fact that for inference we exploit observable implications of

PSNE that take the form of conditional moment inequalities. Observable implications of alter-

native solution concepts, such as rationalizability and (mixed or pure strategy) Nash Equilibrium

also give rise to conditional moment inequalities, as shown for example by Aradillas-López and

Tamer (2008), Aradillas-López (2011), Galichon and Henry (2011), and Beresteanu, Molchanov,

and Molinari (2011), and the inference approach developed in Section 5 can also be readily applied

to these alternative systems of conditional moment inequalities. Given our payoff restrictions we

wish to emphasize that mixed-strategy Nash Equilibrium behavior can be readily handled through

conditional moment inequalities that follow as special cases of the results in Aradillas-López (2011).

In Section 6 we describe a behavioral model that nests Nash equilibrium (in either pure or mixed

6For econometric analysis of incomplete information binary and ordered games see for example Aradillas-López
(2010), de Paula and Tang (2012), Aradillas-López and Gandhi (2013) and the references therein.
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strategies) as a special case but allows for incorrect beliefs. There we illustrate how the testable

implications compare with those of PSNE and we outline how our inferential approach can be

readily applied.

A concern in the literature, and a motivation for considering these alternative solution concepts,

is the possibility of non-existence of PSNE. However, in games where all actions are strategic

complements, or in 2 player games where actions are either strategic substitutes or complements,

a PSNE always exists. This follows from observing that in these cases the game is supermodular,

or can be transformed into an equivalent representation as a supermodular game. This was shown

for the binary outcome game by Molinari and Rosen (2008), based on the reformulation used by

Vives (1999, Chapter 2.2.3) for Cournot duopoly. Tarski’s Fixed Point Theorem, see e.g. Theorem

2.2 of Vives (1999) or Section 2.5 of Topkis (1998), then implies the existence of at least one

PSNE. Our empirical example of Section 7 is a two player game of strategic substitutes, so the

existence of PSNE is guaranteed. Nonetheless, in other settings it is possible that no PSNE exists,

in which case one could adopt an alternative solution concept and base inference on the resulting

conditional moment inequalities. Alternatively, one could consider explicit approaches for dealing

with non-existence, or incoherence, as in Chesher and Rosen (2012).

For clarity and completeness, we now formalize the restriction to PSNE behavior. To economize

on notation, we define each player j’s best response correspondence as

y∗j (y−j , xj , uj) ≡ arg max
yj∈Yj

πj ((yj , y−j) , xj , uj) , (3.1)

which delivers the set of payoff maximizing alternatives yj for player j as a function of (y−j , xj , uj).

Restriction PSNE (Pure Strategy Nash Equilibrium): With probability one, for all j ∈ J ,

Yj = y∗j (Y−j , Xj , Uj). �

Strict concavity of each player j’s payoff in her own action under Restriction SR(i) guarantees

that y∗j (y−j , Xj , Uj) is unique with probability one for any y−j , though it does not imply that

the equilibrium is unique. It also provides a further simplification of the conditions for PSNE, as

summarized in the following Lemma.

Lemma 1 Suppose Restriction SR(i) holds. Then Restriction PSNE holds if and only if with

probability one, for all j ∈ J ,

πj (Y,Xj , Uj) ≥ max {πj ((Yj + 1, Y−j) , Xj , Uj) , πj ((Yj − 1, Y−j) , Xj , Uj)} , (3.2)

where we define πj ((−1, Y−j) , Xj , Uj) = πj ((Mj + 1, Y−j) , Xj , Uj) = −∞.

The proof of Lemma 1 is simple and thus omitted. That Restriction PSNE implies (3.2) is

immediate. The other direction follows from noting that if (3.2) holds then violation of (3.1) would
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contradict strict concavity of πj ((yj , Y−j) , Xj , Uj) in yj . The import of this simple result is a rather

large reduction in the number of inequalities required for characterization of PSNE, and hence the

identified set of structures (π, PU ).

With these restrictions in hand, we now characterize the identified set of structures (π, PU ).

Define

∆πj (Y,X,Uj) ≡ πj (Y,Xj , Uj)− πj ((Yj − 1, Y−j) , Xj , Uj) ,

as the incremental payoff of action Yj relative to Yj − 1 for any (Y−j , X, Uj). From Restriction SR

(ii) we have that ∆πj (Y,X,Uj) is strictly increasing in Uj and thus invertible. Combining this

with Lemma 1 allows us to deduce that for each player j there is for each (y−j , x) an increasing

sequence of non-overlapping thresholds,
{
u∗j (yj , y−j , x) : yj = 0, ...,Mj+1

}
with

u∗j (Mj+1, y−j , x) = −u∗j (0, y−j , x) =∞,

such that

y∗j (y−j , xj , uj) = yj ⇔ u∗j (yj , y−j , x) < uj ≤ u∗j (yj + 1, y−j , x) . (3.3)

That is, given (y−j , x), player j’s best response yj is uniquely determined by within which of the

non-overlapping intervals
(
u∗j (yj , y−j , x) , u∗j (yj + 1, y−j , x)

]
unobservable Uj falls. This holds for

all j, so under Restriction PSNE each player is best responding to their rivals’ actions. It follows

that with probability one

U ∈ Rπ (Y,X) ≡ ×
j∈J

(
u∗j (Yj , Y−j , X) , u∗j (Yj + 1, Y−j , X)

]
. (3.4)

In other words, Y is an equilibrium precisely if U belongs to the rectangle Rπ (Y,X). The notation

makes explicit the dependence of the edges of the rectangle on the payoff functions π, through their

implied threshold functions u∗j .

We now use this result to characterize the identified set for (π, PU ). Before doing so we further

define for any set Ỹ ⊆ Y and all x ∈ X ,

Rπ
(
Ỹ, x

)
≡ ∪

y∈Ỹ
Rπ (y, x) ,

which is the union of all rectangles Rπ (y, x) across y ∈ Ỹ, and

R∪ (x) ≡
{
U ⊆ RJ : U = Rπ

(
Ỹ, x

)
for some Ỹ ⊆ Y

}
,

to be the collection of all such unions for any x ∈ X .
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Theorem 1 Let Restrictions SR, I, and PSNE hold. Then the identified set of structures is

S∗ =
{

(π, PU ) ∈ Π× PU : ∀U ∈ R∪ (x) , PU (U) ≥ P0 [Rπ (Y,X) ⊆ U|X = x] a.e. x ∈ X
}

, (3.5)

where, for any x ∈ X , R∪ (x) ⊆ R∪ (x) denotes the collection of sets

R∪ (x) ≡

U ⊆ RJ :
U = Rπ

(
Ỹ, x

)
for some Ỹ ⊆ Y such that ∀ nonempty Ỹ1, Ỹ2 ⊆ Y with

Ỹ1 ∪ Ỹ2 = Ỹ and Ỹ1 ∩ Ỹ2 = ∅, PU
(
Rπ
(
Ỹ1, x

)
∩Rπ

(
Ỹ2, x

))
> 0

 .

(3.6)

The above characterization is sharp, and applies under Restrictions SR and I regardless of

whether Π and PU are parametrically, semiparametrically, or nonparametrically specfied. That

is, the set of pairs (π, PU ) ∈ Π × PU that satisfy (3.5) all satisfy the restrictions of the model

and are compatible with the observed distribution of (Y,X). If there were sufficiently restrictive

parameterizations and sufficient variation in exogenous variables for point identification of π and

PU , the identified set S∗ would be precisely the singleton set comprising only the identified pair

(π, PU ).7

The characterization (3.5) makes use of results from Chesher and Rosen (2012, 2014) to express

the identified set as those (π, PU ) such that the random set Rπ (Y,X) satisfies the conditional

containment functional inequality

PU (U) ≥ P0 [Rπ (Y,X) ⊆ U|X = x] , a.e. x ∈ X ,

over the collection of sets U ∈ R∪ (x).8 When Y is finite the identified set coincides with that

of other characterizations given in the literature, e.g. Galichon and Henry (2011, Theorem 1)

and Beresteanu, Molchanov, and Molinari (2011, Theorem D.2), which incorporate inequalities

equivalent to those in (3.5), but over U ∈ R∪ (x). The collection R∪ (x) is a sub-collection of core-

determining test sets, as defined by Galichon and Henry (2011, Theorem 1), shown to be sufficient

by Chesher and Rosen (2014, Theorem 3) to imply (3.5) for all closed U ⊆ RJ . This characterization

comprises fewer conditional moment inequalities while retaining sharpness.

Nonetheless, the identified set S∗ expressed in (3.5) may comprise a rather large number of

conditional moment inequalities, namely as many as belong to R∪ (x), for each x. More inequality

restrictions will in general produce smaller identified sets. Yet the incorporation of a very large

7For an example of a model satisfying restriction SR and I with point identification under large support con-
ditions, see for example the simultaneous binary model outcome model studied by Tamer (2003). More generally,
even parametrically-specified simultaneous equations binary response models allowing for rich forms of unobserved
heterogeneity and multiple equilibria yield set rather than point identification, see for example Berry and Tamer
(2007) and Ciliberto and Tamer (2009).

8Note that by definition the collection R∪ (x) contains all sets of the form Rπ (y, x) for some y ∈ Y, since the
requirement regarding subsets Ỹ1, Ỹ2 ⊆ Y holds vacuously when Ỹ = {y}.
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number of inequalities may pose challenges for inference, both with regard to the quality of finite

sample approximations as well as computation. As stated in the following Corollary, consideration

of those structures satisfying inequality (3.5) applied to only an arbitrary sub-collection of those in

R∪ (x), or indeed any arbitrary collection of sets in U , will produce an outer region that contains

the identified set.

Corollary 1 Let U (x) : X → 2U map from values of x to collections of closed subsets of U . Let

S∗ (U) = {(π, PU ) ∈ Π× PU : ∀U ∈ U (x) , PU (U) ≥ P0 [Rπ (Y,X) ⊆ U|X = x] a.e. x ∈ X} .

(3.7)

Then S∗ ⊆ S∗ (U).

Because S∗ (U) contains the identified set, it can be used to estimate valid, but potentially

non-sharp bounds on functionals of (π, PU ), i.e. parameters of interest. Although S∗ (U) is a larger

set than S∗, its reliance on fewer inequalities can lead to significant computational gains for bound

estimation and inference relative to the use of S∗. Even in cases where the researcher wishes to

estimate S∗, it may be faster to first base estimation on S∗ (U). If estimation or inference based

on this outer set delivers sufficiently tight set estimates to address the empirical questions at hand,

a researcher may be happy to stop here. If it does not, the researcher could potentially refine set

estimates or confidence sets based on S∗ (U) by then incorporating additional restrictions, either

proceeding to use S∗ (U′) for some superset U′ of U, or by using S∗ itself.9 Typically, checking the

imposed inequality restrictions involves searching over a multi-dimensional parameter space, so the

computational advantage can be substantial.

The degree of difference between the size of the outer set S∗ (U) and the identified set may or

may not be large. For a given collection of conditional moment inequalities defining S∗ (U), this

will depend on the particular distribution of (Y,X) at hand, and is thus an empirical question. In

some cases the difference between the outer region and the identified set may be relatively small,

while in other cases it may be quite substantial. In the two-player parametric model introduced

in the following Section, and used in the application of Section 7, we show that a particular U (·)
is sufficient to point identify all but three of the model parameters, and we are able to achieve

useful inferences based on an outer region that makes use of this and other conditional moment

restrictions.

9This will be valid a valid procedure if the researcher can ensure that the confidence sets are constructed such
that that one based on the first outer set contains the one based on the second set incorporating further restrictions
with probability one.
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4 A Two-Player Game of Strategic Substitutes

In this section we introduce a parametric specification satisfying Restriction SR for a two-player

game with J = {1, 2}. We use this specification in our empirical application, and thus focus

particular attention on analysis of this model. We continue to maintain Restrictions I and PSNE.

In this model, existence of at least one PSNE a.e. (X,U), is guaranteed by e.g. Theorem 2.2 of

Vives (1999) or Section 2.5 of Topkis (1998), as discussed in Section 3.

4.1 A Parametric Specification

For each j ∈ J we specify

πj (Y,Xj , Uj) = Yj × (δ +Xjβ −∆jY−j − ηYj + Uj) , (4.1)

where we impose the restriction that η > 0 to ensure that payoffs are strictly concave in Yj , ensuring

Restriction SR(i). Given this functional form, Restriction SR(ii) also holds. In this specification the

parameters of the two player’s payoff functions differ only in the strategic interaction parameters

(∆1,∆2), though this is not required for our identification analysis. We additionally impose that

∆1,∆2 ≥ 0, so that actions are strategic substitutes, and existence of PSNE follows as previously

discussed.

Given this functional form, each player j’s best response function takes the form (3.3), namely

y∗j (y−j , xj , uj) = yj ⇔ u∗j (yj , y−j , xj) < uj ≤ u∗j (yj + 1, y−j , xj) ,

where for ỹj = 0, u∗j (ỹj , y−j , xj) = −∞, for ỹj ≥ Mj + 1, u∗j (ỹj , y−j , xj) = ∞, and for all

ỹj ∈ {1, ...,Mj},
u∗j (ỹj , y−j , xj) ≡ η (2ỹj − 1) + ∆jy−j − δ − xjβ. (4.2)

In addition we restrict the distribution of bivariate unobserved heterogeneity U to the Farlie-

Gumbel-Morgenstern (FGM) copula indexed by parameter λ ∈ [−1, 1].10 Specifically U1 and U2

each have the logistic marginal CDF

G (uj) =
exp (uj)

1 + exp (uj)
, (4.3)

and their joint cumulative distribution function is

F (u1, u2;λ) = G (u1) ·G (u2) · [1 + λ (1−G (u1)) (1−G (u2))] . (4.4)

The parameter λ measures the degree of dependence between U1 and U2 with correlation coefficient

10See Farlie (1960), Gumbel (1960), and Morgenstern (1956).
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given by ρ = 3λ/π2. This copula restricts the correlation to the interval [−0.304, 0.304]. This is

clearly a limitation, but one which appears to be reasonable in our application in Section 7. Note

that ρ captures the correlation remaining after controlling for X. Thus with sufficiently many

variables included in X a low “residual” correlation may be reasonable. Naturally, we could use

alternative specifications, such as bivariate normal, but the closed form of F (u1, u2;λ) is easy

to work with and provides computational advantages. Compared to settings with a single agent

ordered choice model, our framework offers a generalization of the ordered logit model, whereas

multivariate normal U generalizes the ordered probit model.

For notational convenience we define α ≡ η − δ and collect parameters into a composite pa-

rameter vector θ ≡
(
θ′1, θ

′
2

)′
where θ1 ≡

(
α, β′, λ

)′
and θ2 = (η,∆1,∆2)′. We show in the following

Section that under fairly mild conditions the parameter subvector θ1 is point identified, another

advantage of the specification for the distribution of U given in (4.4).11

4.2 Observable Implications of Pure Strategy Nash Equilibrium

Given a parametric model, we re-express the sets Rπ (Y,X) described in (3.4) as Rθ (Y,X) in order

to indicate explicitly their dependence on the finite-dimensional parameter θ. It follows from (4.2)

that observed (Y,X,U) correspond to PSNE if and only if U ∈ Rθ (Y,X) where

Rθ (Y,X) ≡

{
u :

η (2Y1 − 1) + ∆1Y2 − δ −X1β < u1 ≤ η (2Y1 + 1) + ∆1Y2 − δ −X1β

η (2Y2 − 1) + ∆2Y1 − δ −X2β < u2 ≤ η (2Y2 + 1) + ∆2Y1 − δ −X2β

}
. (4.5)

and from Theorem 1 we have the inequality

PU (U) ≥ P0 [Rθ (Y,X) ⊆ U|X = x] (4.6)

for each U ∈ R∪ (x), a.e. x ∈ X (see the definition of R∪ (x) in (3.6)). However, it is straightforward

to see that Y = (0, 0) is a PSNE if and only if

U ∈ (−∞, α−X1β)× (−∞, α−X2β) . (4.7)

and that when this holds, Y = (0, 0) is the unique PSNE. This follows by the same reasoning

as in the simultaneous binary outcome model, see for example Bresnahan and Reiss (1991a) and

Tamer (2003), and this observation implies that the conditional moment inequality (4.6) using

U = (−∞, α−X1β)× (−∞, α−X2β) in fact holds with equality.12

11Results from Kline (2012) can be used to establish point identification of (α, β) under alternative distributions
of unobserved heterogeneity, e.g. multivariate normal, if X is continuously distributed.

12See also Chesher and Rosen (2012) for general conditions whereby the inequality in (4.6) can be strengthened to
equality in simultaneous equations discrete outcome models.
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Specifically, we have from (4.7) with this U that for β̃ ≡
(
α, β′

)′
, and Zj ≡ (1,−Xj),

P0 [Y = (0, 0) |X = x] = F
(
Z1β̃, Z2β̃;λ

)
,

with F
(
Z1β̃, Z2β̃;λ

)
defined in (4.4). Based on this we can construct the partial log-likelihood for

the event Y = (0, 0) and its complement as

L (b, λ) =

n∑
i=1

` (b, λ; zi, yi) , (4.8)

where

` (b, λ; z, y) ≡ 1 [y = (0, 0)] logF (z1b1, z2b2;λ) + 1 [y 6= (0, 0)] log (1− F (z1b1, z2b2;λ)) .

The following theorem establishes that under suitable conditions E [L (b, λ)] is uniquely maximized

at the population values for
(
β̃, λ

)
, which we denote

(
β̃
∗
, λ∗
)

. Thus there is point identification of

the parameter subset θ1, which is consistently estimated by the maximizer of (4.8) at the parametric

rate.

Theorem 2 For each player j ∈ {1, 2} let payoffs take the form (4.1), with U ‖ X, and let

Restriction PSNE hold. Furthermore, assume that (i) for each j ∈ {1, 2} there exists no proper

linear subspace of the support of Zj ≡ (1,−Xj) that contains Zj with probability one, and (ii) For

all conformable column vectors c1, c2 with c2 6= 0, we have that either P {Z2c2 ≤ 0|Z1c1 < 0} > 0

or P {Z2c2 ≥ 0|Z1c1 > 0} > 0. Then:

1. If U has known CDF F , then β̃
∗

is identified. If the CDF of U is only known to belong to

some class of distribution functions {Fλ : λ ∈ Γ}, then the identified set for
(
β̃
∗
, λ∗
)

takes

the form {(b (λ) , λ) : λ ∈ Γ′} for some function b (·) : Γ→ B and some Γ′ ⊆ Γ.

2. If U has CDF F (·, ·;λ) given in (4.4) for some λ ∈ [−1, 1], then
(
β̃
∗
, λ∗
)

is point identified

and uniquely maximizes E [L (b, λ)]. Moreover,

√
n
(
θ̂1 − θ∗1

)
d→ N

(
0, H−1

0

)
, (4.9)

where

H0 = E

[
∂` (θ1;Z, Y )

∂θ1

∂` (θ1;Z, Y )

∂θ1

′]
. (4.10)

Theorem 2 makes use of two conditions on the variation in X. The first condition is standard,

requiring that for each j, Z = (1,−Xj) is contained in no proper linear subspace with probably

one. This rules out the possibility that X contains a constant component. The second condition

15



restricts the joint distribution of Z1 and Z2, requiring that conditional on Zjcj < 0 (> 0), Z−jc−j

is nonpositive (nonnegative) with positive probability. This condition is automatically satisfied

under well-known semiparametric large support restrictions, for example that Xj has a component

Xjk that, conditional on all other components of Xj , has everywhere positive density on R, with

β1k 6= 0. However, it is a less stringent restriction and does not require large support. For example,

it immediately applies to the case where Z1 = Z2, i.e. with no player-specific payoff shifters, even

if all covariates are discrete.

The theorem provides a number of useful results. First, there is point identification of the

parameters θ1 if the distribution of unobserved heterogeneity is known. Generally econometric

models only restrict the distribution of unobserved heterogeneity to be known (i.e. assumed) to

belong to some set of distributions, here PU , indexed by λ ∈ Γ with corresponding cumulative

distributions Fλ. In this case there is, for each fixed distribution, equivalently each λ ∈ Γ, a unique

β = b (λ) that maximizes the expected log-likelihood when the CDF of unobserved heterogeneity

is Fλ. Thus, the identified set for θ1 belongs to the set of pairs (b (λ) , λ) such that λ ∈ Γ. This

can simplify characterization and estimation of the identified set, since for each λ ∈ Γ there is

only one value of β to consider as a member of the identified set. Thus, for estimation, one need

only scan over λ ∈ Γ and compute the corresponding maximum likelihood estimator for each such

value, rather than search over all values of β ∈ B. We further show that when Fλ is restricted

to the FGM family, there is in fact point identification of λ∗ and hence also of θ1, which can be

consistently estimated via maximum likelihood using the coarsened outcome 1 [Y = (0, 0)]. The

parameter vector θ2 = (η,∆1,∆2)′ remains in general partially identified.

5 Inference on the Full Parameter Vector

To perform inference on θ we combine the results of Theorem 2 above with conditional moment

inequalities of the form in Theorem 1 and Corollary 1 over collections of test sets U . These results

are summarized by the inequality in (4.6). Our approach will be based on “moment functions”

mk (Y, y, x; θ) consisting of indicators over classes of sets. These sets can be indexed by y, x and θ.

Specifically, for moment inequalities of the form given by Theorem 1 and Corollary 1 our moment

functions are of the form

mk (Y, y, x; θ) = 1 [Rθ (Y, x) ⊆ Uk (x, y; θ)]− PU (Uk (x, y; θ) ; θ) , (5.1)

where Rθ is the rectangle defined in (4.5) and where (y, x) represent given values in Y and X . The

first question is how to generate the set of values for (y, x). We use values observed in the data,

basing inference on mk (Y, yi, xi; θ), for i = 1, . . . , n. To perform inference we employ a statistic
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incorporating density-weighted versions of conditional moment inequalities implied by (4.6). Define

Tk (yi, xi; θ) ≡ E [mk (Y, yi, xi; θ) |X = xi] · fX (xi) ≤ 0,

where mk (Y, yi, xi; θ) is the moment function defined in (5.1) and where fX (·) is the density of x.

Let (z)+ = max {z, 0}. By (4.6) we must have E
[
(Tk(Y,X; θ))+

]
= 0 for every θ in the identified

set. This will be the basis for our inference approach.

Our notation Uk (xi, yi; θ) explicitly allows for the test sets Uk (xi, yi; θ), k = 1, ...,K, to depend

on the observations (yi, xi) as well as θ. K denotes the number of conditional moment inequalities

incorporated for inference (i.e, the collection of classes of sets we use for inference).13 Given

Theorem 1 and Corollary 1 it follows that if the sets Uk (xi, yi; θ), k = 1, ...,K, comprise the

collection R∪ (xi) for all i and each θ ∈ Θ, then inference is based on the identified set, while for

other collections of test sets it is based on an outer set. As discussed in Section 3, the sets R∪ (xi)

may have extremely large cardinality even for moderately large strategy spaces Y, rendering their

use impractical. The use of other collections of test sets or moment inequalities implied by the

characterization of the identified set given in Theorem 1 may in some cases be computationally

advantageous.

Consider the function

R (θ) ≡ E
[
K∑
k=1

(Tk (Y,X; θ))+

]
,

where the expectation is taken with respect to the joint distribution of (Y,X), and (·)+ ≡ max {·, 0}.
The function R (θ) is nonnegative, and positive only for θ that violate the conditional moment

inequality E [mk (Y, yi, xi; θ) |X = xi] ≤ 0 for some k = 1, ...,K with positive probability. For

the purpose of inference we employ an estimator for R (θ) that incorporates a kernel estimator,

denoted T̂k (y, x; θ), for Tk (Y,X; θ), for each k = 1, ...,K. To derive the properties of our estimator

we require further regularity conditions, which we now discuss. For the sake of exposition, these

conditions are formally stated as Restrictions I1-I6 in Appendix B.

We assume throughout that each element of X has either a discrete or absolutely continuous

distribution with respect to Lebesgue measure, and we write X =
(
Xd, Xc

)
, where Xd denotes the

discretely distributed components and Xc the continuously distributed components. Convergence

rates of conditional expectations estimators therefore depend on z ≡ dim (Xc). For kernel-weighting

incorporating all components of X we define

K (xi − x;h) ≡ Kc

(
xci − xc

h

)
· 1
[
xdi = xd

]
,

13The number of inequalities used can also be allowed to vary with (yi, xi). In this case we could write K (yi, xi) for
the number of conditional moment inequalities for (yi, xi) and set mk (Y, yi, xi; θ) = 0 for each i, k with K (yi, xi) <
k ≤ K̄ ≡ maxiK (yi, xi).
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where Kc : Rz → R is an appropriately defined kernel function. The estimators T̂k (yi, xi; θ) are

then defined as

T̂k (y, x; θ) ≡ 1

nhz

n∑
i=1

mk (yi, y, x; θ) K (xi − x;h) . (5.2)

To establish desirable properties for these estimators we impose in Restriction I1 that the functions

fX (x) and Tk (yi, xi; θ) be sufficiently smooth in the continuous components of x. Restriction I2

contains our formal requirements for the kernel function and bandwidth sequences, which are chosen

by the researcher.

Our approach requires that the bias of each T̂k (yi, xi; θ) disappears uniformly at the same rate

over the range of values of xi in the data. For this purpose we employ a trimming technique,

using only values of conditioning variables xi whose continuous components are contained in the

interior of their support. This is done by requiring that xi belongs to a pre-specified “set ” X ∗,
such that the projection of X ∗ onto X c the continuous components of X is contained in the interior

of the projection of X onto X c. In principle we could allow X ∗ to depend on n and approach X
at an appropriate rate as n → ∞. For the sake of brevity, rather than formalize this argument,

we presume fixed X ∗ and state results for the convergence of R̂ (θ) to an appropriately re-defined

R (θ):

R (θ) ≡ E
[
1X

K∑
k=1

(Tk (Y,X; θ))+

]
, (5.3)

where 1Xi ≡ 1 [xi ∈ X ∗i ] is our trimming function.

In addition, our test statistic replaces the use of the function (·)+ = max {·, 0} with the function

max {·,−bn} for an appropriately chosen sequence bn ↘ 0. The estimator is thus of the form

R̂ (θ) ≡ 1

n

n∑
i=1

1Xi

(
K∑
k=1

T̂k (yi, xi; θ) · 1
[
T̂k (yi, xi; θ) ≥ −bn

])
.

The use of the sequence bn allows us to deal with the “kink” at zero of the function (·)+ while

obtaining asymptotically pivotal properties for R̂(θ). Specific requirements on the choice of bn are

given in Restriction I2.

Our next restriction, illustrated in Figure 1 and formally stated as Restriction I3, imposes

a condition on the behavior of each Tk (Y,X; θ). This restriction admits the possibility that

P (Tk (Y,X; θ) = 0) > 0, i.e. that any of the conditional moment inequalities are satisfied with

equality with positive probability. Although inference would be simplified by ruling this out, it

is important to allow the possibility of binding inequalities. Our restriction thus allows this, but

requires that the density of Tk (Y,X; θ) not “blow up” in a neighborhood to the left of zero. The

restriction does allow for Tk (Y,X; θ) to have mass points.

We next impose with Restriction I4 a condition on the manageability of relevant empirical

processes, with manageability as defined in Definition 7.9 of Pollard (1990). Sufficient conditions
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for manageability, which are discussed in the Appendix, comprise restrictions on the classes of

functions allowed and are abundant in the empirical process literature.

The following Theorem establishes an asymptotically linear representation for R̂(θ) around

R(θ). To do this we employ a Hoeffding projection and results from Sherman (1994). Restriction

I5 provides a sufficient condition for application of Sherman’s results. It imposes that the kernel of

a particular U-process that plays an important role in the derivation of our statistic’s asymptotic

properties belongs to a Euclidean class. The role of this condition and reference to primitive

conditions for it to hold are discussed in Appendix B.

Theorem 3 Let Restrictions I1-I5 hold. Then for some a > 1/2,

R̂ (θ) = R (θ) +
1

n

n∑
i=1

ψR (yi, xi; θ, hn) + ξn (θ) , where sup
θ∈Θ
|ξn (θ)| = Op

(
n−a

)
,

and where

ψR (yi, xi; θ, h) =

K∑
k=1

(
1Xi (Tk (wi, θ))+ − E

[
1Xi (Tk (W, θ))+

])
+ [g̃ (wi; θ, h)− E [g̃ (W ; θ, h)]] .

We combine the linear representation for R̂ (θ) given by Theorem 3 with the maximum likelihood

estimator described in Theorem 2 for θ1 to perform inference on the set of parameters

Θ∗ ≡

{
θ ∈ Θ :

∀k = 1, ...,K, ∀y ∈ Y, E [mk (Y, y,X; θ) |X = x] ≤ 0 ∧
P0 [Y = (0, 0) |X = x] = F

(
Z1β̃, Z2β̃;λ

)
, a.e. x ∈ X ∗

}
.

As before, let us group wi ≡ (yi, xi). Let ψM (wi) denote the MLE influence function for θ̂1.

From Theorems 2 and 3 we have that uniformly over θ ∈ Θ, for some ε > 0,

V̂ (θ) ≡ n1/2

(
θ̂1 − θ1

R̂ (θ)

)
= n1/2

(
θ∗1 − θ1

R (θ)

)
+

(
n−1/2

∑n
i=1 ψM (wi)

n−1/2
∑n

i=1 ψR (wi; θ, hn)

)
+

(
op (1)

op (n−ε)

)
. (5.4)

For inference we use the quadratic form

Q̂n (θ) ≡ V̂ (θ)′ Σ̂ (θ)−1 V̂ (θ) ,

where

Σ̂ (θ) ≡

(
Σ̂MM (θ) Σ̂MR (θ)

Σ̂′MR (θ) Σ̂RR (θ)

)
,
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is an estimator for the variance of V̂ (θ). Specifically, we set

Σ̂MM (θ) ≡
(
n−1

n∑
i=1

ψ̂M (wi) ψ̂M (wi)
′
)−1

,

Σ̂MR (θ) ≡ n−1
n∑
i=1

ψ̂M (wi) ψ̂R (wi; θ, hn)′ ,

Σ̂RR (θ) ≡ max

{
n−1

n∑
i=1

ψ̂R (wi; θ, hn)2 , κn

}
,

where ψ̂M (wi) and ψ̂R (wi; θ, hn) consistently estimate ψM (wi) and ψR (wi; θ, hn), respectively, and

where κn ↘ 0 is a slowly decreasing sequence of nonnegative constants such that for all ε > 0,

nεκn →∞, for example κn = (log n)−1. This ensures that for any n, Σ̂RR (θ) is bounded away from

zero. In Appendix B we show that using κn in this way achieves valid inference, as it guarantees

that for all θ ∈ Θ
∗
, Ω̂−1(θ) − Σ̂−1(θ) is positive semidefinite with probability approaching one as

n → ∞, where Ω̂ (θ) is the same as Σ̂ (θ), but with σ̂2
n (θ) = 1

n

∑n
i=1 ψ̂R (wi; θ, hn)2 in place of

Σ̂RR (θ).

Under appropriate regularity conditions, the quadratic form V̂ (θ) is asymptotically distributed

χ2 for any θ ∈ Θ∗, where the degrees of freedom of the asymptotic distribution depend on whether

any of the K conditional moment inequalities bind with positive probability PX . If θ ∈ Θ∗ and

all of the conditional moment inequalities are satisfied strictly at θ, then n1/2R̂ (θ) = op (1), and

Q̂n (θ)
d→ χ2

r , where r ≡ dim (θ1). If, on the other hand, θ ∈ Θ∗ but at least one of the conditional

moment inequalities are satisfied with equality at θ with positive probability, i.e. if θ belongs to

the set

Θ̄∗ ≡

{
θ ∈ Θ∗ :

P {x ∈ X ∗ : E [mk (Y, y,X; θ) |X = x] = 0} > 0,

for at least one k ∈ {1, ...,K} and some y ∈ Y

}
,

then n1/2R̂ (θ) is asymptotically normal and shows up in the asymptotic distribution of Q̂n (θ)

such that Q̂n (θ)
d→ χ2

r+1. Finally, if θ /∈ Θ∗, then Q̂n (θ) “blows up”, i.e. for any c > 0,

Pr
{
Q̂n (θ) > c

}
→ 1 as n→∞.

Theorem 4 below uses these results to provide an asymptotically valid confidence set for θ

uniformly over θ ∈ Θ∗. The aforementioned distributional results on which it relies are provided in

Appendix B. The Theorem requires an additional restriction, namely Restriction I6 in Appendix B,

which imposes some mild regularity conditions on the influence function ψR (wi; θ, hn) over θ ∈ Θ̄∗.

We also require that Σ̂ (θ) be within op (1) of its population counterpart

Σ (θ) ≡

(
ΣMM (θ) ΣMR (θ)

Σ′MR (θ) ΣRR (θ)

)
,

with ΣMM (θ), ΣMR (θ), ΣRR (θ) defined identically to Σ̂MM (θ), Σ̂MR (θ), Σ̂RR (θ), respectively,
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but with population expectations E [·] rather than sample means and taking the limit as hn → 0

for ΣMR and ΣRR.

Theorem 4 Let Restrictions I1 - I6 hold. Then the set

CS1−α ≡
{
θ ∈ Θ : Q̂n (θ) ≤ c1−α

}
,

where α > 0, c1−α is the 1− α quantile of the χ2
r+1 distribution, and r ≡ dim (θ1) satisfies

lim
n→∞

inf
θ∈Θ∗

P (θ ∈ CS1−α) ≥ 1− α,

and for all θ /∈ Θ∗,

lim
n→∞

P (θ ∈ CS1−α) = 0.

The confidence set CS1−α provides correct (≥ 1−α) asymptotic coverage for fixed P uniformly

over θ ∈ Θ∗, and the associated test for θ ∈ Θ∗ is consistent against all alternatives θ /∈ Θ∗. It is

worth noting that our CS1−α can attain good pointwise asymptotic properties, i.e.

inf
θ∈Θ∗

lim
n→∞

P (θ ∈ CS1−α) ≥ 1− α,

under weaker regularity conditions than those stated here. In particular, with Restrictions I1, I2,

I3 maintained we could relax Restrictions I4 and I6, as well as the Euclidean property invoked in

Lemma 4, as only sufficient conditions for the asymptotically linear representation of Theorem 3

to hold pointwise in θ would be required.

6 Extensions to More General Behavior

Our inferential theory so far has been based on the assumption of Pure Strategy Nash Equilibrium

(PSNE) play, but our analysis can be extended to other solution concepts too. To illustrate how

this can be done, we now extend our analysis to a more general behavioral model which includes

(pure or mixed strategy) Nash Equilibrium as a special case. Let σ̂−j denote player j’s subjective

beliefs about the probability distribution of Y−j . PSNE presupposes these beliefs to be degenerate

and correct. Suppose we relax these conditions and assume instead that beliefs satisfy two general

conditions: independent randomization and accuracy, which we describe next.

Independent randomization (IR): Let σj denote the true probability distribution of player

j’s actions. Suppose both players believe that σ1
‖ σ2

∣∣X,U . That is, they believe that players

randomize independently given X and U . Note that Nash equilibrium is a special case of this.
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Under condition IR, j’s expected utility of choosing Yj = yj is of the form∑
y−j∈Y−j

σ̂−j(y−j) · πj(yj , y−j , Xj , Uj) ≡ πj(yj , Xj , Uj),

as opposed to the more general form
∑

y−j∈Y−j σ̂−j(y−j |yj) · πj(yj , y−j , Xj , Uj), which allows for

correlation in randomization. By strict concavity of payoffs (an assumption we maintain), condition

IR immediately implies that player j can be optimally indifferent between at most two choices, which

must be consecutive. For a given yj ∈ Yj let

S(yj) =
{
r ∈ Yj : yj − 1 ≤ r ≤ yj + 1

}
.

Under condition IR, if yj is an optimal choice for j, then any other optimal choice must belong in

S(yj).

Accuracy of beliefs (AB): Each player j chooses σj to maximize their expected payoffs given

their beliefs. Let Supp
(
σ̂−j

)
denote the support of j’s beliefs. We allow beliefs to be incorrect;

however, we maintain that (i) they satisfy Supp
(
σ̂−j

)
∩ S(Y−j) 6= ∅, and (ii) σ̂−j assigns positive

probability to no more than two rival actions of the form {r, r + 1}. Note that Nash equilibrium

(both in mixed and pure strategies) is a special case of AB.

This restriction allows beliefs to be wrong, but not in a completely arbitrary way. Condition

AB(i) maintains that j’s beliefs assign positive probability to at least one choice that could have

been rationalized as optimal (along with the observed choice Y−j) by some beliefs of player −j
consistent with condition IR. Restriction AB(ii) stipulates that players’ beliefs respect the fact that

their rival can be optimally indifferent between at most two actions, which must be consecutive.

Under conditions IR and AB, Supp
(
σ̂−j

)
must be one of the following five sets,

{Y−j} , {Y−j , Y−j − 1} , {Y−j − 1, Y−j − 2} , {Y−j , Y−j + 1} , {Y−j + 1, Y−j + 2} .

Let sj(yj) = min
{
r ∈ Yj : yj − 2 ≤ r ≤ yj + 2

}
and sj(yj) = max

{
r ∈ Yj : yj − 2 ≤ r ≤ yj + 2

}
.

Given the strategic-substitutes nature of the game studied here, it is not hard to show that (Y1, Y2)

is a rationalizable outcome for some beliefs satisfying IR and AB if and only if

πj
(
Yj − 1, s−j(Y−j), Xj , Uj

)
< πj

(
Yj , s−j(Y−j), Xj , Uj

)
and

πj (Yj , s−j(Y−j), Xj , Uj) > πj (Yj + 1, s−j(Y−j), Xj , Uj) ,
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for j = 1, 2. Let

R̃θ (Y,X) ≡

{
U :

η (2Y1 − 1) + ∆1s2(Y2)− δ −X1β < U1 ≤ η (2Y1 + 1) + ∆1s2(Y2)− δ −X1β

η (2Y2 − 1) + ∆2s1(Y1)− δ −X2β < U2 ≤ η (2Y2 + 1) + ∆2s1(Y1)− δ −X2β

}
.

(6.1)

If we replace PSNE with the sole assumption that players best-respond to some set of beliefs

consistent with conditions IR and AB, then (6.1) replaces the set Rθ (Y,X) described in (4.5) and

the observable implications described in Section 4.2 would be modified accordingly. By replacing

PSNE with this more general model we would no longer have the equality P0 [Y = (0, 0) |X = x] =

F
(
Z1β̃, Z2β̃;λ

)
, and our proof of point identification of β̃ would no longer apply. However, one

could still conduct inference with the approach described in Section 5 using conditional moment

inequalities of the form 6.1 with R̃θ (Y,X) in place of Rπ (Y,X) in Theorem 1. It would thus still

be possible to perform the type of counterfactual analyses we present in Section 7. Our results

would remain valid if PSNE is the true behavioral model but they would also be valid over a wider

range of cases including mixed-strategy NE and cases where players have incorrect beliefs, as long

as they are compatible with conditions IR and AB. The cost of course would be that confidence

sets based on these less restrictive behaviorial assumptions would be larger.

7 An Application to Home Depot and Lowe’s

We apply our model to the study of the home improvement industry in the United States. According

to IBISWorld, this industry has two dominant firms: Home Depot and Lowe’s, whose market shares

in 2011 were 40.8% and 32.6%, respectively. We label these two players as

Player 1: Lowe’s, Player 2: Home Depot.

We take the outcome of interest yi = (yi1, yi2) to be the number of stores operated by each firm in

geographic market i. We define a market as a core based statistical area (CBSA) in the contiguous

United States.14 Our sample consists of a cross section of n = 954 markets in April 2012. Table 1

summarizes features of the observed distribution of outcomes.

Roughly 75 percent of markets have at most 3 stores. However, more than 10 percent of markets

in the sample have 9 stores or more. If we focus on markets with asymmetries in the number of

stores operated by each firm, Table 1 suggests that Lowe’s tends to have more stores than Home

Depot in smaller markets and viceversa. Our justification for modeling this as a static game with

14The Office of Budget and Management defines a CBSA as an area that consists of one or more counties and
includes the counties containing the core urban area, as well as any adjacent counties that have a high degree of
social and economic integration (as measured by commute to work) with the urban core. Metropolitan CBSAs are
those with a population of 50,000 or more. Some metropolitan CBSAs with 2.5 million people or more are split into
divisions. We considered all such divisions as individual markets.
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Table 1: Summary of outcomes observed in the data, including average, median, and percentiles
for each of Y1 and Y2.

Y1 Y2

Average 1.68 1.97
Median 1 1

75th percentile 2 1
90th percentile 4 5
95th percentile 7 11
99th percentile 17 25

Total 1,603 1,880

(%Y 1 > Y 2) 33%

(%Y 1 < Y 2) 25%

(%Y 1 + Y 2 > 0) 74%

(%Y 1 + Y 2 > 0, Y 1 = Y 2) 16%

player 1: Lowe’s, player 2: Home Depot.

PSNE as our solution concept is the assumption that the outcome observed is the realization of a

long-run equilibrium.15 Because there is no natural upper bound for the number of stores each firm

could open in a market, we allowed ȳj to be arbitrarily large. We maintained the assumptions of

mutual strategic substitutes and pure-strategy Nash equilibrium behavior with the parametrization

described in Section 4.

7.1 Observable Payoff Shifters

For each market, the covariates included in Xj were: population, total payroll per capita, land area,

and distance to the nearest distribution center of player j for j = {1, 2}. The first three of these

were obtained from Census data. Our covariates aim to control for basic socioeconomic indicators,

geographic size, and transportation costs for each firm16. Note that X includes 5 covariates, 3

common to each player as well as the player-specific distances to their own distribution centers. All

covariates were treated as continuously distributed in our analysis.

Table 1 suggests a pattern where Home Depot operates more stores than Lowe’s in larger

markets. In the data we found that median market size and payroll were 50% and 18% larger,

respectively, in markets where Home Depot had more stores than Lowe’s relative to markets where

15The relative maturity of the home improvement industry suggests that the assumption that the market is in a
PSNE, commonly used in the empirical entry literature, is relatively well-suited to this application. Although, as is
the case in any industry, market structure evolves over time, 82% of markets in our data exhibited no change in store
configuration between March 2009 and September 2012.

16Payroll per capita is included both as a measure of income and as an indicator of the overall state of the labor
market in each CBSA. We employed alternative economic indicators such as income per household, but they proved
to have less explanatory power as determinants of entry in our estimation and inference results.
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the opposite held. Overall, Home Depot opened more stores than Lowe’s in markets that were larger

and that had higher earnings per capita. Our methodology allows us to investigate whether these

types of systematic asymmetries are owed to the structure of the game, the underlying equilibrium

selection mechanism, or unobserved heterogeneity.

7.2 Inference on Model Parameters

We began by computing partial maximum likelihood estimates for θ1, corresponding to those of

equation (4.9), Theorem 2. These are shown in the first column of Table 2. Given the ordinal

nature of our action space, these point estimates indicate that within a each market, all else equal,

a population increase of 100,000 has roughly the same effect on per store profit as a $45 increase

in payroll per capita, a 12,300 sq mile increase in land area, or a 400 mile decrease in distance to

the nearest distribution center. The second column of Table 2 shows the corresponding 95% CI

based on these estimates. Figure 2 depicts the estimated partial log-likelihood for each individual

parameter in a neighborhood of the corresponding estimate. Comparing their curvatures, we see

that the one for ρ was relatively flatter than those of the remaining parameters. This is reflected

in the rather wide MLE 95% CI for ρ. The 95% CI for the coefficients on population and land

area include only positive values, while the 95% CI for the coefficient on payroll, though mostly

positive, contains some small negative values. The MLE 90% CI for this coefficient (not reported)

contained only positive values.

7.2.1 Test sets for the construction of confidence regions

We used the approach described in Section 5 to construct confidence regions for θ. We now describe

the class of test sets Uk(yi, xi; θ) we used. As before let Rθ be as defined in (4.5). Let

Y∗ = {(y1, y2) ∈ Y: y1 ≤ 2, y2 ≤ 2} ,

SIθ(xi) =
{
S ⊆ R2: S = Rθ(y, xi) for some y ∈ Y∗

}
,

SIIθ (xi) =
{
S ⊆ R2: S = Rθ(y, xi) ∪Rθ(y′, xi) for some y, y′ ∈ Y∗ such that y 6= y′

}
.

We have #
(
SIθ(xi)

)
= 9 and #

(
SIIθ (xi)

)
= 72. For test sets Uk(xi, yi; θ) we use each element of

the collections SIθ(xi) and SIIθ (xi) as well as the set Rθ(yi, xi). This yields K = 82 tests sets (not

necessarily distinct if yi ∈ Y∗), and moment functions

mk (Y, yi, xi; θ) = 1 (yi 6= (0, 0)) · (1 [Rθ(y, x) ⊆ Uk(xi, yi; θ)]− PU (Uk(xi, yi; θ); θ)) , k = 1, . . . ,K.

(7.1)

The term 1 (yi 6= (0, 0)) appears because the likelihood for the event Y = (0, 0) is already incor-

porated through the partial likelihood estimator θ̂1, so the inequalities with y = (0, 0) would be

redundant.
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The last column in Table 2 provides 95% projection CIs for each parameter using the approach

described in Section 5, using statistic V̂ (θ) defined in (5.4). This statistic incorporated both the

moment equalities corresponding to likelihood contributions for the events Y = (0, 0) and Y 6= (0, 0)

in the partial log-likelihood, as well as moment inequalities implied by the characterization in

Theorem 1. Given the action space, the number of inequalities comprising the identified set would

be extremely large. In the interest of computational tractability we restricted attention to those

sets Uk(xi, yi; θ) described above17.

Our covariate vector X comprised five continuous random variables. We employed a multiplica-

tive kernel K (ψ1, . . . , ψ5) = k(ψ1)k(ψ2) · · ·k(ψ5), where each k(·) was given by

k(u) =
10∑
`=1

c` ·
(
1− u2

)2` · 1 {|u| ≤ 30} ,

with c1, . . . , c10 chosen such that k(·) is a bias-reducing Biweight-type kernel of order 20. This is

the same type of kernel used by Aradillas-López, Gandhi, and Quint (2013). Let z ≡ dim(Xc) = 5,

and denote

ε ≡ 9

10
· 1

4z(2z + 1)
, αh ≡

1

4z
− ε.

For each element of X, the bandwidth used was of the form hn = c · σ̂(X) · n−αh .18 The order of

the kernel and the bandwidth convergence rate were chosen to satisfy Restriction I2. The constant

c was set at 0.25.19 The bandwidth bn was set to be 0.001 at our sample size (n = 954). The

“regularization” sequence κn was set below machine precision. All the results that follow were

robust to moderate changes in our tuning parameters. The region X ∗ was set to include our entire

sample, so there was no trimming used in our results. Our CS was constructed through a grid

search that included over 30 million points. The computational simplicity of our approach makes

a grid search of this magnitude a feasible task on a personal computer.

17As indicated previously, in this application the payoff functions π and the distribution of unobserved heterogeneity
PU are known functions of parameters θ. We therefore write Rθ (Y,X) in place of Rπ (Y,X) defined in (3.4), and
PU (·; θ) in place of PU (·).

18Note that the use of a different bandwidth for each element of X is compatible with our econometric procedure.
This particular choice of bandwidth is in fact equivalent to one using the same bandwidth for each component of X,
but where each is first re-scaled by its standard deviation.

19c = 0.25 is approximately equal to the one that minimizes

AMISE = plim

{∫ ∞
−∞

E

[(
f̂(x)− f(x)

)2]
dx

}
,

if we employ Silverman’s “rule of thumb”, Silverman (1986), using the Normal distribution as the reference distribu-
tion. In this case the constant c simplifies to

c = 2 ·

(
π1/2 (M !)3 ·Rk

(2M) · (2M)! ·
(
k2

M

)) 1
2M+1

, where Rk ≡
∫ 1

−1

k2(u)du, kM ≡
∫ 1

−1

uMk(u)du.

Given our choice of kernel, the solution yields c ≈ 0.25, the value we used.
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The third column of Table 2 presents the resulting 95% confidence intervals for each component

of θ, i.e. projections given by the smallest and largest values of each parameter in our CS. Relative

to the MLE CIs shown in column 2, our confidence intervals are shifted slightly and in some cases

larger while in other cases smaller. In classical models where there is point identification ML

estimators are asymptotically efficient, and hence produce smaller confidence intervals than those

based on other estimators. The comparison here however is not so straightforward. The MLE

is based only on the observation of whether each player is in or out of the market, and not the

ordinal value of the outcome. The statistic we employ incorporates these likelihood equations as

moment equalities and additionally some moment inequalities. That is, these inequalities constitute

additional information not used in the partial log-likelihood. Furthermore, the CIs in Table 2 are

projections onto individual parameter components, including parameter components for which the

profile likelihood carries no information such as the interaction coefficients, ∆1 and ∆2. For all of

these reasons, neither approach is expected to provide tighter CIs than the other. Reassuringly,

the CIs for point-identified parameter components using either method are in all cases reasonably

close to each other, yielding qualitatively similar interpretations.

One and two-dimensional graphical inspections of our CS did not reveal any holes but we are

not sure about the robustness of this feature for our CS given its dimension. Population, land

area and distance were the only payoff shifters with coefficient estimates statistically significantly

different from zero at the 5% level. The 95% CS for the correlation coefficient ρ was again wide

and included zero. The payoff-concavity coefficient η was significantly positive and well above the

lower bound 0.001 of our parameter space, indicating decreasing returns to scale for new stores in

a market. Figure 3 depicts joint confidence regions for pairs of parameters.

Table 2: Estimates and Confidence Intervals for each Parameter

MLE MLE Moment-
Estimate 95% CI inequalities

95% CI†

Population (100,000) 2.219 [0.869, 3.568] [1.757, 3.792]
Payroll per capita ($5 USD) 0.244 [−0.023, 0.510] [−0.064, 0.667]
Land Area (1,000 sq miles) 0.180 [0.027, 0.333] [0.051, 0.409]

Distance (100 miles) −0.544 [−0.929,−0.159] [−0.988,−0.410]
ρ (Corr(U1, U2)) −0.050 [−0.304, 0.204] [−0.265, 0.302]

δ − η (Intercept minus concavity coefficient) −1.309 [−2.084,−0.534] [−1.961,−0.656]
δ (Intercept) N/A N/A [−0.351, 5.463]

η (Concavity coefficient) N/A N/A [1.076, 6.533]
∆1 (Effect of Home Depot on Lowe’s) N/A N/A [0, 2.741]
∆2 (Effect of Lowe’s on Home Depot ) N/A N/A [0.910, 4.078]

(†) Denotes the individual “projection” from the joint 95% CS obtained as described in Theorem 4.
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Figure 4 depicts the joint CS for the strategic interaction coefficients, ∆1 and ∆2. Our grid

search for these parameters covered the two-dimensional rectangle [0, 16] × [0, 16]. As we can see,

our results strongly suggest that the strategic effect of Lowes on Home Depot (measured by ∆2

is stronger than the effect of Home Depot on Lowes (measured by ∆1). As we can see in the

figure, our CS lies almost entirely outside the 45-degree line, with the latter crossing our CS over

a very small range. Our results conclusively excluded the point ∆1 = ∆2 = 0, so we can reject

the assertion that no strategic effect is present. In particular, while our CS includes ∆1 = 0, it

excludes ∆2 = 0, leading us to reject the assertion that Lowe’s’ decisions have no effect on Home

Depot.20 Finally, Figure 5 depicts joint confidence sets for strategic interaction coefficients and

slope parameters in the model. Once again taking the ML point estimate for the coefficient on

population as our benchmark, our 95% CIs on the strategic interaction coefficients from Table 2

can be used to bound the relative effect of interactions on profitability. These indicate that, again

all else equal and within a given market, the effect of an additional Home Depot store on Lowe’s

profit per store is bounded above by that of a population decrease of roughly 156,000. Similarly,

the effect of an additional Lowe’s store on Home Depot’s profit per store is the equivalent of a

population decrease of anywhere from roughly 24,000 to 232,000.

7.3 Analysis of Equilibrium Likelihood, Selection, and Counterfactual Experi-

ments

Primary interest may not lie in the value of underlying model parameters, but rather on quantities

of economic interest that can typically be expressed as (sometimes set-valued) functionals of these

parameters. Equipped with a confidence set for θ, we now construct confidence regions for several

such quantities, namely (i) the probability that a given outcome y is an equilibrium, (ii) the

probability that a given outcome y′ is an equilibrium conditional on a realized outcome Y = y and

covariates X = x, (iii) the probability that an equilibrium is selected given it is an equilibrium,

and (iv) counterfactual conditional outcome probabilities generated by economically meaningful

equilibrium selection rules, including those cases where each firm operates as a monopolist, absent

competition from its rival.

7.3.1 Likelihood of Equilibria

Let PE (y|x) denote the probability that y is an equilibrium outcome given X = x. From Lemma

1 and (3.3) we have

PE (y|x) = PU (Rθ (y, x) ; θ) .

20We also tried variants of our payoff form specification where strategic interaction was allowed to be a function of
market characteristics, including population, population density and relative distance. In all cases our results failed
to reject that strategic interaction effect is constant for each firm across markets.
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This relation plays a role in addressing the question: given market characteristics x and the out-

come y observed in a given market, what is the probability that some other action profile y′ was

simultaneously an equilibrium, but not selected? We define this as PE (y′|y, x), which, using the

rules of conditional probability, is given by

PE
(
y′|y, x

)
=
PE (y′, y|x)

PE (y|x)
=
PU (Rθ (y′, x) ∩Rθ (y, x) ; θ)

PU (Rθ (y, x) ; θ)
,

when θ = θ0, where PE (y′, y|x) denotes the conditional probability that both y′ and y are equilibria

givenX = x. This expression is a known function of θ, and we can construct a 95% CI for PE (y′|y, x)

by collecting the corresponding value for each θ ∈ CS0.95, our confidence set for θ. For the sake

of illustration, Table 3 presents results using the realized outcome y = (2, 2) and demographics x

observed in CBSA 11100 (Amarillo, TX), a metropolitan market.

Every outcome y excluded from Table 3 had zero probability of co-existing with (2, 2) as a

PSNE. Notice that the lower bound in our CI was zero in each case. Overall, 12 different equilibrium

outcomes y′ could have simultaneously been equilibria with the observed y with positive probability.

In seven cases, the probability PE (y′|y, x) could be higher than 95%. If we consider all outcomes

included in Table 3 and think of them as possible counterfactual equilibria in this market, we can

see that the total number of stores could have ranged between 3 and 7. The actual number of stores

observed here (4) was closer to the lower bound. Our results also uncover structural asymmetries

at the market level. For instance, while (4, 1) and (5, 1) could have coexisted as Nash equilibria

with the observed outcome, our CS rule out (1, 4) and (1, 5) as equilibrium outcomes.

We now consider the unconditional probability that any y ∈ Y is an equilibrium, denoted PE (y).

By the law of iterated expectations we can write

PE (y) = E [PE (y|Y,X)] ,

where the expectation is taken over Y,X. For θ = θ0, a consistent estimator for PE (y) is given by

P̂E (y, θ) ≡ 1

n

n∑
i=1

PE (y|yi, xi, θ) , PE (y|yi, xi, θ) ≡
PU (Rθ (y, xi) ∩Rθ (yi, xi) ; θ)

PU (Rθ (yi, xi) ; θ)
.

Let σ̂ (θ) denote the sample variance of PE (y|Y,X, θ), i.e.

σ̂ (θ) ≡ 1

n

n∑
i=1

(
PE (y|yi, xi, θ)− P̂E (y, θ)

)2
.

If θ0 were known, then by a central limit theorem, the set
{
P̂E (y, θ0)± n−1/2zασ̂ (θ0)

}
with zα ≡

Φ−1 (1− α/2) would provide an asymptotic 1−α CI for PE (y). In practice θ0 is unknown, but we
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can use the union of such sets over θ values in CS1−α to construct our CI

CI (PE (y)) ≡
⋃

θ∈CS1−α

{
r ∈ [0, 1] : P̂E (y, θ)− n−1/2zασ̂ (θ) ≤ r ≤ P̂E (y, θ) + n−1/2zασ̂ (θ)

}
. (7.2)

If it were known (i.e. with probability one) that θ0 ∈ CS1−α, then CI (PE (y)) would contain PE (y)

with at least probability 1− α asymptotically. With θ0 ∈ CS1−α with probability bounded below

by 1− α asymptotically, CI (PE (y)) provides a nominal 1− 2α CI by Bonferroni’s Inequality.

Table 4 presents the 0.90 (α = 0.05) CI for PE(y) for the ten most frequently observed outcomes

in the data.

Table 3: Outcomes y that could have co-existed as equilibria with the realized outcome (2, 2) in
CBSA 11100 (Amarillo, TX).

y 95% CI for PE(y|Yi, Xi) y 95% CI for PE(y|Yi, Xi)
(0, 4) [0, 0.9981] (4, 0) [0, 0.9388]
(6, 0) [0, 0.9976] (3, 0) [0, 0.2666]
(4, 1) [0, 0.9971] (5, 1) [0, 0.1001]
(0, 3) [0, 0.9856] (0, 5) [0, 0.0524]
(5, 0) [0, 0.9730] (7, 0) [0, 0.0114]
(1, 3) [0, 0.9622]
(3, 1) [0, 0.9510]

Table 4: Outcomes y with the largest aggregate probability of being equilibria, PE(y)

y 90% CI for PE(y) Observed frequency
(α = 0.05) for y

(0, 0) [0.2415, 0.2847] 0.2631
(1, 0) [0.1973, 0.3001] 0.2023
(1, 1) [0.1224, 0.1566] 0.1257
(0, 1) [0.1081, 0.2552] 0.1205
(2, 1) [0.0398, 0.0720] 0.0461
(1, 2) [0.0120, 0.0691] 0.0199
(2, 0) [0.0083, 0.1200] 0.0146
(3, 1) [0.0078, 0.0399] 0.0136
(2, 2) [0.0065, 0.0310] 0.0136
(3, 2) [0.0040, 0.0276] 0.0094
(2, 3) [0.0038, 0.0224] 0.0094
(3, 3) [0.0045, 0.0177] 0.0083

Outcomes ordered by observed frequency.
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7.3.2 Propensity of Equilibrium Selection

Our model is silent as to how any particular market outcome is selected when there are multiple

equilibria. Nonetheless, a confidence set for θ can be used to ascertain some information on various

measures regarding the underlying equilibrium selection mechanism M. Consider for example the

propensity that a given outcome y is selected when it is an equilibrium,

PM (y) ≡ P (Y = y)

PE (y)
.

In similar manner to the construction of the CI (7.2) for the probability that some outcome y is an

equilibrium, we can construct an asymptotic 1− 2α CI for PM (y) as

CI (PM (y)) ≡
⋃

θ∈CS1−α

{
r ∈ [0, 1] : P̂M (y; θ)− zαŝ (θ) ≤ r ≤ P̂M (y; θ) + zαŝ (θ)

}
,

where now ŝ (θ) consistently estimates the standard deviation of

P̂M (y; θ) ≡ P (Y = y)

PE (y; θ)
.

Recall that (0, 0) cannot coexist with any other equilibrium and therefore PM(0, 0) = 1. In

Table 5 we present a CI for the selection propensity PM (y) for all other outcomes listed in Table

4. In all cases in Table 5 the upper bound of our CIs was 1, so only the lower bounds of our CIs

on the selection probabilities are informative.

Table 5: Aggregate propensity PM(y) to select y when it is a PSNE.
y 90% CI for PM(y) Observed frequency

for y

(1, 1) [0.8884, 1] 0.1257
(1, 0) [0.6896, 1] 0.2023
(2, 1) [0.6350, 1] 0.0461
(0, 1) [0.3932, 1] 0.1205
(3, 3) [0.5772, 1] 0.0083
(2, 2) [0.4503, 1] 0.0136
(3, 1) [0.2850, 1] 0.0136
(3, 2) [0.2381, 1] 0.0094
(2, 3) [0.2322, 1] 0.0094
(1, 2) [0.1920, 1] 0.0199
(2, 0) [0.0506, 1] 0.0146

Outcomes ranked by the CI lower bound.
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We can also make direct comparisons of the selection propensities PM (y) across particular

profiles. Figure 6 makes such comparisons by plotting P̂M (y; θ) for each θ ∈ CS1−α. As Figure 4

shows, CS1−α includes parameter values θ for which ∆1 = 0. For such values, the optimal decision of

Lowes does not depend on the actions of Home Depot; by strict concavity of payoffs, this eliminates

the possibility of multiple equilibria for any such θ. Consequently for such parameter values the

propensity to select equilibria is always equal to one for any outcome (since any outcome that is an

equilibrium must be the unique equilibrium). This explains why the upper bound for PM (y) in our

CS is always 1 for any y. However, as Figure 6 shows, our results yield nontrivial lower bounds for

these propensities and they also allow us to make comparisons across different outcomes to try to

understand whether firms have a particular preference towards certain equilibrium outcomes. With

the exception of θ yielding selection propensities very close to one for both outcomes considered in

each graph, the comparisons in parts (A)-(C) of Figure 6 can be summarized as follows:

(A) Equilibria with at most one store by each firm: We compare the propensity of equilibrium se-

lection for the outcomes (0, 1), (1, 0) and (1, 1). Our results yield two findings: (i) Comparing

equilibria where only one store is opened, there is a higher selection propensity for Lowe’s to

have the only store than for Home Depot. (ii) There is a greater selection propensity for the

equilibrium in which both firms operate one store than those where only one firm does.

(B) Equilibria with a monopolist opening multiple stores: We focus on the outcomes (0, 2), (2, 0),

(0, 3) and (3, 0). Our results indicate that the selection propensity is higher for the outcome

in which Lowe’s operates two stores than those where Home Depot operates two stores. Our

findings regarding selection propensities for (0, 3) and (3, 0) were less conclusive.

(C) Equilibria where both firms enter with the same number of stores: We focus on the outcomes

(1, 1), (2, 2) and (3, 3). Although not illustrated in the figure, the propensity to select sym-

metric equilibria where both firms are present appeared to be comparably higher than the

propensity to select equilibria where there is only one firm in the market. For most θ ∈ CS1−α,

the outcome (1, 1) was the most favored.

Without a structural model, the observed frequencies alone are not informative about selection

propensities. For example, even though (1, 1) was observed in only 12.5% of markets while (1, 0)

was observed in 20.2% of them, our results show that, except for some θ ∈ CS1−α with both

selection propensities close to one, the selection propensity for (1, 1) when it was an equilibrium

was higher than that of (1, 0). The fact that the latter is observed more frequently simply seems

to indicate that payoff realizations where (1, 1) is an equilibrium occurred relatively rarely.
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7.3.3 Counterfactual equilibrium selection rules

As explained above, our framework allows us to study the likelihood that other outcomes could

have co-existed as equilibria along with the outcomes actually observed in each market in the data.

With this information at hand we can do counterfactual analysis based on pre-specified (by us)

equilibrium selection mechanisms. Here we generate counterfactual outcomes in each market based

on four hypothetical equilibrium selection rules. We focus our analysis on those markets where at

least one firm entered and each firm opened at most 15 stores.21 This accounts for approximately

70% of the entire sample.

(A) Selection rule favoring Lowe’s. For each market i, a counterfactual outcome yci ≡ (yci1, yci2)

was generated through the following steps:

1.− Find all the outcomes y for which

P E(y|Yi, Xi) = max

{
PE(y, Yi, Xi|θ)
PE(Yi, Xi|θ)

: θ ∈ CS1−α

}
(the upper bound within our CS for the probability of co-existing with Yi as NE) was at least

95%. If there are no such outcomes, then set yci = Yi. Otherwise proceed to step 2.

2.− Choose the outcome y with the largest number of Lowe’s stores. If there are ties, choose the

one with the largest number of Home Depot stores.

(B) Selection rule favoring Home Depot. Same as (A), but switching the roles of Home Depot

and Lowe’s.

(C) Selection rule favoring entry by both firms and largest total number of stores.

Here we took the following steps to determine yci :

1.− As in (A) and (B), look for all the outcomes y for which P E(y|Yi, Xi) ≥ 0.95. If no such

y 6= Yi exists, set yci = Yi. Do the same if no y was found where both firms enter. Otherwise

proceed to step 2.

2.− Among the outcomes y found in step 1, look for the one that maximizes the total number of

stores y1 + y2. If there are ties, then choose the one that minimizes |y1 − y2|. If more than

one such outcome exists, choose randomly among them using uniform probabilities.

(D) Selection rule favoring symmetry. Each yci was generated as follows:

1.− As in (A)-(C), look for all the outcomes y for which P E(y|Yi, Xi) ≥ 0.95. If no such y 6= Yi

exists, set yci = Yi. Otherwise proceed to step 2.

21Recall again that observing (0, 0) in a given market implies that no other counterfactual equilibrium was possible.
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2.− Among the outcomes y found in step 1, look for the one that minimizes |y1 − y2|. If more

than one such outcomes exist, choose randomly among them using uniform probabilities.

Table 6: Results of counterfactual equilibrium selection experiments
Selection rules

Observed data† (A) (B) (C) (D)
Y1 Y2 yc1 yc2 yc1 yc2 yc1 yc2 yc1 yc2

Average 1.76 1.62 4.72 0.41 0.66 2.85 3.27 1.02 1.79 1.67
Median 1 1 1 0 0 1 1 1 1 1

75th percentile 2 1 5 0 1 3 2 1 2 1
90th percentile 4 4 13 1 1 7 10 1 4 4
95th percentile 6 7 20 1 1 15 18 2 8 7

Total 1,180 1,090 3,014 319 283 2,062 2,121 730 1,172 1,120

% (y1 > y2) 47% 64% 17% 44% 33%
% (y1 = y2) 23% 21% 28% 42% 48%

(†) The markets considered in this experiment where those where at least one firm entered and each firm

opened at most 15 stores. This included approx. 70% of the entire sample.

Examining Table 6, the pattern of market outcomes that results from counterfactual selection

rules (A), (B) and (C) is decisively different from the features of the observed outcomes in the

data. This is less so for selection rule (D). Table 6 also suggests that a selection mechanism

which maximizes the total number of stores in each market (rule (C)) would produce a pattern of

outcomes heavily biased in favor of Lowe’s. Overall, among these counterfactual experiments, the

one employing selection rule (D) favoring symmetry most closely matches the observed pattern of

store profiles in the data.

7.3.4 Counterfactual experiments: cooperation and jointly efficient behavior

Our results allow us to analyze counterfactual alternatives to noncooperative behavior. Here, we

consider a cooperative counterfactual scenario in which the firms maximize the sum of their payoff

functions, assigning equal weight to each. Note that due to the ordinal nature of our game, payoff

functions are not measurable in dollars. Nonetheless, maximization of the sum of firm payoffs

produces a Pareto efficient outcome. We refer to this behavior as “jointly efficient”, keeping in

mind that it does not incorporate consumer welfare, and that it is not necessarily the unique

Pareto efficient counterfactual scenario.

Fix a parameter value θ and focus on market i. Let (yi, xi, ui) denote the realizations of (Y,X,U)

in that market. Let (ye1(xi, ui; θ), y
e
2(xi, ui; θ)) be an element of

arg max
(y1,y2)

[
π1 (y1, y2, x1,i, u1,i; θ) + π2 (y1, y2, x2,i, u2,i; θ)

]
,
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so that (ye1(xi, ui; θ), y
e
2(xi, ui; θ)) denotes an action profile maximizing the sum of firm payoffs.

Recall from above that PU (Rθ(y, x); θ) denotes the probability that y is an equilibrium outcome

given X = x. We are interested in the following two functionals,

yej(yi, xi, θ) =

∫
u∈Rθ(yi,xi)

yej (xi, u; θ) f (u;λ) du

PU (Rθ(yi, xi); θ)
for j = 1, 2.

P e(yi, xi, θ) =

∫
u∈Rθ(yi,xi)

1
[
(y1,i, y2,i) = (ye1 (xi, u; θ) , ye2 (xi, u; θ))

]
f(u;λ)du

PU (Rθ(yi, xi); θ)
.

Conditional on X = xi and conditional on yi being an equilibrium outcome, yej(yi, xi, θ) is the

expected jointly efficient choice for j and P e(yi, xi, θ) is the probability that the outcome observed

in the ith market is jointly efficient. Using our results, confidence sets for these objects can be

constructed as
CS

(
yej(yi, xi)

)
=

⋃
θ∈CS1−α

{
r ∈ R+: r = yej(yi, xi, θ)

}
,

CS (P e(yi, xi)) =
⋃

θ∈CS1−α

{r ∈ [0, 1]: r = P e(yi, xi, θ)}

We apply this analysis to the 308 (out of 954) markets that had a single store in our sample. We

use S1 to denote this collection of markets. Our goal is to compare observed market outcomes

to those that would be obtained under jointly efficient behavior, and in particular to determine

whether cooperation would lead to more stores in the markets in S1. Let

T 1 = min
θ∈CS1−α

∑
i∈S1

[
ye1(yi, xi, θ) + ye2(yi, xi, θ)

]
,

T 1 = max
θ∈CS1−α

∑
i∈S1

[
ye1(yi, xi, θ) + ye2(yi, xi, θ)

]
.

[
T 1, T 1

]
is a CI for the total number of stores we would observe in the markets in S1 under a

cooperative regime. Of particular interest to us is how 308 (the actual number of stores observed

in S1) compares to this CI. Our results yielded
[
T 1, T 1

]
=
[
308, 445.10

]
. Note first that the

number of stores observed in these markets corresponds to the lower bound we would observe

under cooperation. This is by construction, since the number of stores in markets in S1 could only

be lower if the outcome were (0, 0), which would necessarily produce lower total payoff (specifically

zero) than the observed single-entrant PSNE outcome, as otherwise it would not have been a PSNE.

On the other hand, a market in which equilibrium resulted in a single entrant could have resulted

in more stores under joint efficiency if the firm that did not enter would find it more profitable to

operate multiple stores absent the presence of the firm that actually entered. Our counterfactual

analysis reveals that we could have as many as 45% more expected stores if firms maximized their
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joint payoffs. Table 7 summarizes some of the main findings of this counterfactual experiment.

Table 7: Summary of counterfactual results under cooperation.
• There exist at least 96 markets (out of 308) where Home Depot had more stores (and Lowe’s had

fewer stores) than the expected outcome under cooperation. The number of such markets could

be as large as 110.

• There existed parameter values in our confidence set for which every market in S1 had fewer

total stores than under cooperation.

• The expected number of total stores under cooperation would increase from 1 to at least 2 in as

many as 85 markets.

• There were 286 markets for which we could not reject that P e(yi, xi) < 50%, 93 markets for

which we could not reject that P e(yi, xi) < 10% and 47 markets for which we could not reject

that P e(yi, xi) < 5%. There were 15 markets for which we could not reject that P e(yi, xi) = 0.

Our results suggest that in this market segment noncooperative behavior has led to less entry

by Lowe’s and greater entry by Home Depot than would be optimal under the counterfactual

cooperative regime. These results are in line with some of the findings in Section 7.3.2 which

showed a higher propensity to select equilibria favoring Lowe’s in markets with at most one store.

7.3.5 Counterfactual experiment: Monopolistic behavior

Our results also allow us to analyze the implications of how each of these firms would behave if

their opponent left the industry. For firm j in the ith market let

ymj (xj,i, uj,i; θ) = arg max
yj

πj ((yj , 0) , xj,i, uj,i; θ)

denote the optimal choice if j is the monopolist in market i. Let

ymj (yi, xi, θ) =

∫
uj∈Rθ(yi,xi)

ymj (xj,i, uj ; θ) fj (uj) duj

PU (Rθ(yi, xi); θ)

denote the expected monopolistic choice firm j would make in market i given that the observed

outcome there is a PSNE. A CS for this expected choice can be constructed as

CS
(
ymj (yi, xi)

)
=

⋃
θ∈CS1−α

{
r ∈ R+: r = ymj (yi, xi, θ)

}
.
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We constructed CS
(
ymj (yi, xi)

)
for every market in our sample. Our main finding is that there

is a stark contrast in the monopolistic behavior of both firms. While Lowe’s would enter many

markets where it has no current presence if Home Depot dropped out of the industry, the opposite

is not true: Home Depot would concentrate its presence in relatively fewer markets, remaining out

of multiple markets where it currently has no presence. Lowe’s on the other hand would spread

its presence over a larger geographic area including smaller markets. This can be explained by the

geographic distribution of both firms’ regional distribution centers. Table 8 summarizes some of

our main findings.

Table 8: Summary of counterfactual results under monopolistic behavior.
• There exist at least 119 markets where Lowe’s is currently absent where it would enter if it were

a monopolist.

• We could not reject that Home Depot would not enter any market where it is currently absent

if it were a monopolist.

• In our data there were 251 markets with no stores. If Lowe’s were a monopolist, this number

would increase to no more than 257. In contrast, if Home Depot were a monopolist this number

could grow to as many as 465 markets (almost half of the total markets in our data).

• There exist 3,483 stores in our data. If Lowe’s were a monopolist the expected number of stores

would be at least 2,130. If Home Depot were a monopolist, this number could fall as low as

1,860, constituting approximately a 50% drop).

In summary, a sizable number of markets that are currently served by Lowe’s (as many as 214)

could go unserved by Home Depot if the latter were a monopolist. In contrast, Lowe’s would enter

almost every market where Home Depot has a presence, staying out of at most 6 such markets.

8 Conclusion

In this paper we have analyzed a simultaneous equations model for a complete information game in

which agents’ actions are ordered. This generalized the well-known simultaneous binary outcome

model used for models of firm entry to cases where firms take ordered rather than binary actions,

for example the number of store fronts to operate in a market, or the number of daily routes offered

on a city pair by an airline.

We applied recently-developed methods from the literature to characterize (sharp) identified sets

for model structures via conditional moment inequalities under easily interpreted shape restrictions.

While one may ideally wish to incorporate all of the identifying information delivered by the model
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in performing estimation and inference, the number of implied conditional moment inequalities can

be rather large, potentially posing significant challenges for both computation and the quality of

asymptotic approximations in finite samples. However, the structure of this characterization lends

itself readily to outer regions for model parameters, also characterized by conditional moment

inequalities, which may be easier to use for estimation and inference. We further showed that in a

parametric two player instance of our model, we achieve point identification of all but 3 parameters

under fairly mild conditions, without using large support restrictions.

We proposed a novel method for inference based on a test statistic that employed density-

weighted kernel estimators of conditional moments, summing over measured deviations of condi-

tional moment inequalities. We used results from the behavior of U-processes to show that our test

statistic behaves asymptotically as a chi-square random variable when evaluated at points in the

identified set, with degrees of freedom dependent upon whether the conditional moments are bind-

ing with positive probability. This was then used to construct confidence sets for parameters, where

the critical value employed is simply a quantile of a chi-square distribution with the appropriate

degrees of freedom.

We applied our inference approach to data on the number of stores operated by Lowe’s and

Home Depot in different markets. We presented confidence sets for model parameters, and showed

how these confidence sets could in turn be used to construct confidence intervals for other quantities

of economic interest, such as equilibrium selection probabilities and the probability that counter-

factual outcomes are equilibria jointly with observed outcomes in a given market. Our framework

and results also allowed us to conduct counterfactual analysis which included collusion as well as

monopolistic behavior.

Our inference approach can be applied much more generally to models that comprise conditional

moment inequalities, with or without identification of a subvector of parameters. Although we

focused on Pure Strategy Nash Equilibrium as a solution concept, this was not essential to our

inference method. It could alternatively be based on conditional moment inequalities implied by

(mixed or pure strategy) Nash Equilibrium, or other solution concepts, such as rationalizability.

To illustrate this, we described the testable implications of a behavioral model that nests Nash

equilibrium as a special case but allows for incorrect beliefs.

Moreover, in our application we only employed a small subset of the conditional moment in-

equalities comprising the (sharp) identified set. In principle our approach can be applied to sharp

characterizations too, but the number of inequalities these incorporate can be rather large. The

shear number of conditional moment inequalities raises interesting questions regarding computa-

tional feasibility and the accuracy of asymptotic approximations in finite samples, both for our

inference approach and others in the literature. Indeed, these issues may arise when considering

a large number of unconditional moment inequalities, as considered in important recent work by

Menzel (2011) and Chernozhukov, Chetverikov, and Kato (2013). Future research on these issues
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in models comprising conditional moment inequalities with continuous conditioning variables thus

seems warranted.
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A Proofs of Results in Sections 3 and 4

In this section we provide proofs for the results of Section 3.

Proof of Theorem 1. Let Rπ (Y,X) be the rectangles described in (3.4). It follows from Theorem

1 of Chesher and Rosen (2012) that the identified set is given by

S∗ =
{

(π, PU ) ∈ Π× PU : ∀U ∈ F
(
RJ
)

, PU (U) ≥ P0 [Rπ (Y,X) ⊆ U|X = x] a.e. x ∈ X
}

, (A.1)

where F
(
RJ
)

denotes all closed sets in RJ . This is equivalent to the characterizations of Galichon

and Henry (2011, Theorem 1) and Beresteanu, Molchanov, and Molinari (2011, Theorem D.2)

applicable with finite Y, specifically

S∗ =

{
(π, PU ) ∈ Π× PU :

∀C ∈ 2Y , PU (∃y ∈ C : y ∈ PSNE (π,X,U) |X = x) ≥ P0 [Y ∈ C|X = x] a.e. x ∈ X

}
,
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where PSNE (π,X,U) denotes the set of PSNE when the payoff functions are π for the given (X,U).

It follows from Chesher and Rosen (2014, Theorem 3) that (A.1) can be refined by replacing F
(
RJ
)

with the sub-collection R∪ (x). �

Proof of Corollary 1. This follows from the observation that for any x ∈ X ,

∀U ∈ R∪ (x) , PU (U) ≥ P0 [Rπ (Y,X) ⊆ U|X = x] (A.2)

implies that the same inequality holds for all U ∈ R∪ (x), and in particular for all U ∈ U (x). �

Proof of Theorem 2. We prove parts 1 and 2 in the statement of the Theorem in separate steps.

Step 1. Suppose that F is known and define the sets

S+
b ≡ {z : z1 (b1 − β∗1) > 0 ∧ z2 (b2 − β∗2) ≥ 0} ,

S−b ≡ {z : z1 (b1 − β∗1) < 0 ∧ z2 (b2 − β∗2) ≤ 0} .

For any z ∈ S+
b we have that

F (z1b1, z2b2) > F (z1β
∗
1, z2β

∗
2) = P {Y = (0, 0)|z} ,

and likewise for any z ∈ S−b ,

F (z1b1, z2b2) < F (z1β
∗
1, z2β

∗
2) = P {Y = (0, 0)|z} .

The probability that Z ∈ Sb ≡ S+
b ∪ S

−
b is

P {Z ∈ Sb} = P
{
Z ∈ S+

b

}
+ P

{
Z ∈ S−b

}
=

(
P {Z2 (b2 − β∗2) ≥ 0|Z1 (b1 − β∗1) > 0}P {Z1 (b1 − β∗1) > 0}

+P {Z2 (b2 − β∗2) ≤ 0|Z1 (b1 − β∗1) < 0}P {Z1 (b1 − β∗1) < 0}

)
.

Both P {Z1 (b1 − β∗1) > 0} and P {Z1 (b1 − β∗1) < 0} are strictly positive by (i), and at least one

of P {Z2 (b2 − β∗2) ≥ 0|Z1 (b1 − β∗1) > 0} and P {Z2 (b2 − β∗2) ≤ 0|Z1 (b1 − β∗1) < 0} must be strictly

positive by (ii). Therefore P {Z ∈ Sb} > 0, implying that with λ∗ known b is observationally

distinct from β∗ since for each z ∈ Sb, P {Y = (0, 0)|z} 6= F (z1b1, z2b2).

If instead F is only known to belong to some class of distribution functions {Fλ : λ ∈ Γ}, the

above reasoning implies that for each λ ∈ Γ, E [L (b, λ)] is uniquely maximized with respect to b.

Then the conclusion of the first claim of the Theorem follows letting b∗ (λ) denote the maximizer

of E [L (b, λ)] for any λ ∈ Γ.

Step 2. Suppose now that U has CDF F (·, ·;λ) of the form given in (4.4) for some λ ∈ [−1, 1].
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To show that λ∗ is identified, consider the expectation of the profiled log-likelihood:

L0 (λ) ≡ E [L (b∗ (λ) , λ)] = E [` (b∗ (λ) , λ;Z, Y )] .

Note that because
(
β̃
∗
, λ∗
)

maximizes E [L (b, λ)] with respect to (b, λ), it follows that λ∗ maximizes

L0 (λ) = maxbE [L (b, λ)]. That λ∗ is the unique maximizer of L0 (λ), and thus point-identified,

follows from strict concavity of L0 (λ) in λ, shown in Lemma 2 below.

A standard mean value theorem expansion for maximum likelihood estimation then gives

θ̂1 = θ∗1 +
1

n

n∑
i=1

ψM (yi, xi) + op

(
n−1/2

)
,

where

ψM (yi, xi) ≡ H−1
0

∂` (θ1; zi, yi)

∂θ1

is the maximum likelihood influence function satisfying

n−1/2
n∑
i=1

ψM (yi, xi)→ N
(
0, H−1

0

)
,

with H0 as defined in (4.10). �

Lemma 2 Let the conditions of Theorem 2 hold and assume that U has CDF F (·, ·;λ∗) given in

(4.4) for some λ∗ ∈ [−1, 1]. Then L0 (λ) defined in the proof of Theorem 2 is strictly concave in λ.

Proof. By definition, for any λ ∈ [−1, 1], β∗ (λ) satisfies the first and second order necessary

conditions:
∂L0 (β∗ (λ) , λ)

∂β
= 0,

∂2L0 (β∗ (λ) , λ)

∂β∂β′
≤ 0, (A.3)

where ≤ 0 denotes non-positive definiteness. These conditions require, respectively,

g (λ, β) ≡ E
[
m1 (λ, z)

dF ∗

∂β

]
= 0, (A.4)

at β = β∗ (λ), and

E

[
m2 (λ, z)

∂F ∗

∂β

∂F ∗

∂β′
+m1 (λ, z)

∂2F ∗

∂β∂β′

]
≤ 0, (A.5)

where for ease of notation p (z) ≡ P0 [Y = (0, 0) |Z = z], and for any parameter µ,

∂F ∗

∂µ
≡ dF (z1β, z2β;λ)

dµ
, evaluated at β = β∗ (λ) ,

m1 (λ, z) ≡ p (z)F (z1β
∗ (λ) , z2β

∗ (λ) ;λ)−1 − (1− p (z)) (1− F (z1β
∗ (λ) , z2β

∗ (λ) ;λ))−1 ,
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m2 (λ, z) ≡ −p (z)F (z1β
∗ (λ) , z2β

∗ (λ) ;λ)−2 − (1− p (z)) (1− F (z1β
∗ (λ) , z2β

∗ (λ) ;λ))−2 < 0.

We now use these conditions to show concavity of L0 (λ). Using (A.4), equivalently the envelope

theorem, we have that
∂L0 (λ)

∂λ
= E

[
∂L (β∗ (λ) , λ; z)

∂λ

]
.

The second derivative with respect to λ is

∂2L0 (λ)

∂λ2 = E

[
∂2L (β∗ (λ) , λ; z)

∂λ∂β′
∂β∗ (λ)

∂λ
+
∂2L (β∗ (λ) , λ; z)

∂λ2

]
(A.6)

We now proceed to solve for each term in (A.6).

To solve for
∂β∗ (λ)

∂λ
we apply the implicit function theorem to (A.4), obtaining

∂β∗ (λ)

∂λ
=
∂g

∂β

−1 ∂g

∂λ
= E

[
m2

∂F ∗

∂β

∂F ∗

∂β′
+m1

∂2F ∗

∂β∂β′

]−1

E

[
m2

∂F ∗

∂β

∂F ∗

∂λ
+m1

∂2F ∗

∂β∂λ

]
.

In addition we have

∂2L (β∗ (λ) , λ; z)

∂λ∂β′
= m2

∂F ∗

∂λ

∂F ∗

∂β′
+m1

∂2F ∗ (z, λ)

∂λ∂β
, (A.7)

and
∂2L (β∗ (λ) , λ; z)

∂λ2 = m2
∂2F ∗

∂λ2 = 0.

Putting these expressions together in (A.6) gives,

∂2L0 (λ)

∂λ2 = AB−1A′ +D, (A.8)

where

A = E

[
m2

∂F ∗

∂λ

∂F ∗

∂β′
+m1

∂2F ∗

∂λ∂β′

]
, B = E

[
m2

∂F ∗

∂β

∂F ∗

∂β′
+m1

∂2F ∗

∂β∂β′

]
,

and

D = E

[
m2

(
∂F ∗

∂λ

)2
]

.

By (A.5), B is negative semi-definite so that AB−1A′ ≤ 0. Then m2 ≤ 0 implies that

∂2L0 (λ)

∂λ2 ≤ 0,

and strictness of the inequality follows from F (·, ·;λ) ∈ (0, 1). Therefore L0 (λ) is strictly concave

in λ and consequently β∗ and λ∗ are point identified. �
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B Proofs of Results in Section 5

We begin by formally stating Restriction I1-I6 and establishing some preliminary Lemmas used to

prove our Theorems in Section B.1. We then provide proofs in Section B.2.

B.1 Regularity Conditions and Lemmas

To characterize the asymptotic behavior of n1/2
(
R̂ (θ)−R (θ)

)
, we first impose some further re-

strictions. These entail smoothness restrictions, bandwidth restrictions, and conditions that guar-

antee manageability of relevant empirical processes. We begin with smoothness restrictions.

Restriction I1 (Smoothness): As before, let z ≡ dim(Xc). For some M ≥ 2z + 1, uniformly

in (y, x) ∈ Supp(Y,X) and θ ∈ Θ, fX (x) and Tk (y, x; θ) are almost surely M -times continuously

differentiable with respect to xc, with bounded derivatives. �

Our goal is to characterize sufficient conditions for R̂ (θ) to converge to R (θ) at rate n−1/2. To

this end we combine these smoothness restrictions with the use of bias-reducing kernels, and we

require the bandwidths hn and bn to converge to zero at appropriate rates, as follows.

Restriction I2 (Kernels and bandwidths): Kc is a bias-reducing kernel of order M with bounded

support, exhibits bounded variation, is symmetric around zero, and supv∈Rz |K (v)| ≤ K̄ <∞. The

positive bandwidth sequences bn and hn satisfy n1/2hznbn → ∞, and there exists ε > 0, such that

h
−z/2
n bnn

ε → 0, and n1/2+εb2n → 0. In addition, M is large enough such that n1/2+εbMn → 0. �

Suppose our bandwidths satisfy hn ∝ n−αh and bn ∝ n−αb . Then Restriction I2 is satisfied if

αh and αb are chosen to satisfy

αh =
1

4z
− εh, αb =

1

4
+ εb, with 0 < εh ≤

1

4z (2z + 1)
, 0 < εb < εh.

With these bandwidths, the smallest value of M compatible with Restriction I2 is M = 2z + 1.

Combined with the smoothness Restriction I1, our bandwidth and kernel restrictions will be used

to establish convergence of R̂ (θ) to R (θ) at rate n−1/2, and asymptotically pivotal properties of

R̂ (θ)−R (θ), appropriately studentized.

Our next restriction, discussed in the main text, is below.

Restriction I3 (Behavior of Tk (Y,X, θ) at zero from below): There exist constants b̄ > 0 and

Ā <∞ such that for all positive b < b̄ and each k = 1, ...,K, supθ∈Θ P (−b ≤ Tk (Y,X; θ) < 0) ≤ bĀ.

�

We next state Restriction I4 requiring manageability of relevant empirical processes, as defined

in Definition 7.9 of Pollard (1990). In the context of our model, unless stated otherwise, mk is as

defined in (5.1).
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Restriction I4 (Manageability of Empirical Processes I): For each k = 1, ...,K, (i) the process

M≡ {mk (Yi, y, x; θ) ·K (Xi − x;h) : (y, x, θ) ∈ Supp(Y,X)×Θ, h > 0, 1 ≤ i ≤ n}

is manageable with respect to the constant envelope K̄ ≡ supv∈R Kc (v;h), and (ii) there exists a

c̄ > 0 such that the process

I ≡ {1 {−c ≤ Tk (Yi, Xi; θ) < 0} : θ ∈ Θ, 0 < c < c̄, 1 ≤ i ≤ n} ,

is manageable with respect to the constant envelope 1. �

Sufficient conditions for manageability are well-established in the empirical process literature.

For example, if the kernel function Kc is of bounded variation then Lemma 22 in Nolan and Pollard

(1987) and Lemmas 2.4 and 2.14 in Pakes and Pollard (1989) imply that the the class of functions

{K (x− v;h) : v ∈ X , h > 0} is Euclidean, as defined in Pakes and Pollard (1989) Definition 2.7,

with respect to the constant envelope K̄. From here, manageability of M follows, for example, if

the classes of functions {g (y) = mk (y, y′, x; θ) : (y, x, θ) ∈ SY,X ×Θ} are Euclidean with respect to

the constant envelope 1. Sufficient conditions for this property can be found in Nolan and Pollard

(1987) and Pakes and Pollard (1989), for example.

Likewise, sufficient conditions for manageability of I can be established, for example, if the

class of sets

Ψk ≡ {(y, x) ∈ SY,X : −c ≤ Tk (y, x; θ) < 0, θ ∈ Θ, 0 < c < c̄}

have polynomial discrimination (see Pollard (1984) Definition 13) of degree at most r <∞. Lemma

1 of Asparouhova, Golanski, Kasprzyk, Sherman, and Asparouhov (2002) provides a sufficient

condition for this to hold, namely that the number of points at which Tk (y, x; ·) changes sign be

uniformly bounded over (y, x) ∈ SY,X and k = 1, ...,K.

The linear representation for R̂ (θ) around R (θ) established in Theorem 3, relies on two parts.

First we establish the effect of the use of the threshold bn with respect to T̂k (Y,X; θ) in R̂ (θ) in

place of the zero threshold for Tk (yi, xi, θ) in R (θ). We then use a Hoeffding (1948) projection

and results from Sherman (1994) to establish the asymptotically linear representation, and the

corresponding “influence function” for characterizing the limiting behavior of n1/2
(
R̂ (θ)−R (θ)

)
.

To establish the first result, define

R̃ (θ) ≡ 1

n

n∑
i=1

1Xi

(
K∑
k=1

T̂k (yi, xi; θ) · 1 {Tk (yi, xi, θ) ≥ 0}

)
, (B.1)

which is equivalent to R̂ (θ) but for the replacement of 1
{
T̂k (yi, xi; θ) ≥ −bn

}
with 1 {Tk (yi, xi, θ) ≥ 0}.

With the following Lemma we establish that R̃ (θ) and R̂ (θ) are uniformly close, specifically that
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they differ by no more that op
(
n−1/2

)
uniformly in θ.

Lemma 3 Let Restrictions I1-I4 hold. Then there exists a > 1/2 such that

sup
θ∈Θ

∣∣∣R̃ (θ)− R̂ (θ)
∣∣∣ = Op

(
n−a

)
.

With Lemma 3 established, the task of producing a linear representation for n1/2
(
R̂ (θ)−R (θ)

)
is simplified to establishing such a representation for n1/2

(
R̃ (θ)−R (θ)

)
, which does not depend

on the bandwidth bn. For notational convenience let us group

W ≡ (X,Y ) .

With some minor algebraic manipulation of R̃ (θ) defined in (B.1) and use of the definition of

T̂k (wi; θ) given in (5.2) we obtain

R̃ (θ) =
1

n

n∑
i=1

1Xi

K∑
k=1

(Tk (wi, θ))+ +
K∑
k=1

1

n2

n∑
i=1

n∑
`=1

vk (w`, wi; θ, hn) , (B.2)

where

vk (w`, wi; θ, hn) ≡
(

1

hzn
mk (y`, yi, xi; θ) ·K (xi − x`;hn)− Tk (wi, θ)

)
1Xi1 {Tk (wi, θ) ≥ 0} . (B.3)

In the proof of the following Lemma, we write the second term of (B.2) as a sum of three component

terms. We use our smoothness restrictions and a result of Sherman (1994) to establish that all but

one of these is uniformly Op (n−a) for some a > 1/2. For application of Sherman’s result we further

impose the following restriction.

Restriction I5 (Euclidean Class): For each k = 1, ...,K, the class of functions

Vk = {v : v (w1, w2) = vk (w1, w2; θ, h) , θ ∈ Θ, h > 0} ,

is Euclidean with respect to an envelope V̄ such that E
[
V̄ 2+δ

]
<∞ for some δ > 0.

For the definition of Euclidean classes we refer to Definition 2.7 in Pakes and Pollard (1989)

or Definition 3 in Sherman (1994). Primitive conditions to establish this property can be found,

e.g., in Nolan and Pollard (1987), Pakes and Pollard (1989) and Sherman (1994). In fact, our proof

method only requires that the U-process produced by the class Vk satisfy the maximal inequality

in Sherman (1994), for which the Euclidean property is sufficient.

Lemma 4 Let Restrictions I1-I5 hold. Then for some a > 1/2, and for each k = 1, ...,K, uniformly
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in θ ∈ Θ,

1

n2

n∑
i=1

n∑
`=1

vk (w`, wi; θ, hn) =
1

n

n∑
i=1

[g̃k (wi; θ, hn)− E [g̃k (W ; θ, hn)]] +Op
(
n−a

)
.

where vk (w`, wi; θ, hn) is as defined in (B.3) and where

g̃k (w; θ, h) ≡
∫ (

vk
(
w,w′; θ, h

)
+ vk

(
w′, w; θ, h

))
dFW

(
w′
)

.

These Lemmas, proven below, are used to prove Theorem 3, which establishes the resulting

linear approximation for R̂ (θ).

Finally, as discussed in the main text, for the proof of Theorem 4 we require the following

addition restriction.

Restriction I6 (Regularity on Θ̄∗): ΣMR (θ) and ΣRR (θ) are continuous on Θ̄∗ and the estimator

Σ̂ (θ) is uniformly consistent on Θ̄∗, namely

sup
θ∈Θ̄∗

∥∥∥Σ̂ (θ)− Σn (θ)
∥∥∥ = op (1) .

In addition, the following integrability and manageability conditions hold:

(i) For some C̄ <∞ and δ > 0,

lim
n→∞

sup
θ∈Θ̄∗

E

[
|ψR (wi; θ, hn)|2+δ

σ2+δ
n (θ)

]
≤ C̄,

where σ2
n (θ) ≡ var (ψR (wi; θ, hn)).

(ii) The triangular array of processes

{
ψR (wi; θ, hn) : i ≤ n, n ≥ 1, θ ∈ Θ̄∗

}
is manageable with respect to an envelope Ḡ satisfying E

[
Ḡ2
]
<∞. �

B.2 Proofs

Proof of Lemma 3. As in the main text, to simplify notation let w ≡ (x, y) with support

denoted W. We abbreviate T̂k (wi; θ) and Tk (wi; θ) for T̂k (yi, xi; θ) and Tk (yi, xi; θ), respectively,

k = 1, ...,K. Suprema with respect to w, θ are to be understood to be taken with respect toW×Θ
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unless otherwise stated. Let

ξn (θ) ≡ R̂ (θ)− R̃ (θ)

=
1

n

n∑
i=1

1Xi

(
K∑
k=1

T̂k (wi; θ) ·
(

1
{
T̂k (wi; θ) ≥ −bn

}
− 1 {Tk (wi; θ) ≥ 0}

))
.

Note that

|ξn (θ)| ≤ ξ1
n (θ) + ξ2

n (θ) ,

where

ξ1
n (θ) ≡ 1

n

n∑
i=1

1Xi

(
K∑
k=1

∣∣∣T̂k (wi; θ)
∣∣∣ · 1 {−2bn ≤ Tk (wi, θ) < 0}

)
,

ξ2
n (θ) ≡ 1

n

n∑
i=1

1Xi

(
K∑
k=1

∣∣∣T̂k (wi; θ)
∣∣∣ · 1{∣∣∣T̂k (wi; θ)− Tk (wi, θ)

∣∣∣ ≥ bn}) .

To complete the proof, we now show that each of these terms is Op (n−a) uniformly over θ ∈ Θ for

some a > 1/2.

Step 1 (Bound on
∣∣ξ1
n (θ)

∣∣).
We have

sup
θ

∣∣ξ1
n (θ)

∣∣ ≤ sup
θ


1
n

n∑
i=1

1Xi

(
K∑
k=1

|Tk (wi, θ)| · 1 {−2bn ≤ Tk (wi, θ) < 0}

)

+ 1
n

n∑
i=1

1Xi

(
K∑
k=1

∣∣∣T̂k (wi, θ)− Tk (wi, θ)
∣∣∣ · 1 {−2bn ≤ Tk (wi, θ) < 0}

)


≤

(
2bn + sup

w,θ

∣∣∣T̂k (wi, θ)− Tk (wi, θ)
∣∣∣)× sup

θ

∣∣∣∣∣ 1n
n∑
i=1

1Xi

(
K∑
k=1

1 {−2bn ≤ Tk (wi, θ) < 0}

)∣∣∣∣∣
=

(
2bn +Op

(
log n√
nhzn

))
× sup

k,θ

∣∣∣∣∣ 1n
n∑
i=1

1 {−2bn ≤ Tk (wi, θ) < 0}

∣∣∣∣∣ , (B.4)

where the first inequality follows from the triangle inequality, the second from elementary algebra,

and the third from

sup
w,θ

∣∣∣T̂k (wi, θ)− Tk (wi, θ)
∣∣∣ = Op

(
log n√
nhzn

)
for all k = 1, ...,K holding under I2 and I4. Now for b̄ and Ā as defined in Restriction I3 we have
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for all k = 1, ...,K and large enough n, 2bn ≤ b̄ and therefore

sup
θ
E [1 {−2bn ≤ Tk (W, θ) < 0}] ≤ 2Ābn, (B.5)

Ω̄n ≡ sup
θ
V ar [1 {−2bn ≤ Tk (W, θ) < 0}] ≤ 2Ābn. (B.6)

It now follows from the triangle inequality and (B.5) above that for any k = 1, ...,K,

sup
θ

∣∣∣∣∣ 1n
n∑
i=1

1 {−2bn ≤ Tk (wi, θ) < 0}

∣∣∣∣∣
≤ sup

θ

∣∣∣∣∣ 1n
n∑
i=1

(1 {−2bn ≤ Tk (wi, θ) < 0} − E [−2bn ≤ Tk (wi, θ) < 0])

∣∣∣∣∣+ 2Ābn.

The manageability Restriction I4 implies, using Corollary 4 in Sherman (1994),

sup
θ

∣∣∣∣∣ 1n
n∑
i=1

(1 {−2bn ≤ Tk (wi, θ) < 0} − E [−2bn ≤ Tk (wi, θ) < 0])

∣∣∣∣∣ = Op

(√
Ω̄n

n

)
,

which is in fact Op

(√
bn
n

)
by virtue of (B.6). Thus

sup
θ

∣∣∣∣∣ 1n
n∑
i=1

1 {−2bn ≤ Tk (wi, θ) < 0}

∣∣∣∣∣ = Op

(√
bn
n

)
+O (bn)

= bn

(
Op

(
1√
bnn

)
+O (1)

)
= bn (op (1) +O (1))

= Op (bn) .

Plugging this into (B.4) we have

sup
θ

∣∣ξ1
n (θ)

∣∣ =

(
2bn +Op

(
log n√
nhzn

))
·Op (bn)

= Op
(
b2n
)

+Op

(
bn log n√
nhzn

)
= Op

(
n−a

)
for some a > 1/2 by the bandwidth conditions in Restriction I2.

Step 2 (Bound on P
{

supw,θ

∣∣∣T̂k (w; θ)− Tk (w; θ)
∣∣∣ ≥ c}).

From Restriction I4 and application of Theorem 3.5 and equation (7.3) of Pollard (1990), there
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exist positive constants κ1, κ2 such that for any c > 0, and any U ∈

P

{
sup
w,θ

∣∣∣T̂k (w; θ)− Tk (w; θ)
∣∣∣ ≥ c} ≤ κ1 exp

(
−
(
nhdnκ2c

)2
)

. (B.7)

Our smoothness restriction I1 and an M th order expansion imply the existence of a constant C

such that

sup
w,θ

∣∣∣E [T̂k (w; θ)
]
− Tk (w; θ)

∣∣∣ ≤ ChMn . (B.8)

Thus

P

{
sup
w,θ

∣∣∣T̂k (w; θ)− Tk (w; θ)
∣∣∣ ≥ bn} (B.9)

≤ P

{
sup
w,θ

∣∣∣T̂k (w; θ,U)− E
[
T̂k (w; θ)

]∣∣∣+ sup
w,θ

∣∣∣E [T̂k (w; θ,U)
]
− Tk (w; θ)

∣∣∣ ≥ bn}

≤ P

{
sup
w,θ

∣∣∣T̂k (w; θ,U)− Tk (w; θ)
∣∣∣ ≥ bn − ChMn

}
,

where the first inequality follows by the triangle inequality and the second by (B.8). Under our

bandwidth restrictions I2 we have for large enough n that bn > ChMn , and so application of (B.7)

to (B.9) with c = bn − ChMn gives

P

{
sup
w,θ

∣∣∣T̂k (w; θ)− Tk (w; θ)
∣∣∣ ≥ c} ≤ κ1 exp

(
−
(
nhdnκ2

(
bn − ChMn

))2
)

. (B.10)

Step 3 (Bound on
∣∣ξ2
n (θ)

∣∣).
We have

sup
θ

∣∣ξ2
n (θ)

∣∣ ≤ sup
w,θ

∣∣∣T̂k (w; θ)
∣∣∣ · sup

w,θ
1
{∣∣∣T̂k (w; θ)− Tk (w; θ)

∣∣∣ ≥ bn}
= Op (1)× sup

w,θ
1
{∣∣∣T̂k (w; θ)− Tk (w; θ)

∣∣∣ ≥ bn}
= Op (1)× 1

{
sup
w,θ

∣∣∣T̂k (w; θ)− Tk (w; θ)
∣∣∣ ≥ bn} .

Let Dn ≡ 1
{

supw,θ

∣∣∣T̂k (w; θ)− Tk (w; θ)
∣∣∣ ≥ bn}. Now using Chebyshev’s inequality we have

|Dn − E [Dn]| = Op

(√
var (Dn)

)
= Op

(√
E [Dn] (1− E [Dn])

)
=
√
E [Dn]Op (1) .
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Therefore

Dn ≤
√
E [Dn] ·Op (1) + E [Dn] =

√
E [Dn]

(
Op (1) +

√
E [Dn]

)
=
√
E [Dn]Op (1) . (B.11)

From (B.10) in Step 2 we have

E [Dn] ≤ κ1 exp

(
−
(
nhdnκ2

(
bn − ChMn

))2
)

,

which combined with (B.11) gives

Dn = Op

(
√
κ1 exp

(
−1

2

(
nhdnκ2

(
bn − ChMn

))2
))

,

from which it follows that Dn = Op (n−a), completing the proof. �

Proof of Lemma 4. We prove the lemma for K = 1 and drop the subscript k notation for

convenience. This suffices for the claim of the lemma since K is finite, and a finite sum of Op (n−a)

terms is Op (n−a). Define

g (w1, w2; θ, h) ≡ v (w1, w2; θ, hn) + v (w2, w1; θ, hn) ,

g̃ (w; θ, h) ≡
∫
g
(
w,w′; θ, h

)
dFW

(
w′
)

, µ (θ, h) ≡
∫
g̃ (w; θ, h) dFW (w) ,

ṽ (w1, w2; θ, h) ≡ g (w1, w2; θ, h)− g̃ (w1; θ, h)− g̃ (w2; θ, h) + µ (θ, h) .

A Hoeffding (1948) decomposition of our U-process, making use of the relation E [g̃ (W ; θ, h)] =

µ (θ, h), gives

1

n2

n∑
i=1

n∑
`=1

vk (w`, wi; θ, hn)

= µ (θ, h) +
1

n

n∑
i=1

[g̃ (wi; θ, h)− E [g̃ (W ; θ, h)]] +
1

n (n− 1)

∑
1≤i<`≤n

ṽ (wi, w`; θ, h) + op
(
n−1

)
.

The third term above is a degenerate U-process of order 2. By Corollary 4 in Sherman (1994),

sup
θ∈Θ

1

n (n− 1)

∑
1≤i<`≤n

ṽ (wi, w`; θ, h) = Op
(
nh−zn

)
= op

(
n−1/2−ε

)
,

where the last equality follows from Restriction I2. Note that securing the above rate is the sole

motivation for imposing that the class V be Euclidean. Any alternative restriction that could

deliver this result would suffice.

Under the smoothness Restriction I1, using iterated expectations and an M th order approxi-
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mation,

sup
θ∈Θ
|µ (θ, h)| = ChMn = Op

(
n−1/2−ε

)
,

for some ε > 0. Thus

1

n2

n∑
i=1

n∑
`=1

vk (w`, wi; θ, hn) =
1

n

n∑
i=1

[g̃ (wi; θ, h)− E [g̃ (W ; θ, h)]] +Op

(
n1/2+ε

)
. �

Proof of Theorem 3. Let

∆g,i (θ, h) ≡
K∑
k=1

[g̃k (wi; θ, h)− E [g̃k (W ; θ, h)]] .

Combining Lemma 3 with the definition of R̃ (θ) in (B.1) we have for some a > 1/2,

R̂ (θ) =
1

n

n∑
i=1

1Xi

K∑
k=1

(Tk (wi, θ))+ +

K∑
k=1

1

n2

n∑
i=1

n∑
`=1

vk (w`, wi; θ, hn) +Op
(
n−a

)
=

1

n

n∑
i=1

1Xi

K∑
k=1

(Tk (wi, θ))+ +
1

n

n∑
i=1

∆g,i (θ, hn) +Op
(
n−a

)
= R (θ) +

1

n

n∑
i=1

(
1Xi

K∑
k=1

(Tk (wi, θ))+ −R (θ)

)
+

1

n

n∑
i=1

∆g,i (θ, hn) +Op
(
n−a

)
= R (θ) +

1

n

n∑
i=1

(
K∑
k=1

1Xi (Tk (wi, θ))+ − E
[
1Xi (Tk (wi, θ))+

])
+

1

n

n∑
i=1

∆g,i (θ, hn) +Op
(
n−a

)
,

where the second line follows from Lemma 4, the third adding subtracting R (θ), and the fourth

substituting for R (θ) using (5.3) and interchanging summation and expectation. �

Proof of Theorem 4. We characterize the limiting behavior of Q̂n (θ) = V̂ (θ) Σ̂ (θ)−1 V̂ (θ).

From Theorems 2 and 3 we have from (5.4) that uniformly over θ ∈ Θ,

V̂ (θ) = n1/2

(
θ∗1 − θ1

R (θ)

)
+

(
n−1/2

∑n
i=1 ψM (wi)

n−1/2
∑n

i=1 ψR (wi; θ, hn)

)
+

(
op (1)

op (n−ε)

)
, (B.12)

where ε > 0. We consider each of the three cases (i) θ ∈ Θ∗/Θ̄∗, (ii) θ ∈ Θ̄∗, and (iii) θ /∈ Θ∗, which

together prove the Theorem.

Case (i), θ ∈ Θ∗/Θ̄∗: Because θ ∈ Θ∗, θ∗1 − θ1 = 0 and R (θ) = 0. By definition of Θ̄∗, we have

that

inf
θ∈Θ∗/Θ̄∗

PW

(
max

k=1,...,K
Tk (W, θ) < 0

)
= 1.

It follows from the definition of ψR (wi; θ, hn) that n−1/2
∑n

i=1 ψR (wi; θ, hn) = 0 wp→ 1 for all

55



θ ∈ Θ∗/Θ̄∗. Therefore

Q̂n (θ) = n−1
n∑
i=1

ψM (wi) Ĥ
−1
0

n∑
i=1

ψM (wi) + op (1) ,

uniformly over θ ∈ Θ∗/Θ̄∗. Then by Theorem 2, (4.9), for any c > 0, and any sequence θn ∈ Θ∗/Θ̄∗

lim
n→∞

P
(
Q̂n (θn) ≤ c

)
= P

(
χ2
r ≤ c

)
.

Case (ii): θ ∈ Θ̄∗. Again, θ ∈ Θ∗ so θ∗1 − θ1 = 0 and R (θ) = 0. Let

Ω (θ) ≡

(
ΣMM (θ) ΣMR (θ)

Σ′MR (θ) σ2 (θ)

)
, Ω̂ (θ) ≡

(
Σ̂MM (θ) Σ̂MR (θ)

Σ̂′MR (θ) σ̂2
n (θ)

)

where

σ2 (θ) ≡ lim
n→∞

σ2
n (θ) , σ̂2

n (θ) ≡ n−1
n∑
i=1

ψ̂R (wi; θ, hn)2 .

We assume Ω (θ) to be well-defined and invertible at each θ ∈ Θ̄∗. Part (i) of Restriction I5 suffices

for a Lindeberg condition to hold, see Lemma 1 of Romano (2004). It allows for the limiting

variance of ψ̂R to become arbitrarily close to zero on θ ∈ Θ∗, but essentially dictates that its

absolute expectation vanish faster. Combined with the manageability condition of Restriction I6

(ii), it follows that for any sequence θn ∈ Θ∗ such that σ2
n (θ) has a well-defined limit,

n−1/2
n∑
i=1

ψ̂R (wi; θn, hn)

σn (θn)
→ N (0, 1) .

For a given θ ∈ Θ̄∗, let

Q̆n (θ) ≡ V̂ (θ) Ω̂n (θ)−1 V̂ (θ) .

By construction Ω̂−1 (θ) − Σ̂−1 (θ) is positive semidefinite and therefore Q̂n (θ) ≤ Q̆n (θ) for all

θ ∈ Θ̄∗.

Now let θn be a sequence in Θ∗. Since Θ is compact, the sequence θn is bounded and has a

convergent subsequence θan . By the continuity conditions in Restriction I6, Ω̂−1
an (θan) exists and

has a well-defined limit. For any c > 0, parts (i) and (ii) of Restriction I6 then yield

lim
n→∞

P
(
Q̆n (θan) ≤ c

)
= P

(
χ2
r+1 ≤ c

)
,

and since for all θ ∈ Θ̄∗ Q̂n (θ) ≤ Q̆n (θ),

lim
n→∞

P
(
Q̂n (θan) ≤ c

)
≥ P

(
χ2
r+1 ≤ c

)
.
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To analyze the behavior of

lim
n→∞

inf
θ∈Θ∗

P
(
Q̂n (θan) ≤ c

)
now choose a sequence θn ∈ Θ∗ such that for some δn ↘ 0,∣∣∣∣P (Q̂n (θn) ≤ c

)
− inf
θ∈Θ∗

P
(
Q̂n (θ) ≤ c

)∣∣∣∣ ≤ δn.

Note that we can always find such a sequence. Using Theorem 3, Restriction I6, and P
(
χ2
r ≤ c

)
≥

P
(
χ2
r+1 ≤ c

)
, our previous arguments show that we can always find a subsequence θan such that

lim
n→∞

P
(
Q̂n (θan) ≤ c

)
≥ P

(
χ2
r+1 ≤ c

)
,

and from here we conclude that

lim inf
θ∈Θ∗

P
(
Q̂n (θ) ≤ c

)
≥ P

(
χ2
r+1 ≤ c

)
,

which proves the first assertion of the Theorem.

Case (iii): θ /∈ Θ∗. Now either θ∗1 − θ1 6= 0 or R (θ) 6= 0, or both. It follows from (B.12) that for

any c > 0,

lim
n→∞

P
(
V̂ (θ) ≤ c

)
= 0,

and therefore

lim
n→∞

P
(
Q̂n (θ) ≤ c

)
= 0,

completing the proof. �
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C Figures

Figure 1: Illustration of Restriction I3
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Figure 2: Profiled log-likelihood for each parameter in θ1
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Figure 3: Joint 95% confidence regions for slopes, intercept, and η
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Figure 4: Joint 95% confidence region for strategic interaction coefficients
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Figure 5: Joint 95% confidence region for strategic interaction coefficients and slope parameters
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Figure 6: Confidence sets for estimated propensities of equilibrium selection

(A) Equilibria with at most one store by each firm

(B) Equilibria with a monopolist opening multiple stores

(C) Equilibria where both firms enter with the same number of stores
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