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Abstract

This paper considers inference on functionals of semi/nonparametric conditional moment re-
strictions with possibly nonsmooth generalized residuals, which include all of the (nonlinear) non-
parametric instrumental variables (IV) as special cases. There models are often illposed and hence
it is difficult to verify whether a (possibly nonlinear) functional is root-n estimable or not. We pro-
vide computationally simple, unified inference procedures that are asymptotically valid regardless
of whether a functional is root-n estimable or not. We establish the following new useful results:
(1) the asymptotic normality of a plug-in penalized sieve minimum distance (PSMD) estimator of
a (possibly nonlinear) functional; (2) the consistency of simple sieve variance estimators for the
plug-in PSMD estimator, and hence the asymptotic chi-square distribution of the sieve Wald s-
tatistic; (3) the asymptotic chi-square distribution of an optimally weighted sieve quasi likelihood
ratio (QLR) test under the null hypothesis; (4) the asymptotic tight distribution of a non-optimally
weighted sieve QLR statistic under the null; (5) the consistency of generalized residual bootstrap
sieve Wald and QLR tests; (6) local power properties of sieve Wald and QLR tests and of their
bootstrap versions; (7) asymptotic properties of sieve Wald and SQLR for functionals of increas-
ing dimension. Simulation studies and an empirical illustration of a nonparametric quantile IV
regression are presented.
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1 Introduction

This paper is about inference on functionals of the unknown true parameters α0 ≡ (θ′0, h0) satisfying

the semi/nonparametric conditional moment restrictions

E[ρ(Y,X; θ0, h0)|X] = 0 a.s.−X, (1.1)

where Y is a vector of endogenous variables and X is a vector of conditioning (or instrumental)

variables. The conditional distribution of Y given X, FY |X , is not specified beyond that it satisfies

(1.1). ρ(·; θ0, h0) is a dρ × 1−vector of generalized residual functions whose functional forms are

known up to the unknown parameters α0 ≡ (θ′0, h0) ∈ Θ×H, with θ0 ≡ (θ01, ..., θ0dθ)
′ ∈ Θ being a

dθ×1−vector of finite dimensional parameters and h0 ≡ (h01(·), ..., h0q(·)) ∈ H being a 1×dq−vector

valued function. The arguments of each unknown function h`(·) may differ across ` = 1, ..., q, may

depend on θ, h`′(·), `′ 6= `, X and Y . The residual function ρ(·;α) could be nonlinear and pointwise

non-smooth in the parameters α ≡ (θ′, h) ∈ Θ×H.

The general framework (1.1) nests many widely used nonparametric and semiparametric models

in economics and finance. Well known examples include nonparametric mean instrumental vari-

ables regressions (NPIV): E[Y1 − h0(Y2)|X] = 0 (e.g., Hall and Horowitz (2005), Carrasco et al.

(2007), Blundell et al. (2007), Darolles et al. (2011), Horowitz (2011)); nonparametric quantile in-

strumental variables regressions (NPQIV): E[1{Y1 ≤ h0(Y2)} − γ|X] = 0 (e.g., Chernozhukov and

Hansen (2005), Chernozhukov et al. (2007), Horowitz and Lee (2007), Chen and Pouzo (2012a),

Gagliardini and Scaillet (2012)); semi/nonparametric demand models with endogeneity (e.g., Blun-

dell et al. (2007), Chen and Pouzo (2009), Souza-Rodrigues (2012)); semi/nonparametric ran-

dom coefficient panel data regressions (e.g., Chamberlain (1992), Graham and Powell (2012)); se-

mi/nonparametric spatial models with endogeneity (e.g., Pinkse et al. (2002), Merlo and de Paula

(2013)); semi/nonparametric asset pricing models (e.g., Hansen and Richard (1987), Gallant and

Tauchen (1989), Chen and Ludvigson (2009), Chen et al. (2013), Penaranda and Sentana (2013));

semi/nonparametric static and dynamic game models (e.g., Bajari et al. (2011)); nonparametric

optimal endogenous contract models (e.g., Bontemps and Martimort (2013)). Additional examples

of the general model (1.1) can be found in Chamberlain (1992), Newey and Powell (2003), Ai and

Chen (2003), Chen and Pouzo (2012a), Chen et al. (2014) and the references therein. In fact,

model (1.1) includes all of the (nonlinear) semi/nonparametric IV regressions when the unknown

functions h0 depend on the endogenous variables Y :

E[ρ(Y1; θ0, h0(Y2))|X] = 0 a.s.−X, (1.2)

which could lead to difficult (nonlinear) nonparametric ill-posed inverse problems with unknown
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operators.

Let {Zi ≡ (Y ′i , X
′
i)
′}ni=1 be a random sample from the distribution of Z ≡ (Y ′, X ′)′ that satisfies

the conditional moment restrictions (1.1) with a unique α0 ≡ (θ′0, h0). Let φ : Θ × H → Rdφ

be a (possibly nonlinear) functional with a finite dφ ≥ 1. Typical linear functionals include an

Euclidean functional φ(α) = θ, a point evaluation functional φ(α) = h(y2) (for y2 ∈ supp(Y2)),

a weighted derivative functional φ(h) =
∫
w(y2)∇h(y2)dy2 and many others. Typical nonlinear

functionals include a quadratic functional
∫
w(y2) |h(y2)|2 dy2, a quadratic derivative functional∫

w(y2) |∇h(y2)|2 dy2, a consumer surplus or an average consumer surplus functional of an endoge-

nous demand function h. We are interested in computationally simple, valid inferences on any

φ(α0) of the general model (1.1) with i.i.d. data.4

Although some functionals of the model (1.1), such as the (point) evaluation functional, are

known a priori to be estimated at slower than root-n rates, others, such as the weighted derivative

functional, are far less clear without a stare at their semiparametric efficiency bound expressions.

This is because a non-singular semiparametric efficiency bound is a necessary condition for φ(α0)

to be root-n estimable. Unfortunately, as pointed out in Chamberlain (1992) and Ai and Chen

(2012), there is generally no closed form solution for the semiparametric efficiency bound of φ(α0)

(including θ0) of model (1.1), especially so when ρ(·; θ0, h0) contains several unknown functions

and/or when the unknown functions h0 of endogenous variables enter ρ(·; θ0, h0) nonlinearly. It is

thus difficult to verify whether the semiparametric efficiency bound for φ(α0) is singular or not.

Therefore, it is highly desirable for applied researchers to be able to conduct simple valid inferences

on φ(α0) regardless of whether it is root-n estimable or not. This is the main goal of our paper.

In this paper, for the general model (1.1) that could be nonlinearly ill-posed and for any φ(α0)

that may or may not be root-n estimable, we first establish the asymptotic normality of the plug-in

penalized sieve minimum distance (PSMD) estimator φ(α̂n) of φ(α0). For the model (1.1) with

(pointwise) smooth residuals ρ(Z;α) in α0, we propose two simple consistent sieve variance estima-

tors for possibly slower than root-n estimator φ(α̂n), which immediately leads to the asymptotic

chi-square distribution of the sieve Wald statistic. However, there is no simple variance estimator

for φ(α̂n) when ρ(Z,α) is not pointwise smooth in α0 (without estimating an extra unknown nui-

sance function or using numerical derivatives). We then consider a PSMD criterion based test of

the null hypothesis φ(α0) = φ0. We show that an optimally weighted sieve quasi likelihood ratio

(SQLR) statistic is asymptotically chi-square distributed under the null hypothesis. This allows us

to construct confidence sets for φ(α0) by inverting the optimally weighted SQLR statistic, without

the need to compute a variance estimator for φ(α̂n). Nevertheless, in complicated real data analysis

applied researchers might like to use simple but possibly non-optimally weighed PSMD procedures

for estimation of and inference on φ(α0). We show that the non-optimally weighted SQLR statistic

4See our Cowles Foundation Discussion Paper No. 1897 for general theory allowing for weakly dependent data.
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still has a tight limiting distribution under the null regardless of whether φ(α0) is root-n estimable

or not. In addition, we establish the consistency of the generalized residual bootstrap (possibly

non-optimally weighted) SQLR and sieve Wald tests under virtually the same conditions as those

used to derive the limiting distributions of the original-sample statistics. The bootstrap SQLR

would then lead to alternative confidence sets construction for φ(α0) without the need to compute

a variance estimator for φ(α̂n). To ease notation burden, we present the above listed theoretical

results for a scalar-valued functional in the main text. In Appendix A we present the asymptotic

properties of sieve Wald and SQLR for functionals of increasing dimension (i.e., dφ = dim(φ) could

grow with sample size n). We also provide the local power properties of sieve Wald and SQLR

tests as well as their bootstrap versions in Appendix A. Regardless of whether a possibly nonlinear

functional φ(α0) is root-n estimable or not, we show that the optimally weighted SQLR is more

powerful than the non-optimally weighed SQLR, and that the SQLR and the sieve Wald using the

same weighting matrix have the same local power in terms of first order asymptotic theory.

To the best of our knowledge, our paper is the first to provide a unified theory about sieve

Wald and SQLR inferences on (possibly nonlinear) φ(α0) satisfying the general semi/nonparametric

model (1.1) with possibly non-smooth residuals.5 Our results allow applied researchers to obtain

limiting distribution of the plug-in PSMD estimator φ(α̂n) and to construct confidence sets for any

φ(α0) regardless of whether it is regular (i.e., root-n estimable) or irregular (i.e., slower than root-n

estimable). Our paper is also the first to provide local power properties of sieve Wald and SQLR

tests and their bootstrap versions of general nonlinear hypotheses for the model (1.1).

Roughly speaking, our results extend the classical theories on Wald and QLR tests of nonlinear

hypothesis based on root-n consistent parametric minimum distance estimator α̂n to those based

on slower than root-n consistent nonparametric minimum distance estimator α̂n ≡ (θ̂′n, ĥn) of α0 ≡
(θ′0, h0) satisfying the model (1.1). The implementations of the sieve Wald and SQLR also resemble

the classical Wald and QLR based on parametric extreme estimators and hence are computationally

attractive. For example, our sieve t (Wald) test on a general nonlinear hypothesis φ(h0) = φ0 of the

NPIV model E[Y1−h0(Y2)|X] = 0 can be implemented as a standard t (Wald) test for a parametric

linear IV model using two stage least squares (see Subsection 2.2). The proof techniques are quite

different, however, because one is no longer able to rely on the root-n asymptotic normality of α̂n and

then a standard “delta-method” to establish the asymptotic normality of
√
n (φ(α̂n)− φ(α0)). In

our framework (1.2),
√
n (φ(α̂n)− φ(α0)) could diverge to infinity under the combined effects of (i)

slower convergence rate of α̂n to α0 due to the illposed inverse problem and (ii) nonlinearity in either

the functional φ() or the residual function ρ(). Our proof strategy relies on the convergence rates

of the PSMD estimator α̂n to α0 in both weak and strong metrics, and then the local curvatures

of the functional φ() and the criterion function under these two metrics. The weak metric is

5We also provide asymptotic properties of sieve score and bootstrap sieve score statistics in online Appendix D.
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intrinsic to the variance of the linear approximation to φ(α̂n) − φ(α0), while the strong metric

controls the nonlinearity (in α) of the functional φ() and of the conditional mean function m(·, α) =

E[ρ(Y,X;α)|X = ·]. Unfortunately the convergence rate in the strong metric could be very slow

due to the illposed inverse problem. This explains why it is difficult to establish the asymptotic

normality of φ(α̂n) for a nonlinear functional φ() even in the NPIV model. Our paper builds upon

the recent results on convergence rates in Chen and Pouzo (2012a) and others. In particular, under

virtually the same conditions as those in Chen and Pouzo (2012a), we show that our generalized

residual bootstrap PSMD estimator of α0 is consistent and achieves the same convergence rates as

that of the original-sample PSMD estimator α̂n. This result is then used to establish the consistency

of the bootstrap sieve Wald and the bootstrap SQLR statistics under virtually the same conditions

as those used to derive the limiting distributions of the original-sample statistics.6

There are some published work about estimation of and inference on a particular linear func-

tional, the Euclidean parameter φ(α) = θ, of the general model (1.1) when θ0 is assumed to be

regular (i.e., root-n estimable); see Ai and Chen (2003), Chen and Pouzo (2009), Otsu (2011) and

others. None of the existing work allows for irregular θ0 identified by the model (1.1), however.

When specializing our general theory to inference on a regular θ0 of the model (1.1), we not only

recover the results of Ai and Chen (2003) and Chen and Pouzo (2009), but also provide local power

properties of sieve Wald and SQLR as well as valid bootstrap (possibly non-optimally weighted)

SQLR inference. Moreover, our results remain valid even when θ0 might be irregular.7

When specializing our theory to inference on a particular irregular linear functional, the point

evaluation functional φ(α) = h(y2), of the semi/nonparametric IV model (1.2), we automati-

cally obtain the pointwise asymptotic normality of the PSMD estimator of h0(y2) and different

ways to construct its confidence set. These results are directly applicable to the NPIV example

with ρ(Y1; θ0, h0(Y2)) = Y1 − h0(Y2) and to the NPQIV example with ρ(Y1; θ0, h0(Y2)) = 1{Y1 ≤
h0(Y2)}−γ. Previously, Horowitz (2007) and Gagliardini and Scaillet (2012) established the point-

wise asymptotic normality of their kernel based function space Tikhonov regularization estimators

of h0(y2) for the NPIV and the NPQIV examples respectively. Immediately after our paper was

first presented in April 2009 Banff/Canada conference on semiparametrics, the authors of Horowitz

and Lee (2012) informed us that they were concurrently working on confidence bands for h0 us-

ing a particular SMD estimator of the NPIV example. To the best of our knowledge, there is no

inference results, in the existing literature, on any nonlinear functional of h0 even for the NPIV

6The convergence rate of the bootstrap PSMD estimator is also very useful for the consistency of the bootstrap
Wald statistic for semiparametric two-step GMM estimation of regular functionals when the first-step unknown
functions are estimated via a PSMD procedure. See e.g., Chen et al. (2003)

7It is known that θ0 could have singular semiparametric efficiency bound and could not be root-n estimable; see
Chamberlain (2010), Kahn and Tamer (2010), Graham and Powell (2012) and the references therein. Following Kahn
and Tamer (2010) and Graham and Powell (2012) we call such a θ0 irregular. Many applied papers on complicated
semi/nonparametric models simply assume that θ0 is root-n estimable.
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and NPQIV examples. Our paper is the first to provide simple sieve Wald and SQLR tests for

(possibly) nonlinear functionals satisfying the general semi/nonparametric IV model (1.2).

The rest of the paper is organized as follows. Section 2 presents the plug-in PSMD estima-

tor φ(α̂n) of a (possibly nonlinear) functional φ evaluated at α0 ≡ (θ′0, h0) satisfying the model

(1.1). It also provides an overview of the main asymptotic results that will be established in

the subsequent sections, and illustrates the applications through a point evaluation functional

φ(α) = h(y2), a weighted derivative functional φ(h) =
∫
w(y2)∇h(y2)dy2, and a quadratic func-

tional φ(α) =
∫
w(y2) |h(y2)|2 dy2 of the NPIV and NPQIV examples. Section 3 states the basic

regularity conditions. Section 4 provides the asymptotic properties of sieve t (Wald) and sieve

QLR statistics. Section 5 establishes the consistency of the bootstrap sieve t (Wald) and the boot-

strap SQLR statistics. Section 6 verifies the key regularity conditions for the asymptotic theories

via the three functionals of the NPIV and NPQIV examples presented in Section 2. Section 7

presents simulation studies and an empirical illustration. Section 8 briefly concludes. Appendix

A consists of several subsections, presenting (1) further results on sieve Riesz representation of a

functional of interest; (2) the convergence rates of the bootstrap PSMD estimator α̂Bn for model

(1.1); (3) the local power properties of sieve Wald and SQLR tests and of their bootstrap versions;

(4) asymptotic properties of sieve Wald and SQLR for functionals of increasing dimension; (5)

low level sufficient conditions with a series least squares (LS) estimated conditional mean function

m(·, α) = E[ρ(Y,X;α)|X = ·]; and (6) additional useful lemmas with series LS estimated m(·, α).

Online supplemental materials consist of Appendices B, C and D. Appendix B contains additional

theoretical results (including other consistent variance estimators and other bootstrap sieve Wald

tests) and proofs of all the results stated in the main text. Appendix C contains proofs of all the

results stated in Appendix A. Online Appendix D provides computationally attractive sieve score

test and sieve score bootstrap.

Notation. We use “≡” to implicitly define a term or introduce a notation. For any column

vector A, we let A′ denote its transpose and ||A||e its Euclidean norm (i.e., ||A||e ≡
√
A′A, al-

though sometimes we use |A| = ||A||e for simplicity). Let ||A||2W ≡ A′WA for a positive definite

weighting matrix W . Let λmax(W ) and λmin(W ) denote the maximal and minimal eigenvalues

of W respectively. All random variables Z ≡ (Y ′, X ′)′, Zi ≡ (Y ′i , X
′
i)
′ are defined on a com-

plete probability space (Z,BZ , PZ), where PZ is the joint probability distribution of (Y ′, X ′). We

define (Z∞,B∞Z , PZ∞) as the probability space of the sequences (Z1, Z2, ...). For simplicity we

assume that Y and X are continuous random variables. Let fX (FX) be the marginal densi-

ty (cdf) of X with support X , and fY |X (FY |X) be the conditional density (cdf) of Y given X.

Let EP [·] denote the expectation with respect to a measure P . Sometimes we use P for PZ∞

and E[·] for EPZ∞ [·]. Denote Lp(Ω, dµ), 1 ≤ p < ∞, as a space of measurable functions with

||g||Lp(Ω,dµ) ≡ {
∫

Ω |g(t)|pdµ(t)}1/p < ∞, where Ω is the support of the sigma-finite positive mea-
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sure dµ (sometimes Lp(dµ) and ||g||Lp(dµ) are used). For any (possibly random) positive sequences

{an}∞n=1 and {bn}∞n=1, an = OP (bn) means that limc→∞ lim supn Pr (an/bn > c) = 0; an = oP (bn)

means that for all ε > 0, limn→∞ Pr (an/bn > ε) = 0; and an � bn means that there exist two con-

stants 0 < c1 ≤ c2 < ∞ such that c1an ≤ bn ≤ c2an. Also, we use “wpa1-PZ∞” (or simply wpa1)

for an event An, to denote that PZ∞(An) → 1 as n → ∞. We use An ≡ Ak(n) and Hn ≡ Hk(n)

for various sieve spaces. We assume dim(Ak(n)) � dim(Hk(n)) � k(n) for simplicity, all of which

grow to infinity with the sample size n. We use const., c or C to mean a positive finite constant

that is independent of sample size but can take different values at different places. For sequences,

(an)n, we sometimes use an ↗ a (an ↘ a) to denote, that the sequence converges to a and that

is increasing (decreasing) sequence. For any mapping z : H1 → H2 between two generic Banach

spaces, dz(α0)
dα [v] ≡ ∂z(α0+τv)

∂τ

∣∣∣
τ=0

is the pathwise (or Gateaux) derivative at α0 in the direction

v ∈ H1. And dz(α0)
dα [v′] ≡

(
dz(α0)
dα [v1], · · ·, dz(α0)

dα [vk]
)

for v′ = (v1, · · ·, vk) with vj ∈ H1 for all

j = 1, ..., k.

2 PSMD Estimation and Inferences: An Overview

2.1 The Penalized Sieve Minimum Distance Estimator

Let m(X,α) ≡ E [ρ(Y,X;α)|X] =
∫
ρ(y,X;α)dFY |X(y) be a dρ×1 vector valued conditional mean

function, Σ(X) be a dρ × dρ positive definite (a.s.−X) weighting matrix, and

Q(α) ≡ E
[
m(X,α)′Σ(X)−1m(X,α)

]
≡ E

[
||m(X,α)||2Σ−1

]
be the population minimum distance (MD) criterion function. Then the semi/nonparametric con-

ditional moment model (1.1) can be equivalently expressed as m(X,α0) = 0 a.s. − X, where

α0 ≡ (θ′0, h0) ∈ A ≡ Θ×H, or as

inf
α∈A

Q(α) = Q(α0) = 0.

Let Σ0(X) ≡ V ar(ρ(Y,X;α0)|X) be positive definite for almost all X. In this paper as well as in

most applications Σ(X) is chosen to be either Idρ (identity) or Σ0(X) for almost all X. We call

Q0(α) ≡ E
[
||m(X,α)||2

Σ−1
0

]
the population optimally weighted MD criterion function.

Let φ : A → Rdφ be a functional with a finite dφ ≥ 1. We are interested in inference on φ(α0).

Let

Q̂n(α) ≡ 1

n

n∑
i=1

m̂(Xi, α)′Σ̂(Xi)
−1m̂(Xi, α) (2.1)

be a sample estimate of Q(α), where m̂(X,α) and Σ̂(X) are any consistent estimators of m(X,α)

6



and Σ(X) respectively. When Σ̂(X) = Σ̂0(X) is a consistent estimator of the optimal weighting

matrix Σ0(X), we call the corresponding Q̂n(α) the sample optimally weighted MD criterion Q̂0
n(α).

We estimate φ(α0) by φ(α̂n), where α̂n ≡ (θ̂′n, ĥn) is an approximate penalized sieve minimum

distance (PSMD) estimator of α0 ≡ (θ′0, h0), defined as

Q̂n(α̂n) + λnPen(ĥn) ≤ inf
α∈Ak(n)

{
Q̂n(α) + λnPen(h)

}
+ oPZ∞ (n−1), (2.2)

where λnPen(h) ≥ 0 is a penalty term such that λn = o(1); and Ak(n) ≡ Θ × Hk(n) is a finite

dimensional sieve for A ≡ Θ×H, more precisely, Hk(n) is a finite dimensional linear sieve for H:

Hk(n) =

h ∈ H : h(·) =

k(n)∑
k=1

βkqk(·) = β′qk(n)(·)

 , (2.3)

where {qk}∞k=1 is a sequence of known basis functions of a Banach space (H, ‖·‖H) such as wavelets,

splines, Fourier series, Hermite polynomial series, etc. And k(n)→∞ as n→∞.

For the purely nonparametric conditional moment models E [ρ(Y,X;h0)|X] = 0, Chen and

Pouzo (2012a) proposed more general approximate PSMD estimators of h0 by allowing for possibly

infinite dimensional sieves (i.e., dim(Hk(n)) = k(n) ≤ ∞). Nevertheless, both the theoretical

properties and Monte Carlo simulations in Chen and Pouzo (2012a) recommend the use of the

PSMD procedures with slowly growing finite-dimensional linear sieves with a tiny penalty (i.e.,

k(n) → ∞, k(n)
n → 0 as n → ∞ and λn = o(n−1), and hence the main smoothing parameter is

the sieve dimension k(n)). This class of PSMD estimators include the original SMD estimators of

Newey and Powell (2003) and Ai and Chen (2003) as special cases, and has been used in recent

empirical estimation of semiparametric structural models in microeconomics and asset pricing with

endogeneity. See, e.g., Blundell et al. (2007), Horowitz (2011), Chen and Pouzo (2009), Bajari et al.

(2011), Souza-Rodrigues (2012), Pinkse et al. (2002), Merlo and de Paula (2013), Bontemps and

Martimort (2013), Chen and Ludvigson (2009), Chen et al. (2013), Penaranda and Sentana (2013)

and others.

In this paper we shall develop inferential theory for φ(α0) based on the PSMD procedures with

slowly growing finite-dimensional sieves Ak(n) = Θ × Hk(n). We first establish the large sample

theories under a high level “local quadratic approximation” (LQA) condition, which allows for any

consistent nonparametric estimator m̂(x, α) that is linear in ρ(Z,α):

m̂(x, α) ≡
n∑
i=1

ρ(Zi, α)An(Xi, x) (2.4)

where An(Xi, x) is a known measurable function of {Xj}nj=1 for all x, whose expression varies
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according to different nonparametric procedures such as kernel, local linear regression, series and

nearest neighbors. In Appendix A we provide lower level sufficient conditions for this LQA assump-

tion when m̂(x, α) is the series least squares (LS) estimator (2.5):

m̂(x, α) =

(
n∑
i=1

ρ(Zi, α)pJn(Xi)
′

)
(P ′P )−pJn(x), (2.5)

which is a linear nonparametric estimator (2.4) with An(Xi, x) = pJn(Xi)
′(P ′P )−pJn(x), where

{pj}∞j=1 is a sequence of known basis functions that can approximate any square integrable func-

tions of X well, pJn(X) = (p1(X), ..., pJn(X))′, P = (pJn(X1), ..., pJn(Xn))′, and (P ′P )− is the

generalized inverse of the matrix P ′P . Following Blundell et al. (2007) and Chen and Pouzo

(2009), we let pJn(X) be a tensor-product linear sieve basis, and Jn be the dimension of pJn(X)

such that Jn ≥ dθ + k(n)→∞ and Jn
n → 0 as n →∞.

2.2 Preview of the Main Results for Inference

For simplicity we let φ : Rdθ ×H → R be a real-valued functional. Let φ̂n ≡ φ(α̂n) be the plug-in

PSMD estimator of φ(α0).

Sieve t (or Wald) statistic. Regardless of whether φ(α0) is
√
n estimable or not, Theorem

4.1 shows that
√
n{φ(α̂n)−φ(α0)}
||v∗n||sd

is asymptotically standard normal, and the sieve variance ||v∗n||2sd
has a closed form expression resembling the “delta-method” variance for a parametric MD problem:

||v∗n||2sd =

(
dφ(α0)

dα
[qk(n)(·)]

)′
D−nfnD−n

(
dφ(α0)

dα
[qk(n)(·)]

)
, (2.6)

where qk(n)(·) ≡
(
1′dθ , q

k(n)(·)′
)′

is a (dθ + k(n))× 1 vector with 1dθ a dθ × 1 vector of 1’s,

dφ(α0)

dα
[qk(n)(·)] ≡ ∂φ(θ0 + θ, h0 + β′qk(n)(·))

∂γ′
|γ=0 ≡

(
∂φ(α0)

∂θ′
,
dφ(α0)

dh
[qk(n)(·)′]

)′
(2.7)

and γ ≡ (θ′, β′)′ are (dθ + k(n))× 1 vectors, dφ(α0)
dh [qk(n)(·)′] ≡ ∂φ(θ0,h0+β′qk(n)(·))

∂β |β=0, and

Dn = E

[(
dm(X,α0)

dα
[qk(n)(·)′]

)′
Σ(X)−1

(
dm(X,α0)

dα
[qk(n)(·)′]

)]
, (2.8)

fn = E

[(
dm(X,α0)

dα
[qk(n)(·)′]

)′
Σ(X)−1ρ(Z,α0)ρ(Z,α0)′Σ(X)−1

(
dm(X,α0)

dα
[qk(n)(·)′]

)]
,

(2.9)

where dm(X,α0)
dα [qk(n)(·)′] ≡ ∂E[ρ(Z,θ0+θ,h0+β′qk(n)(·))|X]

∂γ |γ=0 is a dρ × (dθ + k(n)) matrix. The closed

8



form expression of ||v∗n||2sd immediately leads to simple consistent plug-in sieve variance estimators;

one of which is

||v̂∗n||2n,sd = V̂1 =

(
dφ(α̂n)

dα
[qk(n)(·)]

)′
D̂−n f̂nD̂−n

(
dφ(α̂n)

dα
[qk(n)(·)]

)
, (2.10)

where dφ(α̂n)
dα [qk(n)(·)] ≡ ∂φ(θ̂n+θ,ĥn+β′qk(n)(·))

∂γ′ |γ=0 and

D̂n =
1

n

n∑
i=1

[(
dm̂(Xi, α̂n)

dα
[qk(n)(·)′]

)′
Σ̂(Xi)

−1

(
dm̂(Xi, α̂n)

dα
[qk(n)(·)′]

)]
, (2.11)

f̂n =
1

n

n∑
i=1

[(
dm̂(Xi, α̂n)

dα
[qk(n)(·)′]

)′
Σ̂(Xi)

−1ρ(Zi, α̂n)ρ(Zi, α̂n)′Σ̂(Xi)
−1

(
dm̂(Xi, α̂n)

dα
[qk(n)(·)′]

)]
.

(2.12)

Theorem 4.2 then presents the asymptotic normality of the sieve (Student’s) t statistic:8

Ŵn ≡
√
n
φ(α̂n)− φ(α0)

||v̂∗n||n,sd
⇒ N(0, 1).

Sieve QLR statistic. In addition to the sieve t (or sieve Wald) statistic, we could also use

sieve quasi likelihood ratio for constructing confidence set of φ(α0) and for hypothesis testing of

H0 : φ(α0) = φ0 against H1 : φ(α0) 6= φ0. Denote

Q̂LRn(φ0) ≡ n

(
inf

α∈Ak(n):φ(α)=φ0

Q̂n(α)− Q̂n(α̂n)

)
(2.13)

as the sieve quasi likelihood ratio (SQLR) statistic. It becomes an optimally weighted SQLR s-

tatistic, Q̂LR
0

n(φ0), when Q̂n(α) is the optimally weighted MD criterion Q̂0
n(α). Regardless of

whether φ(α0) is
√
n estimable or not, Theorems 4.3(2) and 4.4 show that Q̂LR

0

n(φ0) is asymptoti-

cally chi-square distributed under the null H0, and diverges to infinity under the fixed alternatives

H1. Theorem A.1 in Appendix A states that Q̂LR
0

n(φ0) is asymptotically noncentral chi-square

distributed under local alternatives. One could compute 100(1− τ)% confidence set for φ(α0) as

{
r ∈ R : Q̂LR

0

n(r) ≤ cχ2
1
(1− τ)

}
,

where cχ2
1
(1− τ) is the (1− τ)-th quantile of the χ2

1 distribution.

Bootstrap sieve QLR statistic. Regardless of whether φ(α0) is
√
n estimable or not, Theo-

rems 4.3(1) and 4.4 establish that the possibly non-optimally weighted SQLR statistic Q̂LRn(φ0)

8See Theorems 5.2 and A.4 for properties of bootstrap sieve t statistics.
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is stochastically bounded under the null H0 and diverges to infinity under the fixed alternatives

H1. We then consider a bootstrap version of the SQLR statistic. Let Q̂LR
B

n denote a bootstrap

SQLR statistic:

Q̂LR
B

n (φ̂n) ≡ n

(
inf

α∈Ak(n):φ(α)=φ̂n

Q̂Bn (α)− inf
α∈Ak(n)

Q̂Bn (α)

)
, (2.14)

where φ̂n ≡ φ(α̂n), and Q̂Bn (α) is a bootstrap version of Q̂n(α):

Q̂Bn (α) ≡ 1

n

n∑
i=1

m̂B(Xi, α)′Σ̂(Xi)
−1m̂B(Xi, α), (2.15)

where m̂B(x, α) is a bootstrap version of m̂(x, α), which is computed in the same way as that of

m̂(x, α) except that we use ωi,nρ(Zi, α) instead of ρ(Zi, α). Here {ωi,n ≥ 0}ni=1 is a sequence of

bootstrap weights that has mean 1 and is independent of the original data {Zi}ni=1. Typical weights

include an i.i.d. weight {ωi ≥ 0}ni=1 with E[ωi] = 1, E[|ωi − 1|2] = 1 and E[|ωi − 1|2+ε] < ∞ for

some ε > 0, or a multinomial weight (i.e., (ω1,n, ..., ωn,n) ∼ Multinomial(n;n−1, ..., n−1)). For

example, if m̂(x, α) is a series LS estimator (2.5) of m(x, α), then m̂B(x, α) is a bootstrap series

LS estimator of m(x, α), defined as:

m̂B(x, α) ≡

(
n∑
i=1

ωi,nρ(Zi, α)pJn(Xi)
′

)
(P ′P )−pJn(x). (2.16)

We sometimes call our bootstrap procedure “generalized residual bootstrap” since it is based on

randomly perturbing the generalized residual function ρ(Z,α); see Section 5 for details. Theorems

5.3 and A.2 establish that under the null H0, the fixed alternatives H1 or the local alternatives,9

the conditional distribution of Q̂LR
B

n (φ̂n) (given the data) always converges to the asymptotic

null distribution of Q̂LRn(φ0). Let ĉn(a) be the a − th quantile of the distribution of Q̂LR
B

n (φ̂n)

(conditional on the data {Zi}ni=1). Then for any τ ∈ (0, 1), we have limn→∞ Pr{Q̂LRn(φ0) >

ĉn(1 − τ)} = τ under the null H0, limn→∞ Pr{Q̂LRn(φ0) > ĉn(1 − τ)} = 1 under the fixed

alternatives H1, and limn→∞ Pr{Q̂LRn(φ0) > ĉn(1 − τ)} > τ under the local alternatives. We

could also construct a 100(1− τ)% confidence set using the bootstrap critical values:

{
r ∈ R : Q̂LRn(r) ≤ ĉn(1− τ)

}
. (2.17)

The bootstrap consistency holds for possibly non-optimally weighted SQLR statistic and possibly

9See Section A.3 for definition of the local alternatives and the behaviors of Q̂LRn(φ0) and Q̂LR
B

n (φ̂n) under the
local alternatives.
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irregular functionals, without the need to compute standard errors.

Which method to use? When sieve Wald and SQLR tests are computed using the same

weighting matrix Σ̂, there is no local power difference in terms of first order asymptotic theories;

see Appendix A. As will be demonstrated in simulation Section 7, while SQLR and bootstrap

SQLR tests are useful for models (1.1) with (pointwise) non-smooth ρ(Z;α), sieve Wald (or t)

statistic is computationally attractive for models with smooth ρ(Z;α). Empirical researchers could

apply either inference method depending on whether the residual function ρ(Z;α) in their specific

application is pointwise differentiable with respect to α or not.

2.2.1 Applications to NPIV and NPQIV models

An illustration via the NPIV model. Blundell et al. (2007) and Chen and Reiß (2011)

established the convergence rate of the identity weighted (i.e., Σ̂ = Σ = 1) PSMD estimator

ĥn ∈ Hk(n) of the NPIV model:

Y1 = h0(Y2) + U, E(U |X) = 0. (2.18)

By Theorem 4.1
√
nφ(ĥn)−φ(h0)

||v∗n||sd
⇒ N(0, 1) with ||v∗n||2sd = dφ(h0)

dh [qk(n)(·)]′D−nfnD−n
dφ(h0)
dh [qk(n)(·)],

Dn = E
(
E[qk(n)(Y2)|X]E[qk(n)(Y2)|X]′

)
, fn = E

(
E[qk(n)(Y2)|X]U2E[qk(n)(Y2)|X]′

)
(2.19)

and dφ(h0)
dh [qk(n)(·)] ≡ ∂φ(h0+β′qk(n)(·))

∂β′ |β=0. For example, for a functional φ(h) = h(y2), or =∫
w(y)∇h(y)dy or =

∫
w(y) |h(y)|2 dy, we have dφ(h0)

dh [qk(n)(·)] = qk(n)(y2), or =
∫
w(y)∇qk(n)(y)dy

or = 2
∫
h0(y)w(y)qk(n)(y)dy.

If 0 < infx Σ0(x) ≤ supx Σ0(x) < ∞ then ||v∗n||2sd �
dφ(h0)
dh [qk(n)(·)]′D−n

dφ(h0)
dh [qk(n)(·)]. Without

endogeneity (say Y2 = X) the model becomes the nonparametric LS regression

E[Y1 = h0(Y2) + U, E(U |Y2) = 0,

and the variance satisfies ||v∗n||2sd,ex �
dφ(h0)
dh [qk(n)(·)]′D−n,ex

dφ(h0)
dh [qk(n)(·)], Dn,ex = E[{qk(n)(Y2)}{qk(n)(Y2)}′].

Since the conditional expectation E[qk(n)(Y2)|X] is a contraction, Dn ≤ Dn,ex and ||v∗n||2sd ≥
const.||v∗n||2sd,ex. Under mild conditions (see, e.g., Newey and Powell (2003), Blundell et al. (2007),

Darolles et al. (2011), Horowitz (2011)), the minimal eigenvalue of Dn, λmin(Dn), goes to zero

while λmin(Dn,ex) stays strictly positive as k(n) → ∞. In fact, Dn,ex = Ik(n) and λmin(Dn,ex) = 1

if {qj}∞j=1 is an orthonormal basis of L2(fY2), while λmin(Dn) � exp(−k(n)) if the condition-

al density of Y2 given X is normal. Therefore, while limk(n)→∞ ||v∗n||2sd,ex = ∞ always implies

limk(n)→∞ ||v∗n||2sd = ∞, it is possible that limk(n)→∞ ||v∗n||2sd,ex < ∞ but limk(n)→∞ ||v∗n||2sd = ∞.
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For example, the point evaluation functional φ(h) = h(y2) is known to be irregular for the nonpara-

metric LS regression and hence for the NPIV (2.18) as well. Under mild conditions on the weight

w() and the smoothness of h0, the weighted derivative functional (φ(h) =
∫
w(y)∇h(y)dy) and the

quadratic functional (φ(h) =
∫
w(y) |h(y)|2 dy) of the nonparametric LS regression are typically

regular, but they could be regular or irregular for the NPIV (2.18). See Section 6 for details.

It is in general difficult to figure out if the sieve variance ||v∗n||2sd of the functional φ(h) (at h0)

goes to infinity or not. Nevertheless, this paper shows that the sieve variance ||v∗n||2sd has a closed

form expression and can be consistently estimated by a plug-in sieve variance estimator ||v̂∗n||2n,sd.

By Theorem 4.2 we obtain
√
nφ(ĥn)−φ(h0)
||v̂∗n||n,sd

⇒ N(0, 1).

When the conditional mean function m(x, h) is estimated by the series LS estimator (2.5) as in

Newey and Powell (2003), Ai and Chen (2003) and Blundell et al. (2007), with Ûi = Y1i − ĥn(Y2i),

the sieve variance estimator ||v̂∗n||2n,sd given in (2.10) has a more explicit expression:

||v̂∗n||2n,sd = V̂1 =

(
dφ(ĥn)

dh
[qk(n)(·)]

)′
D̂−n f̂nD̂−n

(
dφ(ĥn)

dh
[qk(n)(·)]

)
, where

dφ(ĥn)
dh [qk(n)(·)] ≡ ∂φ(ĥn+β′qk(n)(·))

∂β′ |β=0 and

D̂n =
1

n
Ĉn(P ′P )−(Ĉn)′, Ĉn ≡

n∑
j=1

qk(n)(Y2j)p
Jn(Xj)

′,

f̂n =
1

n
Ĉn(P ′P )−

(
n∑
i=1

pJn(Xi)Û
2
i p

Jn(Xi)
′

)
(P ′P )−(Ĉn)′. (2.20)

Interestingly, this sieve variance estimator becomes the one computed via the two stage least squares

(2SLS) as if the NPIV model (2.18) were a parametric IV regression: Y1 = qk(n)(Y2j)
′β0n + U,

E[qk(n)(Y2)U ] 6= 0, E[pJn(X)U ] = 0 and E[pJn(X)qk(n)(Y2)′] has a column rank k(n) ≤ Jn. See

Subsection 7.1 for simulation studies of finite sample performances of this sieve variance estimator

V̂1 for both a linear and a nonlinear functional φ(h).

An illustration via the NPQIV model. As an application of their general theory, Chen

and Pouzo (2012a) presented the consistency and the rate of convergence of the PSMD estimator

ĥn ∈ Hk(n) of the NPQIV model:

Y1 = h0(Y2) + U, Pr(U ≤ 0|X) = γ. (2.21)

In this example we have Σ0(X) = γ(1− γ). So we could use Σ̂(X) = γ(1− γ) and Q̂n(α) given in

(2.1) becomes the optimally weighted MD criterion.
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By Theorem 4.1
√
nφ(ĥn)−φ(h0)

||v∗n||sd
⇒ N(0, 1) with ||v∗n||2sd =

(
dφ(h0)
dh [qk(n)(·)]

)′
D−n

(
dφ(h0)
dh [qk(n)(·)]

)
and

Dn =
1

γ(1− γ)
E
(
E[fU |Y2,X(0)qk(n)(Y2)|X]E[fU |Y2,X(0)qk(n)(Y2)|X]′

)
. (2.22)

Without endogeneity (say Y2 = X), the model becomes the nonparametric quantile regression

Y1 = h0(Y2) + U, Pr(U ≤ 0|Y2) = γ,

and the sieve variance becomes ||v∗n||2sd,ex =
(
dφ(h0)
dh [qk(n)(·)]

)′
D−n,ex

(
dφ(h0)
dh [qk(n)(·)]

)
with Dn,ex =

1
γ(1−γ)E

[
{fU |Y2

(0)}2{qk(n)(Y2)}{qk(n)(Y2)}′
]
. Again Dn ≤ Dn,ex and ||v∗n||2sd ≥ ||v∗n||2sd,ex. Under

mild conditions (see, e.g., Chen and Pouzo (2012a), Chen et al. (2014)), λmin(Dn) → 0 while

λmin(Dn,ex) stays strictly positive as k(n)→∞. All of the above discussions for a functional φ(h)

of the NPIV (2.18) now apply to the functional of the NPQIV (2.21). In particular, a functional

φ(h) could be regular for the nonparametric quantile regression (limk(n)→∞ ||v∗n||2sd,ex < ∞) but

irregular for the NPQIV (2.21) (limk(n)→∞ ||v∗n||2sd =∞). See Section 6 for details.

Applying Theorem 4.3(2), we immediately obtain that the optimally weighted SQLR statistic

Q̂LR
0

n(φ0)⇒ χ2
1 under the null of φ(h0) = φ0. Thus we can compute confidence set for a functional

φ(h), such as an evaluation or a weighted derivative functional, as
{
r ∈ R : Q̂LR

0

n(r) ≤ cχ2
1
(τ)
}

.

See Subsection 7.2 for an empirical illustration of this result to the NPQIV Engel curve regression

using the British Family Survey data set that was first used in Blundell et al. (2007). See Koenker

(2005) for the usefulness of quantile Engel curves. Instead of using the asymptotic critical values,

we could also construct a confidence set using the bootstrap critical values as in (2.17).

3 Basic Regularity Conditions

Before we establish asymptotic properties of sieve t (Wald) and SQLR statistics, we need to present

three sets of basic regularity conditions. The first set of assumptions allows us to establish the

convergence rates of the PSMD estimator α̂n to the true parameter value α0 in both weak and

strong metrics, which in turn allows us to concentrate on some shrinking neighborhood of α0 in the

semi/nonparametric model (1.1). The second and third regularity conditions are respectively about

the local curvatures of the functional φ() and of the criterion function under these two metrics. The

weak metric || · || is closely related to the variance of the linear approximation to φ(α̂n) − φ(α0),

while the strong metric || · ||s is used to control the nonlinearity (in α) of the functional φ() and

of the conditional mean function m(x, α). This section is mostly technical and applied researchers

could skip this and directly go to the subsequent sections on the asymptotic properties of sieve

Wald and SQLR statistics.
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3.1 A brief discussion on the convergence rate of the PSMD estimator

For the purely nonparametric conditional moment model E [ρ(Y,X;h0(·))|X] = 0, Chen and Pouzo

(2012a) established the consistency and the convergence rates of their various PSMD estimators

of h0. Their results can be trivially extended to establish the corresponding properties of our

PSMD estimator α̂n ≡ (θ̂′n, ĥn) defined in (2.2). For the sake of easy reference and to introduce

basic assumptions and notation, we present some sufficient conditions for consistency and the

convergence rate here. These conditions are also needed to establish the consistency and the

convergence rate of bootstrap PSMD estimators (see Lemma A.1). We first impose three conditions

on identification, sieve spaces, penalty functions and sample criterion function. We equip the

parameter space A ≡ Θ×H ⊆ Rdθ ×H with a (strong) norm ‖α‖s ≡ ‖θ‖e + ‖h‖H.

Assumption 3.1 (Identification, sieves, criterion). (i) E[ρ(Y,X;α)|X] = 0 if and only if α ∈
(A, ‖·‖s) with ‖α− α0‖s = 0; (ii) For all k ≥ 1, Ak ≡ Θ × Hk, Θ is a compact subset in Rdθ ,

{Hk : k ≥ 1} is a non-decreasing sequence of non-empty closed subsets of (H, ‖·‖H) such that

H = cl (∪kHk), and there is Πnh0 ∈ Hk(n) with ||Πnh0 − h0||H = o(1); (iii) Q : (A, ‖·‖s)→ [0,∞)

is lower semicontinuous;10 (iv) Σ(x) and Σ0(x) are positive definite, and their smallest and largest

eigenvalues are finite and positive uniformly in x ∈ X .

Assumption 3.2 (Penalty). (i) λn > 0, Q(Πnα0) + o(n−1) = O(λn) = o(1); (ii) |Pen(Πnh0) −
Pen(h0)| = O(1) with Pen(h0) <∞; (iii) Pen : (H, ‖·‖H)→ [0,∞) is lower semicompact.11

Let Πnα ≡ (θ′,Πnh) ∈ Ak(n) ≡ Θ × Hk(n). Let AM0

k(n) ≡ Θ × HM0

k(n) ≡ {α = (θ′, h) ∈ Ak(n) :

λnPen(h) ≤ λnM0} for a large but finite M0 such that Πnα0 ∈ AM0

k(n) and that α̂n ∈ AM0

k(n) with

probability arbitrarily close to one for all large n. Let {δ̄2
m,n}∞n=1 be a sequence of positive real

values that decrease to zero as n→∞.

Assumption 3.3 (Sample Criterion). (i) Q̂n(Πnα0) ≤ c0Q(Πnα0)+oPZ∞ (n−1) for a finite constant

c0 > 0; (ii) Q̂n(α) ≥ cQ(α)− OPZ∞ (δ̄2
m,n) uniformly over AM0

k(n) for some δ̄2
m,n = o(1) and a finite

constant c > 0.

The following result is a minor modification of Theorem 3.2 of Chen and Pouzo (2012a).

Lemma 3.1. Let α̂n be the PSMD estimator defined in (2.2), and Assumptions 3.1, 3.2 and 3.3

hold. Then: ||α̂n − α0||s = oPZ∞ (1) and Pen(ĥn) = OPZ∞ (1).

Given the consistency result, we can restrict our attention to a convex, || · ||s−neighborhood

around α0, denoted as Aos such that

Aos ⊂ {α ∈ A : ||α− α0||s < M0, λnPen(h) < λnM0}
10A function Q is lower semicontinuous at a point αo ∈ A iff lim‖α−αo‖s→0 Q(α) ≥ Q(αo); is lower semicontinuous

if it is lower semicontinuous at any point in A.
11A function Pen is lower semicompact iff for all M , {h ∈ H : Pen(h) ≤M} is a compact subset in (H, ‖·‖H).
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for a positive finite constant M0 (the existence of a convex Aos is implied by the convexity of A
and quasi-convexity of Pen(·)). For any α ∈ Aos we define a pathwise derivative as

dm(X,α0)

dα
[α− α0] ≡ dE[ρ(Z, (1− τ)α0 + τα)|X]

dτ

∣∣∣∣
τ=0

a.s. X

=
dE[ρ(Z,α0)|X]

dθ′
(θ − θ0) +

dE[ρ(Z,α0)|X]

dh
[h− h0] a.s. X.

Following Ai and Chen (2003) and Chen and Pouzo (2009), we introduce two pseudo-metrics || · ||
and || · ||0 on Aos as: for any α1, α2 ∈ Aos,

||α1 − α2||2 ≡ E
[(

dm(X,α0)

dα
[α1 − α2]

)′
Σ(X)−1

(
dm(X,α0)

dα
[α1 − α2]

)]
; (3.1)

||α1 − α2||20 ≡ E
[(

dm(X,α0)

dα
[α1 − α2]

)′
Σ0(X)−1

(
dm(X,α0)

dα
[α1 − α2]

)]
. (3.2)

It is clear that, under Assumption 3.1(iv), these two pseudo-metrics are equivalent, i.e., || · || � || · ||0
on Aos. This is the reason why we impose the sufficient condition, Assumption 3.1(iv), throughout

the paper.

Let Aosn = Aos ∩ Ak(n). Let {δn}∞n=1 be a sequence of positive real values such that δn = o(1)

and δn ≤ δ̄m,n.

Assumption 3.4. (i) There exists a || · ||s−neighborhood of α0, Aos, such that 12 Aos is convex,

m(·, α) is continuously pathwise differentiable with respect to α ∈ Aos, and there is a finite constant

C > 0 such that ||α − α0|| ≤ C||α − α0||s for all α ∈ Aos; (ii) Q(α) � ||α − α0||2 for all α ∈ Aos;
(iii) Q̂n(α) ≥ cQ(α) − OPZ∞ (δ2

n) uniformly over Aosn, and max{δ2
n, Q(Πnα0), λn, o(n

−1)} = δ2
n;

(iv) λn × supα,α′∈Aos |Pen(h)− Pen(h′)| = o(n−1) or λn = o(n−1).

Assumption 3.4(ii) is about the local curvature of the population criterion Q(α) at α0. When

Q̂n(α) is computed using the series LS estimator (2.5), Lemma C.2 of Chen and Pouzo (2012a) shows

that Q̂n(α) � Q(α)−OPZ∞ (δ2
n) uniformly over Aosn and hence Assumption 3.4(iii) is satisfied.

Recall the definition of the sieve measure of local ill-posedness

τn ≡ sup
α∈Aosn:||α−Πnα0||6=0

||α−Πnα0||s
||α−Πnα0||

. (3.3)

The problem of estimating α0 under || · ||s is locally ill-posed in rate if and only if lim supn→∞ τn =

∞. We say the problem is mildly ill-posed if τn = O([k(n)]a), and severely ill-posed if τn =

12Given the consistency result, the PSMD estimator will belong to any || · ||s−neighborhood around α0 with
probability approaching one.
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O(exp{a2k(n)}) for some finite a > 0. The following general rate result is a minor modification of

Theorem 4.1 and Remark 4.1(1) of Chen and Pouzo (2012a), and hence we omit its proof.

Lemma 3.2. Let α̂n be the PSMD estimator defined in (2.2), and Assumptions 3.1, 3.2(ii)(iii),

3.3 and 3.4(i)(ii)(iii) hold. Then:

||α̂n − α0|| = OPZ∞ (δn) and ||α̂n − α0||s = OPZ∞ (||α0 −Πnα0||s + τnδn) .

The above convergence rate result is applicable to any nonparametric estimator m̂(X,α) of

m(X,α) as soon as one could compute δ2
n, the rate at which Q̂n(α) goes to Q(α). See Chen and

Pouzo (2012a) and Chen and Pouzo (2009) for low level sufficient conditions in terms of the series

LS estimator (2.5) of m(X,α).

Let {δs,n : n ≥ 1} be a sequence of real positive numbers such that δs,n = ||h0−Πnh0||s+τnδn =

o(1). Lemma 3.2 implies that α̂n ∈ Nosn ⊆ Nos wpa1-PZ∞ , where

Nos ≡ {α ∈ A : ||α− α0|| ≤Mnδn, ||α− α0||s ≤Mnδs,n, λnPen(h) ≤ λnM0} ,

Nosn ≡ Nos ∩ Ak(n), with Mn ≡ log(log(n)).

We can regard Nos as the effective parameter space and Nosn as its sieve space in the rest of the

paper. Assumption 3.4(iv) is not needed for establishing a convergence rate in Lemma 3.2. but, it

will be imposed in the rest of the paper so that we can ignore penalty effect in the first order local

asymptotic analysis.

3.2 (Sieve) Riesz representation and (sieve) variance

We first introduce a representation of the functional of interest φ() at α0 that is crucial for all the

subsequent local asymptotic theories. Let φ : Rdθ ×H → R be continuous in || · ||s. We assume

that dφ(α0)
dα [·] :

(
Rdθ ×H, || · ||s

)
→ R is a || · ||s−bounded linear functional (i.e.,

∣∣∣dφ(α0)
dα [v]

∣∣∣ ≤ c||v||s
uniformly over v ∈ Rdθ×H for a finite positive constant c), which could be computed as a pathwise

(directional) derivative of the functional φ (·) at α0 in the direction of v = α− α0 ∈ Rdθ ×H :

dφ(α0)

dα
[v] =

∂φ(α0 + τv)

∂τ

∣∣∣∣
τ=0

.

Let V be a linear span of Aos − {α0}, which is endowed with both || · ||s and || · || (in equation

(3.1)) norms, and ||v|| ≤ C||v||s for all v ∈ V (under Assumption 3.4(i)). Let V ≡ clsp(Aos−{α0}),
where clsp(·) is the closure of the linear span under || · ||. For any v1, v2 ∈ V, we define an inner
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product induced by the metric || · ||:

〈v1, v2〉 = E

[(
dm(X,α0)

dα
[v1]

)′
Σ(X)−1

(
dm(X,α0)

dα
[v2]

)]
,

and for any v ∈ V we call v = 0 if and only if ||v|| = 0 (i.e., functions in V are defined in

an equivalent class sense according to the metric || · ||). It is clear that (V, || · ||) is an infinite

dimensional Hilbert space (under Assumptions 3.1(i)(iii)(iv) and 3.4(i)(ii)).

If the linear functional dφ(α0)
dα [·] is bounded on (V, || · ||), i.e.

sup
v∈V,v 6=0

∣∣∣dφ(α0)
dα [v]

∣∣∣
‖v‖

<∞,

then there is a unique extension of dφ(α0)
dα [·] from (V, ||·||) to (V, ||·||), and a unique Riesz representer

v∗ ∈ V of dφ(α0)
dα [·] on (V, || · ||) such that13

dφ(α0)

dα
[v] = 〈v∗, v〉 for all v ∈ V and ‖v∗‖ ≡ sup

v∈V,v 6=0

∣∣∣dφ(α0)
dα [v]

∣∣∣
‖v‖

= sup
v∈V,v 6=0

∣∣∣dφ(α0)
dα [v]

∣∣∣
‖v‖

<∞.

(3.4)

If dφ(α0)
dα [·] is unbounded on (V, || · ||), i.e.

sup
v∈V,v 6=0

∣∣∣dφ(α0)
dα [v]

∣∣∣
‖v‖

=∞,

then there is no unique extension of the mapping dφ(α0)
dα [·] from (V, || · ||) to (V, || · ||), and nor

existing any Riesz representer of dφ(α0)
dα [·] on (V, || · ||).

Since ||v|| ≤ C||v||s for all v ∈ V, it is clear that a || · ||s−bounded linear functional dφ(α0)
dα [·]

could be either bounded or unbounded on (V, || · ||). As explained in Appendix A, in this paper we

also call φ() regular (or irregular) at α0 whenever dφ(α0)
dα [·] is bounded (or unbounded) on (V, || · ||).

Sieve Riesz representation. Let α0,n ∈ Rdθ ×Hk(n) be such that

||α0,n − α0|| ≡ min
α∈Rdθ×Hk(n)

||α− α0||. (3.5)

Let Vk(n) ≡ clsp (Aosn − {α0,n}), where clsp (.) denotes the closed linear span under ‖·‖. Then

Vk(n) is a finite dimensional Hilbert space under ‖·‖. Moreover, Vk(n) is dense in V under ‖·‖. To

simplify the presentation, we assume that dim(Vk(n)) = dim(Ak(n)) � k(n), all of which grow to

13See, e.g., page 206-207 and theorem 3.10.1 in Debnath and Mikusinski (1999).
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infinity with n. By definition we have 〈vn, α0,n − α0〉 = 0 for all vn ∈ Vk(n).

Note that Vk(n) is a finite dimensional Hilbert space. As any linear functional on a finite

dimensional Hilbert space is bounded, we can invoke the Riesz representation theorem to deduce

that there is a v∗n ∈ Vk(n) such that

dφ(α0)

dα
[v] = 〈v∗n, v〉 for all v ∈ Vk(n) and ‖v∗n‖ ≡ sup

v∈Vk(n):‖v‖6=0

∣∣∣dφ(α0)
dα [v]

∣∣∣
‖v‖

<∞. (3.6)

We call v∗n the sieve Riesz representer of the functional dφ(α0)
dα [·] on Vk(n). By definition, for any

non-zero linear functional dφ(α0)
dα [·], we have:

0 < ‖v∗n‖
2 = E

[(
dm(X,α0)

dα
[v∗n]

)′
Σ(X)−1

(
dm(X,α0)

dα
[v∗n]

)]
is non-decreasing in k(n).

We emphasize that the sieve Riesz representer v∗n of a linear functional dφ(α0)
dα [·] on Vk(n) always

exists regardless of whether dφ(α0)
dα [·] is bounded on the infinite dimensional space (V, || · ||) or not.

Moreover, v∗n ∈ Vk(n) and its norm ‖v∗n‖ can be computed in closed form (see Subsection 4.1.1).

The next Lemma allows us to verify whether or not dφ(α0)
dα [·] is bounded on (V, || · ||) (i.e., φ (·) is

regular at α0) by checking whether or not limk(n)→∞ ‖v∗n‖ <∞.

Lemma 3.3. Let {Vk}∞k=1 be an increasing sequence of finite dimensional Hilbert spaces that is

dense in (V, ‖·‖), and v∗n ∈ Vk(n) be defined in (3.6). (1) If dφ(α0)
dα [·] is bounded on (V, || · ||), then

(3.4) holds, v∗n = arg minv∈Vk(n)
‖v∗ − v‖, ‖v∗ − v∗n‖ → 0 and limk(n)→∞ ‖v∗n‖ = ‖v∗‖ <∞; (2) Let

dφ(α0)
dα [·] be bounded on (V, || · ||s) and {Vk}∞k=1 be dense in (V, ‖·‖s). If dφ(α0)

dα [·] is unbounded on

(V, || · ||) then limk(n)→∞ ‖v∗n‖ =∞.

Sieve score and sieve variance. For each sieve dimension k(n), we call

S∗n,i ≡
(
dm(Xi, α0)

dα
[v∗n]

)′
Σ(Xi)

−1ρ(Zi, α0) (3.7)

the sieve score associated with the i-th observation, and ‖v∗n‖
2
sd ≡ V ar

(
S∗n,i

)
as the sieve variance.

Recall that Σ0(X) ≡ V ar(ρ(Z;α0)|X) a.s.-X. Then

‖v∗n‖
2
sd = E[S∗n,iS

∗′
n,i] = E

[(
dm(X,α0)

dα
[v∗n]

)′
Σ(X)−1Σ0(X)Σ(X)−1

(
dm(X,α0)

dα
[v∗n]

)]
(3.8)

See Subsection 4.1.1 for closed form expressions of ‖v∗n‖
2
sd. Under Assumption 3.1(iv), we have

‖v∗n‖
2
sd � ‖v∗n‖

2, and hence ‖v∗n‖
2
sd → ∞ iff ‖v∗n‖

2 → ∞ (iff φ (·) is irregular at α0). Moreover, if
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φ (·) is regular at α0 then we can define

S∗i ≡
(
dm(Xi, α0)

dα
[v∗]

)′
Σ(Xi)

−1ρ(Zi, α0)

as the score associated with the i-th observation, and ‖v∗‖2sd ≡ V ar (S∗i ) as the asymptotic variance.

By Lemma 3.3(1) for a regular functional we have: ‖v∗‖2sd � ‖v∗‖ < ∞ and V ar
(
S∗i − S∗n,i

)
�

‖v∗ − v∗n‖
2 → 0 as k(n)→∞. See Remark A.1 in Appendix A for further discussion.

3.3 Two key local conditions

For all k(n), let

u∗n ≡
v∗n
‖v∗n‖sd

(3.9)

be the “scaled sieve Riesz representer”. Since ‖v∗n‖
2
sd � ‖v∗n‖

2 (under Assumption 3.1(iv)), we have:

‖u∗n‖ � 1 and ‖u∗n‖s ≤ cτn for τn defined in (3.3) and a finite constant c > 0.

Let Tn ≡ {t ∈ R : |t| ≤ 4M2
nδn} with Mn and δn given in the definition of Nosn.

Assumption 3.5 (Local behavior of φ). (i) v 7→ dφ(α0)
dα [v] is a non-zero linear functional mapping

from V to R; {Vk}∞k=1 is an increasing sequence of finite dimensional Hilbert spaces that is dense

in (V, ‖·‖); and ‖v
∗
n‖√
n

= o(1);

(ii) sup
(α,t)∈Nosn×Tn

√
n
∣∣∣φ (α+ tu∗n)− φ(α0)− dφ(α0)

dα [α+ tu∗n − α0]
∣∣∣

‖v∗n‖
= o (1) ;

(iii)

√
n
∣∣∣ dφ(α0)

dα
[α0,n−α0]

∣∣∣
‖v∗n‖

= o (1) .

Since ‖v∗n‖
2
sd � ‖v∗n‖

2 (under Assumption 3.1(iv)), we could rewrite Assumption 3.5 using ‖v∗n‖sd
instead ‖v∗n‖. As it will become clear in Theorem 4.1 that

‖v∗n‖
2
sd

n is the variance of φ(α̂n)− φ(α0),

Assumption 3.5(i) puts a restriction on how fast the sieve dimension k(n) could grow with the

sample size n.

Assumption 3.5(ii) controls the nonlinearity bias of φ (·) (i.e., the linear approximation error of

a possibly nonlinear functional φ (·)). It is automatically satisfied when φ (·) is a linear functional.

For a nonlinear functional φ (·) (such as the quadratic functional), it can be verified using the

smoothness of φ (·) and the convergence rates in both || · || and || · ||s metrics (the definition of

Nosn). See Section 6 for verification.

Assumption 3.5(iii) controls the linear bias part due to the finite dimensional sieve approxi-

mation of α0,n to α0. It is a condition imposed on the growth rate of the sieve dimension k(n).

When φ (·) is an irregular functional, we have ‖v∗n‖ ↗ ∞. Assumption 3.5(iii) requires that the
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sieve bias term,
∣∣∣dφ(α0)

dα [α0,n − α0]
∣∣∣, is of a smaller order than that of the sieve standard deviation

term, n−1/2 ‖v∗n‖sd. This is a standard condition imposed for the asymptotic normality of any

plug-in nonparametric estimator of an irregular functional (such as a point evaluation functional

of a nonparametric mean regression).

Remark 3.1. When φ (·) is a regular functional (i.e., ‖v∗n‖ ↗ ‖v∗‖ <∞), since 〈v∗n, α0,n − α0〉 = 0

(by definition of α0,n) we have
∣∣∣dφ(α0)

dα [α0,n − α0]
∣∣∣ ≤ ‖v∗ − v∗n‖ × ‖α0,n − α0‖. And Assumption

3.5(iii) is satisfied if

||v∗ − v∗n|| × ||α0,n − α0|| = o(n−1/2). (3.10)

This is similar to assumption 4.2 in Ai and Chen (2003) and assumption 3.2(iii) in Chen and

Pouzo (2009) for the regular Euclidean parameter θ satisfying the model (1.1). As pointed out by

Chen and Pouzo (2009), Condition (3.10) could be satisfied when dim(Ak(n)) � k(n) is chosen to

obtain optimal nonparametric convergence rate in || · ||s norm. But this nice feature only applies to

regular functionals.

The next assumption is about the local quadratic approximation (LQA) to the sample criterion

difference along the scaled sieve Riesz representer direction u∗n = v∗n/ ‖v∗n‖sd.
For any (α, t) ∈ Nosn × Tn, we let Λ̂n(α(t), α) ≡ 0.5{Q̂n(α(t)) − Q̂n(α)} with α(t) ≡ α + tu∗n.

Denote

Zn ≡ n−1
n∑
i=1

(
dm(Xi, α0)

dα
[u∗n]

)′
Σ(Xi)

−1ρ(Zi, α0) = n−1
n∑
i=1

S∗n,i
‖v∗n‖sd

. (3.11)

Assumption 3.6 (LQA). (i) α(t) ∈ Ak(n) for any (α, t) ∈ Nosn × Tn; and with rn(tn) =(
max{t2n, tnn−1/2, o(n−1)}

)−1
,

sup
(α,tn)∈Nosn×Tn

rn(tn)

∣∣∣∣Λ̂n(α(tn), α)− tn {Zn + 〈u∗n, α− α0〉} −
Bn
2
t2n

∣∣∣∣ = oPZ∞ (1),

where (Bn)n is such that, for each n, Bn is Zn measurable positive random variable and Bn =

OPZ∞ (1); (ii)
√
nZn ⇒ N(0, 1).

Assumption 3.6(ii) is a standard one, and is implied by the following Lindeberg condition: For

all ε > 0,

lim sup
n→∞

E

[(
S∗n,i
‖v∗n‖sd

)2

1

{∣∣∣∣ S∗n,i
ε
√
n ‖v∗n‖sd

∣∣∣∣ > 1

}]
= 0, (3.12)

which, under Lemma 3.3(1) and Assumption 3.1(iv), is satisfied when the functional φ(·) is regular

(‖v∗n‖sd � ‖v∗n‖ → ‖v∗‖ < ∞). This is why Assumption 3.6(ii) is not imposed in Ai and Chen

(2003) and Chen and Pouzo (2009) in their root-n asymptotically normal estimation of the regular

functional φ(α) = λ′θ.
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Assumption 3.6(i) implicitly imposes restrictions on the nonparametric estimator m̂(x, α) of

m(x, α) = E[ρ(Z,α)|X = x] in a shrinking neighborhood of α0, so that the criterion difference

could be well approximated by a quadratic form. It is trivially satisfied when m̂(x, α) is linear in α,

such as the series LS estimator (2.5) when ρ(Z,α) is linear in α. There are two potential difficulties

in verification of this assumption for nonlinear conditional moment models with nonparametric

endogeneity (such as the NPQIV model). First, due to the non-smooth residual function ρ(Z,α),

the estimator m̂(x, α) (and hence the sample criterion Q̂n(α)) could be pointwise non-smooth

with respect to α. Second, due to the slow convergence rates in the strong norm || · ||s present in

nonlinear nonparametric ill-posed inverse problems, it could be challenging to control the remainder

of a quadratic approximation. When m̂(x, α) is the series LS estimator (2.5), Lemma 5.1 in Section

5 shows that Assumption 3.6(i) is satisfied by a set of relatively low level sufficient conditions

(Assumptions A.4 - A.7 in Appendix A). See Section 6 for verification of these sufficient conditions

for functionals of the NPQIV model.

4 Asymptotic Properties of Sieve Wald and SQLR Statistics

In this section, we first establish the asymptotic normality of the plug-in PSMD estimator φ(α̂n)

of φ(α0) for the model (1.1), regardless of it is root-n estimable or not. We then provide a simple

consistent variance estimator and hence the asymptotic standard normality of the corresponding

sieve t statistic for a real-valued functional φ : Rdθ ×H → R. We finally derive the asymptotic

properties of SQLR tests for the hypothesis φ(α0) = φ0. See Appendix A for the case of a vector-

valued functional φ : Rdθ ×H→ Rdφ (where dφ could grow slowly with n).

4.1 Asymptotic normality of the plug-in PSMD estimator

The next result allows for a (possibly) nonlinear irregular functional φ() of the general model (1.1).

Theorem 4.1. Let α̂n be the PSMD estimator (2.2) and Assumptions 3.1 - 3.4 hold. If Assump-

tions 3.5 and 3.6 hold, then:

√
n
φ(α̂n)− φ(α0)

||v∗n||sd
= −
√
nZn + oPZ∞ (1)⇒ N(0, 1).

When the functional φ(·) is regular at α = α0, we have ‖v∗n‖sd � ‖v∗n‖ = O(1) and φ(α̂n)

converges to φ(α0) at the parametric rate of 1/
√
n. When the functional φ(·) is irregular at α = α0,

we have ‖v∗n‖sd � ‖v∗n‖ → ∞; so the convergence rate of φ(α̂n) becomes slower than 1/
√
n.
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For any regular functional of the semi/nonparametric model (1.1), Theorem 4.1 implies that

√
n (φ(α̂n)− φ(α0)) = −n−1/2

n∑
i=1

S∗n,i + oPZ∞ (1)⇒ N(0, σ2
v∗), with

σ2
v∗ = lim

n→∞
‖v∗n‖

2
sd = ‖v∗‖2sd = E

[(
dm(X,α0)

dα
[v∗]

)′
Σ(X)−1Σ0(X)Σ(X)−1

(
dm(X,α0)

dα
[v∗]

)]
.

Thus, Theorem 4.1 is a natural extension of the asymptotic normality results of Ai and Chen (2003)

and Chen and Pouzo (2009) for the specific regular functional φ(α0) = λ′θ0 of the model (1.1). See

Remark A.1 in Appendix A for further discussion.

4.1.1 Closed form expressions of sieve Riesz representer and sieve variance

To apply Theorem 4.1, one needs to know the sieve Riesz representer v∗n defined in (3.6) and the

sieve variance ‖v∗n‖
2
sd given in (3.8). It turns out that both can be computed in closed form.

Lemma 4.1. Let Vk(n) = Rdθ × {vh(·) = ψk(n)(·)′β : β ∈ Rk(n)} = {v(·) = ψ
k(n)

(·)′γ : γ ∈
Rdθ+k(n)} be dense in the infinite dimensional Hilbert space (V, ‖·‖) with the norm ‖·‖ defined in

(3.1). Then: the sieve Riesz representer v∗n = (v∗′θ,n, v
∗
h,n (·))′ ∈ Vk(n) of dφ(α0)

dα [·] has a closed form

expression:

v∗n = (v∗′θ,n, ψ
k(n)(·)′β∗n)′ = ψ

k(n)
(·)′γ∗n, and γ∗n = D−1

n zn (4.1)

with Dn = E

[(
dm(X,α0)

dα [ψ
k(n)

(·)′]
)′

Σ(X)−1
(
dm(X,α0)

dα [ψ
k(n)

(·)′]
)]

and zn = dφ(α0)
dα [ψ

k(n)
(·)]. Thus

‖v∗n‖
2 = γ∗′nDnγ

∗
n = z′nD−1

n zn. (4.2)

The sieve variance (3.8) also has a closed form expression:

||v∗n||2sd = z′nD−1
n fnD−1

n zn, (4.3)

fn ≡ E
[(

dm(X,α0)

dα
[ψ
k(n)

(·)′]
)′

Σ(X)−1ρ(Z,α0)ρ(Z,α0)′Σ(X)−1

(
dm(X,α0)

dα
[ψ
k(n)

(·)′]
)]

.

Let Ak(n) = Θ×Hk(n) with Hk(n) given in (2.3). Then Vk(n) = clsp
(
Ak(n) − {α0,n}

)
and one

could let ψ
k(n)

(·) = qk(n)(·) in Lemma 4.1, and (4.3) becomes the sieve variance expression given

in (2.6).

Lemmas 3.3 and 4.1 imply that φ (·) is regular (or irregular) at α = α0 iff limk(n)→∞
(
z′nD−1

n zn

)
<

∞ (or =∞).

According to Lemma 4.1 we could use different finite dimensional linear sieve basis ψk(n) to

compute sieve Riesz representer v∗n = (v∗′θ,n, v
∗
h,n (·))′ ∈ Vk(n), ‖v∗n‖

2 and ||v∗n||2sd. Most typical
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choices include orthonormal bases and the original sieve basis qk(n) (used to approximate unknown

function h0). It is typically easier to characterize the speed of ‖v∗n‖
2 = z′nD−1

n zn as a function

of k(n) when an orthonormal basis is used, while there is a nice interpretation in terms of sieve

variance estimation when the original sieve basis qk(n) is used. See Sections 2.2, 4.2 and 6 for related

discussions.

4.2 Consistent estimator of sieve variance of φ(α̂n)

In order to apply the asymptotic normality Theorem 4.1, we need an estimator of the sieve variance

‖v∗n‖
2
sd defined in (3.8). We now provide one simple consistent estimator of the sieve variance when

the residual function ρ() is pointwise smooth with respect to α0. See Appendix B for additional

consistent variance estimators.

The theoretical sieve Riesz representer v∗n is unknown but can be estimated easily. Let ‖·‖n,M
denote the empirical norm induced by the following empirical inner product

〈v1, v2〉n,M ≡
1

n

n∑
i=1

(
dm̂(Xi, α̂n)

dα
[v1]

)′
Mn,i

(
dm̂(Xi, α̂n)

dα
[v2]

)
, (4.4)

for any v1, v2 ∈ Vk(n), where Mn,i is some (almost surely) positive definite weighting matrix.

We define an empirical sieve Riesz representer v̂∗n of the functional dφ(α̂n)
dα [·] with respect to the

empirical norm || · ||
n,Σ̂−1 as

dφ(α̂n)

dα
[v̂∗n] = sup

v∈Vk(n),v 6=0

|dφ(α̂n)
dα [v]|2

||v||2
n,Σ̂−1

<∞ (4.5)

and
dφ(α̂n)

dα
[v] = 〈v̂∗n, v〉n,Σ̂−1 for any v ∈ Vk(n). (4.6)

For ‖v∗n‖
2
sd = E

(
S∗n,iS

∗′
n,i

)
given in (3.8) we can define a simple plug-in sieve variance estimator:

||v̂∗n||2n,sd =
1

n

n∑
i=1

Ŝ∗n,iŜ
∗′
n,i =

1

n

n∑
i=1

(
dm̂(Xi, α̂n)

dα
[v̂∗n]

)′
Σ̂−1
i

(
ρ̂iρ̂
′
i

)
Σ̂−1
i

(
dm̂(Xi, α̂n)

dα
[v̂∗n]

)
(4.7)

with ρ̂i = ρ(Zi, α̂n) and Σ̂i = Σ̂(Xi).

Under condition stated in Lemma 4.1, v̂∗n defined in (4.5-4.6) also has a closed form solution:

v̂∗n = ψ
k(n)

(·)′γ̂∗n, and γ̂∗n = D̂−1
n ẑn, (4.8)
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with D̂n = 1
n

∑n
i=1

(
dm̂(Xi,α̂n)

dα [ψ
k(n)

(·)′]
)′

Σ̂−1
i

(
dm̂(Xi,α̂n)

dα [ψ
k(n)

(·)′]
)

and ẑn = dφ(α̂n)
dα [ψ

k(n)
(·)].

Hence the sieve variance estimator given in (4.7) now becomes

||v̂∗n||2n,sd = V̂1 ≡ ẑ′nD̂−1
n f̂nD̂−1

n ẑn with (4.9)

f̂n =
1

n

n∑
i=1

(
dm̂(Xi, α̂n)

dα
[ψ
k(n)

(·)′]
)′

Σ̂−1
i

(
ρ̂iρ̂
′
i

)
Σ̂−1
i

(
dm̂(Xi, α̂n)

dα
[ψ
k(n)

(·)′]
)
.

In particular, with ψk(n) = qk(n) the sieve variance estimator ||v̂∗n||2n,sd given in (4.9) becomes the

one given in (2.10) in Subsection 2.2.

Let 〈v1, v2〉M ≡ E
[(

dm(X,α0)
dα [v1]

)′
M
(
dm(X,α0)

dα [v2]
)]

. Then 〈v1, v2〉Σ−1 ≡ 〈v1, v2〉 and 〈v1, v2〉Σ−1
0
≡

〈v1, v2〉0 for all v1, v2 ∈ Vk(n). Denote V
1
k(n) ≡ {v ∈ Vk(n) : ||v|| = 1}.

Assumption 4.1. (i) supα∈Nosn sup
v∈V1

k(n)

∣∣∣dφ(α)
dα [v]− dφ(α0)

dα [v]
∣∣∣ = o(1);

(ii) for each k(n) and any α ∈ Nosn, v ∈ Vk(n) 7→
dm̂(·,α)
dα [v] ∈ L2(fX) is a linear functional

measurable with respect to Zn; and sup
v1,v2∈V

1
k(n)

∣∣〈v1, v2〉n,Σ−1 − 〈v1, v2〉Σ−1

∣∣ = oPZ∞ (1);

(iii) supx∈X ||Σ̂(x)− Σ(x)||e = oPZ∞ (1);

(iv) supx∈X E
[
supα∈Nosn ||ρ(Z,α)ρ(Z,α)′ − ρ(Z,α0)ρ(Z,α0)′||e|X = x

]
= o(1).

(v) sup
v∈V1

k(n)
|〈v, v〉n,M − 〈v, v〉M | = oPZ∞ (1) with M = Σ−1ρ(Z,α0)ρ(Z,α0)′Σ−1.

Assumption 4.1(i) becomes vacuous if φ is linear; otherwise it requires smoothness of the family

{dφ(α)
dα [v] : α ∈ Nosn} uniformly in v ∈ V

1
k(n). Assumption 4.1(ii) implicitly assumes that the

residual function ρ(z, ·) is “smooth” in α ∈ Nosn (see, e.g., Ai and Chen (2003)) or that dm̂(X,α̂n)
dα [v]

can be well approximated by numerical derivatives (see, e.g., Hong et al. (2010)). Assumption

4.1(iii) assumes the existence of consistent estimators for Σ. In most applications, Σ(·) is either

completely known (such as the identity matrix) or Σ0; while Σ0(x) could be consistently estimated

via kernel, series LS, local linear regression and other nonparametric procedures (see, e.g., Ai and

Chen (2003) and Chen and Pouzo (2009))

Theorem 4.2. Let Assumptions 3.1 - 3.4 hold. If Assumption 4.1 is satisfied, then:

(1)
∣∣∣ ||v̂∗n||n,sd||v∗n||sd

− 1
∣∣∣ = oPZ∞ (1) for ||v̂∗n||n,sd given in (4.7).

(2) If, in addition, Assumptions 3.5 and 3.6 hold, then:

Ŵn ≡
√
n
φ(α̂n)− φ(α0)

||v̂∗n||n,sd
= −
√
nZn + oPZ∞ (1)⇒ N(0, 1).

Theorem 4.2(2) allows us to construct confidence sets for φ(α0) based on a possibly non-

optimally weighted plug-in PSMD estimator φ(α̂n). A potential drawback, is that it requires a
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consistent estimator for v 7→ dm(·,α0)
dα [v], which may be hard to compute in practice when the resid-

ual function ρ(Z,α) is not pointwise smooth in α ∈ Nosn such as in the NPQIV (2.21) example.

Remark 4.1. Let Wn ≡
(√

nφ(α̂n)−φ0

||v̂∗n||n,sd

)2
=
(
Ŵn +

√
nφ(α0)−φ0

||v̂∗n||n,sd

)2
be the Wald test statistic. Then

Theorem 4.2 (with ||v
∗
n||sd√
n
� ||v

∗
n||√
n

= o(1)) immediately implies the following results:

Under H0 : φ(α0) = φ0, Wn =
(
Ŵn

)2
⇒ χ2

1.

Under H1 : φ(α0) 6= φ0, Wn =
(
OP (1) +

√
n||v∗n||−1

sd [φ(α0)− φ0] (1 + oP (1))
)2 →∞ in probability.

See Theorem A.3 in Appendix A for asymptotic properties of Wn under local alternatives.

4.3 Sieve QLR statistics

We now characterize the asymptotic behaviors of the possibly non-optimally weighted SQLR statis-

tic Q̂LRn(φ0) defined in (2.13).

Let ARk(n) ≡ {α ∈ Ak(n) : φ(α) = φ0} be the restricted sieve space, and α̂Rn ∈ ARk(n) be a

restricted approximate PSMD estimator, defined as

Q̂n(α̂Rn ) + λnPen(ĥRn ) ≤ inf
α∈AR

k(n)

{
Q̂n(α) + λnPen(h)

}
+ oPZ∞ (n−1). (4.10)

Then:

Q̂LRn(φ0) = n
(
Q̂n(α̂Rn )− Q̂n(α̂n)

)
= n

(
inf

α∈AR
k(n)

Q̂n(α)− inf
α∈Ak(n)

Q̂n(α)

)
+ oPZ∞ (1).

Recall that u∗n ≡ v∗n/ ‖v∗n‖sd, and that Q̂LR
0

n(φ0) denotes the optimally weighted (i.e., Σ = Σ0)

SQLR statistic in Subsection 2.2. We note that ||u∗n|| = 1 for the optimally weighted case.

Theorem 4.3. Let Assumptions 3.1 - 3.6 hold with
∣∣Bn − ||u∗n||2∣∣ = oPZ∞ (1). If α̂Rn ∈ Nosn

wpa1-PZ∞, then: (1) under the null H0 : φ(α0) = φ0,

||u∗n||2 × Q̂LRn(φ0) =
(√
nZn

)2
+ oPZ∞ (1)⇒ χ2

1.

(2) Further, let α̂n be the optimally weighted PSMD estimator (2.2) with Σ = Σ0. Then: under

H0 : φ(α0) = φ0,

Q̂LR
0

n(φ0) =
(√
nZn

)2
+ oPZ∞ (1)⇒ χ2

1.

See Theorem A.1 in Appendix A for the asymptotic behavior under local alternatives.

Compared to Theorem 4.1 on the asymptotic normality of φ(α̂n), Theorem 4.3 on the asymptotic

null distribution of the SQLR statistic requires two extra conditions:
∣∣Bn − ||u∗n||2∣∣ = oPZ∞ (1) and
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α̂Rn ∈ Nosn wpa1-PZ∞ . Both conditions are also needed even for QLR statistics in parametric

extremum estimation and testing problems. Lemma 5.1 in Section 5 provides a simple sufficient

condition (Assumption B) for
∣∣Bn − ||u∗n||2∣∣ = oPZ∞ (1). Proposition B.1 in Appendix B establishes

α̂Rn ∈ Nosn wpa1-PZ∞ under the null H0 : φ(α0) = φ0 and other conditions virtually the same as

those for Lemma 3.2 (i.e., α̂n ∈ Nosn wpa1-PZ∞).

Theorem 4.3(2) recommends to construct an asymptotic 100(1 − τ)% confidence set for φ(α)

by inverting the optimally weighted SQLR statistic:
{
r ∈ R : Q̂LR

0

n(r) ≤ cχ2
1
(1− τ)

}
. This result

extends that of Chen and Pouzo (2009) to allow for irregular functionals.

Next, we consider the asymptotic behavior of Q̂LRn(φ0) under the fixed alternatives H1 :

φ(α0) 6= φ0.

Theorem 4.4. Let Assumptions 3.1, 3.2 and 3.3 hold. Suppose that suph∈H Pen(h) < ∞ and φ

is continuous in || · ||s. Then: under H1 : φ(α0) 6= φ0, there is a constant C > 0 such that

lim inf
n→∞

Q̂LRn(φ0)

n
≥ C > 0 in probability.

5 Inference Based on Generalized Residual Bootstrap

The inference procedures described in Sections 4 and 4.3 are based on the asymptotic critical values.

For many parametric models it is known that bootstrap based procedures could approximate finite

sample distributions more accurately. In this section we establish the consistency of the bootstrap

sieve Wald and SQLR statistics under virtually the same conditions as those imposed for the

original-sample sieve Wald and SQLR statistics.

A bootstrap procedure is described by an array of “weights” {ωi,n}ni=1 for each n, where each

bootstrap sample is drawn independently of the original data {Zi}ni=1. Different bootstrap proce-

dures correspond to different choices of the weights {ωi,n}ni=1 but all satisfy ωi,n ≥ 0 and E[ωi,n] = 1.

For the time being we assume that limn→∞ V ar(ωi,n) = σ2
ω ∈ (0,∞) for all i.

In this paper we focus on two types of bootstrap weights:

Assumption Boot.1 (I.i.d Weights). Let (ωi)
n
i=1 be a sequence such that ωi ∈ R+, ωi ∼ iidPω,

E[ω] = 1, V ar(ω) = σ2
ω, and

∫∞
0

√
P (|ω − 1| ≥ t)dt <∞.

The condition
∫∞

0

√
P (|ω − 1| ≥ t)dt <∞ is implied by E[|ω − 1|2+ε] <∞ for some ε > 0.

Assumption Boot.2 (Multinomial Weights). Let (ωi,n)ni=1 be a triangular array of random vari-

ables such that (ω1,n, ..., ωn,n) ∼Multinomial(n;n−1, ..., n−1).

We sometimes omit the n subscript from the weight series. Note that under Assumption Boot.2,

E[ω1] = 1, V ar(ω1) = (1 − 1/n) → 1 ≡ σ2
ω and Cov(ωi, ωj) = −n−1 (for i 6= j). Finally,
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n−1 max1≤i≤n(ωi − 1)2 = oPω(1); see p. 458 in Van der Vaart and Wellner (1996) (henceforth,

VdV-W). We use these facts in the proofs.

Let Vi ≡ (Zi, ωi,n) and

ρB(Vi, α) ≡ ωi,nρ(Zi, α),

be the bootstrap residual function. Let m̂B(x, α) be a bootstrap version of m̂(x, α), that is, m̂B(x, α)

is computed in the same way as that of m̂(x, α) except that we use ρB(Vi, α) instead of ρ(Zi, α).

In particular, m̂B(x, α) =
∑n

i=1 ωi,nρ(Zi, α)An(Xi, x) for any linear estimator m̂(x, α) (2.4) of

m(x, α). For example, if m̂(x, α) is a series LS estimator (2.5), then m̂B(x, α) is the bootstrap

series LS estimator (2.16) defined in Subsection 2.2.

Let Q̂Bn (α) ≡ 1
n

∑n
i=1 m̂

B(Xi, α)′Σ̂(Xi)
−1m̂B(Xi, α) be a bootstrap version of Q̂n(α), and α̂Bn

be the bootstrap PSMD estimator, i.e., α̂Bn is an approximate minimizer of
{
Q̂Bn (α) + λnPen(h)

}
on Ak(n). Denote φ̂n ≡ φ(α̂n). Then

Q̂LR
B

n (φ̂n) = n

(
inf

{Ak(n) : φ(α)=φ̂n}
Q̂Bn (α)− Q̂Bn (α̂Bn )

)

is the (generalized residual) bootstrap SQLR test statistic. And WB
1,n ≡

(√
n φ(α̂Bn )−φ̂n
σω ||v̂∗n||n,sd

)2

is one

simple bootstrap Wald test statistic (see Subsection 5.2 for another simple bootstrap Wald statistic).

Additional notation. To be more precise, we introduce some definitions associated with the

new random variables Vi ≡ (Zi, ωi,n) and the enlarged probability spaces. Let Ω = {ωi,n : i =

1, ..., n; n = 1, ...} be the space of weights, defined as a triangle array with elements in R, the

corresponding σ-algebra and probability are (BΩ, PΩ). Let V∞ ≡ Z∞ × Ω, B∞ ≡ B∞Z × BΩ be the

σ-algebra, and PV∞ be the joint probability over V∞. Finally, for each n, let Bn be the σ-algebra

generated by V n ≡ Zn×(ω1,n, ..., ωn,n), where each ωi,n acts as a “weight” of Zi. Let An be a random

variable that is measurable with respect to Bn, and LV∞|Z∞(An|Zn) (or PV∞|Z∞ (An ≤ · | Zn)) be

the conditional law (or conditional distribution) of An given Zn. Let Bn be a random variable

measurable with respect to B∞Z , and L(Bn) (or PZ∞ (Bn ≤ ·)) be the law (or distribution) of Bn.

For two real valued random variables, An (measurable with respect to Bn) and B (measurable with

respect to some σ-algebra BB), we say
∣∣LV∞|Z∞(An|Zn)− L(B)

∣∣ = oPZ∞ (1) if for any δ > 0, there

exists a N(δ) such that

PZ∞

(
sup
f∈BL1

|E[f(An)|Zn]− E[f(B)]| ≤ δ

)
≥ 1− δ for all n ≥ N(δ),

(i.e., supf∈BL1
|E[f(An)|Zn]− E[f(B)]| = oPZ∞ (1)), where BL1 denotes the class of uniformly

bounded Lipschitz functions f : R → R such that ||f ||L∞ ≤ 1 and |f(z) − f(z′)| ≤ |z − z′|. See
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chapter 1.12 of VdV-W for more details.

We say ∆n is of order oPV∞|Z∞ (1) in PZ∞ probability, and denote it as ∆n = oPV∞|Z∞ (1) wpa1(PZ∞),

if for any ε > 0, PZ∞
(
PV∞|Z∞ (|∆n| > ε | Zn) > ε

)
→ 0 as n→∞.

We say ∆n is of orderOPV∞|Z∞ (1) in PZ∞ probability, and denote it as ∆n = OPV∞|Z∞ (1) wpa1(PZ∞),

if for any ε > 0 there exists a M ∈ (0,∞), such that PZ∞
(
PV∞|Z∞ (|∆n| > M | Zn) > ε

)
→ 0 as

n→∞.

5.1 Bootstrap local quadratic approximation (LQAB)

Lemma A.1 in Appendix A shows that the bootstrap PSMD estimator α̂Bn ∈ Nosn wpa1 under

Assumptions 3.1 - 3.4 and A.1. In the following we introduce a condition that is a bootstrap version

of the LQA Assumption 3.6. For any α ∈ Nosn, we let Λ̂Bn (α(tn), α) ≡ 0.5{Q̂Bn (α(tn)) − Q̂Bn (α)}
with α(tn) ≡ α+ tnu

∗
n for tn ∈ Tn,. For any sequence of non-negative weights (bi)i, let

Zbn ≡ n−1
n∑
i=1

bi

(
dm(Xi, α0)

dα
[u∗n]

)′
Σ(Xi)

−1ρ(Zi, α0) = n−1
n∑
i=1

bi
S∗n,i
‖v∗n‖sd

.

Assumption Boot.3 (LQAB). (i) α(t) ∈ Ak(n) for any (α, t) ∈ Nosn × Tn, and with rn(tn) =(
max{t2n, tnn−1/2, o(n−1)}

)−1
,

sup
(α,tn)∈Nosn×Tn

rn(tn)

∣∣∣∣Λ̂Bn (α(tn), α)− tn {Zωn + 〈u∗n, α− α0〉} −
Bω
n

2
t2n

∣∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞)

where Bω
n is a V n measurable positive random variable such that Bω

n = OPV∞|Z∞ (1) wpa1(PZ∞);

(ii)

∣∣∣∣LV∞|Z∞ (√nZω−1
n

σω
| Zn

)
− L (Z)

∣∣∣∣ = oPZ∞ (1),

where Z is a standard normal random variable.

Assumption Boot.3(i) implicitly imposes restrictions on the bootstrap estimator m̂B(x, α) of the

conditional mean function m(x, α). Below we provide low level sufficient conditions for Assumption

Boot.3(i) when m̂B(x, α) is a bootstrap series LS estimator.

Let g(X,u∗n) ≡ {dm(X,α0)
dα [u∗n]}′Σ(X)−1. Then E [g(Xi, u

∗
n)Σ(Xi)g(Xi, u

∗
n)′] = ||u∗n||2.

Assumption B. For Γ(·) ∈ {Σ(·),Σ0(·)},∣∣∣∣∣n−1
n∑
i=1

g(Xi, u
∗
n)Γ(Xi)g(Xi, u

∗
n)′ − E

[
g(Xi, u

∗
n)Γ(Xi)g(Xi, u

∗
n)′
]∣∣∣∣∣ = oPZ∞ (1).

Lemma 5.1. Let Assumptions 3.1 - 3.4 and A.4 - A.7 hold.
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(1) Let m̂ be the series LS estimator (2.5). Then Assumption 3.6(i) is satisfied. Further, if

Assumption B holds then
∣∣Bn − ||u∗n||2∣∣ = oPZ∞ (1).

(2) Let m̂B(·, α) be the bootstrap series LS estimator (2.16), Assumption A.1, and either As-

sumption Boot.1 or Boot.2 hold. Then Assumption Boot.3(i) holds with Bω
n = Bn. Further, if

Assumption B holds then
∣∣Bω

n − ||u∗n||2
∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞).

Lemma 5.1 indicates that the low level Assumptions A.4 - A.7 are sufficient for both the original-

sample LQA Assumption 3.6(i) and the bootstrap LQA Assumption Boot.3(i).

Assumption Boot.3(ii) can be easily verified by applying some central limit theorems. For

example, if the weights are independent (Assumption Boot.1), we can use Lindeberg-Feller CLT; if

the weights are multinomial (Assumption Boot.2) we can apply Hayek CLT (see Van der Vaart and

Wellner (1996) p. 458 ). The next lemma provides some simple sufficient conditions for Assumption

Boot.3(ii).

Lemma 5.2. Let either Assumption Boot.1 or Assumption Boot.2 hold. If there is a positive real

sequence (bn)n such that bn = o (
√
n) and

lim sup
n→∞

E

[
(g(X,u∗n)ρ(Z,α0))2 1

{
(g(X,u∗n)ρ(Z,α0))2

bn
> 1

}]
= 0. (5.1)

Then: Assumptions Boot.3(ii) and 3.6(ii) hold.

5.2 Bootstrap sieve Student t statistic

Lemma A.1 shows that α̂Bn ∈ Nosn wpa1 under virtually the same conditions as those for the

original-sample estimator α̂n ∈ Nosn wpa1. This would easily lead to the consistency of the simplest

bootstrap sieve t statistic ŴB
1,n ≡

√
nφ(α̂Bn )−φ(α̂n)

σω ||v̂∗n||n,sd
.

We now establish the consistency of another bootstrap sieve t statistic ŴB
2,n ≡

√
nφ(α̂Bn )−φ(α̂n)
||v̂∗n||B,sd

,

where ||v̂∗n||2B,sd is a bootstrap sieve variance estimator:

||v̂∗n||2B,sd ≡
1

n

n∑
i=1

(
dm̂(Xi, α̂n)

dα
[v̂∗n]

)′
Σ̂−1
i %(Vi, α̂n)%(Vi, α̂n)′Σ̂−1

i

(
dm̂(Xi, α̂n)

dα
[v̂∗n]

)
(5.2)

with %(Vi, α) ≡ (ωi,n − 1)ρ(Zi, α) ≡ ρB(Vi, α)− ρ(Zi, α) for any α.

We note that ||v̂∗n||2B,sd is an analog to ||v̂∗n||2n,sd defined in (4.7) but using the bootstrapped

generalized residual %(Vi, α̂n) instead of the original sample fitted residual ρ(Zi, α̂n). It also has a

closed form expression: ||v̂∗n||2B,sd = ẑ′nD̂−1
n f̂Bn D̂−1

n ẑn with

f̂Bn =
1

n

n∑
i=1

(
dm̂(Xi, α̂n)

dα
[ψ
k(n)

(·)′]
)′

Σ̂−1
i (ωi,n−1)2ρ(Zi, α̂n)ρ(Zi, α̂n)′Σ̂−1

i

(
dm̂(Xi, α̂n)

dα
[ψ
k(n)

(·)′]
)
.

29



That is, ||v̂∗n||2B,sd is computed in the same way as ||v̂∗n||2n,sd = ẑ′nD̂−1
n f̂nD̂−1

n ẑn given in (4.9) except

using f̂Bn instead of f̂n.

Assumption Boot.4. sup
v∈V1

k(n)
|〈v, v〉n,M̂B−σ2

ω〈v, v〉n,M̂ | = oPV∞|Z∞ (1) wpa1(PZ∞) with M̂B
i =

(ωi,n − 1)2M̂i and M̂i = Σ̂−1
i ρ(Zi, α̂n)ρ(Zi, α̂n)′Σ̂−1

i .

This assumption can be verified given Assumptions Boot.1 or Boot.2. The following result is a

bootstrap version of Theorem 4.2(1).

Theorem 5.1. Let Assumptions 3.1 - 3.4, 4.1 and Boot.4 hold. Then:∣∣∣∣ ||v̂∗n||B,sdσω||v∗n||sd
− 1

∣∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞).

Recall that Ŵn ≡
√
nφ(α̂n)−φ(α0)
||v̂∗n||n,sd

, whose probability distribution PZ∞
(
Ŵn ≤ ·

)
converges to

the standard normal cdf Φ(·). The next result is about the consistency of the bootstrap sieve t

statistic ŴB
2,n.

Theorem 5.2. Let α̂n be the PSMD estimator (2.2) and α̂Bn the bootstrap PSMD estimator. Let

Assumptions 3.1 - 3.4 and A.1 hold. Let Assumptions 3.5, 3.6 and Boot.3 hold.

(1) Let Assumptions 4.1 and Boot.4 hold. Then:

sup
t∈R

∣∣∣PV∞|Z∞ (ŴB
2,n ≤ t | Zn

)
− PZ∞

(
Ŵn ≤ t

)∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞).

(2) If φ is regular, without imposing Assumptions 4.1 and Boot.4, we have:

sup
t∈R

∣∣∣∣PV∞|Z∞ (√nφ(α̂Bn )− φ(α̂n)

σω
≤ t | Zn

)
− PZ∞

(√
n (φ(α̂n)− φ(α0)) ≤ t

)∣∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞).

For a regular functional, Theorem 5.2(2) provides one way to construct its confidence sets

without the need to compute any variance estimator. This extends the result in Chen and Pouzo

(2009) for a regular Euclidean parameter λ′θ to a general regular functional φ(α). Unfortunately

for an irregular functional, we need to compute a consistent bootstrap sieve variance estimator

||v̂∗n||2B,sd to apply Theorem 5.2(1). Luckily ||v̂∗n||2B,sd is easy to compute when the residual function

ρ(Zi, α) is pointwise smooth in α0. Moreover, since E
(
||v̂∗n||2B,sd | Zn

)
= σ2

ω||v̂∗n||2n,sd we suspect

that the bootstrap sieve t statistic ŴB
2,n might have second order refinement property by choices of

bootstrap weights {ωi,n}. This will be a subject of future research.

The bootstrap sieve t statistic ŴB
2,n requires to compute the original sample PSMD estimator

α̂n and the bootstrap PSMD estimator α̂Bn . In online supplemental Appendix D we present a sieve

score test and its bootstrap version, which only use the original sample restricted PSMD estimator

α̂Rn and do not use α̂Bn , and hence are computationally simple.
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Remark 5.1. Theorems 4.2(2) and 5.2(1) imply that the bootstrap Wald test statistic WB
2,n ≡(

ŴB
2,n

)2
always has the same limiting distribution χ2

1 (conditional on the data) under the null and

the alternatives. Let ĉ2,n(a) be the a − th quantile of the distribution of WB
2,n (conditional on the

data {Zi}ni=1). Let Wn ≡
(√

nφ(α̂n)−φ0

||v̂∗n||n,sd

)2
be the original sample Wald test statistic. Then Remark

4.1 and Theorem 5.2(1) immediately imply that for any τ ∈ (0, 1),

under H0 : φ(α0) = φ0, limn→∞ Pr (Wn ≥ ĉ2,n(1− τ)) = τ ;

under H1 : φ(α0) 6= φ0, limn→∞ Pr (Wn ≥ ĉ2,n(1− τ)) = 1.

See Theorem A.4 in Appendix A for properties under local alternatives.

See online supplemental Appendix B for consistency of WB
1,n ≡

(√
n φ(α̂Bn )−φ̂n
σω ||v̂∗n||n,sd

)2

and other

bootstrap sieve Wald (t) statistics based on different sieve variance estimators.

5.3 Bootstrap SQLR statistic

If Σ 6= Σ0, the SQLR statistic Q̂LRn(φ0) = n
(
Q̂n(α̂Rn )− Q̂n(α̂n)

)
is no longer asymptotically

chi-square even under the null; Theorem 4.3(1), however, implies that the SQLR statistic converges

weakly to a tight limit under the null. In this subsection we show that the asymptotic null distribu-

tion of the SQLR can be consistently approximated by that of the (generalized residual) bootstrap

SQLR statistic Q̂LR
B

n (φ̂n). Recall that

Q̂LR
B

n (φ̂n) = n
(
Q̂Bn (α̂R,Bn )− Q̂Bn (α̂Bn )

)
+ oPV∞|Z∞ (1) wpa1(PZ∞)

where φ̂n ≡ φ(α̂n), and α̂R,Bn is the restricted bootstrap PSMD estimator, defined as

Q̂Bn (α̂R,Bn ) + λnPen(ĥR,Bn ) ≤ inf
α∈Ak(n):φ(α)=φ̂n

{
Q̂Bn (α) + λnPen(h)

}
+ oPV∞|Z∞ (

1

n
) wpa1(PZ∞).

(5.3)

Lemma A.1 in Appendix A implies that α̂R,Bn , α̂Bn ∈ Nosn wpa1 under both the null H0 :

φ(α0) = φ0 and the alternatives H1 : φ(α0) 6= φ0. This indicates that the bootstrap SQLR statistic

Q̂LR
B

n (φ̂n) is always properly centered and should be stochastically bounded under both the null

and the alternatives, as shown in the next theorem. Let PZ∞
(
Q̂LRn(φ0) ≤ · | H0

)
denote the

probability distribution of Q̂LRn(φ0) under the null H0 : φ(α0) = φ0, which would converge to the

cdf of χ2
1 when Q̂LRn(φ0) = Q̂LR

0

n(φ0) (the optimally weighted SQLR).

Theorem 5.3. Let Assumptions 3.1 - 3.4 and A.1 hold. Let Assumptions 3.5, 3.6 and Boot.3 hold

with
∣∣Bω

n − ||u∗n||2
∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞). Then:

(1)
Q̂LR

B

n (φ̂n)

σ2
ω

=

(√
n

Zω−1
n

σω||u∗n||

)2

+ oPV∞|Z∞ (1) = OPV∞|Z∞ (1) wpa1(PZ∞); and
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(2) sup
t∈R

∣∣∣∣∣∣PV∞|Z∞
Q̂LRBn (φ̂n)

σ2
ω

≤ t | Zn
− PZ∞ (Q̂LRn(φ0) ≤ t | H0

)∣∣∣∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞).

Theorem 5.3 allows us to construct valid confidence sets (CS) for φ(α0) based on inverting

possibly non-optimally weighted SQLR statistic without the need to compute a variance estimator.

We recommend this procedure when it is difficult to compute any consistent variance estimator

for φ(α̂), such as in the cases when the residual function ρ(Z;α) is pointwise non-smooth in α0.

See, e.g., Andrews and Buchinsky (2000) for a thorough discussion about how to construct CS via

bootstrap.

Remark 5.2. Let ĉn(a) be the a− th quantile of the distribution of Q̂LR
B

n (φ̂n)
σ2
ω

(conditional on the

data {Zi}ni=1). Then Theorems 4.3, 4.4 and 5.3 immediately imply that for any τ ∈ (0, 1),

under H0 : φ(α0) = φ0, limn→∞ Pr
(
Q̂LRn(φ0) ≥ ĉn(1− τ)

)
= τ ;

under H1 : φ(α0) 6= φ0, limn→∞ Pr
(
Q̂LRn(φ0) ≥ ĉn(1− τ)

)
= 1.

See Theorem A.2 in Appendix A for properties under local alternatives.

6 Verification of Assumptions 3.5 and 3.6(i)

In this section, we illustrate the verification of the two key regularity conditions, Assumption 3.5

and Assumption 3.6(i), via some functionals φ(h) of the (nonlinear) nonparametric IV regressions:

E[ρ(Y1;h0(Y2))|X] = 0 a.s.−X, (6.1)

where the scalar valued residual function ρ() could be nonlinear and pointwise non-smooth in h.

This model includes the NPIV and NPQIV as special cases. To be concrete, we consider a PSMD

estimator ĥ ∈ Hk(n) of h0 with Σ̂ = Σ = 1, and m̂(·, h) being the series LS estimator (2.5) of

m(·, h) = E[ρ(Y1;h(Y2))|X = ·] with Jn = ck(n) for a finite constant c ≥ 1. We assume that

h0 ∈ H = Λςc ([−1, 1]) with smoothness ζ > 1/2 (a Hölder ball with support [−1, 1], see, e.g.,

Chen et al. (2003)).14 By definition, H ⊂ L2(fY2) and we let || · ||s = || · ||L2(fY2
). We assume that

Hk(n) = clsp{q1, ..., qk(n)} with {qk}∞k=1 being a Riesz basis of (H, || · ||s). The convergence rates of

ĥ to h0 in both || · || and || · ||s = || · ||L2(fY2
) metrics have already been established in Chen and

Pouzo (2012a), and hence will not be repeated here.

We use Hos and Hosn for Aos and Aosn defined in Subsection 3.1 (since there is no θ here).

14This Hölder ball condition and several other conditions assumed in this subsection are for illustration only, and
can be replaced by weaker sufficient conditions.
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Denote T ≡ dm(·,h0)
dh : Hos ⊂ L2(fY2)→ L2(fX), i.e., for any h ∈ Hos ⊂ L2(fY2),

Th ≡ dE[ρ(Y1;h0(Y2) + τh(Y2))|X = ·]
dτ

∣∣∣∣
τ=0

.

Let T ∗ be the adjoint of T . Then for all h ∈ Hos, we have ||h||2 ≡ ||Th||2L2(fX) = ||(T ∗T )1/2h||2L2(fY2
).

Under mild conditions as stated in Chen and Pouzo (2012a), T and T ∗ are compact. Then T has

a singular value decomposition {µk;ψk, φ0k}∞k=1, where {µk > 0}∞k=1 is the sequence of singular

values in non-increasing order (µk ≥ µk+1 ≥ ...) with lim infk→∞ µk = 0, {ψk ∈ L2(fY2)}∞k=1 and

{φ0k ∈ L2(fX)}∞k=1 are sequences of eigenfunctions of the operators (T ∗T )1/2 and (TT ∗)1/2:

Tψk = µkφ0k, (T ∗T )1/2ψk = µkψk and (TT ∗)1/2φ0k = µkφ0k for all k.

Since {qk}∞k=1 is a Riesz basis of (H, || · ||s) we could also have Hk(n) = clsp{ψ1, ..., ψk(n)}. The

sieve measure of local ill-posedness now becomes τn = µ−1
k(n) (see, e.g., Blundell et al. (2007)

and Chen and Pouzo (2012a)), and hence ‖u∗n‖s ≤ cµ−1
k(n) for a finite constant c > 0. Also,

Πnh0 ≡ arg minh∈Hk(n)
||h − h0||s =

∑k(n)
k=1 〈h0, ψk〉sψk is the LS projection of h0 onto the sieve

space Hn under the strong norm || · ||s = || · ||L2(fY2
). Recall that h0,n ≡ arg minh∈Hk(n)

||h−h0||2 ≡
arg minh∈Hk(n)

||T [h− h0]||2L2(fX). We have:

h0,n = arg min
{ak}

k(n)∑
k=1

(〈h0, ψk〉s − ak)2 µ2
k +

∞∑
k=k(n)+1

〈h0, ψk〉2sµ2
k

 =

k(n)∑
k=1

〈h0, ψk〉sψk = Πnh0. (6.2)

The next remark specializes Theorem 4.1 to a general functional φ(h) of the model (6.1).

Remark 6.1. Let m̂ be the series LS estimator (2.5) for the model (6.1) with Σ̂ = Σ = 1, and

Assumptions 3.1(i)(ii), 3.2(ii)(iii), and 3.4 hold with δn = O

(√
k(n)
n

)
= o(n−1/4) and δs,n =

O

(
{k(n)}−ς + µ−1

k(n)

√
k(n)
n

)
= o(1). Let Assumption 3.5, equation (3.12) and Assumptions A.4 -

A.7 hold. Then:

√
n
φ(ĥn)− φ(h0)

||v∗n||sd
⇒ N(0, 1) with ||v∗n||2sd = (

dφ(h0)

dh
[qk(n)(·)])′D−1

n fnD−1
n (

dφ(h0)

dh
[qk(n)(·)]),

(6.3)

Dn = E
[(
T [qk(n)(·)′]

)′ (
T [qk(n)(·)′]

)]
and fn = E

[(
T [qk(n)(·)′]

)′
ρ(Z, h0)2

(
T [qk(n)(·)′]

)]
.

Remark 6.1 includes the NPIV and NPQIV examples in Subsection 2.2 as special cases. In

particular, the sieve variance expression (6.3) reproduces the one for the NPIV model (2.18)

with T [qk(n)(·)′] = E[qk(n)(Y2)′|X], and the one for the NPQIV model (2.21) with T [qk(n)(·)′] =

E[fU |Y2,X(0)qk(n)(Y2)′|X].
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By the result in Chen and Pouzo (2012a), the sieve dimension k∗n satisfying {k∗n}−ς � µ−1
k∗n
×
√

k∗n
n

leads to the nonparametric optimal convergence rate of ||ĥ − h0||s = OPZ∞ (δ∗s,n) = o(1) in strong

norm, where δ∗s,n � {k∗n}−ς . In particular, k∗n � n
1

2(ς+a)+1 and δ∗s,n = n
− ς

2(ς+a)+1 for the mildly

ill-posed case µk � k−a for a finite a > 0; and δ∗s,n = {lnn}−ς for the severely ill-posed case µk �
exp{−0.5ak} for a finite a > 0. However this paper aims at simple valid inferences on functional

φ(h0). As will be illustrated in the next subsection, although the nonparametric optimal choice k∗n

is compatible with the sufficient conditions for the asymptotic normality of
√
n(φ(ĥ) − φ(h0)) for

a regular linear functional φ(h0) (see Remark 3.1), it is typically ruled out by Assumption 3.5(iii)

for irregular functionals.

6.1 Verification of Assumption 3.5

Let bj ≡ dφ(h0)
dh [ψj(·)] for all j. By Lemma 4.1Dn = E

[(
T [qk(n)(·)′]

)′ (
T [qk(n)(·)′]

)]
= Diag

{
µ2

1, ..., µ
2
k(n)

}
and

||v∗n||2 =

(
dφ(h0)

dh
[qk(n)(·)]

)′
D−1
n

(
dφ(h0)

dh
[qk(n)(·)]

)
=

k(n)∑
j=1

µ−2
j b2j . (6.4)

By Lemma 3.3, φ(h) of the model (6.1) is regular (at h = h0) iff
∑∞

j=1 µ
−2
j b2j <∞, and is irregular

(at h = h0) iff
∑∞

j=1 µ
−2
j b2j =∞.

For the same functional φ(h) of a model (6.5) without endogeneity:

E[ρ(Y1;h0(Y2))|Y2] = 0 a.s.− Y2, (6.5)

we have Dn � Ik(n) and ||v∗n||2 �
∑k(n)

j=1 b
2
j . Thus, φ(h) of the model (6.5) is regular (or irregular)

iff
∑∞

j=1 b
2
j <∞ (or =∞).

Since µk(n) → 0 as k(n) → ∞, if a functional φ(h) is irregular for the model (6.5) without

endogeneity, then it is irregular for the model (6.1). But, even if a functional φ(h) is regular for the

model (6.5) without endogeneity, it could still be irregular for the model (6.1) with endogeneity.

6.1.1 Linear functionals of the model (6.1)

For a linear functional φ(h) of the model (6.1), given relation (6.2), Assumption 3.5 is satisfied

provided that the sieve dimension k(n) satisfies (6.6):

||v∗n||√
n

= o(1) and
√
n

∣∣∣dφ(h0)
dh [Πnh0 − h0]

∣∣∣
||v∗n||

= o(1). (6.6)
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When φ(h) of the model (6.1) is regular, Remark 3.1 implies that (6.6) is satisfied provided

∞∑
j=1

µ−2
j b2j <∞ and n×

∞∑
j=k(n)+1

µ−2
j b2j × ||Πnh0 − h0||2 = o(1). (6.7)

We shall illustrate below that both these sufficient conditions allow for severely ill-posed problems.

Example 1 (evaluation functional). For φ(h) = h(y2), we have: ||v∗n||2 =
∑k(n)

j=1 µ
−2
j [ψj(y2)]2,

∣∣∣∣dφ(h0)

dh
[Πnh0 − h0]

∣∣∣∣ = |(Πnh0)(y2)− h0(y2)| ≤ ||Πnh0 − h0||∞ ≤ const.{k(n)}−ς .

To provide concrete sufficient condition for (6.6), we assume ||v∗n||2 � E
(∑k(n)

j=1 µ
−2
j [ψj(Y2)]2

)
=∑k(n)

k=1 µ
−2
k . Since limk(n)→∞ ||v∗n||2 = ∞, the evaluation functional is irregular. Condition (6.6) is

satisfied provided that

||v∗n||2

n
=

∑k(n)
k=1 µ

−2
k

n
= o(1) and

{k(n)}−2ς

1
n ||v∗n||2

=
{k(n)}−2ς

1
n

∑k(n)
k=1 µ

−2
k

= o(1). (6.8)

Condition (6.8) allows for both mildly and severely ill-posed cases.

(a) Mildly ill-posed : µk � k−a for a finite a > 0. Then ||v∗n||2 � {k(n)}2a+1. Condition (6.8) is

satisfied by a wide range of sieve dimensions, such as k(n) � n
1

2(ς+a)+1 (ln lnn)$ or n
1

2(ς+a)+1 (lnn)$

for any finite $ > 0, or k(n) � nε for any ε ∈ ( 1
2(ς+a)+1 ,

1
2a+1). Note that any k(n) satisfying

Condition (6.8) also ensures δs,n = o(1). However, it does require k(n)/k∗n → ∞, where k∗n �
n

1
2(ς+a)+1 is the choice for the nonparametric optimal convergence rate in strong norm.

(b) Severely ill-posed : µk � exp{−0.5ak} for a finite a > 0. Then ||v∗n||2 � exp{ak(n)}.
Condition (6.8) is satisfied with k(n) � a−1 [lnn−$ ln(lnn)] for 0 < $ < 2ς. In addition we need

$ > 1 (and hence ς > 1/2) to ensure δs,n = O

(
{k(n)}−ς + µ−1

k(n)

√
k(n)
n

)
= o(1).

Example 2 (weighted derivative functional). For φ(h) =
∫
w(y)∇h(y)dy, where w(y) is a

weight satisfying the integration by part formula: φ(h) =
∫
w(y)∇h(y)dy = −

∫
h(y)∇w(y)dy, we

have: ||v∗n||2 =
∑k(n)

j=1 µ
−2
j b2j with bj =

∫
ψj(y)∇w(y)dy for all j, and

∣∣∣∣dφ(h0)

dh
[Πnh0 − h0]

∣∣∣∣ =

∣∣∣∣∫ [Πnh0(y)− h0(y)]∇w(y)dy

∣∣∣∣ ≤ C × ||Πnh0− h0||L2(fY2
) ≤ const.{k(n)}−ς

provided that E

([
∇w(Y2)
fY2

(Y2)

]2
)

=
∑∞

j=1 b
2
j = C <∞. That is, the weighted derivative is assumed to

be regular for the model (6.5) without endogeneity.

(i) When the weighted derivative is regular (i.e.,
∑∞

j=1 µ
−2
j b2j <∞) for the model (6.1), Condi-

tion (6.7) is satisfied provided that n×
∑∞

j=k(n)+1 µ
−2
j b2j×δ2

n = o(1), which is the condition imposed
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in Ai and Chen (2007) for their root-n estimation of an average derivative of NPIV example, and

is shown to allow for severely ill-posed inverse case in Ai and Chen (2007).

(ii) When the weighted derivative is irregular (i.e.,
∑∞

j=1 µ
−2
j b2j = ∞) for the model (6.1),

Condition (6.6) is satisfied provided that

||v∗n||2

n
=

∑k(n)
j=1 µ

−2
j b2j

n
= o(1) and

{k(n)}−2ς

1
n ||v∗n||2

=
{k(n)}−2ς

1
n

∑k(n)
j=1 µ

−2
j b2j

= o(1). (6.9)

Condition (6.9) allows for both mildly and severely ill-posed cases. To provide concrete sufficient

conditions for (6.9) we assume b2j � (j ln(j))−1 in the following calculations.

(a) Mildly ill-posed : µk � k−a for a finite a > 0. Then ||v∗n||2 ∈ [c k(n)2a

ln(k(n)) , c
′k(n)2a] for some

0 < c ≤ c′ < ∞. Condition (6.9) and δs,n = o(1) are jointly satisfied by a wide range of sieve

dimensions, such as k(n) � n
1

2(ς+a) (lnn)$ for any finite $ > 1
2(ς+a) , or k(n) � nε for any ε ∈

( 1
2(ς+a) ,

1
2a+1) and ς > 1/2.

(b) Severely ill-posed : µk � exp{−0.5ak} for a > 0. Then ||v∗n||2 ∈ [c exp{ak(n)}
k(n) ln(k(n)) , c

′ exp{ak(n)}
ln(k(n)) ]

for some 0 < c ≤ c′ < ∞. Condition (6.9) and δs,n = o(1) are jointly satisfied by k(n) �
a−1 [ln(n)−$ ln(ln(n))] for $ ∈ (1, 2ς − 1) and ς > 1.

6.1.2 Nonlinear functionals

For a nonlinear functional φ(h) of the model (6.1), Assumption 3.5 is satisfied provided that the

sieve dimension k(n) satisfies (6.6) (or (6.7) if φ(h) is regular) and Assumption 3.5(ii), which is

implied by the following condition:

Assumption 3.5(ii)’: there are finite non-negative constants C ≥ 0, ω1, ω2 ≥ 0 such that for all

(α, t) ∈ Nosn × Tn,∣∣∣∣φ(α+ tu∗n)− φ(α0)− dφ(α0)

dα
[α+ tu∗n − α0]

∣∣∣∣ ≤ C × (||α−α0 + tu∗n||ω1 × ||α−α0 + tu∗n||ω2
s ), and

C ×
√
n× (δn(1 +M2

n))ω1 × (δs,n +M2
nδn||u∗n||s)ω2

||v∗n||
= o (1) .

Assumption 3.5(ii) or (ii)’ controls the nonlinearity bias of φ (·) (i.e., the linear approximation

error of a nonlinear functional φ (·)). It typically rules out nonlinear regular functionals of severely

illposed inverse problems, but allows for nonlinear irregular functionals of severely illposed inverse

problems.

Example 3 (weighted quadratic functional). For φ(h) = 1
2

∫
w(y) |h(y)|2 dy, we have
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||v∗n||2 =
∑k(n)

j=1 µ
−2
j b2j with bj =

∫
h0(y)w(y)ψj(y)dy for all j, and

∣∣∣∣dφ(h0)

dh
[Πnh0 − h0]

∣∣∣∣ =

∣∣∣∣∫ w(y)h0(y)[Πnh0(y)− h0(y)]dy

∣∣∣∣ ≤ const.× ||Πnh0 − h0||L2(fY2
)

provided that supy
w(y)
fY2

(y) < ∞. This and E
(

[h0(Y2)]2
)
< ∞ imply that

∑∞
j=1 b

2
j < ∞. That is,

the weighted quadratic functional is regular for the model (6.5) without endogeneity. Also,∣∣∣∣φ(h)− φ(h0)− dφ(h0)

dh
[h− h0]

∣∣∣∣ =
1

2

∫
w(y) |h(y)− h0(y)|2 dy ≤ const.× ||h− h0||2L2(fY2

).

(i) When the weighted quadratic functional is regular (i.e.,
∑∞

j=1 µ
−2
j b2j < ∞) for the model

(6.1), Condition (6.7) is satisfied provided that n×
∑∞

j=k(n)+1 µ
−2
j b2j × δ2

n = o(1), which allows for

severely ill-posed cases. But Assumption 3.5(ii)’ requires that
√
n×δ2

s,n =
√
n×
(
{k(n)}−ς + µ−1

k(n)

√
k(n)
n

)2

=

o(1), which clearly rules out severely ill-posed inverse case where µk � exp{−0.5ak} for some finite

a > 0.

(ii) When the weighted quadratic functional is irregular (i.e.,
∑∞

j=1 µ
−2
j b2j =∞) for the model

(6.1), Condition (6.6) is satisfied provided that Condition (6.9) holds with bj =
∫
h0(y)w(y)ψj(y)dy

for Example 3. Assumption 3.5(ii)’ is satisfied provided that

√
n
δ2
s,n

||v∗n||
=

√
n×

(
{k(n)}−ς + µ−1

k(n)

√
k(n)
n

)2

||v∗n||
≤ n−1/2

µ−2
k(n)k(n)√∑k(n)
j=1 µ

−2
j b2j

= o(1). (6.10)

Any k(n) satisfying Conditions (6.9) and (6.10) automatically satisfies δs,n = o(1). In addition, both

conditions allow for mildly and severely ill-posed cases. To provide concrete sufficient conditions

we assume b2j � (j ln(j))−1 in the following calculations.

(a) Mildly ill-posed : µk � k−a for a finite a > 0. Then ||v∗n||2 ∈ [c k(n)2a

ln(k(n)) , c
′k(n)2a] for some

0 < c ≤ c′ < ∞. Conditions (6.9) and (6.10) are satisfied by a wide range of sieve dimensions,

such as k(n) � n
1

2(ς+a) (lnn)$ for any finite $ > 1
2(ς+a) , or k(n) � nε for any ε ∈ ( 1

2(ς+a) ,
1

2a+2) and

ς > 1.

(b) Severely ill-posed : µk � exp{−0.5ak} for a > 0. Then ||v∗n||2 ∈ [c exp{ak(n)}
k(n) ln(k(n)) , c

′ exp{ak(n)}
ln(k(n)) ] for

some 0 < c ≤ c′ <∞. Conditions (6.9) and (6.10) are satisfied with k(n) � a−1 [ln(n)−$ ln(ln(n))]

and $ ∈ (3, 2ς − 1) for ς > 2.
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6.2 Verification of Assumption 3.6(i)

By Lemma 5.1(1), to verify Assumption 3.6(i), it suffices to verify Assumptions A.4 - A.7 in

Appendix A. Note that Assumptions A.4 and A.5 do not depend on sieve Riesz representer at

all, and have already been verified in Chen and Pouzo (2009), Ai and Chen (2007) and others for

(penalized) SMD estimators for the model (6.1). Assumptions A.6 and A.7 do depend on the scaled

sieve Riesz representer u∗n ≡ v∗n/||v∗n||sd. Both these assumptions are also verified in Ai and Chen

(2003), Chen and Pouzo (2009), Ai and Chen (2007) for examples of regular functionals of the

model (6.1). Here, we present verifications of Assumptions A.6 and A.7 for irregular functionals of

the NPIV and NPQIV examples.

Condition 6.1. (i) {E[h(Y2)|·] : h ∈ H} ⊆ Λγc (X ), with γ > 0.5; (ii) supx,y2

fY2X
(y2,x)

fY2
(y2)fX(x) ≤

Const. <∞.

Proposition 6.1. Let all conditions for Remark 6.1 hold. Under Condition 6.1, Assumptions A.6

and A.7 hold for the NPIV model (2.18).

Proposition 6.1 allows for irregular functionals of the NPIV model with severely ill-posed case.

Condition 6.2. (i) {E[FY1|Y2X(h(Y2), Y2, ·)|·] : h ∈ H} ⊆ Λγc (X ), with γ > 0.5; (ii) supy1,y2,x |
dfY1|Y2X

(y1,y2,x)

dy1
| ≤

C <∞.

Condition 6.3. n(log log n)4δ4
s,n = o(1)

Proposition 6.2. Let all conditions for Remark 6.1 hold. Under conditions 6.1(ii) and 6.2-6.3,

Assumptions A.6 and A.7 hold for the NPQIV model (2.21).

It is clear that Condition 6.3 rules out severely ill-posed case, and hence Proposition 6.2 only

allows for irregular functionals of the NPQIV model with mildly ill-posed case.

7 Simulation Studies and An Empirical Illustration

In this section, we first present simulation studies for SQLR and sieve t tests of linear and nonlinear

hypotheses for the NPQIV and NPIV models respectively. We then provide an empirical illustration

of the optimally weighted SQLR inferences for a NPQIV Engel curve. In this section, we use the

series LS estimator (2.5) of m(x, h) with pJn(x) as its basis, and qk(n) as the basis approximating

the unknown structure function h0. We use pJ = P− Spline(r, k) to denote rth degree polynomial

spline with k (quantile) equally spaced knots, hence J = (r + 1) + k is the total number of sieve

terms. We use pJ = Pol(J) to denote power series up to (J − 1)th degree. See Chen (2007) for

definitions.
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7.1 Simulation Studies

We run Monte Carlo (MC) studies to assess the finite sample performance of SQLR and sieve t

procedures in two models: the NPQIV (2.21) and the NPIV (2.18). We also consider linear and

non-linear functionals.

For all cases, our design is based on the MC design of Newey and Powell (2003) and Santos

(2012) for a NPIV model, which we adapt to cover both NPIV and NPQIV models. Specifically,

we generate i.i.d. draws of (Y2, X, U
∗) from


Y ∗2

X∗

U∗

 ∼ N
0,


1 0.8 0.5

0.8 1 0

0.5 0 1


 ,

and Y2 = 2(Φ(Y ∗2 /3) − 0.5) and X = 2(Φ(X∗/3) − 0.5). The true function h0 is given by h0(·) =

2 sin(π·). We consider 5,000 MC repetitions and n = 750 for each of the cases studied below. We

use Pen(h) = ||h||2L2 + ||∇h||2L2 in all the simulations, and have used a very small λn = 10−5 in

most cases (except for the cases we study the sensitivity to the choice of λn).

Summary of MC findings: For both NPQIV and NPIV, for both SQLR and sieve t tests,

for both linear and nonlinear hypotheses, as long as Jn > k(n) + 1 with not too large k(n), the MC

sizes of the tests are good and are insensitive to the choices of basis qk(n) and pJn or the very small

penalty λn. This is consistent with previous MC findings in Blundell et al. (2007) and Chen and

Pouzo (2012a) for PSMD estimation of NPIV and NPQIV respectively.

NPQIV model: SQLR test for an irregular linear functional. We consider the NPQIV

model Y1 = h0(Y2) + U = 2 sin(πY2) + U with U = 2(Φ(U∗) − γ). This last transformation is

done to ensure that E[1{U ≤ 0}|X] = γ. To save space we only present the case with γ = 0.5.

The parameter of interest is φ(h0) = h0(0), hence φ is a irregular linear functional. We study

the finite sample properties of the SQLR and bootstrap-SQLR tests. The SQLR-based confidence

intervals are specially well-suited for models like NPQIV where the generalized residual function is

non-smooth and also where the optimal weighting matrix is easy to compute.

Size. Table 7.1 reports the simulated size of the SQLR test of H0 : φ(h0) = 0 as a function

of the nominal size (NS), for different choices of qk(n) and pJn , and different values of the tuning

parameters (λn, k(n), Jn).

Table 7.1 shows that for small value of k(n), say in (k(n), Jn) = (4, 7) (i.e., rows 1-3), the SQLR

test performs well and is fairly insensitive to different choices of λn. For a fixed relatively small

Jn = 7, rows 1-6 indicate that as k(n) increases, the results become a bit more sensitive to the

choice of λn. For a fixed very small penalty λn = 10−5, rows 7-15 show that the results are fairly
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qk(n) pJn λn 10% 5% 1%

Pol(4) Pol(7) (1× 10−3) 0.099 0.055 0.008
Pol(7) (2× 10−4) 0.096 0.048 0.008
Pol(7) (4× 10−5) 0.107 0.053 0.010

Pol(6) Pol(7) (1× 10−3) 0.133 0.068 0.011
Pol(7) (2× 10−4) 0.091 0.036 0.006
Pol(7) (4× 10−5) 0.105 0.052 0.008

Pol(6) Pol(9) (1× 10−5) 0.107 0.055 0.012
Pol(15) (1× 10−5) 0.109 0.058 0.014
Pol(21) (1× 10−5) 0.112 0.058 0.013

P-Spline(3,2) Pol(9) (1× 10−5) 0.103 0.049 0.010
Pol(15) (1× 10−5) 0.105 0.049 0.009
Pol(21) (1× 10−5) 0.105 0.052 0.009

P-Spline(3,2) P-Spline(5,3) (1× 10−5) 0.098 0.049 0.008
P-Spline(5,9) (1× 10−5) 0.103 0.050 0.009
P-Spline(5,18) (1× 10−5) 0.106 0.051 0.009

Table 7.1: Size of the SQLR test of φ(h0) = 0 for NPQIV model.

insensitive to different choices of Jn and basis for pJn and qk(n) as long as Jn > k(n) + 1.

Local power. The dashed blue line in Figure 7.1 shows the rejection probabilities at 5% level

of the null hypothesis as a function of r where r : φ(h0) = r. We do this for the specification

corresponding to Pol(4) for qk(n) and λn = 2×10−4. We note that since our functional φ(h) = h(0)

is estimated at a slower than root-n rate, the deviations considered for r which are in the range

of {0, 1/
√
n, ..., 8/

√
n} are indeed “small”. Finally, we study the finite sample behavior of the

generalized residual bootstrap SQLR corresponding to Pol(4) for qk(n) and λn = 2 × 10−4, using

multinomial bootstrap weights. We employ 250 bootstrap evaluations, and lower the number of

MC repetitions to 500 to ease the computational burden. The solid red line in Figure 7.1 shows the

rejection probabilities at 5% level of the null hypothesis as a function of r where r : φ(h0) = r. We

can see from the figure that the bootstrap SQLR performance is similar to its non-bootstrapped

counterpart. We expect that the performance will improve if we increase number of bootstrap runs.

NPIV model: sieve variance estimators for an irregular linear functional. We now

consider the NPIV model: Y1 = h0(Y2) + 0.76U = 2 sin(πY2) + 0.76U , with U = U∗ so the

identifying condition of NPIV holds: E[U |X] = 0. The parameter of interest is φ(h0) = h0(0),

and the null hypothesis is H0 : φ(h0) = 0. We focus on the finite sample performance of the sieve

variance estimators for irregular linear functionals. We compute two sieve variance estimators:

V̂1 = qk(n)(0)′D̂−1
n f̂nD̂−1

n qk(n)(0) and V̂2 = qk(n)(0)′D̂−1
n Ω̂nD̂

−1
n qk(n)(0),

where D̂n = n−1
(
Ĉn(P ′P )−Ĉ ′n

)
, Ĉn ≡

∑n
i=1 q

k(n)(Y2i)p
Jn(Xi)

′, f̂n is given in equation (2.20),
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Figure 7.1: Rejection probabilities at 5% level of the null hypothesis as a function of r = φ(h0) for the SQLR

(dashed blue line) and for the bootstrap SQLR (solid red line).

and Ω̂n = 1
n Ĉn(P ′P )−

(∑n
i=1 p

Jn(Xi)Σ̂0(Xi)p
Jn(Xi)

′
)

(P ′P )−Ĉ ′n with Ûj = Y1j − ĥ(Y2j) and

Σ̂0(x) =
(∑n

j=1 Û
2
j p

Jn(Xj)
′
)

(P ′P )−pJn(x). (See Theorem B.1 in Appendix B for the definition

and consistency of V̂2 as another sieve variance estimator for any plug-in PSMD φ(α̂).)

Table 7.2 reports the results for different choices of bases for qk(n) and pJn , and for dif-

ferent values of k(n) and Jn; in all cases we use a very small λn = 10−5. This table shows

MedMC

[∣∣∣ V̂j
||v∗n||2sd

− 1
∣∣∣] for j = 1, 2, where ||v∗n||sd is computed using the MC variance of

√
nĥn(0)

and MedMC [·] is the MC median. It also shows the nominal size and MC rejection frequencies of

the two sieve t tests t̂j =
√
n ĥn(0)−0√

V̂j
for j = 1, 2.

We can see that the two sieve variance estimators have almost identical performance and the

associated sieve t tests have good rejection probabilities. These results are fairly robust to different

choices of basis for qk(n) and pJn and different values of k(n) and Jn as long as Jn > k(n) + 1.

Figure 7.2 (first row) shows the QQ-Plot for the sieve t tests t̂j =
√
n ĥn(0)−0√

V̂j
under the null for

j = 1, 2 for the case Pol(4)-Pol(16) in the table; the right panel in the first row corresponds to t̂1

and the left panel in the first row to t̂2. Both sieve t tests are almost identical to each other and

to the standard normal.

NPIV model: sieve variance estimators for an irregular nonlinear functional. This

case is identical to the previous one for the NPIV model, except that the functional of interest

is φ(h0) = exp{h0(0)}, and the null hypothesis is H0 : φ(h0) = 1. This choice of φ allows us to

evaluate the finite sample performance of sieve t statistics for a nonlinear functional.

Table 7.3 shows MedMC and rejection probabilities for this nonlinear case. By comparing the

results with those in Table 7.2 we note that the results are very similar in both cases; the rejections

probabilities being slightly higher for the nonlinear functional case. Overall, we think that these

results suggest that our sieve t tests perform equally well for both functionals. Figure 7.2 (second

row) shows the QQ-Plot for the two sieve t tests for the non-linear case; the right panel in the
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MedMC 5% 10%

qk(n) pJn V̂1 V̂2 V̂1 V̂2 V̂1 V̂2

Pol(4) Pol(6) 0.0946 0.0937 0.0512 0.0514 0.0980 0.0974
Pol(10) 0.0922 0.0920 0.0536 0.0532 0.0992 0.0990
Pol(12) 0.0918 0.0917 0.0538 0.0532 0.1002 0.0998
Pol(16) 0.0911 0.0912 0.0540 0.0538 0.1000 0.0998

Pol(4) P-Spline(3,2) 0.0939 0.0942 0.051 0.0516 0.0984 0.0986
P-Spline(3,5) 0.0939 0.0920 0.053 0.0532 0.099 0.0984
P-Spline(3,11) 0.0923 0.0925 0.055 0.0548 0.1014 0.1014
P-Spline(3,17) 0.0922 0.0917 0.0542 0.0538 0.100 0.1008

P-Spline(3,2) Pol(12) 0.0938 0.0930 0.0572 0.0564 0.1082 0.1074
Pol(16) 0.0936 0.0936 0.0582 0.0578 0.1082 0.1082
Pol(18) 0.0936 0.0935 0.0580 0.0578 0.1088 0.1086
Pol(20) 0.0936 0.0937 0.0580 0.0574 0.1086 0.1092

P-Spline(3,2) P-Spline(3,2) 0.1106 0.1116 0.0606 0.0598 0.1130 0.1120
P-Spline(3,5) 0.1019 0.1023 0.0584 0.0574 0.1122 0.1116
P-Spline(3,11) 0.0961 0.0960 0.0572 0.0566 0.1100 0.1094
P-Spline(3,17) 0.0949 0.0944 0.0570 0.0566 0.1082 0.1080

P-Spline(3,2) P-Spline(5,3) 0.1007 0.0998 0.0586 0.0576 0.1102 0.1088
P-Spline(5,6) 0.1011 0.1009 0.0586 0.0578 0.1100 0.1092
P-Spline(5,12) 0.1007 0.1009 0.0580 0.0572 0.1110 0.1096
P-Spline(5,18) 0.1009 0.1010 0.0580 0.0570 0.1106 0.1092

Table 7.2: Relative performance of V̂1 and V̂2: MedMC

[∣∣∣ V̂j

||v∗n||2sd
− 1
∣∣∣], and Nominal size and MC rejection fre-

quencies for t tests t̂j for j = 1, 2 for a linear functional of NPIV.

second row corresponds to t̂1 whereas the left panel in the second row corresponds to t̂2. Again

both t tests are almost identical to each other, and to the standard normal.

Finally we wish to point out that we have tried other bases such as Hermite polynomials and

cosine series and even larger Jn in these two NPIV MC studies, the results are all similar to the

ones reported here and hence are not reported due to the lack of space.

7.2 An Empirical Application

We compute SQLR based confidence bands for nonparametric quantile IV Engel curves using the

British FES data set from Blundell et al. (2007):

E[1{Y1,i ≤ h0(Y2,i)} | Xi] = 0.5,

where Y1,i is the budget share of the i−th household on a particular non-durable goods, say food-in

consumption; Y2,i is the log-total expenditure of the household, which is endogenous, and hence we

use Xi, the gross earnings of the head of the household, to instrument it. We work with the “no
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Figure 7.2: QQ-Plot for t tests t̂j for j = 1, 2 for a linear functional (first row) and a nonlinear
functional (second row) of NPIV, with qk(n) = Pol(4) and pJn = Pol(16).

kids” sub-sample of the data set, which consists of n = 628 observations. Blundell et al. (2007)

estimated NPIV Engel curves using this data set. But, as pointed in Koenker (2005) and others,

quantile Engel curves are more informative.

We estimate h0(·) for foot-in quantile Engel curve via the optimally weighted PSMD procedure

with Σ̂ = Σ0 = 0.25, using a polynomial spline (P-spline) sieve Hk(n) with k(n) = 4, Pen(h) =

||h||2L2 + ||∇h||2L2 with λn = 0.0005, and pJn(X) is a Hermite polynomial basis with Jn = 6. We also

considered other bases such as P-splines as pJn(X) and results remained essentially the same. See

Chen and Pouzo (2009) for PSMD estimates of NPQIV Engel curves for other non-durable goods.

We use the fact that the optimally weighted SQLR of testing φ(h) = h(y2) (for any fixed y2) is

asymptotically χ2
1 to construct pointwise confidence bands. That is, for each y2 in the sample we

construct a grid of points for the SQLR test; each of these points where the value of SQLR test

corresponding to h(y2) = ri for (ri)
30
i=1. We then, take the smallest interval that included all points

ri that yield a corresponding value of the SQLR test below the 95% percentile of χ2
1.15 Figure 7.3

presents the results, where the solid blue line is the point estimate and the red dashed lines are

the 95% pointwise confidence bands. We can see that the confidence bands get wider towards the

extremes of the sample, but are tighter in the middle.

To test whether the quantile Engel curve for food-in is linear or not, one can test whether φ(h0) ≡∫ ∣∣∇2h(y2)
∣∣2w(y2)dy2 = 0 using our SQLR test. Let w(·) = (σY2)−1 exp

(
−1

2(σ−1
Y2

(· − µY2))2
)

1{t0.01 ≤

15The grid (ri)
n
i=1 was constructed to have r15 = ĥn(y2), for all i ≤ 15 ri+1 ≤ ri ≤ r15 decreasing in steps of length

0.002 (approx) and for all i ≥ 15 ri+1 ≥ ri ≥ r15 increasing in steps of length 0.008 (approx); finally, the extremes,
r1 and r30, were chosen so the SQLR test at those points was above the 95% percentile of χ2

1. We tried different
lengths and step sizes and the results remain qualitatively unchanged. For some observations, which only account
for less than 4% of the sample, the confidence interval was degenerate at a point; this result is due to numerical
approximation issues, and thus were excluded from the reported results.

43



MedMC 5% 10%

qk(n) pJn V̂1 V̂2 V̂1 V̂2 V̂1 V̂2

Pol(4) Pol(6) 0.0990 0.0985 0.0528 0.0530 0.0982 0.0988
Pol(10) 0.0971 0.0958 0.0524 0.0522 0.1014 0.1012
Pol(12) 0.0967 0.0959 0.0526 0.0526 0.1020 0.1018
Pol(16) 0.0961 0.0958 0.0524 0.0528 0.1018 0.1014

Pol(4) P-Spline(3,2) 0.0996 0.0983 0.0534 0.053 0.0978 0.0976
P-Spline(3,5) 0.0982 0.0969 0.0538 0.0542 0.099 0.0992
P-Spline(3,11) 0.0985 0.0984 0.0554 0.0552 0.1014 0.101
P-Spline(3,17) 0.0982 0.0978 0.0544 0.0546 0.101 0.1008

P-Spline(3,2) Pol(12) 0.1011 0.1009 0.0580 0.0568 0.1120 0.1122
Pol(16) 0.1014 0.1005 0.0588 0.0574 0.1128 0.1126
Pol(18) 0.1014 0.1007 0.0582 0.0568 0.1130 0.1122
Pol(20) 0.1015 0.1006 0.0580 0.0568 0.1138 0.1128

P-Spline(3,2) P-Spline(3,2) 0.1191 0.1192 0.0620 0.0612 0.1132 0.1120
P-Spline(3,5) 0.1090 0.1103 0.0596 0.0594 0.1140 0.1134
P-Spline(3,11) 0.1028 0.1032 0.0582 0.0572 0.1130 0.1126
P-Spline(3,17) 0.1029 0.1029 0.0588 0.0580 0.1124 0.1112

P-Spline(3,2) P-Spline(5,3) 0.1059 0.1064 0.0594 0.0592 0.1114 0.1104
P-Spline(5,6) 0.1066 0.1076 0.0598 0.0586 0.1124 0.1118
P-Spline(5,12) 0.1071 0.1079 0.0594 0.0586 0.1126 0.1120
P-Spline(5,18) 0.1069 0.1079 0.0594 0.0586 0.1122 0.1120

Table 7.3: Relative performance of V̂1 and V̂2: MedMC

[∣∣∣ V̂j

||v∗n||2sd
− 1
∣∣∣], and Nominal size and MC rejection fre-

quencies for t tests t̂j for j = 1, 2 for a nonlinear functional of NPIV.

· ≤ t0.99} where µY2 , σY2 , t0.01 and t0.99 are the sample mean, standard deviation and the 1% and

99% quantiles of Y2. For this specification, the p-value is smaller than 0.0001 and we consequently

reject the hypothesis of linearity.16

8 Conclusion

In this paper, we provide unified asymptotic theories for PSMD based inferences on possibly

irregular parameters φ(α0) of the general semi/nonparametric conditional moment restrictions

E[ρ(Y,X;α0)|X] = 0. Under regularity conditions that allow for any consistent nonparametric

estimator of the conditional mean function m(X,α) ≡ E[ρ(Y,X;α)|X], we establish the asymp-

totic normality of the plug-in PSMD estimator φ(α̂n) of φ(α0), as well as the asymptotically tight

distribution of a possibly non-optimally weighted SQLR statistic under the null hypothesis of

φ(α0) = φ0. As a simple yet useful by-product, we immediately obtain that an optimally weighted

16We use the standard Riemann sum with 1000 terms to compute the integral. We also considered other choices
of w such that w(·) = 1{t0.25 ≤ · ≤ t0.75} and w(·) = 1{t0.01 ≤ · ≤ t0.99}. Although the numerical value of the SQLR
test changes, all produce p-values below 0.0001.
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Figure 7.3: PSMD Estimate of the NPQIV food-in Engel curve (blue solid line), with the 95% pointwise confidence

bands (red dash lines).

SQLR statistic is asymptotically chi-square distributed under the null hypothesis. For (pointwise)

smooth residuals ρ(Z;α) (in α), we propose several simple consistent sieve variance estimators for

φ(α̂n) (in the text and in online Appendix B), and establish the asymptotic chi-square distribution

of sieve Wald statistics. We also establish local power properties of SQLR and sieve Wald tests in

Appendix A. Under conditions that are virtually the same as those for the limiting distributions

of the original-sample sieve Wald and SQLR statistics, we establish the consistency of the gener-

alized residual bootstrap sieve Wald and SQLR statistics. All these results are valid regardless of

whether φ(α0) is regular or not. While SQLR and bootstrap SQLR are useful for models with

(pointwise) non-smooth ρ(Z;α), sieve Wald statistic is computationally attractive for models with

smooth ρ(Z;α). Monte Carlo studies and an empirical illustration of a nonparametric quantile IV

regression demonstrate the good finite sample performance of our inference procedures.

This paper assumes that the semi/nonparametric conditional moment restrictions E[ρ(Y,X;α0)|X] =

0 uniquely identifies the unknown true parameter value α0 ≡ (θ′0, h0), and conduct inference that

is robust to whether or not the semiparametric efficiency bound of φ(α0) is singular. Recently,

Santos (2011) proposed a root-n asymptotically normal estimation of a regular linear functional of

h0 in the NPIV model E[Y1 − h0(Y2)|X] = 0, and Santos (2012) considered Bierens’ type of test

of the NPIV model without assuming point identification of h0(·). In Chen et al. (2011) we are

currently extending the SQLR inference procedure to allow for partial identification of the general

model E[ρ(Y,X;α0)|X] = 0.
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A Additional Results and Sufficient Conditions

Appendix A consists of several subsections. Subsection A.1 presents additional results on (sieve)
Riesz representation of the functional of interest. Subsection A.2 derives the convergence rates
of the bootstrap PSMD estimator. Subsection A.3 presents asymptotic properties under local
alternatives of the SQLR and the sieve Wald tests, and of their bootstrap versions. Subsection A.4
provides some inference results for functionals of increasing dimension. Subsection A.5 provides
some low level sufficient conditions for the high level LQA Assumption 3.6(i) and the bootstrap
LQA Assumption Boot.3(i) with series LS estimated conditional mean functions m(·, α). Subsection
A.6 states useful lemmas with series LS estimated conditional mean functions m(·, α). See online
supplemental Appendix C for the proofs of all the results in this Appendix.

A.1 Additional discussion on (sieve) Riesz representation

The discussion in Subsection 3.2 on Riesz representation seems to depend on the weighting matrix
Σ, but, under Assumption 3.1(iv), we have || · || � || · ||0, (i.e., the norm || · || (using Σ) is equivalent
to the norm || · ||0 (using Σ0) defined in (3.2)), and the space V (or V) under || · || is equivalent to

that under || · ||0. Therefore, under Assumption 3.1(iv), dφ(α0)
dα [·] is bounded on (V, || · ||) iff dφ(α0)

dα [·]
is bounded on (V, || · ||0), i.e.,

sup
v∈V,v 6=0

∣∣∣dφ(α0)
dα [v]

∣∣∣
‖v‖0

<∞,

which corresponds to non-singular semiparametric efficiency bound, and in this case we say that
φ (·) is regular (at α = α0).17 Likewise, dφ(α0)

dα [·] is unbounded on (V, || · ||) iff dφ(α0)
dα [·] is unbounded

on (V, || · ||0) i.e., supv∈V,v 6=0

{∣∣∣dφ(α0)
dα [v]

∣∣∣ / ‖v‖0} = ∞, in this case we say that φ (·) is irregular

(at α = α0).

It is known that non-singular semiparametric efficiency bound (i.e., φ (·) being regular or dφ(α0)
dα [·]

being bounded on (V, || · ||0)) is a necessary condition for the root-n rate of convergence of φ(α̂n)−
φ(α0). Unfortunately for complicated semi/nonparametric models (1.1), it is difficult to compute

supv∈V,v 6=0

{∣∣∣dφ(α0)
dα [v]

∣∣∣ / ‖v‖0} explicitly; and hence difficult to verify its root-n estimableness.

For a semi/nonparametric conditional moment model with α0 = (θ′0, h0), it is convenient to
rewrite Dn and its inverse in Lemma 4.1 as

Dn ≡
(

I11 In,12

I ′n,12 In,22

)
and D−1

n =

(
I11
n −I−1

11 In,12I
22
n

−I−1
n,22I

′
n,12I

11
n I22

n

)
,

I11 = E

[(
dm(X,α0)

dθ′

)′
Σ(X)−1 dm(X,α0)

dθ′

]
, In,22 = E

[(
dm(X,α0)

dh [ψk(n)(·)′]
)′

Σ(X)−1
(
dm(X,α0)

dh [ψk(n)(·)′]
)]

,

In,12 = E

[(
dm(X,α0)

dθ′

)′
Σ(X)−1

(
dm(X,α0)

dh [ψk(n)(·)′]
)]

, I11
n =

(
I11 − In,12I

−1
n,22I

′
n,21

)−1
and I22

n =(
In,22 − I ′n,21I

−1
11 In,12

)−1
.

Remark A.1. For the Euclidean parameter functional φ(α) = λ′θ, we have zn = (λ′,0′k(n))
′

with 0′k(n) = [0, ..., 0]1×k(n), and hence v∗n = (v∗′θ,n, ψ
k(n)(·)′β∗n)′ ∈ Vk(n) with v∗θ,n = I11

n λ, β∗n =

17Following the proof in appendix E of Ai and Chen (2003), it is easy to see the equivalence between

supv∈V,v 6=0

{∣∣∣ dφ(α0)
dα

[v]
∣∣∣ / ‖v‖0} <∞ and the semiparametric efficiency bound being non-singular.
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−I−1
n,22I

′
n,21v

∗
θ,n, and ‖v∗n‖

2 = λ′I11
n λ. Thus the functional φ(α) = λ′θ is regular iff limk(n)→∞ λ

′I11
n λ <

∞; in this case,
lim

k(n)→∞
‖v∗n‖

2 = lim
k(n)→∞

λ′I11
n λ = λ′I−1

∗ λ = ‖v∗‖2 ,

where

I∗ = inf
w
E

[∥∥∥∥Σ(X)−
1
2

(
dm(X,α0)

dθ′
− dm(X,α0)

dh
[w]

)∥∥∥∥2

e

]
, (A.1)

and v∗ = (v∗′θ , v
∗
h (·))′ ∈ V where v∗θ ≡ I−1

∗ λ, v∗h ≡ −w∗ × v∗θ , and w∗ solves (A.1). That is,
v∗ = (v∗′θ , v

∗
h (·))′ becomes the Riesz representer for φ(α) = λ′θ previously computed in Ai and

Chen (2003) and Chen and Pouzo (2009). Moreover, if Σ(X) = Σ0(X), then I∗ becomes the
semiparametric efficiency bound for θ0 that was derived in Chamberlain (1992) and Ai and Chen
(2003) for the model (1.1). Lemma 3.3 implies that one could check whether θ0 has non-singular
efficiency bound or not by checking if limk(n)→∞ λ

′I11
n λ <∞ or not.

A.2 Consistency and convergence rate of the bootstrap PSMD estimators

In this subsection we establish the consistency and the convergence rate of the bootstrap PSMD
estimator α̂Bn (and the restricted bootstrap PSMD estimator α̂R,Bn ) under virtually the same condi-
tions as those imposed for the consistency and the convergence rate of the original-sample PSMD
estimator α̂n.

The next assumption is needed to control the difference of the bootstrap criterion function
Q̂Bn (α) and the original-sample criterion function Q̂n(α). Let {δ∗m,n}∞n=1 be a sequence of real

valued positive numbers such that δ
∗
m,n = o(1) and δ

∗
m,n ≥ δn. Let c∗0 and c∗ be finite positive

constants.

Assumption A.1 (Bootstrap sample criterion). (i) Q̂Bn (α̂n) ≤ c∗0Q̂n(α̂n)+oPV∞|Z∞ ( 1
n) wpa1(PZ∞);

(ii) Q̂Bn (α) ≥ c∗Q̂n(α) − OPV∞|Z∞ ((δ
∗
m,n)2) uniformly over AM0

k(n) wpa1(PZ∞); (iii) Q̂Bn (α) ≥
c∗Q̂n(α)−OPV∞|Z∞ (δ2

n) uniformly over Aosn wpa1(PZ∞).

Assumption A.1(i)(ii) is analogous to Assumption 3.3 for the original sample, while Assumption
A.1(iii) is analogous to Assumption 3.4(iii) for the original sample. Again, when m̂B(x, α) is the
bootstrap series LS estimator (2.16) of m(x, α), under virtually the same sufficient conditions as
those in Chen and Pouzo (2012a) and Chen and Pouzo (2009) for their original-sample series LS
estimator m̂(x, α), Assumption A.1 can be verified.18

Lemma A.1. Let Assumption A.1(i)(ii) and conditions for Lemma 3.1 hold. Then:

(1) ||α̂Bn − α0||s = oPV∞|Z∞ (1) wpa1(PZ∞) and Pen
(
ĥBn

)
= OPV∞|Z∞ (1) wpa1(PZ∞).

(2) In addition, let Assumption 3.4(i)(ii)(iii) and Assumption A.1(iii) hold, then:

||α̂Bn − α0|| = OPV∞|Z∞ (δn) wpa1(PZ∞);

||α̂Bn − α0||s = OPV∞|Z∞ (||Πnα0 − α0||s + τn × δn) wpa1(PZ∞).

(3) The above results remain true when α̂Bn is replaced by α̂R,Bn .

18The verification is amounts to follow the proof of Lemma C.2 of Chen and Pouzo (2012a) except that the
original-sample series LS estimator m̂(x, α) is replaced by its bootstrap version m̂B(x, α).
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Lemma A.1(2) and (3) show that α̂Bn ∈ Nosn wpa1 and α̂R,Bn ∈ Nosn wpa1 regardless of whether
the null H0 : φ(α0) = φ0 is true or not.

A.3 Asymptotic behaviors under local alternatives

In this subsection we consider the behavior of SQLR, sieve Wald and their bootstrap versions
under local alternatives. That is, we consider local alternatives along the curve {αn ∈ Nosn : n ∈
{1, 2, ...}}, where

αn = α0 + dn∆n with
dφ(α0)

dα
[∆n] = κ× (1 + o(1)) 6= 0 (A.2)

for any (dn,∆n) ∈ R+ × Vk(n) such that dn||∆n|| ≤ Mnδn, dn||∆n||s ≤ Mnδs,n for all n. The
restriction on the rates under both norms is to ensure that the required assumptions for studying
the asymptotic behavior under these alternatives (Assumption 3.5 in particular) hold. This choice
of local alternatives is to simplify the presentation and could be relaxed somewhat.

Since we are now interested in the behavior of the test statistics under local alternatives, we
need to be more explicit about the underlying probability, in a.s. or in probability statements.
Henceforth, we use Pn,Z∞ to denote the probability measure over sequences Z∞ induced by the
model at αn (we leave PZ∞ to denote the one associated to α0).

A.3.1 SQLR and SQLRB under local alternatives

In this subsection we consider the behavior of the SQLR and the bootstrap SQLR, under local
alternatives along the curve {αn ∈ Nosn : n ∈ {1, 2, ...}} defined in (A.2).

Theorem A.1. Let conditions for Lemma 3.2 and Proposition B.1 and Assumption 3.6 (with∣∣Bn − ||u∗n||2∣∣ = oPn,Z∞ (1)) hold under the local alternatives αn defined in (A.2). Let Assumption
3.5 hold. Then, under the local alternatives αn,

(1) if dn = n−1/2||v∗n||sd, then ||u∗n||2 × Q̂LRn(φ0)⇒ χ2
1(κ2);

(2) if n1/2||v∗n||−1
sd dn →∞, then limn→∞

(
||u∗n||2 × Q̂LRn(φ0)

)
=∞ in probability.

The statement that assumptions hold under the local alternatives αn really means that the
assumptions hold when the true DGP model is indexed by αn (as opposed to α0). For instance,
this change impacts on Assumption 3.6 by changing the “centering” of the expansion to αn and
also changing “in probability” statements to hold under Pn,Z∞ as opposed to PZ∞ .

If we had a likelihood function instead of our criterion function, we could adapt Le Cam’s 3rd
Lemma to show that Assumption 3.6 under local alternatives holds directly. Since our criterion
function is not a likelihood we cannot proceed in this manner, and we directly assume it. Also, if
we only consider contiguous alternatives, i.e., curves {αn}n that yield probability measures Pn,Z∞

that are contiguous to PZ∞ , then any statement in a.s. or wpa1 under PZ∞ holds automatically
under Pn,Z∞ .

The next proposition presents the relative efficiency under local alternatives of tests based on
the non- and optimally weighted SQLR statistics. We show —aligned with the literature for regular
cases— that optimally weighted SQLR statistic is more efficient than the non-optimally weighted
one.
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Proposition A.1. Let all conditions for Theorem A.1 hold. Then, under the local alternatives αn

defined in (A.2) with dn = n−1/2||v∗n||sd, we have: for any t,

lim
n→∞

Pn,Z∞(||u∗n||2 × Q̂LRn(φ0) ≥ t) ≤ lim inf
n→∞

Pn,Z∞(Q̂LR
0

n(φ0) ≥ t).

The next theorem shows the consistency of our bootstrap SQLR statistic under the local alter-
natives αn in (A.2). This result completes that in Remark 5.2.

Theorem A.2. Let conditions for Theorem 5.3 hold under local alternatives αn defined in (A.2).
Then: (1)

Q̂LR
B

n (φ̂n)

σ2
ω

=

(√
n
Zω−1
n (αn)

σω||u∗n||

)2

+ oPV∞|Z∞ (1) = OPV∞|Z∞ (1) wpa1(Pn,Z∞); and

sup
t∈R

∣∣∣∣∣∣PV∞|Z∞
Q̂LRBn (φ̂n)

σ2
ω

≤ t | Zn
− PZ∞ (Q̂LRn(φ0) ≤ t | H0

)∣∣∣∣∣∣ = oPV∞|Z∞ (1) wpa1(Pn,Z∞).

(2) In addition, let conditions for Theorem A.1 hold. Then: for any τ ∈ (0, 1),

τ < limn→∞ Pn,Z∞
(
Q̂LRn(φ0) ≥ ĉn(1− τ)

)
< 1 under dn = n−1/2||v∗n||sd;

limn→∞ Pn,Z∞
(
Q̂LRn(φ0) ≥ ĉn(1− τ)

)
= 1 under n1/2||v∗n||−1

sd dn →∞,

where ĉn(a) is the a− th quantile of the distribution of Q̂LR
B

n (φ̂n)
σ2
ω

(conditional on data {Zi}ni=1).

A.3.2 Sieve Wald and bootstrap sieve Wald tests under local alternatives

The next result establishes the asymptotic behavior of the sieve Wald test statisticWn =
(√

nφ(α̂n)−φ0

||v̂∗n||n,sd

)2

under the local alternative along the curve αn defined in (A.2).

Theorem A.3. Let α̂n be the PSMD estimator (2.2), conditions for Lemma 3.2 and Theorem 4.2
and Assumption 3.6 hold under the local alternatives αn defined in (A.2). Let Assumption 3.5 hold.
Then, under the local alternatives αn,

(1) if dn = n−1/2||v∗n||sd, then Wn ⇒ χ2
1(κ2);

(2) if n1/2||v∗n||−1
sd dn →∞, then limn→∞Wn =∞ in probability.

Remark A.2. By the same proof as that of Proposition A.1, one can establish the asymptotically
relative efficiency results for the sieve Wald test statistic.

The next theorem shows the consistency of our bootstrap sieve Wald test statistic under the
local alternatives αn in (A.2). This result completes that in Remark 5.1.

Theorem A.4. Let all conditions for Theorem 5.2(1) hold under local alternatives αn defined in
(A.2). Then: (1) for j = 1, 2,

sup
t∈R

∣∣∣PV∞|Z∞ (ŴB
j,n ≤ t | Zn

)
− PZ∞

(
Ŵn ≤ t

)∣∣∣ = oPV∞|Z∞ (1) wpa1(Pn,Z∞).

(2) In addition, let conditions for Theorem A.3 hold. Then: for any τ ∈ (0, 1),
(2a) If dn = n−1/2||v∗n||sd then:

Pn,Z∞ (Wn ≥ ĉj,n(1− τ)) = τ+Pr
(
χ2

1(κ2) ≥ ĉj,n(1− τ)
)
−Pr

(
χ2

1 ≥ ĉj,n(1− τ)
)
+oPV∞|Z∞ (1) wpa1(Pn,Z∞)
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and τ < limn→∞ Pn,Z∞ (Wn ≥ ĉj,n(1− τ)) < 1,
(2b) If

√
n||v∗n||−1

sd dn →∞ then: limn→∞ Pn,Z∞ (Wn ≥ ĉj,n(1− τ)) = 1.

where ĉj,n(a) be the a− th quantile of the distribution of WB
j,n ≡

(
ŴB
j,n

)2
(conditional on the data

{Zi}ni=1).

A.4 Local asymptotic theory under increasing dimension of φ

In this section we extend some inference results to the case of vector-valued functional φ (i.e.,
dφ ≡ d(n) > 1), and in fact d(n) could grow with n.

We first introduce some notation. Let v∗j,n be the sieve Riesz representer corresponding to φj

for j = 1, ..., d(n) and let v∗n ≡ (v∗1,n, ..., v
∗
d(n),n). For each x, we use dm(x,α0)

dα [v∗n] to denote a

dρ × d(n)−matrix with dm(x,α0)
dα [v∗j,n] as its j−th column for j = 1, ..., d(n). Finally, let

Ωsd,n ≡ E
[(

dm(X,α0)

dα
[v∗n]

)′
Σ−1(X)Σ0(X)Σ−1(X)

(
dm(X,α0)

dα
[v∗n]

)]
∈ Rd(n)×d(n)

and

Ωn ≡ 〈v∗′n ,v∗n〉 ≡ E
[(

dm(X,α0)

dα
[v∗n]

)′
Σ−1(X)

(
dm(X,α0)

dα
[v∗n]

)]
∈ Rd(n)×d(n).

Observe that for d(n) = 1, Ωsd,n = ||v∗n||2sd and Ωn = ||v∗n||2. Also, for the case Σ = Σ0, we would
have

Ωn = Ωsd,n = Ω0,n ≡ E
[(

dm(X,α0)

dα
[v∗n]

)′
Σ−1

0 (X)

(
dm(X,α0)

dα
[v∗n]

)]
.

Let

T Mn ≡ {t ∈ Rd(n) : ||t||e ≤Mnn
−1/2

√
d(n)} and α(t) ≡ α+ v∗n(Ωsd,n)−1/2t.

Let (cn)n be a real-valued positive sequence that converges to zero as n → ∞. The following
assumption is analogous to Assumption 3.5 but for vector-valued φ. Under Assumption 3.1(iv), we
could use Ωn instead of Ωsd,n in Assumption A.2(ii)(iii) below.

Assumption A.2. (i) for each j = 1, ..., d(n),
dφj(α0)
dα satisfies Assumption 3.5(i); and for each

v 6= 0, dφ(α0)
dα [v] ≡

(
dφ1(α0)
dα [v], ...,

dφd(n)(α0)

dα [v]
)′

is linearly independent;

(ii) sup
(α,t)∈Nosn×TMn

∥∥∥∥(Ωsd,n)−1/2

{
φ (α(t))− φ(α0)− dφ(α0)

dα
[α(t)− α0]

}∥∥∥∥
e

= O (cn) ;

(iii)
∥∥∥(Ωsd,n)−1/2 dφ(α0)

dα [α0,n − α0]
∥∥∥
e

= O (cn); (iv) cn = o(n−1/2).

For any v ∈ Vk(n), we use 〈v∗′n , v〉 to denote a d(n) × 1 vector with components 〈v∗j,n, v〉
for j = 1, ..., d(n). Then dφ(α0)

dα [v] = 〈v∗′n , v〉 with
dφj(α0)
dα [v] = 〈v∗j,n, v〉 for j = 1, ..., d(n). Let

Zn ≡ (Z1,n||v∗1,n||sd, ...,Zd(n),n||v∗d(n),n||sd)
′, where Zj,n is the notation for Zn defined in (3.11) cor-

responding to the j−th sieve Riesz representer.
The next assumption is analogous to Assumption 3.6(i) but for the vector valued case. Let

(an, bn, sn)n be real-valued positive sequences that converge to zero as n→∞.
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Assumption A.3. (i) For all n, for all (α, t) ∈ Nosn × T Mn with α(t) ∈ Ak(n),

sup
(α,tn)∈Nosn×TMn

rn(tn)

∣∣∣∣Λ̂n(α(tn), α)− t′n(Ωsd,n)−1/2
{
Zn + 〈v∗′n , α− α0〉

}
− t′n

Bn
2
tn

∣∣∣∣ = OPZ∞ (1)

where rn(tn) =
(
max{||tn||2ebn, ||tn||ean, sn}

)−1
and (Bn)n is such that, for each n, Bn is a Zn mea-

surable positive definite matrix in Rd(n)×d(n) and Bn = OPZ∞ (1); (ii) snnd(n) = o(1), bn
√
d(n) =

o(1),
√
nd(n)× an = o(1).

In the rest of this section as well as in its proofs, since there is no risk of confusion, we use oP
and OP to denote oPZ∞ and OPZ∞ respectively.

The next theorem extends Theorem 4.1 to the case of vector-valued functionals φ (of increasing

dimension). Let µ3,n ≡ E

[∥∥∥∥Ω
−1/2
sd,n

(
dm(X,α0)

dα [v∗n]
)′
ρ(Z,α0)

∥∥∥∥3

e

]
.

Theorem A.5. Let Conditions for Lemma 3.2, Assumptions A.2 and A.3 hold. Then:

(1) n(φ(α̂n)− φ(α0))′Ω−1
sd,n(φ(α̂n)− φ(α0)) = nZ′nΩ−1

sd,nZn + oP

(√
d(n)

)
;

(2) for a fixed d(n) = d, if
√
nΩ
−1/2
sd,n Zn ⇒ N(0, Id) then

n(φ(α̂n)− φ(α0))′Ω−1
sd,n(φ(α̂n)− φ(α0))⇒ χ2

d;

(3) if d(n)→∞, d(n) = o(
√
nµ−1

3,n), then:

n(φ(α̂n)− φ(α0))′Ω−1
sd,n(φ(α̂n)− φ(α0))− d(n)√

2d(n)
⇒ N(0, 1).

Theorem A.5(3) essentially states that the asymptotic distribution of n(φ(α̂n)−φ(α0))′Ω−1
sd,n(φ(α̂n)−

φ(α0)) is close to χ2
d(n). Moreover, as N(d(n), 2d(n)) is close to χ2

d(n) for large d(n) one could sim-

ulate from either distribution. However, since d(n) grows slowly (depends on the rate of µ3,n),19 it
might be more convenient to use χ2

d(n) in finite samples.
Let

Dn ≡ Ω
1/2
sd,nΩ−1

n Ω
1/2
sd,n

which, under Assumption 3.1(iv), is bounded in the sense that Dn � Id(n) (see Lemma C.1 in
Appendix C). It is obvious that if Σ = Σ0 then Dn = Id(n). Note that Dn becomes ||u∗n||−2 for a
scalar-valued functional φ.

The next result extends Theorem 4.3 for the SQLR statistic to the case of vector-valued func-

tionals φ (of increasing dimension). Recall that Q̂LR
0

n(φ0) is the SQLR statistic Q̂LRn(φ0) when
Σ = Σ0.

Theorem A.6. Let Conditions for Lemma 3.2 and Proposition B.1 (in Appendix B) hold. Let
Assumptions A.2 and A.3 hold with maxt:||t||e=1 |t′{Bn − D−1

n }t| = OP (bn). Then: under the null
hypothesis of φ(α0) = φ0,

(1) Q̂LRn(φ0) = (
√
nΩ
−1/2
sd,n Zn)′Dn(

√
nΩ
−1/2
sd,n Zn) + oP (

√
d(n));

19The condition d(n) = o(
√
nµ−1

3,n) is used for a coupling argument regarding Ω
−1/2
sd,n

√
nZn and a multivariate

Gaussian N(0, Id(n)). See, e.g., Section 10.4 of Pollard (2001).
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(2) if Σ = Σ0, then Q̂LR
0

n(φ0) = nZ′nΩ−1
0,nZn+oP

(√
d(n)

)
; for a fixed d(n) = d if

√
nΩ
−1/2
0,n Zn ⇒

N(0, Id) then Q̂LR
0

n(φ0)⇒ χ2
d;

(3) if Σ = Σ0 and d(n)→∞, d(n) = o(
√
nµ−1

3,n), then: Q̂LR
0

n(φ0)−d(n)√
2d(n)

⇒ N(0, 1).

Theorem A.6(2) is a multivariate version of Theorem 4.3(2). Theorem A.6(3) shows that the
optimally weighted SQLR preserves the Wilks phenomenon that is previously shown for the like-
lihood ratio statistic for semiparametric likelihood models. Again, as d(n) grows slowly with n,

Theorem A.6(3) essentially states that the asymptotic null distribution of Q̂LR
0

n(φ0) is close to
χ2
d(n).

Given Theorems A.5 and A.6 and their proofs, it is obvious that we can repeat the results on the
consistency of the bootstrap SQLR and sieve Wald as well as the local power properties of SQLR
and sieve Wald tests to vector-valued φ (of increasing dimension). We do not state these results
here due to the length of the paper. We suspect that one could slightly improve Assumptions A.2
and A.3 and the coupling condition d(n) = o(

√
nµ−1

3,n) so that the dimension d(n) might grow faster
with n, but this will be a subject of future research.

A.5 Sufficient conditions for LQA(i) and LQAB(i) with series LS estimator m̂

Assumption A.4. (i) X is a compact connected subset of Rdx with Lipschitz continuous boundary,
and fX is bounded and bounded away from zero over X ; (ii) The smallest and largest eigenvalues
of E[pJn(X)pJn(X)′] are bounded and bounded away from zero for all Jn; (iii) supx∈X |pj(x)| ≤
const. < ∞ for all j = 1, ..., Jn and Jn log(Jn) = o(n) for pJn(X) a polynomial spline or wavelet
or trigonometric polynomial sieve; (iv) There is pJn(X)′π such that supx |g(x) − pJn(x)′π| =
O(bm,Jn) = o(1) uniformly in g ∈ {m(·, α) : α ∈ AM0

k(n)}.

Thanks to lemma 5.2 in Chen and Christensen (2013), Assumption A.4(iii) now allows Jn log(Jn) =
o(n) for pJn(X) being a (tensor-product) wavelet or a trigonometric polynomial in addition to a
polynomial spline sieve. Let Oon ≡ {ρ(·, α)− ρ(·, α0) : α ∈ Nosn}. Denote

1 ≤
√
Cn ≡

∫ 1

0

√
1 + log(N[](w(Mnδs,n)κ,Oon, || · ||L2(fZ)))dw <∞.

Assumption A.5. (i) There is a sequence {ρ̄n(Z)}n of measurable functions such that supAM0
k(n)

|ρ(Z,α)| ≤

ρ̄n(Z) a.s.-Z and E[|ρ̄n(Z)|2|X] ≤ const. < ∞; (ii) there exist some κ ∈ (0, 1] and K : X → R
measurable with E[|K(X)|2] ≤ const. such that ∀δ > 0,

E

[
sup

α∈N0sn : ||α−α′||s≤δ

∥∥ρ(Z,α)− ρ(Z,α′)
∥∥2

e
|X = x

]
≤ K(x)2δ2κ, ∀α′ ∈ Nosn ∪ {α0} and all n,

and max
{

(Mnδn)2, (Mnδs,n)2κ
}

= (Mnδs,n)2κ; (iii) nδ2
n(Mnδs,n)κ

√
Cn max

{
(Mnδs,n)κ

√
Cn,Mn

}
=

o(1); (iv) supX ||Σ̂(x)−Σ(x)||×(Mnδn) = oPZ∞ (n−1/2); δn �
√

Jn
n = max{

√
Jn
n , bm,Jn} = o(n−1/4).

Let m̃(X,α) ≡
(∑n

i=1m(Xi, α)pJn(Xi)
′) (P ′P )−pJn(X) be the LS projection of m(X,α) onto

pJn(X), and let g(X,u∗n) ≡ {dm(X,α0)
dα [u∗n]}′Σ(X)−1 and g̃(X,u∗n) be its LS projection onto pJn(X).

Assumption A.6. (i) EPZ∞

[∥∥∥dm̃(X,α0)
dα [u∗n]− dm(X,α0)

dα [u∗n]
∥∥∥2

e

]
(Mnδn)2 = o(n−1);
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(ii) EPZ∞
[
‖g̃(X,u∗n)− g(X,u∗n)‖2e

]
(Mnδn)2 = o(n−1);

(iii) supNosn n
−1
∑n

i=1{||m(Xi, α)||2e − E[||m(X1, α)||2e]} = oP (n−1/2);

(iv) supNosn n
−1
∑n

i=1{g(Xi, u
∗
n)m(Xi, α)− E[g(X1, u

∗
n)m(X1, α)]} = oP (n−1/2).

Assumption A.7. (i) m(X,α) is twice continuously pathwise differentiable in α ∈ Nos, a.s.-X;

(ii) E

[
sup

α∈Nosn

∥∥∥∥dm(X,α)

dα
[u∗n]− dm(X,α0)

dα
[u∗n]

∥∥∥∥2

e

]
× (Mnδn)2 = o(n−1);

(iii) E

[
supα∈Nosn

∥∥∥d2m(X,α)
dα2 [u∗n, u

∗
n]
∥∥∥2

e

]
× (Mnδn)2 = o(1); (iv) Uniformly over α1 ∈ Nos and α2 ∈

Nosn,

E

[
g(X,u∗n)

(
dm(X,α1)

dα
[α2 − α0]− dm(X,α0)

dα
[α2 − α0]

)]
= o(n−1/2).

Assumptions A.4 and A.5 are comparable to those imposed in Chen and Pouzo (2009) for a
non-smooth residual function ρ(Z,α). These assumptions ensure that the sample criterion function
Q̂n is well approximated by a “smooth” version of it. Assumptions A.6 and A.7 are similar to those
imposed in Ai and Chen (2003), Ai and Chen (2007) and Chen and Pouzo (2009), except that we use
the scaled sieve Riesz representer u∗n ≡ v∗n/ ‖v∗n‖sd. This is because we allow for possibly irregular
functionals (i.e., possibly ‖v∗n‖ → ∞), while the above mentioned papers only consider regular
functionals (i.e., ‖v∗n‖ → ‖v∗‖ <∞). We refer readers to these papers for detailed discussions and
verifications of these assumptions in examples of the general model (1.1).

A.6 Lemmas for series LS estimator m̂(x, α) and its bootstrap version

The next lemma (Lemma A.2) extends Lemma C.3 of Chen and Pouzo (2012a) and Lemma A.1 of
Chen and Pouzo (2009) to the bootstrap version. Denote

`n(x, α) ≡ m̃(x, α) + m̂(x, α0) and `Bn (x, α) ≡ m̃(x, α) + m̂B(x, α0).

Lemma A.2. Let m̂B(·, α) be the bootstrap series LS estimator (2.16). Let Assumptions 3.1(iv),
3.4(i)(ii), 4.1(iii), A.4, A.5(i)(ii), and Boot.1 or Boot.2 hold. Then: (1) For all δ > 0, there is a
M(δ) > 0 such that for all M ≥M(δ),

PZ∞

(
PV∞|Z∞

(
sup

α∈Nosn

τn
n

n∑
i=1

∥∥m̂B(Xi, α)− `Bn (Xi, α)
∥∥2

e
≥M | Zn

)
≥ δ

)
< δ

eventually, with τ−1
n ≡ (δn)2 (Mnδs,n)2κCn.

(2) For all δ > 0, there is a M(δ) > 0 such that for all M ≥M(δ),

PZ∞

(
PV∞|Z∞

(
sup

α∈Nosn

τ ′n
n

n∑
i=1

∥∥`Bn (Xi, α)
∥∥2

e
≥M | Zn

)
≥ δ

)
< δ

eventually, with

(τ ′n)−1 = max{Jn
n
, b2m,Jn , (Mnδn)2} = const.× (Mnδn)2.
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(3) Let Assumption A.5(iii) hold. For all δ > 0, there is N(δ) such that, for all n ≥ N(δ),

PZ∞

(
PV∞|Z∞

(
sup
Nosn

sn
n

∣∣∣∣∣
n∑
i=1

∥∥m̂B (Xi, α)
∥∥2

Σ̂−1 −
n∑
i=1

∥∥`Bn (Xi, α)
∥∥2

Σ̂−1

∣∣∣∣∣ ≥ δ | Zn
)
≥ δ

)
< δ

with
s−1
n ≤ (δn)2(Mnδs,n)κ

√
Cn max

{
(Mnδs,n)κ

√
Cn,Mn

}
Ln = o(n−1),

where {Ln}∞n=1 is a slowly divergent sequence of positive real numbers (such a choice of Ln exists
under assumption A.5(iii)).

Recall that

Zωn =
1

n

n∑
i=1

ωi,n

(
dm(Xi, α0)

dα
[u∗n]

)′
Σ(Xi)

−1ρ(Zi, α0) =
1

n

n∑
i=1

g(Xi, u
∗
n)ωi,nρ(Zi, α0).

Lemma A.3. Let all of the conditions for Lemma A.2(2) hold. If Assumptions A.5(iv), A.6 and
A.7(i)(ii)(iv) hold, then: for all δ > 0, there is a N(δ) such that for all n ≥ N(δ),

PZ∞

(
PV∞|Z∞

(
sup
Nosn

√
n

∣∣∣∣∣ 1n
n∑
i=1

(
dm̃(Xi, α)

dα
[u∗n]

)′
(Σ̂(Xi))

−1`Bn (Xi, α)− {Zωn + 〈u∗n, α− α0〉}

∣∣∣∣∣ ≥ δ | Zn
)
≥ δ

)
< δ.

Lemma A.4. Let all of the conditions for Lemma A.2(2) hold. If Assumption A.7(i)(iii) holds,
then: for all δ > 0, there is a N(δ) such that for all n ≥ N(δ),

PZ∞

(
PV∞|Z∞

(
sup
Nosn

n−1
n∑
i=1

(
d2m̃(Xi, α)

dα2
[u∗n, u

∗
n]

)′
(Σ̂(Xi))

−1`Bn (Xi, α) ≥ δ | Zn
)
≥ δ

)
< δ.

Lemma A.5. Let Assumptions 3.1(iv), 3.4(i), 4.1(iii), A.4, A.6(i), A.7(ii) hold. Then: (1) For
all δ > 0 there is a M(δ) > 0, such that for all M ≥M(δ),

PZ∞

(
sup
Nosn

1

n

n∑
i=1

(
dm̃(Xi, α)

dα
[u∗n]

)′
Σ̂−1(Xi)

(
dm̃(Xi, α)

dα
[u∗n]

)
≥M

)
< δ

eventually.
(2) If in addition, Assumption B holds, then: For all δ > 0, there is a N(δ) such that for all

n ≥ N(δ),

PZ∞

(
sup
Nosn

∣∣∣∣∣ 1n
n∑
i=1

(
dm̃(Xi, α)

dα
[u∗n]

)′
Σ̂−1(Xi)

(
dm̃(Xi, α)

dα
[u∗n]

)
− ||u∗n||2

∣∣∣∣∣ ≥ δ
)
< δ.
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B Supplement: Additional Results and Proofs of the Results in
the Main Text

In Appendix B, we provide the proofs of all the lemmas, theorems and propositions stated in the
main text. Additioal results on consistent sieve variance estimators and bootstrap sieve t statistics
are also presented.

B.1 Proofs for Section 3 on basic conditions

Proof of Lemma 3.3: For Result (1). Observe that dφ(α0)
dα [·] is bounded on (V, || · ||); and

in this case equation (3.4) holds. By definitions of v∗n and v∗, we have: dφ(α0)
dα [v] = 〈v∗n, v〉 and

dφ(α0)
dα [v] = 〈v∗, v〉 for all v ∈ Vk(n). Thus

〈v∗ − v∗n, v〉 = 0 for all v ∈ Vk(n) and ‖v∗‖2 = ‖v∗ − v∗n‖
2 + ‖v∗n‖

2 .

Since Vk(n) is a finite dimensional Hilbert space we have v∗n = arg minv∈Vk(n)
‖v∗ − v‖. Since Vk(n)

is dense in (V, || · ||) we have ‖v∗ − v∗n‖ → 0 and ‖v∗n‖ → ‖v∗‖ <∞ as k(n)→∞.
For Result (2). We show this part by contradiction. That is, assume that limk(n)→∞ ‖v∗n‖ =

C∗ < ∞. Since dφ(α0)
dα is unbounded under || · || in V, we have: for any M > 0, there exists a

vM ∈ V such that
∣∣∣dφ(α0)

dα [vM ]
∣∣∣ > M ||vM ||.

Since vM ∈ V, and {Vk}k is dense (under || · ||s) in V, there exists a sequence (vn,M )n such
that vn,M ∈ Vk(n) and limn→∞ ||vn,M − vM ||s = 0. This result and the fact that || · || ≤ C|| · ||s
for some finite C > 0, imply that limn→∞ ||vn,M || = ||vM ||. Also, since dφ(α0)

dα [·] is continuous or
bounded on (V, || · ||s), we have:

lim
n→∞

∣∣∣∣dφ(α0)

dα
[vn,M − vM ]

∣∣∣∣ = 0.

Hence, there exists a N(M) such that∣∣∣∣dφ(α0)

dα
[vn,M ]

∣∣∣∣ ≥M ||vn,M ||
for all n ≥ N(M). Since vn,M ∈ Vk(n), the previous inequality implies that

||v∗n|| = sup
v∈Vk(n):‖v‖6=0

∣∣∣dφ(α0)
dα [v]

∣∣∣
‖v‖

≥M

for all n ≥ N(M). Since M is arbitrary we have limk(n)→∞ ‖v∗n‖ =∞. A contradiction. Q.E.D.

B.2 Proofs for Section 4 on sieve t (Wald) and SQLR

Lemma B.1. Let α̂n be the PSMD estimator (2.2) and conditions for Lemma 3.2 hold. Let
Assumptions 3.5(i) and 3.6(i) hold. Then:

√
n〈u∗n, α̂n − α0〉 = −

√
nZn + oPZ∞ (1).
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Proof of Lemma B.1: We note that n−1
∑n

i=1 ‖m̂(Xi, α)‖2
Σ̂−1 = Q̂n(α). By Assumption 3.6(i),

we have: for any εn ∈ Tn,

n−1
n∑
i=1

‖m̂(Xi, α̂n + εnu
∗
n)‖2

Σ̂−1 − n−1
n∑
i=1

‖m̂(Xi, α̂n)‖2
Σ̂−1

=2εn{Zn + 〈u∗n, α̂n − α0〉}+ ε2nBn + oPZ∞ (r−1
n ), (B.1)

where r−1
n = max{ε2n, εnn−1/2, s−1

n } with s−1
n = o(n−1), and

Zn = n−1
n∑
i=1

(
dm(Xi, α0)

dα
[u∗n]

)′
Σ(Xi)

−1ρ(Zi, α0).

By adding

En(α̂n, εn) ≡ o(n−1) + λn

(
Pen

(
ĥn + εn

v∗h,n
‖v∗n‖sd

)
− Pen

(
ĥn

))
to both sides of equation (B.1), we have, by the definition of the approximate minimizer α̂n and
the fact α̂n + εnu

∗
n ∈ Ak(n) that, for all εn ∈ Tn

2εn{Zn + 〈u∗n, α̂n − α0〉}+ ε2nBn + En(α̂n, εn) + oPZ∞ (r−1
n ) ≥ 0.

Or, equivalently, for any δ > 0 and some N(δ)

PZ∞
(
∀εn : α̂n + εnu

∗
n ∈ Nosn, 2εn{Zn + 〈u∗n, α̂n − α0〉}+ ε2nBn + En(α̂n, εn) ≥ −δr−1n

)
≥ 1− δ (B.2)

for all n ≥ N(δ). In particular, this holds for εn ≡ ±{s−1/2
n +o(n−1/2)} = ±o(n−1/2) since s

−1/2
n =

o(n−1/2). Under this choice of εn, r−1
n = max{s−1

n , s
−1/2
n n−1/2}. Moreover Assumptions 3.2(i)(ii)

and 3.4(iv) imply that E(α̂n, εn) = oPZ∞ (n−1). Thus
√
nε−1
n E(α̂n, εn) = oPZ∞ (

√
nε−1
n n−1) =

oPZ∞ (1). Thus, from equation (B.2), it follows,

PZ∞
(
An,δ ≥

√
n{Zn + 〈u∗n, α̂n − α0〉} ≥ Bn,δ

)
≥ 1− δ

eventually, where
An,δ ≡ −0.5

√
nεnBn − δ

√
nε−1
n r−1

n + 0.5δ

and
Bn,δ ≡ −0.5

√
nεnBn − 0.5

√
nδε−1

n r−1
n − 0.5δ

(here the 0.5δ follows from the previous algebra regarding
√
nε−1
n E(α̂n, εn)). Note that

√
nεn = o(1),

Bn = OPZ∞ (1), and
√
nε−1
n r−1

n = ±max{s−1/2
n
√
n, 1} � ±1. Thus

PZ∞
(
2δ ≥

√
n{Zn + 〈u∗n, α̂n − α0〉} ≥ −2δ

)
≥ 1− δ, eventually.

Hence we have established
√
n〈u∗n, α̂n − α0〉 = −

√
nZn + oPZ∞ (1). Q.E.D.

Proof of Theorem 4.1: By Lemma B.1 and Assumption 3.6(ii), we immediately obtain:
√
n〈u∗n, α̂n−

α0〉 ⇒ N(0, 1). Hence, in order to show the result, it suffices to prove that

√
n
φ(α̂n)− φ(α0)

||v∗n||sd
=
√
n〈u∗n, α̂n − α0〉+ oPZ∞ (1).
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By Riesz representation Theorem and the orthogonality property of α0,n, it follows

dφ(α0)

dα
[α̂n − α0,n] = 〈v∗n, α̂n − α0,n〉 = 〈v∗n, α̂n − α0〉 .

By Assumptions 3.1(iv) and 3.5(i) we have ||v∗n||sd � ||v∗n||. This and Assumption 3.5 (ii)(iii) imply

√
n
φ(α̂n)− φ(α0)

||v∗n||sd
=
√
n||v∗n||−1

sd

dφ(α0)

dα
[α̂n − α0] + oPZ∞ (1)

=
√
n||v∗n||−1

sd

dφ(α0)

dα
[α̂n − α0,n] +

√
n||v∗n||−1

sd

dφ(α0)

dα
[α0,n − α0] + oPZ∞ (1)

=
√
n||v∗n||−1

sd

dφ(α0)

dα
[α̂n − α0,n] + oPZ∞ (1)

=
√
n||v∗n||−1

sd 〈v
∗
n, α̂n − α0〉+ oPZ∞ (1).

Thus
√
n
φ(α̂n)− φ(α0)

||v∗n||sd
=
√
n
〈v∗n, α̂n − α0〉
||v∗n||sd

+ oPZ∞ (1),

and the claimed result now follows from Lemma B.1 and Assumption 3.6(ii). Q.E.D.

Proof of Lemma 4.1: By the definitions of Vk(n) and the sieve Riesz representer v∗n ∈ Vk(n) of
dφ(α0)
dα [·] given in (3.6), we know that v∗n = (v∗′θ,n, v

∗
h,n (·))′ = (v∗′θ,n, ψ

k(n)(·)′β∗n)′ ∈ Vk(n) solves the
following optimization problem:

dφ(α0)

dα
[v∗n] = ‖v∗n‖

2 = sup
v=(v′θ,vh)

′∈Vk(n),v 6=0

∣∣∣∂φ(α0)
∂θ′ vθ + ∂φ(α0)

∂h [vh(·)]
∣∣∣2

E

[(
dm(X,α0)

dα [v]
)′

Σ(X)−1
(
dm(X,α0)

dα [v]
)]

= sup
γ=(v′θ,β′)

′∈Rdθ+k(n),γ 6=0

γ′znz′nγ
γ′Dnγ

, (B.3)

where Dn = E

[(
dm(X,α0)

dα [ψ
k(n)

(·)′]
)′

Σ(X)−1
(
dm(X,α0)

dα [ψ
k(n)

(·)′]
)]

is a (dθ + k(n)) × (dθ + k(n))

positive definite matrix such that

γ′Dnγ ≡ E
[(

dm(X,α0)

dα
[v]

)′
Σ(X)−1

(
dm(X,α0)

dα
[v]

)]
for all v =

(
v′θ, ψ

k(n)(·)′β
)′
∈ Vk(n),

and zn ≡
(
∂φ(α0)
∂θ′ , ∂φ(α0)

∂h [ψk(n)(·)′]
)′

= dφ(α0)
dα [ψ

k(n)
(·)] is a (dθ + k(n))× 1 vector.

The sieve Riesz representation (3.6) becomes: for all v =
(
v′θ, ψ

k(n)(·)′β
)′ ∈ Vk(n),

dφ(α0)

dα
[v] = z′nγ = 〈v∗n, v〉 = γ∗′nDnγ for all γ = (v′θ, β

′)′ ∈ Rdθ+k(n). (B.4)

It is obvious that the optimal solution of γ in (B.3) or in (B.4) has a closed-form expression:

γ∗n =
(
v∗′θ,n, β

∗′
n

)′
= D−1

n zn.
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The sieve Riesz representer is then given by

v∗n = (v∗′θ,n, v
∗
h,n (·))′ = (v∗′θ,n, ψ

k(n)(·)′β∗n)′ ∈ Vk(n).

Consequently, ‖v∗n‖
2 = γ∗′nDnγ

∗
n = z′nD−1

n zn. Q.E.D.

Another consistent variance estimator. For ‖v∗n‖
2
sd = E

(
S∗n,iS

∗′
n,i

)
given in (3.8) and (4.3),

by Lemma 4.1, it has an alternative closed form expression:

||v∗n||2sd = z′nD−1
n ΩnD

−1
n zn,

Ωn ≡ E
[(

dm(X,α0)

dα
[ψ
k(n)

(·)′]
)′

Σ(X)−1Σ0(X)Σ(X)−1

(
dm(X,α0)

dα
[ψ
k(n)

(·)′]
)]

= fn.

Therefore, in addition to the sieve variance estimator ||v̂∗n||n,sd given in (4.7), we can define another
simple plug-in sieve variance estimator:

||v̂∗n||2n,sd = ||v̂∗n||2n,Σ̂−1Σ̂0Σ̂−1 =
1

n

n∑
i=1

(
dm̂(Xi, α̂n)

dα
[v̂∗n]

)′
Σ̂−1
i Σ̂0iΣ̂

−1
i

(
dm̂(Xi, α̂n)

dα
[v̂∗n]

)
(B.5)

with Σ̂0i = Σ̂0(Xi) where Σ̂0(x) is a consistent estimator of Σ0(x), e.g. Ên[ρ(Z, α̂n)ρ(Z, α̂n)′ |
X = x], where Ên[· | X = x] is some consistent estimator of a conditional mean function of X,
such as a series, kernel or local polynomial based estimator.

The sieve variance estimator given in (B.5) can also be expressed as

||v̂∗n||2n,sd = V̂2 ≡ ẑ′nD̂−1
n Ω̂nD̂

−1
n ẑn with (B.6)

Ω̂n =
1

n

n∑
i=1

(
dm̂(Xi, α̂n)

dα
[ψ
k(n)

(·)′]
)′

Σ̂−1
i Σ̂0iΣ̂

−1
i

(
dm̂(Xi, α̂n)

dα
[ψ
k(n)

(·)′]
)
.

Assumption B.1. (i) sup
v∈V1

k(n)

∣∣〈v, v〉n,Σ−1Σ0Σ−1 − 〈v, v〉Σ−1Σ0Σ−1

∣∣ = oPZ∞ (1); and

(ii) supα∈Nosn supx∈X ||Ên[ρ(z, α)ρ(z, α)′|X = x]− E[ρ(z, α)ρ(z, α)′|X = x]||e = oPZ∞ (1).

Theorem B.1. Let Assumption 4.1(i)-(iv), Assumption B.1 and assumptions for Lemma 3.2 hold.
Then: Results (1) and (2) of Theorem 4.2 hold with ||v̂∗n||2n,sd given in (B.5).

Monte Carlo studies indicate that both sieve variance estimators perform well and similiarly in
finite samples.

Proof of Theorems 4.2 and B.1: In the proof we use simplified notation oPZ∞ (1) = oP (1).
Also, Result (2) trivially follows from Result (1) and Theorem 4.1. So we only show Result (1).
For Result (1), by the triangle inequality, we have: that∣∣∣∣ ||v̂∗n||n,sd − ||v∗n||sd||v∗n||sd

∣∣∣∣ ≤ ∣∣∣∣ ||v̂∗n||n,sd − ||v̂∗n||sd||v∗n||sd

∣∣∣∣+

∣∣∣∣ ||v̂∗n||sd − ||v∗n||sd||v∗n||sd

∣∣∣∣
≤

∣∣∣∣ ||v̂∗n||n,sd − ||v̂∗n||sd||v∗n||sd

∣∣∣∣+
||v̂∗n − v∗n||sd
||v∗n||sd

.

This and the fact ||v̂
∗
n−v∗n||sd
||v∗n||sd

� ||v̂∗n−v∗n||
||v∗n||

(under Assumption 3.1(iv)) imply that Result (1) follows
from:

||v̂∗n − v∗n||
||v∗n||

= oP (1), (B.7)
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and ∣∣∣∣ ||v̂∗n||n,sd − ||v̂∗n||sd||v∗n||sd

∣∣∣∣ = oP (1). (B.8)

We will establish results (B.7) and (B.8) in Step 1 and Step 2 below.
Step 1. Observe that result (B.7) is about the consistency of the empirical sieve Riesz repre-

senter v̂∗n in || · || norm, which is the same whether we use ρ̂iρ̂
′
i or Σ̂0i to compute the sieve variance

estimators (4.7) or (B.5). By the Riesz representation theorem, we have for all v ∈ Vk(n),

dφ(α̂n)

dα
[v] = 〈v̂∗n, v〉n,Σ̂−1 and

dφ(α0)

dα
[v] = 〈v∗n, v〉 = 〈v∗n, v〉Σ−1 .

Hence, by Assumption 4.1(i), we have:

oP (1) = sup
v∈Vk(n)

∣∣∣∣∣〈v̂
∗
n, v〉n,Σ̂−1 − 〈v∗n, v〉

||v||

∣∣∣∣∣
= sup

v∈Vk(n)

∣∣∣∣∣〈v̂
∗
n, v〉n,Σ̂−1 − 〈v̂∗n, v〉
||v̂∗n|| × ||v||

||v̂∗n||+
〈v̂∗n, v〉 − 〈v∗n, v〉

||v||

∣∣∣∣∣
≥ sup

v∈Vk(n)

∣∣∣∣〈v̂∗n − v∗n, v〉||v||

∣∣∣∣− sup
$∈Vk(n):||$||=1

∣∣∣〈$̂∗n, $〉n,Σ̂−1 − 〈$̂∗n, $〉
∣∣∣× ||v̂∗n||,

where $ ≡ v/||v|| and $̂∗n ≡ v̂∗n/||v̂∗n||. First note that∣∣∣〈$̂∗n, $〉n,Σ̂−1 − 〈$̂∗n, $〉
∣∣∣ ≤ ∣∣∣〈$̂∗n, $〉n,Σ̂−1 − 〈$̂∗n, $〉n,Σ−1

∣∣∣+
∣∣〈$̂∗n, $〉n,Σ−1 − 〈$̂∗n, $〉Σ−1

∣∣
≡ |T1n($)|+ |T2n($)|.

By Assumption 4.1(ii), we have: sup$∈Vk(n):||$||=1 |T2n($)| = oP (1). Note that

T1n($) = n−1
n∑
i=1

(
dm̂(Xi, α̂n)

dα
[$̂∗n]

)′
{Σ̂−1(Xi)− Σ−1(Xi)}

(
dm̂(Xi, α̂n)

dα
[$]

)
.

By the triangle inequality, Assumptions 3.1(iv) and 4.1(ii)(iii), we obtain

|T1n($)| ≤ sup
x∈X
||Σ̂−1(x)− Σ−1(x)||e

√√√√n−1

n∑
i=1

∥∥∥∥dm̂(Xi, α̂n)

dα
[$̂∗n]

∥∥∥∥2

e

√√√√n−1

n∑
i=1

∥∥∥∥dm̂(Xi, α̂n)

dα
[$]

∥∥∥∥2

e

≤ oP (1)×OP
(√
〈$̂∗n, $̂∗n〉n,Σ−1 ×

√
〈$,$〉n,Σ−1

)
= oP (1)×OP (1) = oP (1).

Hence

sup
v∈Vk(n)

∣∣∣∣〈v̂∗n − v∗n, v〉||v||

∣∣∣∣ = oP (1)× ||v̂∗n||.

In particular, for v = v̂∗n − v∗n, this implies

||v̂∗n − v∗n||
||v∗n||

= oP (1)× ||v̂
∗
n||

||v∗n||
.
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Note that ||v̂
∗
n||

||v∗n||
≤ ||v̂

∗
n−v∗n||
||v∗n||

+ 1, and thus, the previous equation implies

||v̂∗n − v∗n||
||v∗n||

(1− oP (1)) = oP (1) and
||v̂∗n||
||v∗n||

= OP (1).

Step 2. We now show that result (B.8) holds for the sieve variance estimators ||v̂∗n||2n,sd defined
in (4.7) and (B.5). By Assumption 3.1(iv), we have:∣∣∣∣ ||v̂∗n||n,sd − ||v̂∗n||sd||v∗n||sd

∣∣∣∣ =

∣∣∣∣ ||v̂∗n||n,sd − ||v̂∗n||sd||v̂∗n||sd

∣∣∣∣× ||v̂∗n||sd||v∗n||sd
�
∣∣∣∣ ||v̂∗n||n,sd||v̂∗n||sd

− 1

∣∣∣∣× ||v̂∗n||||v∗n||

≤
(
||v̂∗n||n,sd
||v̂∗n||sd

+ 1

) ∣∣∣∣ ||v̂∗n||n,sd||v̂∗n||sd
− 1

∣∣∣∣× ||v̂∗n||||v∗n||
=

∣∣∣∣∣ ||v̂∗n||2n,sd||v̂∗n||2sd
− 1

∣∣∣∣∣× ||v̂∗n||||v∗n||

=
∣∣||$̂∗n||2n,sd − ||$̂∗n||2sd∣∣× ||v̂∗n||2||v̂∗n||2sd

× ||v̂
∗
n||

||v∗n||
=

∣∣||$̂∗n||2n,sd − ||$̂∗n||2sd∣∣×OP (1),

where $̂∗n ≡ v̂∗n/||v̂∗n||,
||v̂∗n||
||v∗n||

= OP (1) (by Step 1), and ||v̂∗n||2
||v̂∗n||2sd

= OP (1) (by Assumption 3.1(iv) and

i.i.d. data). Thus, it suffices to show that∣∣||$̂∗n||2n,sd − ||$̂∗n||2sd∣∣ = oP (1). (B.9)

Step 2a for the Estimator ||v̂∗n||2n,sd defined in (4.7). We now establish the result (B.9)
when the sieve variance estimator is defined in (4.7).

Let M̂(Zi, α) = Σ̂−1
i ρ(Zi, α)ρ(Zi, α)′Σ̂−1

i and M(z, α0) ≡ Σ−1(x)ρ(z, α0)ρ(z, α0)′Σ−1(x) and

Mi = M(Zi, α0). Also let T̂i[vn] ≡ dm̂(Xi,α̂n)
dα [vn], Ti[vn] ≡ dm(Xi,α0)

dα [vn] and Σ(x, α) ≡ E[ρ(Z,α)ρ(Z,α)′|x].

It turns out that
∣∣∣||$̂∗n||2n,sd − ||$̂∗n||2sd∣∣∣ can be bounded above by

sup
vn∈V

1
k(n)

∣∣∣∣∣n−1
n∑
i=1

T̂i[vn]′M̂(Zi, α̂n)T̂i[vn]− n−1
n∑
i=1

T̂i[vn]′MiT̂i[vn]

∣∣∣∣∣
+ sup
vn∈V

1
k(n)

∣∣∣∣∣n−1
n∑
i=1

T̂i[vn]′MiT̂i[vn]− E[Ti[vn]′MiTi[vn]]

∣∣∣∣∣
+ sup
vn∈V

1
k(n)

∣∣E[Ti[vn]′MiTi[vn]]− E[Ti[vn]′Σ−1(Xi)Σ(Xi, α0)Σ−1(Xi)Ti[vn]]
∣∣

≡A1n +A2n +A3n.

Note that A3n = 0 by the fact that E[Mi|Xi] = Σ−1(Xi)Σ(Xi, α0)Σ−1(Xi), and that A2n = oP (1)
by Assumption 4.1(v). Thus it remains to show that A1n = oP (1). We note that

A1n ≤ sup
z

sup
α∈Nosn

||M̂(z, α)−M(z, α0)||e sup
vn∈V

1
n

∣∣∣∣∣n−1
n∑
i=1

T̂i[vn]′T̂i[vn]

∣∣∣∣∣
≤Const.× sup

z
sup

α∈Nosn
||M̂(z, α)−M(z, α0)||e sup

vn∈V
1
n

∣∣∣∣∣n−1
n∑
i=1

T̂i[vn]′M(Zi, α0)T̂i[vn]

∣∣∣∣∣
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where the first inequality follows from the fact that for matrices A and B, |A′BA| ≤ ||A||e||B||e
and Assumption 3.1(iv). Observe that by Assumptions 4.1(iii)(iv) and 3.1(iv),

sup
z

sup
α∈Nosn

||M̂(z, α)−M(z, α0)||e

≤ sup
z

sup
α∈Nosn

||Σ̂−1(x){ρ(z, α)ρ(z, α)′ − ρ(z, α0)ρ(z, α0)′}Σ̂−1(x)||e

+ sup
z
||Σ̂−1(x)ρ(z, α0)ρ(z, α0)′Σ̂−1(x)− Σ−1(x)ρ(z, α0)ρ(z, α0)′Σ−1(x)||e.

The first term in the RHS is oP (1) by Assumptions 4.1(iii)(iv) and 3.1(iv); the second term in the
RHS is also of order oP (1) by Assumptions 4.1(iii) and 3.1(iv) and the fact that ρ(Z,α0)ρ(Z,α0)′ =

OP (1). By Assumption 4.1(v), sup
vn∈V

1
n

∣∣∣n−1
∑n

i=1 T̂i[vn]′M(Zi, α0)T̂i[vn]
∣∣∣ = OP (1). Hence A1n =

oP (1) and result (B.9) holds.
Step 2b for the Estimator ||v̂∗n||2n,sd defined in (B.5). Since we already provide a detailed

proof for result (B.9) in Step 2a for the case of (4.7), here we present a more succinct proof for the
case of (B.5).

By the triangle inequality,∣∣||$̂∗n||2n,sd − ||$̂∗n||2sd∣∣ ≤ ∣∣∣||$̂∗n||2n,sd − ||$̂∗n||2n,Σ−1Σ0Σ−1

∣∣∣+
∣∣∣||$̂∗n||2n,Σ−1Σ0Σ−1 − ||$̂∗n||2sd

∣∣∣ ≡ R1n +R2n.

By Assumptions 3.1(iv), 4.1(iii)(iv) and B.1, we have:

sup
x∈X
||Σ̂−1(x)Σ̂0(x)Σ̂−1(x)− Σ−1(x)Σ0(x)Σ−1(x)||e = oP (1),

where Σ̂0(x) = Ên[ρ(Z, α̂n)ρ(Z, α̂n)′|x]. Therefore, by Assumptions 3.1(iv) and 4.1(ii) and similar
algebra to the one used to bound T1n($), we have:

R1n ≤ oP (1)× n−1
n∑
i=1

∥∥∥∥dm̂(Xi, α̂n)

dα
[$̂∗n]

∥∥∥∥2

e

= oP (1)×OP (1) = oP (1).

Also by Assumption B.1, R2n = oP (1). Thus result (B.9) holds. Q.E.D.

Before we prove Theorem 4.3, we introduce some notation that will simplify the presentation
of the proofs. For any φ̄ ∈ R let A(φ̄) ≡ {α ∈ A : φ(α) = φ̄}, and Ak(n)(φ̄) ≡ A(φ̄) ∩ Ak(n). In
particular, let A0 ≡ A(φ(α0)) and A0

k(n) ≡ Ak(n)(φ(α0)).
Also, we need to show that for any deviation of α of the type α+ tu∗n, there exists a t such that

φ(α+ tu∗n) is “close” to φ(α0). Formally,

Lemma B.2. Let Assumption 3.5 hold. For any n ∈ {1, 2, ....}, any r ∈ {|r| ≤ 2Mn||v∗n||δn}, and
any α ∈ Nosn, there exists a t ∈ Tn such that φ(α+ tu∗n)− φ(α0) = r and α+ tu∗n ∈ Ak(n).

Proof of Lemma B.2: We first show that there exists a t ∈ Tn such that φ(α+ tu∗n)−φ(α0) = r.
By Assumption 3.5, there exists a (Fn)n such that Fn > 0 and Fn = o(n−1/2||v∗n||) and, for any
α ∈ Nosn and t ∈ Tn, ∣∣∣∣φ(α+ tu∗n)− φ(α0)− 〈v∗n, α− α0〉 − t

||v∗n||2

||v∗n||sd

∣∣∣∣ ≤ Fn. (B.10)

(note that by assumption 3.5, Fn does not depend on α nor t).
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For any r ∈ {|r| ≤ 2Mn||v∗n||δn}, we define (tl)l=1,2 as

tl||u∗n||2 = −〈u∗n, α− α0〉+ al,nFn||v∗n||−1
sd + r||v∗n||−1

sd .

where al = (−1)l2. Note that, by assumption 3.5(i) (the second part), ||u∗n||−2 ≤ c−2, and thus

|tl| ≤ c−2
(
||u∗n|| × ||α− α0||+ 2|Fn| × ||v∗n||−1

sd + |r| × ||v∗n||−1
sd

)
.

Without loss of generality, we can re-normalize Mn so that c−2C < Mn and C ≥ 1. Hence,

|tl| ≤ c−2
(
||u∗n|| × ||α− α0||+ 2|Fn| × ||v∗n||−1

sd + |r| × ||v∗n||−1
sd

)
= c−2

(
||u∗n|| × ||α− α0||+ 2|Fn| × ||v∗n||−1

sd + |r| × ||v∗n||−1||u∗n||
)

≤ c−2C
(
||u∗n|| × ||α− α0||+ 2|Fn| × ||v∗n||−1

sd + |r| × ||v∗n||−1
)
≤ 4M2

nδn,

where the third inequality follows from Assumption 3.5(i) (the second part), and the last inequality
follows from the facts that α ∈ Nosn, c−2C2|Fn| × ||v∗n||−1

sd = o(n−1/2) ≤ M2
nδn, r ∈ {|r| ≤

2Mn||v∗n||δn}. Thus, tl is a valid choice in the sense that tl ∈ Tn for l = 1, 2.
Thus, this result and equation (B.10) imply

φ(α+ t1u
∗
n)− φ(α0) ≤〈v∗n, α− α0〉+ t1

||v∗n||2

||v∗n||sd
+ Fn

=||v∗n||sd
(
〈u∗n, α− α0〉+ t1||u∗n||2 + Fn||v∗n||−1

sd

)
=r − Fn < r.

Hence, φ(α+ t1u
∗
n)− φ(α0) < r. Similarly,

φ(α+ t2u
∗
n)− φ(α0) ≥〈v∗n, α− α0〉+ t2

||v∗n||2

||v∗n||sd
− Fn

=||v∗n||sd
(
〈u∗n, α− α0〉+ t2||u∗n||2 − Fn||v∗n||−1

sd

)
=r + Fn > r

and thus φ(α + t2u
∗
n) − φ(α0) > r. Since t 7→ φ(α + tu∗n) is continuous, there exists a t ∈ [t1, t2]

such that φ(α+ tu∗n)− φ(α0) = r. Clearly, t ∈ Tn.
The fact that α(t) ≡ α + tu∗n ∈ Ak(n) for α ∈ Nosn and t ∈ Tn follows from the fact that the

sieve space Ak(n) is assumed to be linear. Q.E.D.

Proof of Theorem 4.3: Result (2) directly follows from Result (1) with Σ = Σ0 and ||u∗n|| = 1.
The proof of Result (1) consists of several steps.

Step 1. For any tn ∈ Tn wpa1., by Assumption 3.6 and Lemma B.1, we have:

0.5
(
Q̂n(α̂n(−tn))− Q̂n(α̂n)

)
=− tn{Zn + 〈u∗n, α̂n − α0〉}+

Bn
2
t2n + oPZ∞ (r−1

n )

=
Bn
2
t2n + oPZ∞ (r−1

n ), (B.11)

where r−1
n = max{t2n, tnn−1/2, s−1

n } and s−1
n = o(n−1).
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And under the null hypothesis, α̂Rn ∈ Nosn ∩ A0
k(n) wpa1,

0.5
(
Q̂n(α̂Rn (tn))− Q̂n(α̂Rn )

)
=tn{Zn + 〈u∗n, α̂Rn − α0〉}+

Bn
2
t2n + oPZ∞ (r−1

n )

=tnZn +
Bn
2
t2n + oPZ∞ (r−1

n ), (B.12)

where the last line follows from the fact that tn〈u∗n, α̂Rn −α0〉 = oPZ∞ (r−1
n ). To show this, note that

under the null hypothesis, α̂Rn ∈ Nosn ∩ A0
k(n) wpa1. This and Assumption 3.5(ii) imply that∣∣∣∣∣∣φ(α̂Rn )− φ(α0)︸ ︷︷ ︸

=0

−dφ(α0)

dα
[α̂Rn − α0]

∣∣∣∣∣∣ = oPZ∞ (n−1/2||v∗n||).

Thus

PZ∞

( √
n

||v∗n||

∣∣∣∣dφ(α0)

dα
[α̂Rn − α0]

∣∣∣∣ < δ

)
≥ 1− δ

eventually. By similar calculations to those in the proof of Theorem 4.1, we have

PZ∞
(√
n
∣∣〈u∗n, α̂Rn − α0〉

∣∣ < δ
)
≥ 1− δ, eventually.

Hence, 〈u∗n, α̂Rn − α0〉 = oPZ∞ (n−1/2), and thus tn〈u∗n, α̂Rn − α0〉 = oPZ∞ (n−1/2tn) = oPZ∞ (r−1
n ).

Step 2. We choose tn = −ZnB−1
n . Note that under assumption 3.6, tn ∈ Tn wpa1. By the

definition of α̂n, we have, under the null hypothesis,

0.5
(
Q̂n(α̂Rn )− Q̂n(α̂n)

)
≥0.5

(
Q̂n(α̂Rn )− Q̂n(α̂Rn (tn))

)
− oPZ∞ (n−1)

=
1

2
Z2
nB
−1
n − oPZ∞ (max{B−2

n Z2
n,−B−1

n Znn−1/2, s−1
n })− oPZ∞ (n−1)

=
1

2
Z2
nB
−1
n + oPZ∞ (n−1),

where the first inequality follows from the fact that, since tn ∈ Tn and α̂Rn ∈ Nosn wpa1, then
α̂Rn (tn) ∈ Ak(n) wpa1; and the second line follows from equation (B.12) with tn = −ZnB−1

n .

Step 3. We choose t∗n ∈ Tn wpa1 such that (a) φ(α̂n(t∗n)) = φ(α0), α̂n(t∗n) ∈ Ak(n), and (b)

t∗n = Zn
||v∗n||2sd
||v∗n||2

+ oPZ∞ (n−1/2) = OPZ∞ (n−1/2).

Suppose such a t∗n exists, then [rn(t∗n)]−1 = max{(t∗n)2, t∗nn
−1/2, o(n−1)} = OPZ∞ (n−1). By the

definition of α̂Rn , we have, under the null hypothesis,

0.5
(
Q̂n(α̂Rn )− Q̂n(α̂n)

)
≤0.5

(
Q̂n(α̂n(t∗n))− Q̂n(α̂n)

)
+ oPZ∞ (n−1)

=t∗n{Zn + 〈u∗n, α̂n − α0〉}+
Bn
2

(t∗n)2 + oPZ∞ (n−1)

=
Bn
2

(
Zn
||v∗n||2sd
||v∗n||2

+ oPZ∞ (n−1/2)

)2

+ oPZ∞ (n−1)

=
1

2
Z2
nB
−1
n + oPZ∞ (n−1) =

1

2
Z2
n

||v∗n||2sd
||v∗n||2

+ oPZ∞ (n−1),
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where the second line follows from Assumption 3.6(i) and the fact that t∗n satisfying (b), [rn(t∗n)]−1 =
OPZ∞ (n−1); the third line follows from equation (B.11) and the fact that t∗n satisfying (b); and the
last line follows from Assumptions 3.5(i) and 3.6(ii),

∣∣Bn − ||u∗n||2∣∣ = oPZ∞ (1) and u∗n = v∗n/ ‖v∗n‖sd.
We now show that there is a t∗n ∈ Tn wpa1 such that (a) and (b) hold. Denote r ≡ φ(α̂n)−φ(α0).

Since α̂n ∈ Nosn wpa1 and φ(α̂n) − φ(α0) = OPZ∞ (||v∗n||/
√
n) (see the proof of Theorem 4.1), we

have |r| ≤ 2Mn||v∗n||δn. Thus, by Lemma B.2, there is a t∗n ∈ Tn wpa1 such that α̂n(t∗n) =
α̂n + t∗nu

∗
n ∈ Ak(n) and φ(α̂n(t∗n)) = φ(α0), so (a) holds. Moreover, by Assumption 3.5(ii), such a

choice of t∗n also satisfies∣∣∣∣∣∣φ(α̂n(t∗n))− φ(α0)︸ ︷︷ ︸
=0

−dφ(α0)

dα
[α̂n − α0 + t∗nu

∗
n]

∣∣∣∣∣∣ = oPZ∞ (||v∗n||/
√
n).

By Assumption 3.5(i) and the definition of u∗n = v∗n/ ‖v∗n‖sd we have: dφ(α0)
dα [t∗nu

∗
n] = t∗n

||v∗n||2
||v∗n||sd

. Thus

PZ∞

( √
n

||v∗n||

∣∣∣∣dφ(α0)

dα
[α̂n − α0] + t∗n

||v∗n||2

||v∗n||sd

∣∣∣∣ < δ

)
≥ 1− δ

eventually. By similar algebra to that in the proof of Theorem 4.1 it follows that the LHS of the
equation above is majorized by

PZ∞

( √
n

||v∗n||

∣∣∣∣〈v∗n, α̂n − α0〉+ t∗n
||v∗n||2

||v∗n||sd

∣∣∣∣ < δ

)
+ δ

= PZ∞

( √
n

||v∗n||

∣∣∣∣−Zn||v∗n||sd + t∗n
||v∗n||2

||v∗n||sd

∣∣∣∣ < δ

)
+ δ

= PZ∞

(√
n
||v∗n||sd
||v∗n||

∣∣∣∣−Zn + t∗n
||v∗n||2

||v∗n||2sd

∣∣∣∣ < δ

)
+ δ,

where the second line follows from the proof of Lemma B.1. Since ||v
∗
n||sd
||v∗n||

� const. (by Assumption

3.5(i)), we obtain:

PZ∞

(√
n

∣∣∣∣t∗n − Zn
||v∗n||2sd
||v∗n||2

∣∣∣∣ < δ

)
≥ 1− δ, eventually.

Since
√
nZn = OPZ∞ (1) (Assumption 3.6(ii)), we have: t∗n = OPZ∞ (n−1/2), and in fact,

√
nt∗n =

√
nZn

||v∗n||2sd
||v∗n||2

+ oPZ∞ (1) and hence (b) holds. Q.E.D.

Let AR ≡ {α ∈ A : φ(α) = φ0} be the restricted parameter space. Then α0 ∈ AR iff the null
hypothesis H0 : φ(α0) = φ0 holds. Also, ARk(n) ≡ {α ∈ Ak(n) : φ(α) = φ0} is a sieve space for AR.

Let {ᾱ0,n ∈ ARk(n)} be a sequence such that ||ᾱ0,n − α0||s ≤ infα∈AR
k(n)
||α− α0||s + o(n−1).20

Assumption B.2. (i) |Pen(h̄0,n)−Pen(h0)| = O(1) and Pen(h0) <∞; (ii) Q̂n(ᾱ0,n) ≤ c0Q(ᾱ0,n)+
oPZ∞ (n−1).

This assumption on ᾱ0,n ∈ ARk(n) is the same as Assumptions 3.2(ii) and 3.3(i) imposed on

Πnα0 ∈ Ak(n), and can be verified in the same way provided that α0 ∈ AR.

20Sufficient conditions for α0,n ∈ ARk(n) to solve infα∈AR
k(n)
‖α− α0‖s under the null include either (a) Ak(n) is

compact (in || · ||s) and φ is continuous (in || · ||s), or (b) Ak(n) is convex and φ is linear.
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Proposition B.1. Let α̂Rn ∈ ARk(n) be the restricted PSMD estimator (4.10) and α0 ∈ AR. Let

Assumptions 3.1, 3.2(iii), 3.3(ii), B.2 and Q(ᾱ0,n) + o(n−1) = O(λn) = o(1) hold. Then:

(1) Pen(ĥRn ) = OPZ∞ (1) and ||α̂Rn − α0||s = oPZ∞ (1);
(2) Further, let Q(ᾱ0,n) � Q(Πnα0) and Assumptions 3.2(ii), 3.3(i) and 3.4(i)(ii)(iii) hold.

Then: ||α̂Rn − α0|| = OPZ∞ (δn) and ||α̂Rn − α0||s = OPZ∞ (||α0 −Πnα0||s + τnδn).

Proof of Proposition B.1. The proof is very similar to those for theorem 3.2 and remark 4.1 in
Chen and Pouzo (2012a) by recognizing that ARk(n) is a sieve for α0 ∈ AR.

For Result (1), we first want to show that α̂Rn ∈ ARk(n)∩{Pen(h) ≤M} for some M > 0 wpa1-

PZ∞ . By definitions of α̂Rn and ᾱ0,n, Assumption B.2(i)(ii) and the condition thatQ(ᾱ0,n)+o(n−1) =
O(λn), we have:

Pen(ĥRn ) ≤ Q̂n(ᾱ0,n)

λn
+ Pen(h̄0,n) +

o(n−1)

λn
≤ Q(ᾱ0,n) + o(n−1)

λn
+OPZ∞ (1) = OPZ∞ (1).

Therefore, for any ε > 0, Pr(Pen(ĥRn ) ≥M) < ε for some M , eventually.
We now show that Pr(||α̂Rn −α0||s ≥ ε) = o(1) for any ε > 0. Let AR,Mk(n) ≡ A

R
k(n)∩{Pen(h) ≤M}

and AR,M ≡ AR ∩ {Pen(h) ≤ M}. These sets are compact under || · ||s (by Assumption 3.2(iii)).
Assumptions 3.1(i)(iv) and B.2(i) imply that α0 ∈ AR,M and ᾱ0,n ∈ AR,Mk(n) . Under assumption

3.1(ii), cl (∪kAk) ⊇ A and thus cl
(
∪kAR,Mk

)
⊇ AR,M . Therefore ||ᾱ0,n − α0||s = o(1) by the

definition of ᾱ0,n and the fact that AR,Mk(n) being dense in AR,M .
By standard calculations, it follows that, for any ε > 0,

Pr(||α̂Rn−α0||s ≥ ε) ≤ Pr

 inf
AR,M
k(n)

:||α−α0||s≥ε
{Q̂n(α) + λnPen(h)} ≤ Q̂n(ᾱ0,n) + λnPen(h̄0,n) + oP (n−1)

+0.5ε

Moreover (up to omitted constants)

Pr
(
||α̂Rn − α0||s ≥ ε

)
≤ Pr

 inf
AR,M
k(n)

:||α−α0||s≥ε
{Q(α) + λnPen(h)} ≤ Q(ᾱ0,n) + λnPen(h̄0,n) +OP (δ̄2

m,n) + oP (n−1)

+ ε

≤ Pr

(
inf

AR,M :||α−α0||s≥ε
{Q(α) + λnPen(h)} ≤ Q(ᾱ0,n) + λnPen(h̄0,n) +OP (δ̄2

m,n) + oP (n−1)

)
+ ε,

where the first line follows by Assumptions 3.3(ii) and B.2 and the second by AR,Mk(n) ⊆ A
R,M .

Since AR,M is compact under || · ||s, α0 ∈ AR,M is unique and Q is continuous (Assumption 3.1),
then infAR,M :||α−α0||s≥ε{Q(α) +λnPen(h)} ≥ c(ε) > 0; however, the term Q(ᾱ0,n) +λnPen(h̄0,n) +

OP (δ̄2
m,n) + oP (n−1) = oP (1) and thus the desired result follows.

For Result (2), we now show that ||α̂Rn − α0|| = OPZ∞ (κn) where κ2
n ≡ max{δ2

n, ||ᾱ0,n −
α0||2, λn, o(n−1)}. Let ARosn = {α ∈ Aosn : φ(α) = φ(α0)} and ARos = {α ∈ Aos : φ(α) = φ(α0)}.
Result (1) implies that α̂Rn ∈ ARosn wpa1. To show Result (2), we employ analogous arguments to
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those for Result (2) and obtain that for all large K > 0,

Pr
(
||α̂Rn − α0|| ≥ Kκn

)
≤ Pr

(
inf

ARosn:||α−α0||≥Kκn
Q(α) + λnPen(h) ≤ Q(ᾱ0,n) + λnPen(h̄0,n) +OP (δ2

n) + oP (n−1)

)
+ ε

≤ Pr

(
inf

ARos:||α−α0||≥Kκn
||α− α0||2 ≤ Const.{||ᾱ0,n − α0||2 + λnPen(h̄0,n) +OP (δ2

n) + oP (n−1)

)
+ ε

≤ Pr
(
K2κ2

n ≤ Const.||ᾱ0,n − α0||2 +O(λn) +OP (δ2
n) + oP (n−1)

)
+ ε,

where the first inequality is due to Assumption B.2(ii) and the assumption that Q̂n(α) ≥ cQ(α)−
OPZ∞ (δ2

n) uniformly over Aosn; the second inequality is due to Assumption 3.4. By our choice of
κn the first term in the RHS is zero for large K. So the desired result follows. The fact that κn
coincides with δn follows from the fact that ||ᾱ0,n − α0||2 � Q(ᾱ0,n) � Q(Πnα0) by assumption in
the Proposition.

Finally, the convergence rate under || · ||s is obtain by applying the previous result and the
definition of τn. Q.E.D.

Proof of Theorem 4.4: Since suph∈H Pen(h) < ∞, the relevant parameter set is AM ≡ {α ∈
A : Pen(h) ≤ M} with M = suph∈H Pen(h), which is non-empty and compact (in || · ||s) under
Assumptions 3.1(i)(ii) and 3.2(iii). Let AR,M = AM ∩ {α ∈ A : φ(α) = φ0}. Since φ is continuous
in || · ||s, AR,M is also compact (in || · ||s). Note that α0 ∈ AR,M iff the null H0 : φ(α0) = φ0 holds.

If AR,M is empty, then there does not exist any α ∈ AM such that φ(α) = φ0, and hence it

holds trivially that Q̂LRn(φ0) ≥ nC for some C > 0 wpa1.
If AR,M is non-empty, under Assumption 3.1(iii) we have: minα∈AR,M Q(α) is achieved at

some point within AR,M , say, α ∈ AR,M . This and Assumption 3.1(i)(iv) imply that Q(α) =
minα∈AR,M Q(α) > 0 = Q(α0) under the fixed alternatives H1 : φ(α0) 6= φ0.

By definitions of α̂n and Πnα0 and Assumption 3.3(i), we have:

Q̂n(α̂n) ≤ Q̂n(Πnα0) ≤ c0Q(Πnα0) + oPZ∞ (n−1).

Since M = suph∈H Pen(h) <∞, we also have that α̂Rn ∈ A
R,M
k(n) ⊆ A

M
k(n) wpa1, so by Assumption

3.3(ii), we have:

Q̂n(α̂Rn ) ≥ cQ(α̂Rn )−OPZ∞ (δ̄2
m,n) ≥ c× min

α∈AR,M
Q(α)−OPZ∞ (δ̄2

m,n).

Thus

Q̂n(α̂Rn )− Q̂n(α̂n) ≥ c× min
α∈AR,M

Q(α)− c0Q(Πnα0)− oPZ∞ (n−1)−OPZ∞ (δ̄2
m,n) = cQ(α) + oPZ∞ (1).

Thus under the fixed alternatives H1 : φ(α0) 6= φ0,

lim inf
n→∞

Q̂LRn(φ0)

n
≥ lim inf

n→∞
[cQ(α) + oPZ∞ (1)] = cQ(α) > 0 in probability.

Q.E.D.

A consistent variance estimator for optimally weighted PSMD estimator. To stress
the fact that we consider the optimally weighted PSMD procedure, we use v0

n and ||v0
n||0 to denote
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the corresponding v∗n and ||v∗n|| computed using the optimal weighting matrix Σ = Σ0. That is,

||v0
n||20 = E

[(
dm(X,α0)

dα
[v0
n]

)′
Σ0(X)−1

(
dm(X,α0)

dα
[v0
n]

)]
.

We call the corresponding sieve score, S0
n,i ≡

(
dm(Xi,α0)

dα [v0
n]
)′

Σ0(Xi)
−1ρ(Zi, α0), the optimal sieve

score. Note that ||v0
n||2sd = V ar(S0

n,i) = ||v0
n||20. By Theorem 4.1, ||v0

n||2sd = ||v0
n||20 is the variance of

the optimally weighted PSMD estimator φ(α̂n). We could compute a consistent estimator |̂|v0
n||20

of the variance ||v0
n||20 by looking at the “slope” of the optimally weighted criterion Q̂0

n:

|̂|v0
n||20 ≡

(
Q̂0
n(α̃n)− Q̂0

n(α̂n)

ε2
n

)−1

, (B.13)

where α̃n is an approximate minimizer of Q̂0
n(α) over {α ∈ Ak(n) : φ(α) = φ(α̂n)− εn}.

Theorem B.2. Let α̂n be the optimally weighted PSMD estimator (2.2) with Σ = Σ0, and condi-
tions for Lemma 3.2, Assumptions 3.5 and 3.6 hold with ||v0

n||sd = ||v0
n||0 and |Bn − 1| = oPZ∞ (1).

Let cn−1/2 ≤ εn
||v0
n||0
≤ Cδn for finite constants c, C > 0. Then: α̃n ∈ Nosn wpa1-PZ∞, and

|̂|v0
n||20

||v0
n||20

= 1 + oPZ∞ (1).

When α̂n is the optimally weighted PSMD estimator of α0, Theorem B.2 suggests |̂|v0
n||20 defined

in (B.13) as an alternative consistent variance estimator for φ(α̂n). Compared to Theorems 4.2 and

B.1, this alternative variance estimator |̂|v0
n||20 allows for a non-smooth residual function ρ(Z,α)

(such as the one in NPQIV), but is only valid for an optimally weighted PSMD estimator.

Proof of Theorem B.2 Recall that for the optimally weighted criterion case u∗n = v0
n/||v0

n||0, and
hence ||u∗n|| = 1, Bn = 1 + oPZ∞ (1).

We first show that α̃n ∈ Nosn wpa1. Recall that α̃n is defined as an approximate optimally
weighted PSMD estimator constrained to {α ∈ Ak(n) : φ(α) = φ(α̂n) − εn}. In the following since
there is no risk of confusion, we use P instead of PZ∞ . Define

ᾱn ≡ α̂n +
ϑn
||v0

n||0
u∗n

where ϑn ≡ −εn − rn � δn||v0
n||0 and rn = o(n−1/2||v0||0) (to be determined below). We first show

that (a) ᾱn ∈ Nosn wpa1.; and ϑn||v0
n||−1

0 ∈ Tn, and (b) ᾱn ∈ {α ∈ Ak(n) : φ(α) = φ(α̂n)− εn}. We
note that the definitions of ᾱn and ϑn imply

||ᾱn − α0|| ≤ δn + ϑn||v0||−1
0 ≤ 2δn,

and
||ᾱn − α0||s ≤ ||α̂n − α0||s + ϑn||v0||−1

0 ||u
∗
n||s ≤ δs,n + ϑn||v0||−1

0 τn

which is of order δs,n. It is easy to see that ϑn||v0
n||−1

0 ∈ Tn. Hence (a) ᾱn ∈ Nosn wpa1. is shown.
Regarding (b), by assumption 3.5 and (a),

φ(ᾱn)− φ(α0) = 〈v0
n, α̂n − α0〉0 + ϑn + rn = φ(α̂n)− φ(α0) + ϑn + rn
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with rn = o(n−1/2||v0
n||). Thus, φ(ᾱn)− φ(α̂n) = ϑn + rn = −εn, and hence (b) follows.

We now establish the consistency of α̃n using the properties of ᾱn. We observe that, for any
ε > 0,

Pr(||α̃n − α0||s ≥ ε) ≤ Pr

(
inf

Bn:||α−α0||s≥ε
Q̂n(α) ≤ Q̂n(ᾱn) + o(n−1) + λnPen(h̄n)

)
where Bn ≡ {α ∈ AM0

k(n) : φ(α) = φ(α̂n) − εn} and the inequality is valid because ᾱn ∈ Bn by (a)

and (b). Under (a) and Lemma 3.2, λnPen(h̄n) = OP (λn) = o(n−1).
By (a), under assumption 3.6(i)

Q̂n(ᾱn) =Q̂n(α̂n) + ϑn||v0
n||−1

0 {Zn + 〈u∗n, α̂n − α0〉}+ 0.5(ϑn||v0
n||−1

0 )2

+ oP (ϑn||v0
n||−1

0 n−1/2 + (ϑn||v0
n||−1

0 )2 + o(n−1)).

By Lemma B.1, Zn+ 〈u∗n, α̂n−α0〉 = oP (n−1/2) and thus, given that ϑn = −εn− rn � δn||v0
n||0,

the previous display implies that

Q̂n(ᾱn) ≤ Q̂n(α̂n) + oP (n−1/2δn + δ2
n + o(n−1)) ≤ OP (δ2

n)

Therefore,

Pr(||α̃n − α0||s ≥ ε) ≤ Pr

(
inf

Bn:||α−α0||s≥ε
Q̂n(α) ≤ Q̂n(α̂n) +O(λn + δ2

n)

)
.

Since Q̂n(α̂n) ≤ Q̂n(Πnα0)+O(λn) by definition of α̂n and from the fact that Bn ⊆ AM0

k(n), it follows
that

Pr(||α̃n − α0||s ≥ ε) ≤ Pr

(
inf

AM0
n :||α−α0||s≥ε

Q̂n(α) ≤ Q̂n(Πnα0) +O(λn + δ2
n)

)
.

The rest of the consistency proof follows from identical steps to the standard one; see Chen and
Pouzo (2009).

In order to show the rate, by similar arguments to the previous ones

Q̂n(α̃n) ≤ Q̂n(Πnα0) +O(λn + δ2
n),

under our assumptions Q̂n(α̃n) ≥ c||α̃n−α0||2−OP (δ2
n) and Q̂n(Πnα0) ≤ c0Q(Πnα0)+oP (n−1), so

the desired rate under || · || follows. The rate under || · ||s immediately follows using the definition
of sieve measure of local ill-posedness τn. Thus α̃n ∈ Nosn wpa1.

We now show that
̂||v0
n||20

||v0
n||20

= 1 + oPZ∞ (1). This part of proof consists of several steps that are

similar to those in the proof of Theorem 4.3, and hence we omit some details. We first provide an
asymptotic expansion for n(Q̂n(α̃n)− Q̂n(α̂n)) using Assumption 3.6(i) (with Bn = 1 + oPZ∞ (1)),
and then show that this is enough to establish the desired result.

In the following we let tn ≡ εn/||v0
n||0. By the assumption on εn we have: cn−1/2 ≤ tn ≤ Cδn.

Therefore, tn ∈ Tn, tn = oPZ∞ (1) and oPZ∞
(

1
tn
n−1/2

)
= oPZ∞ (1).

Step 1: First, we note that α̂n ∈ Nosn wpa1, that −tn ∈ Tn and α̂n (−tn) ∈ Ak(n). So we can
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apply Assumption 3.6(i) with α = α̂n and −tn as the direction, and obtain:

(Q̂n(α̂n(−tn))− Q̂n(α̂n))

t2n
=
−2

tn
{Zn + 〈u∗n, α̂n − α0〉}+ 1 + oP

(
max

{
1,
n−1/2

tn
,
o(n−1)

t2n

})
= 1 + oPZ∞ (1) , (B.14)

where the last equality follows from the fact that 〈u∗n, α̂n − α0〉 + Zn = oPZ∞ (n−1/2) (by Lemma

B.1), and that oPZ∞
(

1
tn
n−1/2

)
= oPZ∞ (1) (by our choice of tn).

Step 2: Since α̃n ∈ Nosn wpa1, tn ∈ Tn and α̃n(tn) ∈ Ak(n), we can apply Assumption 3.6(i)
with α = α̃n and tn as the direction, and obtain:

(Q̂n(α̃n(tn))− Q̂n(α̃n))

t2n
=

2

tn
{Zn + 〈u∗n, α̃n − α0〉}+ 1 + oP

(
max

{
1,
n−1/2

tn
,
o(n−1)

t2n

})
= −1 + oPZ∞ (1) , (B.15)

where the last line follows from the definition of the restricted estimator α̃n. This is because
φ(α̃n) = φ(α̂n)− εn, by Assumptions 3.5(i)(ii),∣∣∣∣−εn − dφ(α0)

dα
[α̂n − α̃n]

∣∣∣∣ = oPZ∞ (||v0
n||0/

√
n).

Hence 〈v0
n, α̃n−α0〉 = 〈v0

n, α̂n−α0〉−εn+oPZ∞ (||v0
n||0/

√
n). This implies that Zn+〈u∗n, α̃n−α0〉 =

− εn
||v0
n||0

+ oPZ∞ (n−1/2) = −tn + oPZ∞ (n−1/2).

Step 3: It is easy to see that, from equation (B.15) and by the definition of α̂n,

(Q̂n(α̃n)− Q̂n(α̂n))

t2n
≥ (Q̂n(α̃n))− Q̂n(α̃n(tn))

t2n
− oPZ∞ (1) = 1 + oPZ∞ (1).

Also, from equation (B.14), Assumption 3.6(i) and by the definition of α̃n,

(Q̂n(α̃n)− Q̂n(α̂n))

t2n
≤ (Q̂n(α̂n(t∗n))− Q̂n(α̂n))

t2n
+ oPZ∞ (1)

=
2t∗n{Zn + 〈u∗n, α̂n − α0〉}+ (t∗n)2 + oP

(
max

{
(t∗n)2 , t∗nn

− 1
2 , o(n−1)

})
t2n

+ oP (1)

=
−2

tn
{Zn + 〈u∗n, α̂n − α0〉}+ 1 + oPZ∞ (1)

= 1 + oPZ∞ (1),

provided that there is a t∗n ∈ Tn such that (3a) φ(α̂n(t∗n)) = φ(α̂n) − εn and (3b) t∗n = −tn ×
(1 + oPZ∞ (1)). In Step 5 we verify that such a t∗n exists.

By putting these inequalities together, it follows

||v0
n||20

Q̂n(α̃n)− Q̂n(α̂n)

ε2
n

=
(Q̂n(α̃n)− Q̂n(α̂n))

t2n
= 1 + oPZ∞ (1). (B.16)
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Step 4: By equation (B.16) we have:

||v0
n||20

|̂|v0
n||20

= 1 + oPZ∞ (1), with |̂|v0
n||20 ≡

(
Q̂n(α̃n)− Q̂n(α̂n)

ε2
n

)−1

,

which implies that 0.5 ≤ ||v0
n||20

̂||v0
n||20
≤ 1.5 with probability PZ∞ approaching one. By continuous

mapping theorem, we obtain:

|̂|v0
n||20

||v0
n||20

= 1 + oPZ∞ (1).

Step 5: We now show that there is a t∗n ∈ Tn such that (3a) and (3b) in Step 3 hold. Denote r ≡
φ(α̂n)−φ(α0)−εn. Since εn ≤ C||v0

n||0δn, and α̂n ∈ Nosn wpa1, φ(α̂n)−φ(α0) = OP (||v0
n||0/

√
n) (by

Theorem 4.1), we have |r| ≤ ||v0
n||0δn(Mn+C) ≤ 2Mn||v0

n||0δn (since C < Mn eventually). Thus, by
Lemma B.2, there exists a t∗n ∈ Tn such that φ(α̂n(t∗n)) = φ(α̂n)−εn and α̂n(t∗n) = α̂n+t∗nu

∗
n ∈ Ak(n),

and hence (3a) holds. Moreover, by Assumption 3.5(i)(ii), such a choice of t∗n also satisfies∣∣∣∣∣∣φ(α̂n(t∗n))− φ(α̂n)︸ ︷︷ ︸
=−εn

−dφ(α0)

dα
[t∗nu

∗
n]

∣∣∣∣∣∣ = oPZ∞ (||v0
n||0n−1/2).

Since u∗n = v0
n/||v0

n||0 for optimally weighted criterion case, we have: dφ(α0)
dα [u∗n] = ||v0

n||0. Thus∣∣−εn − t∗n||v0
n||0
∣∣ = oPZ∞ (||v0

n||0n−1/2).

Since tn ≡ εn/||v0
n||0, we obtain: |−tn − t∗n| = oPZ∞ (n−1/2), and hence

t∗n = −tn + oPZ∞ (n−1/2) = −tn × (1 + oPZ∞ (1)) = oPZ∞ (1)

where the second and third equal signs are due to the fact that cn−1/2 ≤ tn ≤ Cδn. Thus (3b)
holds. Q.E.D.

B.3 Proofs for Section 5 on bootstrap inference

Throughout the Appendices, we sometimes use the simplified term “wpa1” in the bootstrap world
while its precise meaning is given in Section 5.

Recall that Zωn ≡ 1
n

∑n
i=1 ωig(Xi, u

∗
n)ρ(Zi, α0) with g(Xi, u

∗
n) ≡

(
dm(Xi,α0)

dα [u∗n]
)′

Σ(Xi)
−1.

Lemma B.3. Let α̂Bn be the bootstrap PSMD estimator and conditions for Lemma 3.2 and Lemma
A.1 hold. Let Assumption Boot.3(i) hold. Then: (1) for all δ > 0, there exists a N(δ) such that
for all n ≥ N(δ),

PZ∞
(
PV∞|Z∞

(√
n
∣∣〈u∗n, α̂Bn − α0〉+ Zωn

∣∣ ≥ δ|Zn) < δ
)
≥ 1− δ.

(2) If, in addition, assumptions of Lemma B.1 hold, then

√
n〈u∗n, α̂Bn − α̂n〉 = −

√
nZω−1

n + oPV∞|Z∞ (1) wpa1(PZ∞).

Proof of Lemma B.3: The proof is very similar to that of Lemma B.1, so we only present the
main steps.
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For Result (1). Under Assumption Boot.3(i) and using the fact that α̂Bn is an approximate
minimizer of Q̂Bn (α) + λnPen(h) on Ak(n), it follows (see the proof of Lemma B.1 for details), for
sufficiently large n,

PZ∞
(
PV∞|Z∞

(
2εn{Zωn + 〈u∗n, α̂Bn − α0〉}+ ε2nB

ω
n + En(α̂Bn , εn) ≥ −δr−1

n |Zn
)
≥ 1− δ

)
> 1− δ,

where rn and En are defined as in the proof of Lemma B.1, and εn = ±{s−1/2
n +o(n−1/2)}. Dividing

by 2εn and multiplying by
√
n, it follows that

PZ∞
(
PV∞|Z∞

(
Aωn,δ ≥

√
n{Zωn + 〈u∗n, α̂Bn − α0〉} ≥ Bω

n,δ|Zn
)
≥ 1− δ

)
> 1− δ

eventually, where

Aωn,δ ≡ −0.5
√
nεnB

ω
n − δ

√
nε−1
n r−1

n + 0.5δ

Bω
n,δ ≡ −0.5

√
nεnB

ω
n − δ

√
nε−1
n r−1

n − 0.5δ.

Since
√
nεn = o(1) and Bω

n = OPV∞|Z∞ (1) wpa1(PZ∞) and |
√
nε−1
n r−1

n | � 1, it follows, for
sufficiently large n,

PZ∞
(
PV∞|Z∞

(
2δ ≥

√
n{Zωn + 〈u∗n, α̂Bn − α0〉} ≥ −2δ|Zn

)
≥ 1− δ

)
> 1− δ.

Or equivalently, for sufficiently large n,

PZ∞
(
PV∞|Z∞

(∣∣√n{Zωn + 〈u∗n, α̂Bn − α0〉}
∣∣ ≥ 2δ|Zn

)
< δ
)
≥ 1− δ.

Result (2) directly follows from Result (1) and Lemma B.1. Q.E.D.

Proof of Theorem 5.1 We note that Assumption Boot.4 implies that |n−1
∑n

i=1 T̂i[vn]′M̂B
i T̂i[vn]−

σ2
ωn
−1
∑n

i=1 T̂i[vn]′M̂iT̂i[vn]| = oPV∞|Z∞ (1), uniformly over vn ∈ V
1
k(n) with M̂i = M̂(Zi, α̂n) and

T̂i[vn] ≡ dm̂(Xi,α̂n)
dα [vn]. The rest of the proof follows directly from that of Theorem 4.2(1) for the

sieve variance defined in (4.7) case. Q.E.D.

Proof of Theorem 5.2 By Lemma B.3 and steps analogous to those used to show Theorem 4.1,
it follows

√
n
φ(α̂Bn )− φ(α̂n)

σω||v∗n||sd
= −
√
n
Zω−1
n

σω
+ oPV∞|Z∞ (1) wpa1(PZ∞). (B.17)

For Result (1), we note that the result for ŴB
2,n follows directly from Theorem 5.1 and the

proof of the Result (1) for ŴB
1,n ≡

√
nφ(α̂Bn )−φ(α̂n)

σω ||v̂∗n||n,sd
.

We now focus on establishing Result (1) for ŴB
1,n. Theorem 4.2(1) and equation (B.17) imply

that

ŴB
1,n = −

√
n
Zω−1
n

σω
+ oPV∞|Z∞ (1) wpa1(PZ∞); (B.18)

Equation (B.18) and Assumptions 3.6(ii) and Boot.3(ii) imply that:∣∣∣LV∞|Z∞ (ŴB
j,n | Zn

)
− L

(
Ŵn

)∣∣∣ = oPZ∞ (1).
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Result (1) now follows from the following two equations:

sup
t∈R
|PV∞|Z∞(ŴB

1,n ≤ t|Zn)− Φ(t)| = oPV∞|Z∞ (1) wpa1(PZ∞), (B.19)

and
sup
t∈R
|PZ∞(Ŵn ≤ t)− Φ(t)| = oPZ∞ (1), (B.20)

where Φ() is the cdf of a standard normal. Equation (B.20) follows directly from Theorem 4.2(2)
and Polya’s theorem (see e.g., Kosorok (2008)). Equation (B.19) follows by the same arguments in
Lemma 10.11 in Kosorok (2008) (which are in turn analogous to those used in the proof of Polya’s
theorem).

Result (2) follows from equation (B.17) and the fact that ||v∗n||sd → ||v∗||sd ∈ (0,∞) for regular
functionals. Q.E.D.
Proof of Theorem 5.3: For Result (1), denote

Fn ≡ n
infAk(n)(φ̂n)

Q̂Bn (α)− Q̂Bn (α̂Bn )

σ2
ω

=
Q̂LR

B

n (φ̂n)

σ2
ω

= n
Q̂Bn (α̂R,Bn )− Q̂Bn (α̂Bn )

σ2
ω

+oPV∞|Z∞ (1) wpa1(PZ∞)

where Ak(n)(φ̂n) ≡ {α ∈ Ak(n) : φ(α) = φ(α̂n)}. Since oPV∞|Z∞ (1) wpa1(PZ∞) will not affect the
asymptotics we omit it from the rest of the proof to ease the notational burden. We want to show
that for all δ > 0, there exists a N(δ) such that

PZ∞

(
PV∞|Z∞

(∣∣∣∣∣Fn −
(√

n
Zω−1
n

σω||u∗n||

)2
∣∣∣∣∣ ≥ δ | Zn

)
< δ

)
≥ 1− δ

for all n ≥ N(δ). We divide the proof in several steps.

Step 1. By assumption |Bω
n − ||u∗n||2| = oPV∞|Z∞ (1) wpa1(PZ∞) and ||u∗n|| ∈ (c, C), we have:∣∣∣ ||u∗n||2Bωn

− 1
∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞). Therefore, it suffices to show that

PZ∞

PV∞|Z∞
∣∣∣∣∣∣Fn −

(
√
n

Zω−1
n

σω
√
Bω
n

)2
∣∣∣∣∣∣ ≥ δ | Zn

 < δ

 ≥ 1− δ (B.21)

eventually.
Step 2. By Assumption Boot.3(i), for all δ > 0, there is a M > 0 such that

PZ∞
(
PV∞|Z∞

(√
n|Zω−1

n /Bω
n | ≥M | Zn

)
< δ
)
≥ 1− δ

eventually. Thus tn = −Zω−1
n /Bω

n ∈ Tn wpa1. By the definition of α̂Bn , and the fact that α̂R,Bn ∈
Nosn wpa1 (by Lemma A.1(3)),

Fn ≥ n
Q̂Bn (α̂R,Bn )− Q̂Bn (α̂R,Bn (tn))

σ2
ω

− oPV∞|Z∞ (1) wpa1(PZ∞).
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By specializing Assumption Boot.3(i) to α = α̂R,Bn and tn = −Zω−1
n /Bω

n , it follows

0.5(Q̂Bn (α̂R,Bn (−Zω−1
n

Bω
n

))− Q̂Bn (α̂R,Bn )) (B.22)

= −Zω−1
n

Bω
n

{Zωn + 〈u∗n, α̂R,Bn − α0〉}+
(Zω−1

n )2

2Bω
n

+ oPV∞|Z∞ (r−1
n ) wpa1(PZ∞).

By Assumption 3.5(i)(ii), and the fact that α̂R,Bn ∈ Nosn wpa1,

PZ∞

PV∞|Z∞
 √n
||v∗n||

∣∣∣∣∣∣φ(α̂R,Bn )− φ(α̂n)︸ ︷︷ ︸
=0

−dφ(α0)

dα
[α̂R,Bn − α̂n]

∣∣∣∣∣∣ ≥ δ | Zn
 < δ

 ≥ 1− δ

eventually. Also by definition dφ(α0)
dα [α̂R,Bn − α̂n] = 〈v∗n, α̂

R,B
n − α̂n〉. This and Assumption 3.5(i)

imply that √
n〈u∗n, α̂R,Bn − α̂n〉 = oPV∞|Z∞ (1) wpa1(PZ∞). (B.23)

Equation (B.23) and
√
n〈u∗n, α̂n − α0〉 = −

√
nZn + oPZ∞ (1) (Lemma B.1) imply that

√
n〈u∗n, α̂R,Bn − α0〉 = −

√
nZn + oPV∞|Z∞ (1) wpa1(PZ∞).

Thus we can infer from equation (B.22) that

0.5(Q̂Bn (α̂R,Bn (−Zω−1
n

Bω
n

))− Q̂Bn (α̂R,Bn )) = −(Zω−1
n )2

2Bω
n

+ oPV∞|Z∞ (r−1
n ) wpa1(PZ∞). (B.24)

Since rn ≤ n, multiplying both sides by −2nσ−2
ω , we obtain:

Fn ≥

(
√
n

Zω−1
n

σω
√
Bω
n

)2

− oPV∞|Z∞ (1) wpa1(PZ∞).

Step 3. In order to show

Fn ≤

(
√
n

Zω−1
n

σω
√
Bω
n

)2

+ oPV∞|Z∞ (1) wpa1(PZ∞), (B.25)

we can repeat the same calculations as in Step 2, provided there exists a t∗n ∈ Tn wpa1 such that
(a) φ(α̂Bn (t∗n)) = φ(α̂n) with α̂Bn (t∗n) ∈ Ak(n), and (b) t∗n = Zω−1

n /||u∗n||2 + oPV∞|Z∞ (n−1/2) =

OPV∞|Z∞ (n−1/2) wpa1(PZ∞).

Because, by (a) and the definition of α̂R,Bn ,

n
Q̂Bn (α̂R,Bn )− Q̂Bn (α̂Bn )

σ2
ω

≤ nQ̂
B
n (α̂Bn (t∗n))− Q̂Bn (α̂Bn )

σ2
ω

+ oPV∞|Z∞ (1) wpa1(PZ∞).

By specializing Assumption Boot.3(i) to α = α̂Bn ∈ Nosn wpa1 (by Lemma A.1(2)), and t∗n as the
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direction, it follows

0.5(Q̂Bn (α̂Bn (t∗n))− Q̂Bn (α̂Bn ))

= t∗n{Zωn + 〈u∗n, α̂Bn − α0〉}+
Bω
n

2
(t∗n)2 + oPV∞|Z∞ (r−1

n ) wpa1(PZ∞)

=
Bω
n

2

(
Zω−1
n

||u∗n||2
+ oPV∞|Z∞ (n−1/2)

)2

+ oPV∞|Z∞ (r−1
n ) wpa1(PZ∞)

=
1

2

(
Zω−1
n√
Bω
n

)2

+ oPV∞|Z∞ (r−1
n ) wpa1(PZ∞),

where the second equality is due to Lemma B.3(2) and (b), the third equality is due to the assump-
tion |Bω

n − ||u∗n||2| = oPV∞|Z∞ (1) wpa1(PZ∞) and ||u∗n|| ∈ (c, C). Thus equation (B.25) holds.
Step 4. We now show that there exists a t∗n such that (a) and (b) hold in Step 3.
Let r ≡ φ(α̂n) − φ(α0). Since α̂Bn ∈ Nosn wpa1, and φ(α̂n) − φ(α0) = OPZ∞ (||v∗n||/

√
n),

by Lemma B.2, there is a t∗n ∈ Tn wpa1 satisfying (a) with α̂Bn (t∗n) = α̂Bn + t∗nu
∗
n ∈ Ak(n) and

φ(α̂Bn (t∗n))− φ(α0) = r. Moreover, by assumption 3.5(i)(ii), such a choice of t∗n also satisfies∣∣∣∣∣∣φ(α̂Bn (t∗n))− φ(α̂n)︸ ︷︷ ︸
=0

−dφ(α0)

dα
[α̂Bn − α̂n + t∗nu

∗
n]

∣∣∣∣∣∣ = oPV∞|Z∞ (||v∗n||/
√
n) wpa1(PZ∞).

Thus, for sufficiently large n,

PZ∞

(
PV∞|Z∞

( √
n

||v∗n||

∣∣∣∣dφ(α0)

dα
[α̂Bn − α̂n] + t∗n

||v∗n||2

||v∗n||sd

∣∣∣∣ ≥ δ | Zn) < δ

)
≥ 1− δ.

By Assumption 3.5(i) and Lemma B.3(2), it follows that the LHS of the above equation is majorized
by

PZ∞

(
PV∞|Z∞

( √
n

||v∗n||

∣∣∣∣〈v∗n, α̂Bn − α̂n〉+ t∗n
||v∗n||2

||v∗n||sd

∣∣∣∣ ≥ 2δ | Zn
)
< δ

)
+ δ

= PZ∞

(
PV∞|Z∞

( √
n

||v∗n||

∣∣∣∣−Zω−1
n ||v∗n||sd + t∗n

||v∗n||2

||v∗n||sd

∣∣∣∣ ≥ 2δ | Zn
)
< δ

)
+ δ,

Therefore, √
nt∗n =

√
nZω−1

n /||u∗n||2 + oPV∞|Z∞ (1) wpa1(PZ∞).

Since
√
nZω−1

n = OPV∞|Z∞ (1) with probability PZ∞ approaching one (assumption Boot.3(ii)) and

||u∗n||2 = O(1), we have t∗n = OPV∞|Z∞ (n−1/2) with probability PZ∞ approaching one. Thus (b)
holds.

Before we prove Result (2), we wish to establish the following equation (B.26):∣∣∣∣∣∣LV∞|Z∞
Q̂LRBn (φ̂n)

σ2
ω

| Zn
− L(Q̂LRn(φ0) | H0

)∣∣∣∣∣∣ = oPZ∞ (1), (B.26)

where L
(
Q̂LRn(φ0) | H0

)
denotes the law of Q̂LRn(φ0) under the null H0 : φ(α) = φ0, which will
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be simply denoted as L
(
Q̂LRn(φ0)

)
in the rest of the proof. By Result (1), it suffices to show

that for any δ > 0, there exists a N(δ) such that

PZ∞

(
sup
f∈BL1

∣∣∣∣∣E
[
f

([√
nZω−1

n

σω||u∗n||

]2
)
| Zn

]
− E[f(Q̂LRn(φ0))]

∣∣∣∣∣ ≤ δ
)
≥ 1− δ

for all n ≥ N(δ). Let Z denote a standard normal random variable (i.e., Z ∼ N(0, 1)). If the
following equation (B.27) holds, which will be shown at the end of the proof of equation (B.26),

Tn ≡ sup
f∈BL1

∣∣∣∣∣E
[
f

([
Z
||u∗n||

]2
)]
− E[f(Q̂LRn(φ0))]

∣∣∣∣∣ = o(1), (B.27)

then, it suffices to show that

PZ∞

(
sup
f∈BL1

∣∣∣∣∣E
[
f

([√
nZω−1

n

σω||u∗n||

]2
)
| Zn

]
− E

[
f

([
Z
||u∗n||

]2
)]∣∣∣∣∣ ≤ δ

)
≥ 1− δ (B.28)

for all n ≥ N(δ).
Suppose we could show that

sup
f∈BL1

∣∣∣∣E [f (√n Zω−1
n

σω||u∗n||

)
| Zn

]
− E

[
f
(
Z||u∗n||−1

)]∣∣∣∣→ 0, wpa1(PZ∞), (B.29)

or equivalently,

PZ∞

(∣∣∣∣LV∞|Z∞ (√n Zω−1
n

σω||u∗n||
|Zn
)
− L(Z||u∗n||−1)

∣∣∣∣ ≤ δ) ≥ 1− δ, eventually.

Then, by the continuous mapping theorem (see Kosorok (2008) Theorem 10.8 and the discussion
in section 10.1.4), we have:

PZ∞

(∣∣∣∣∣LV∞|Z∞
((√

n
Zω−1
n

σω||u∗n||

)2

| Zn
)
− L

((
Z||u∗n||−1

)2)∣∣∣∣∣ ≤ δ
)
≥ 1− δ, eventually,

and hence equation (B.28) follows.
It remains to show equation (B.29). By Assumption Boot.3(ii), and the fact that if a sequence

converges in probability, for all subsequence, there exists a subsubsequence that converges almost
surely, it follows for all subsequence (nk)k, there exists a subsubsequence (nk(j))j such that∣∣∣∣∣LV∞|Z∞

(√
nk(j)

Zω−1
nk(j)

σω
| Znk(j)

)
− L(Z)

∣∣∣∣∣→ 0, a.s.− PZ∞ .

Since ||u∗nk(j)
|| ∈ (c, C), then there exists a further subsequence (which we still denote as nk(j)),

such that limj→∞ ||u∗nk(j)
|| = d∞ ∈ [c, C]. Also, since

√
nZω−1

n
σω

is a real valued sequence, by Helly’s
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theorem, convergence in distribution also holds for (nk(j))j . Therefore, by Slutsky theorem,

LV∞|Z∞
(√

nk(j)

Zω−1
nk(j)

σω||u∗nk(j)
||
| Znk(j)

)
− L

(
Zd−1
∞
)
→ 0, a.s.− PZ∞ .

Since limj→∞ ||u∗nk(j)
|| = d∞ ∈ [c, C] and Z is bounded in probability, this readily implies

LV∞|Z∞
(√

nk(j)

Zω−1
nk(j)

σω||u∗nk(j)
||
| Znk(j)

)
− L

(
Z||u∗nk(j)

||−1
)
→ 0, a.s.− PZ∞ .

Therefore, it follows that

sup
f∈BL1

∣∣∣∣∣E
[
f

(√
nk(j)

Zω−1
nk(j)

σω||u∗nk(j)
||

)
| Znk(j)

]
− E

[
f
(
Z||u∗nk(j)

||−1
)]∣∣∣∣∣→ 0, a.s.− PZ∞ .

Since the argument started with an arbitrary subsequence nk, equation (B.29) holds.
To conclude the proof of equation (B.26), we now show that equation (B.27) in fact holds

(i.e., Tn = o(1)). Again, it suffices to show that for any sub-sequence, there exists a sub-sub-
sequence such that Tn(j) = o(1). For any sub-sequence, since (||u∗n||)n is a bounded sequence
(under Assumption 3.1(iv)), there exists a further sub-sub-sequence (which we denote as (n(j))j)
such that limj→∞ ||u∗n(j)|| = d∞ ∈ [c, C] for finite c, C > 0. Observe that

Tn(j) ≤ sup
f∈BL1

∣∣∣∣∣∣E
f
[ Z
||u∗n(j)||

]2
− E [f ([ Z

d∞

]2
)]∣∣∣∣∣∣

+ sup
f∈BL1

∣∣∣∣∣∣E
[
f

([
Z
d∞

]2
)]
− E

f
( ||u∗n(j)||

d∞

)2

Q̂LRn(j)(φ0)

∣∣∣∣∣∣
+ sup
f∈BL1

∣∣∣∣∣∣E
[
f
(
Q̂LRn(j)(φ0)

)]
− E

f
( ||u∗n(j)||

d∞

)2

Q̂LRn(j)(φ0)

∣∣∣∣∣∣ .
The first term vanishes because Z is bounded in probability and limj→∞ ||u∗n(j)|| = d∞ > 0; the third

term follows by the same reason (by Theorem 4.3 and Assumption 3.6(ii), Q̂LRn(φ0) is bounded
in probability).

Finally, for any f ∈ BL1, let f(d−1
∞ ·) ≡ f ◦d−2

∞ (·). Since f ◦d−2
∞ is bounded and |f ◦d−2

∞ (t)− f ◦
d−2
∞ (s)| ≤ d−2

∞ |t−s| ≤ c−2|t−s|, we have {f◦d−2
∞ : f ∈ BL1} ⊆ BLc−2 . Therefore, the second term in

the previous display is majorized by supf∈BLc−2

∣∣∣E [f ([Z]2
)]
− E

[
f
(
||u∗n(j)||

2 × Q̂LRn(j)(φ0)
)]∣∣∣.

Hence, to conclude the proof we need to show that

lim
j→∞

sup
f∈BLc−2

∣∣∣E [f (Z2
)]
− E

[
f
(
||u∗n(j)||

2 × Q̂LRn(j)(φ0)
)]∣∣∣ = 0. (B.30)

Theorem 4.3 (i.e., ||u∗n||2 × Q̂LRn(φ0) = [
√
nZn]2 + oP (1)) and Assumption 3.6(ii) directly imply

that the above equation (B.30) actually holds for the whole sequence, which readily implies that for
any sub-sequence (n(j))j there is a sub-sub-sequence (which we still denote as (n(j))j) for which
the previous display holds.
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Finally for Result (2), we want to show that

sup
t∈R

∣∣∣∣∣∣PV∞|Z∞
Q̂LRBn (φ̂n)

σ2
ω

≤ t | Zn
− PZ∞ (Q̂LRn(φ0) ≤ t | H0

)∣∣∣∣∣∣ = oPZ∞ (1).

Let ft(·) ≡ 1{· ≤ t} for t ∈ R. Under this notation, the previous display can be cast as

An ≡ sup
t∈R

∣∣∣∣∣∣EPV∞|Z∞
ft

Q̂LRBn (φ̂n)

σ2
ω

 | Zn
− EPZ∞ [ft (Q̂LRn(φ0)

)]∣∣∣∣∣∣ = oPZ∞ (1).

Denote Z2 ∼ χ2
1 and

A1,n ≡ sup
t′∈R

∣∣∣∣∣∣EPV∞|Z∞
ft′

||u∗n||2 × Q̂LR
B

n (φ̂n)

σ2
ω

 | Zn
− E [ft′ (Z2

)]∣∣∣∣∣∣ ,
A2,n ≡ sup

t′∈R

∣∣∣EPZ∞ [ft′ (||u∗n||2 × Q̂LRn(φ0)
)]
− E

[
ft′
(
Z2
)]∣∣∣ .

Notice that

An = sup
t∈R

∣∣∣∣∣∣EPV∞|Z∞
ft||u∗n||2

||u∗n||2 Q̂LRBn (φ̂n)

σ2
ω

 | Zn
− EPZ∞ [ft||u∗n||2 (||u∗n||2Q̂LRn(φ0)

)]∣∣∣∣∣∣
≤ sup

t∈R
sup
d∈[c,C]

∣∣∣∣∣∣EPV∞|Z∞
ftd2

||u∗n||2 Q̂LRBn (φ̂n)

σ2
ω

 | Zn
− EPZ∞ [ftd2

(
||u∗n||2Q̂LRn(φ0)

)]∣∣∣∣∣∣
≤ sup

t′∈R

∣∣∣∣∣∣EPV∞|Z∞
ft′

||u∗n||2 × Q̂LR
B

n (φ̂n)

σ2
ω

 | Zn
− EPZ∞ [ft′ (||u∗n||2 × Q̂LRn(φ0)

)]∣∣∣∣∣∣
≤ A1,n +A2,n

where the first line follows from the property that ft(·) = ftλ(λ × ·) for any λ ∈ R+ ; the second
line follows because by assumption, ||u∗n||2 ∈ [c2, C2]; the third line follows simply because {1{· ≤
tλ} : t ∈ R and λ ∈ R+} ⊆ {1{· ≤ t} : t ∈ R}. Finally, the last line is due to the triangle inequality
and the definitions of A1,n and A2,n.

By Theorem 4.3, under the null, ||u∗n||2 × Q̂LRn(φ0) converges weakly to Z2 ∼ χ2
1, whose

distribution is continuous. Therefore, by Polya’s theorem, A2,n = o(1). Similarly,

A1,n = sup
t′∈R

∣∣∣∣∣∣PV∞|Z∞
||u∗n||2 × Q̂LR

B

n (φ̂n)

σ2
ω

≤ t′ | Zn
− P (Z2 ≤ t′

)∣∣∣∣∣∣ = oPZ∞ (1)

by equation (B.26) and by the same arguments in Lemma 10.11 in Kosorok (2008) (which are in
turn analogous to those used in the proof of Polya’s theorem). Q.E.D.

We first recall some notation introduced in the main text. Let Tn ≡ {t ∈ R : |t| ≤ 4M2
nδn}. For

tn ∈ Tn, α(tn) ≡ α+ tnu
∗
n where u∗n = v∗n/ ‖v∗n‖sd and v∗n = (v∗′θ,n, v

∗
h,n (·))′. To simplify presentation
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we use rn = rn(tn) ≡
(
max{t2n, tnn−1/2, o(n−1)}

)−1
.

Proof of Lemma 5.1: For Result (1), if ω ≡ 1, then Assumption Boot.3(i) simplifies to

PZ∞

(
PV∞|Z∞

(
sup

(α,tn)∈Nosn×Tn
rn

∣∣∣∣Λ̂n(α(tn), α)− tn {Zn + 〈u∗n, α− α0〉} −
Bn
2
t2n

∣∣∣∣ ≥ δ | Zn
)
≤ δ

)
≥ 1−δ;

iff

PZ∞

(
sup

(α,tn)∈Nosn×Tn
rn

∣∣∣∣Λ̂n(α(tn), α)− tn {Zn + 〈u∗n, α− α0〉} −
Bn
2
t2n

∣∣∣∣ ≤ δ
)
≥ 1− δ,

where Λ̂n(α(tn), α) ≡ 0.5(Q̂n(α(tn)) − Q̂n(α)) and Bn is a Zn measurable random variable with
Bn = OPZ∞ (1). Therefore, if we could verify Assumption Boot.3(i) in Result (2), we also verify
Assumption 3.6(i).

For Result (2), we divide its proof in several steps.
Step 1: We first introduce some notation. Let

Pn(Zn) ≡ PV∞|Z∞
(

sup
(α,tn)∈Nosn×Tn

rn

∣∣∣∣Λ̂Bn (α(tn), α)− tn {Zωn + 〈u∗n, α− α0〉} −
Bω
n

2
t2n

∣∣∣∣ ≥ δ | Zn
)
.

Recall that `Bn (x, α) ≡ m̃(x, α) + m̂B(x, α0). Let

L̂Bn (α(tn), α) ≡ 1

2n

n∑
i=1

{
`Bn (Xi, α(tn))′Σ̂(Xi)

−1`Bn (Xi, α(tn))− `Bn (Xi, α)′Σ̂(Xi)
−1`Bn (Xi, α)

}
.

We need to show that PZ∞(Pn(Zn) < δ) ≥ 1 − δ eventually which is equivalent to show that
PZ∞(Pn(Zn) > δ) ≤ δ eventually. Hence, it suffices to show that

PZ∞({P ′n(Zn) > δ} ∩ Sn) + PZ∞(SCn ) ≤ δ, eventually,

for some event Sn that is measurable with respect to Zn, and some P ′n(Zn) ≥ Pn(Zn) a.s., here SCn
denotes the complement of Sn. In the following we take

Sn ≡

{
Zn : PV∞|Z∞

(
sup

(α,tn)∈Nosn×Tn
rn

∣∣∣Λ̂Bn (α(tn), α)− L̂Bn (α(tn), α)
∣∣∣ ≥ 0.5δ | Zn

)
< 0.5δ

}
,

and

P ′n(Zn) ≡PV∞|Z∞
(

sup
(α,tn)∈Nosn×Tn

rn

∣∣∣∣L̂Bn (α(tn), α)− tn {Zωn + 〈u∗n, α− α0〉} −
Bω
n

2
t2n

∣∣∣∣ ≥ 0.5δ | Zn
)

+ PV∞|Z∞

(
sup

(α,tn)∈Nosn×Tn
rn

∣∣∣Λ̂Bn (α(tn), α)− L̂Bn (α(tn), α)
∣∣∣ ≥ 0.5δ | Zn

)
.

It follows that we “only” need to show that

PZ∞(SCn ) ≤ 0.5δ and PZ∞({P ′n(Zn) > δ} ∩ Sn) ≤ 0.5δ, eventually.
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Since PZ∞(SCn ) can be expressed as

PZ∞

(
PV∞|Z∞

(
sup

(α,tn)∈An×Tn
rn

∣∣∣Λ̂Bn (α(tn), α)− L̂Bn (α(tn), α)
∣∣∣ ≥ 0.5δ | Zn

)
≥ 0.5δ

)
,

which, by Lemma A.2(3), is in fact less than 0.5δ. We only need to verify

PZ∞({P ′n(Zn) > δ} ∩ Sn) ≤ 0.5δ, eventually.

It is easy to see that

PZ∞({P ′n(Zn) > δ} ∩ Sn)

≤PZ∞
(
PV∞|Z∞

(
sup

(α,tn)∈Nosn×Tn
rn

∣∣∣∣L̂Bn (α(tn), α)− tn {Zωn + 〈u∗n, α− α0〉} −
Bω
n

2
t2n

∣∣∣∣ ≥ 0.5δ | Zn
)
> 0.5δ

)
.

Hence, in order to prove the desired result, it suffices to show that

PZ∞

(
PV∞|Z∞

(
sup

(α,tn)∈Nosn×Tn
rn

∣∣∣∣L̂Bn (α(tn), α)− tn {Zωn + 〈u∗n, α− α0〉} −
Bω
n

2
t2n

∣∣∣∣ ≥ δ | Zn
)
> δ

)
< δ

(B.31)
eventually.

Step 2: For any α ∈ Nosn and tn ∈ Tn, α(tn) = α + tnu
∗
n, under Assumption A.7(i), we can

apply the mean value theorem (wrt tn) and obtain

L̂Bn (α(tn), α) =
tn
n

n∑
i=1

(
dm̃(Xi, α)

dα
[u∗n]

)′
Σ̂(Xi)

−1`Bn (Xi, α)

+
t2n
2n

∫ 1

0

n∑
i=1

(
dm̃(Xi, α(s))

dα
[u∗n]

)′
Σ̂(Xi)

−1

(
dm̃(x, α(s))

dα
[u∗n]

)
ds

+
t2n
2n

∫ 1

0

n∑
i=1

(
d2m̃(Xi, α(s))

dα2
[u∗n, u

∗
n]

)′
Σ̂(Xi)

−1`Bn (Zi, α(s))ds

≡tnTB1n(α) +
t2n
2
{T2n(α) + TB3n(α)},

where α(s) ≡ α+ stnu
∗
n ∈ Nosn.

From these calculations and the fact that PV∞|Z∞(an + bn ≥ d|Zn) ≤ PV∞|Z∞(an ≥ 0.5d|Zn) +
PV∞|Z∞(bn ≥ 0.5d|Zn) a.s. for any two measurable random variables an and bn, it follows that

PV∞|Z∞

(
sup

(α,tn)∈Nosn×Tn
rn

∣∣∣∣L̂Bn (α(tn), α)− tn {Zωn + 〈u∗n, α− α0〉} −
Bω
n

2
t2n

∣∣∣∣ ≥ 0.5δ | Zn
)

≤PV∞|Z∞
(

sup
(α,tn)∈Nosn×Tn

rntn
∣∣TB1n(α)− {Zωn + 〈u∗n, α− α0〉}

∣∣ ≥ 0.25δ | Zn
)

+ PV∞|Z∞

(
sup

(α,tn)∈Nosn×Tn
rn
t2n
2

∣∣{T2n(α) + TB3n(α)} −Bω
n

∣∣ ≥ 0.25δ | Zn
)
.
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Hence, in order to show equation (B.31), it suffices to show that

PZ∞

(
PV∞|Z∞

(
sup

(α,tn)∈Nosn×Tn
rntn

∣∣TB1n(α)− {Zωn + 〈u∗n, α− α0〉}
∣∣ ≥ δ | Zn) ≥ δ) < δ

and

PZ∞

(
PV∞|Z∞

(
sup

(α,tn)∈Nosn×Tn

rnt
2
n

2

∣∣{T2n(α) + TB3n(α)} −Bω
n

∣∣ ≥ δ | Zn) ≥ δ) < δ

eventually.
Since rntn ≤ n1/2, by Lemma A.3, the first equation holds. Since rnt

2
n ≤ 1, then in order to

verify the second equation it suffices to verify that, for any δ > 0,

PZ∞

(
sup

α∈Nosn
|T2n(α)−Bω

n | ≥ δ
)
< δ, ∀n ≥ N(δ),

and

PZ∞

(
PV∞|Z∞

(
sup

α∈Nosn

∣∣TB3n(α)
∣∣ ≥ δ | Zn) ≥ δ) < δ, ∀n ≥ N(δ).

By Lemmas A.5(1) and A.4, these two equations hold.
By our choice of `Bn () (in particular the fact that m̃ is measurable with respect to Zn), it follows

that Bω
n = Bn = OPV∞|Z∞ (1) wpa1(PZ∞). Thus we verified Assumption Boot.3(i).

Finaally, Lemma A.5(2) implies
∣∣Bω

n − ||u∗n||2
∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞) and

∣∣Bn − ||u∗n||2∣∣ =
oPZ∞ (1). Q.E.D.

The following lemma is a LLN for triangular arrays.

Lemma B.4. Let ((Xi,n)ni=1)∞n=1 be a triangular array of real valued random variables such that
(a) X1,n, ..., Xn,n are independent and Xi,n ∼ Pi,n, for all n, (b) E[Xi,n] = 0 for all i and n, and
(c) there is a sequence of non-negative real numbers (bn)n such that bn = o(

√
n) and

lim sup
n→∞

n−1
n∑
i=1

E[|Xi,n|1{|Xi,n| ≥ bn}] = 0.

Then: for all ε > 0, there is a N(ε) such that

Pr

(∣∣∣∣∣n−1
n∑
i=1

Xi,n

∣∣∣∣∣ ≥ ε
)
< ε

for all n ≥ N(ε).

It is easy to see that a sufficient condition for condition (c) in Lemma B.4 is that: E[|Xi,n|%(|Xi,n|)] ≤
ηn < ∞ for all n, where % : R+ → R+ is a strictly increasing bounded function, and (ηn)n a se-

quence of non-negative real numbers, such that %(bn) = (4ηn/ε
2) and (%−1(ηnc))2

n = o(1), for some
constant c > 0.

Proof of Lemma B.4: We obtain the result by modifying the proofs of Billingsley (1995) theorem
22.1 and of Feller (1970) (p. 248). For any ε > 0, let

Xi,n = Xi,n1{|Xi,n| ≤ bn}+Xi,n1{|Xi,n| > bn} ≡ XB
i,n +XU

i,n.
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Thus,

Pr

(∣∣∣∣∣n−1
n∑
i=1

Xi,n

∣∣∣∣∣ ≥ ε
)
≤ Pr

(∣∣∣∣∣n−1
n∑
i=1

XB
i,n

∣∣∣∣∣ ≥ 0.5ε

)
+ Pr

(∣∣∣∣∣n−1
n∑
i=1

XU
i,n

∣∣∣∣∣ ≥ 0.5ε

)
≡ T1,ε + T2,ε.

By conditions (b) and (c), it is easy to see that, for large enough n,

T1,ε ≤ Pr

(∣∣∣∣∣n−1
n∑
i=1

{XB
i,n − E[XB

i,n]}

∣∣∣∣∣ ≥ 0.25ε

)
+ 1{E[XB

i,n] ≥ 0.25ε}

= Pr

(∣∣∣∣∣n−1
n∑
i=1

{XB
i,n − E[XB

i,n]}

∣∣∣∣∣ ≥ 0.25ε

)
≤ 2 exp

(
−const.ε

2n

b2n

)
,

for some finite constant const > 0, where the last inequality is due to Hoeffding inequality (cf.
Van der Vaart and Wellner (1996) Appendix A.6). Thus, there is a N(ε) such that for all n ≥ N(ε),
T1,ε < 0.5ε.

For T2,ε, by Markov inequality and then by condition (c), we have:

T2,ε ≤ (ε/2)−1n−1
n∑
i=1

∫
{|x|≥bn}

|x|Pi,n(dx)

= (ε/2)−1n−1
n∑
i=1

∫
|x|1{|x| ≥ bn}Pi,n(dx) < 0.5ε

eventually. Q.E.D.

Proof of Lemma 5.2: We divide the proof into several steps.

Step 1. We first show that

Sn ≡

{
Zn :

∣∣∣∣∣n−1
n∑
i=1

(g(Xi, u
∗
n)ρ(Zi, α0))2 − E[g(X,u∗n)Σ0(X)g(X,u∗n)′]

∣∣∣∣∣ ≤ δ
}

occurs wpa1(PZ∞). For this we apply Lemma B.4. Using the notation in the lemma, we let Xi,n ≡
(g(Xi, u

∗
n)ρ(Zi, α0))2 −E[g(X,u∗n)Σ0(X)g(X,u∗n)′], and thus conditions (a) and (b) of Lemma B.4

immediately follow (note that E[g(X,u∗n)Σ0(X)g(X,u∗n)′] = 1). In order to check condition (c),
note first that for any generic random variable X with mean µ <∞, it follows

E[|x− µ|1{|x− µ| ≥ bn}] ≤ E[|x|1{|x| ≥ bn − |µ|}] + |µ|Pr{|x| ≥ bn − |µ|}.

Since bn is taken to diverge, we can “redefine” bn as bn − |µ|. Moreover,

Pr{|x| ≥ bn − |µ|} ≤ E[max{|x|, 1}1{|x| ≥ bn − |µ|}].

Again, since bn is taken to diverge the only relevant case is |x| ≥ 1. Therefore, it suffices to study
E[|x|1{|x| ≥ bn}] in order to bound E[|x − µ|1{|x − µ| ≥ bn}]. Thus, applied to our case, it is
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sufficient to verify that

lim sup
n→∞

n−1
n∑
i=1

E
[
(g(Xi, u

∗
n)ρ(Zi, α0))21

{
(g(Xi, u

∗
n)ρ(Zi, α0))2 ≥ bn

}]
= 0.

This holds under our equation (5.1).

Step 2. Step 3 below shows that under assumption Boot.1,

sup
f∈BL1

∣∣∣∣E [f (√nZω−1
n

σω

)
| Zn

]
− E [f (Z)]

∣∣∣∣ = oPZ∞ (1),

where Z ∼ N(0, 1). Also, Step 4 below shows that the same result holds under assumption Boot.2.

Step 3. Let
√
nZω−1

n
σω

= 1√
n

∑n
i=1 ζisi,n where ζi = (ωi − 1)σ−1

ω and si,n ≡ g(Xi, u
∗
n)ρ(Zi, α0).

We first want to show that
1√
n

n∑
i=1

ζisi,n ⇒ Z, wpa1(PZ∞).

Thus, it suffices to show that any sub-sequence, contains a further sub-sequence, (nk)k, such that
(see Billingsley (1995) Theorem 20.5, p. 268)

1
√
nk

nk∑
i=1

ζisi,nk ⇒ Z, a.s.− (PZ∞).

Since Sn occurs wpa1(PZ∞) (Step 1), it follows that any sub-sequence, contains a further sub-
sequence such that n−1

k

∑nk
i=1(si,nk)2 → 1 , a.s. − (PZ∞). Moreover, maxi≤nk |si,nk |/

√
nk = o(1),

a.s.− (PZ∞). This follows since, for any ε > 0,

PZ∞

(
max
i≤n
|si,n| ≥ ε

√
n

)
≤

n∑
i=1

∫
|s|≥ε

√
n
Pi,n(ds) ≤ ε−2n−1

n∑
i=1

∫
|s|≥ε

√
n
s2Pi,n(ds)

= ε−2n−1
n∑
i=1

E[s2
i,n1{|si,n| ≥ ε

√
n}].

We note that 1{|si,n| ≥ ε
√
n} ≤ 1{|si,n|2 ≥ bn} (provided that |si,n| ≥ 1, but if it is not, then the

proof is trivial). Hence by equation (5.1) and the fact that si,n are row-wise iid, the RHS is of order
o(1). Going to a sub-sequence establishes the result. Hence, for any ε > 0.

n−1
k

nk∑
i=1

(si,nk)2EPΩ
[ζ2
i 1{ζi|si,nk | > ε

√
nk}]→ 0.

By Lindeberg-Feller CLT, it follows that 1√
nk

∑nk
i=1 ζisi,nk ⇒ Z, a.s.− (PZ∞) where Z ∼ N(0, 1).

We have thus showed that any sub-sequence, contains a further sub-sequence such that the
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above equation holds; therefore

sup
f∈BL1

∣∣∣∣∣E
[
f

(
1√
n

n∑
i=1

ζisi,n

)
| Zn

]
− E [f (Z)]

∣∣∣∣∣ = oPZ∞ (1).

Step 4. We proceed as in Step 3. The difference is that now (ζi)i are not iid, but exchangeable.
To overcome this, we follow lemma 3.6.15 in VdV-W. As before, we want to show that any sub-
sequence, contains a further sub-sequence, (nk)k, such that

1
√
nk

nk∑
i=1

ζisi,nk ⇒ Z, a.s.− (PZ∞).

To do this we follow lemma 3.6.15 (or rather their lemma A.5.3) in VdV-W for a given sub-
sequence (nk)k. Let (using their notation) n = nk, ani ≡ si,nk and Wni ≡ ζi = (ωi,n − 1). By
assumption Boot.2, n−1

∑n
i=1Wni = 0, n−1

∑n
i=1W

2
ni → 1 and n−1 max1≤i≤nW

2
ni = oPΩ

(1). And
n−1

∑n
i=1 ani ≡ an < ∞ (in their lemma, VdV-W require an = 0, but is easy to see that it is not

necessary if n−1
∑n

i=1Wni = 0, see Preastgaard (1991) lemma 5, p. 35), n−1 max1≤i≤n a
2
ni = o(1)

(this can be establish in the exact same way as it was done in step 3), and finally we need:

lim sup
n→∞

n−2
n∑
i=1

n∑
j=1

(Wnjani)
21{|aniWnj | > ε

√
n} = 0, a.s.− PZ∞ .

To show this, we note that

PΩ

(
max

1≤i≤n
Wni ≥ Lnn0.5−c

)
= o(1)

for any c < 0.5 and Ln = log(n) or log(log(n)). This follows from the same calculations used to

bound n−1 max1≤i≤n a
2
ni and the fact that E[|Wni|

2
1−2c ] ≤ const. <∞ for n large enough. We can

obtain a a.s. version of this result by going to a sub-sequence.
Since

n−2
n∑
i=1

n∑
j=1

(Wnjani)
21{|aniWnj | > ε

√
n} ≤ n−1

n∑
i=1

n∑
j=1

(ani)
21{|ani| > ε

√
nLn

|Wni|nc
nc/Ln},

then by the previous result
√
nLn

|Wni|nc ≥ 1 a.s.-−PZ∞ and the desired result follows from equation (5.1)

and choosing c such that bn ≤ nc/Ln (since bn = o(n1/2) we can always find such c < 0.5).
So, by lemma 3.6.15 (or lemma A.5.3) in Van der Vaart and Wellner (1996),

1
√
nk

nk∑
i=1

ζisi,nk ⇒ Z, a.s.− (PZ∞).

The rest of the steps are analogous to those in Step 3 and will not be repeated here. Q.E.D.
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B.3.1 Alternative bootstrap sieve t statistics

In this subsection we present additional bootstrap sieve t statistics. Recall that Ŵn ≡
√
nφ(α̂n)−φ(α0)
||v̂∗n||n,sd

is the original sample sieve t statistic. The first one is ŴB
1,n ≡

√
nφ(α̂Bn )−φ(α̂n)

σω ||v̂∗n||n,sd
. In the defini-

tion of ŴB
2,n one could also define ||v̂∗n||2B,sd using Σ̂B

0i = Ên[%(V, α̂n)%(V, α̂n)′|X = Xi] instead of

%(Vi, α̂n)%(Vi, α̂n)′, which will be a bootstrap analog to ||v̂∗n||2n,sd defined in equation (B.5).

Let ŴB
3,n ≡

√
nφ(α̂Bn )−φ(α̂n)
||v̂Bn ||B,sd

where ||v̂Bn ||2B,sd is a bootstrap sieve variance estimator that is

constructed as follows. First, we define

||v||2B,M ≡ n−1
n∑
i=1

(
dm̂B(Xi, α̂

B
n )

dα
[·]
)′
Mn,i

(
dm̂B(Xi, α̂

B
n )

dα
[·]
)
,

where Mn,i is some (almost surely) positive definite weighting matrix. Let v̂Bn be a bootstrapped

empirical Riesz representer of the linear functional dφ(α̂Bn )
dα [·] under || · ||B,Σ̂−1 . We compute a

bootstrap sieve variance estimator as:

||v̂Bn ||2B,sd ≡
1

n

n∑
i=1

(
dm̂B(Xi, α̂

B
n )

dα
[v̂Bn ]

)′
Σ̂−1
i %(Vi, α̂

B
n )%(Vi, α̂

B
n )′Σ̂−1

i

(
dm̂B(Xi, α̂

B
n )

dα
[v̂Bn ]

)
(B.32)

with %(Vi, α) ≡ (ωi,n − 1)ρ(Zi, α) ≡ ρB(Vi, α) − ρ(Zi, α) for any α. That is, ||v̂Bn ||2B,sd is a

bootstrap analog to ||v̂∗n||2n,sd defined in equation (4.7). One could also define ||v̂Bn ||2B,sd using

Ên[%(V, α̂Bn )%(V, α̂Bn )′|X = Xi] instead of %(Vi, α̂
B
n )%(Vi, α̂

B
n )′, which will be a bootstrap analog to

||v̂∗n||2n,sd defined in equation (B.5). In addition, one could also define ||v̂Bn ||2B,sd using α̂n instead

of α̂Bn . In terms of the first order asymptotic approximation, this alternative definition yields the
same asymptotic results. Due to space considerations, we omit these alternative bootstrap sieve
variance estimators.

The bootstrap sieve variance estimator ||v̂Bn ||2B,sd also has a closed form expression: ||v̂Bn ||2B,sd =

(ẑB
n )′(D̂B

n )−1f̂B3,n(D̂B
n )−1ẑB

n with

ẑB
n =

dφ(α̂Bn )

dα
[ψ
k(n)

(·)′], D̂B
n =

1

n

n∑
i=1

(
dm̂B(Xi, α̂

B
n )

dα
[ψ
k(n)

(·)′]
)′

Σ̂−1
i

(
dm̂B(Xi, α̂

B
n )

dα
[ψ
k(n)

(·)′]
)
,

f̂B3,n =
1

n

n∑
i=1

(
dm̂B(Xi, α̂

B
n )

dα
[ψ
k(n)

(·)′]
)′

Σ̂−1
i (ωi,n − 1)2ρ(Zi, α̂

B
n )ρ(Zi, α̂

B
n )′Σ̂−1

i

(
dm̂B(Xi, α̂

B
n )

dα
[ψ
k(n)

(·)′]
)
.

This expression is computed in the same way as ||v̂∗n||2n,sd = ẑ′nD̂−1
n f̂nD̂−1

n ẑn given in (4.9) but

using bootstrap analogs. Note that this bootstrap sieve variance only uses α̂Bn , and is easy to
compute.

When specialized to the NPIV model (2.18) in subsection 2.2.1, the expression ||v̂Bn ||2B,sd simpli-

fies further, with ẑB
n = dφ(ĥBn )

dα [qk(n)(·)′], D̂B
n = 1

n Ĉ
B
n (P ′P )−(ĈBn )′, ĈBn =

∑n
j=1 ωj,nq

k(n)(Y2j)p
Jn(Xj)

′,

f̂B3,n =
1

n
ĈBn (P ′P )−

(
n∑
i=1

pJn(Xi)[(ωi,n − 1)ÛBi ]2pJn(Xi)
′

)
(P ′P )−(ĈBn )′, with ÛBi = Y1i−ĥBn (Y2i).

This expression is analogous to that for a 2SLS t-bootstrap test; see Davidson and MacKinnon
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(2010). We leave it to further work to study whether this bootstrap sieve t statistic might have
second order refinement by choice of some IID bootstrap weights.

Recall that M̂B
i = (ωi,n − 1)2M̂i and M̂i = Σ̂−1

i ρ(Zi, α̂n)ρ(Zi, α̂n)′Σ̂−1
i .

Assumption B.3. (i) sup
v1,v2∈V

1
k(n)
|〈v1, v2〉B,Σ−1 − 〈v1, v2〉n,Σ−1 | = oPV∞|Z∞ (1) wpa1(PZ∞);

(ii) sup
v∈V1

k(n)
|〈v, v〉B,M̂B − σ2

ω〈v, v〉n,M̂ | = oPV∞|Z∞ (1) wpa1(PZ∞);

(iii) sup
v∈V1

k(n)
n−1

∑n
i=1(ωi,n − 1)2

∥∥∥dm̂B(Xi,α̂
B
n )

dα [v]
∥∥∥2

e
= OPV∞|Z∞ (1) wpa1(PZ∞).

Assumption B.3(i)(ii) is analogous to Assumption 4.1(ii)(v). Assumption B.3(iii) is a mild one,
for example, it is implied by Assumptions for Lemma A.1 and uniformly bounded bootstrap weights
(i.e., |ωi,n| ≤ C <∞ for all i).

The following result is a bootstrap version of Theorem 4.2.

Theorem B.3. Let Conditions for Theorem 4.2(1) and Lemma A.1, Assumption B.3 hold. Then:

(1)

∣∣∣∣ ||v̂Bn ||B,sdσω||v∗n||sd
− 1

∣∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞).

(2) If further, conditions for Theorem 5.2(1) hold, then:

ŴB
3,n = −

√
n
Zω−1
n

σω
+ oPV∞|Z∞ (1) wpa1(PZ∞),

∣∣∣LV∞|Z∞ (ŴB
3,n | Zn

)
− L

(
Ŵn

)∣∣∣ = oPZ∞ (1), and

sup
t∈R

∣∣∣PV∞|Z∞(ŴB
3,n ≤ t|Zn)− PZ∞(Ŵn ≤ t)

∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞).

Proof of Theorem B.3. For Result (1), the proof is analogous to the one for Theorem 4.2(1).
As in the proof of Theorem 4.2(1), it suffices to show that

||v̂Bn − v∗n||
||v∗n||

= oPV∞|Z∞ (1) wpa1(PZ∞), (B.33)

and ∣∣∣∣ ||v̂Bn ||B,sd − ||v̂Bn ||sd||v∗n||

∣∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞). (B.34)

Following the same derivations as in the proof of theorem 4.2(1) step 1, for equation (B.33), it
suffices to show

|〈$̂B
n , $〉B,Σ̂−1 − 〈$̂B

n , $〉B,Σ−1 | = oPV∞|Z∞ (1) and |〈$̂B
n , $〉B,Σ−1 − 〈$̂B

n , $〉Σ−1 | = oPV∞|Z∞ (1)

wpa1(PZ∞), uniformly over $ ∈ V
1
k(n); where $̂B

n = v̂Bn
||v̂Bn ||

. The first term follows by Assumptions

4.1(iii) and 3.1(iv) and the fact that 〈$,$〉B,Σ−1 = OPV∞|Z∞ (1) wpa1(PZ∞) (by Assumptions
B.3(i) and 4.1(ii)). The second term follows directly from these two assumptions.

Regarding equation (B.34), following the same derivations as in the proof of Theorem 4.2 step 2,
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it suffices to show that
∣∣∣||$̂B

n ||2B,sd − ||$̂B
n ||2sd

∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞). By the triangle inequality,

sup
v∈V1

k(n)

|〈v, v〉B,ŴB − σ2
ω〈v, v〉n,M̂ | ≤ sup

v∈V1
k(n)

∣∣∣〈v, v〉B,ŴB − 〈v, v〉B,M̂B

∣∣∣+ sup
v∈V1

k(n)

∣∣∣〈v, v〉B,M̂B − σ2
ω〈v, v〉n,M̂

∣∣∣
≡ AB1n +AB2n

with ŴB
i ≡ Σ̂−1

i %(Vi, α̂
B
n )%(Vi, α̂

B
n )′Σ̂−1

i = (ωi,n− 1)2Σ̂−1
i ρ(Zi, α̂

B
n )ρ(Zi, α̂

B
n )′Σ̂−1

i and M̂B
i = (ωi,n−

1)2M̂i and M̂i = Σ̂−1
i ρ(Zi, α̂n)ρ(Zi, α̂n)′Σ̂−1

i .
It is easy to see that AB1n is bounded above by

sup
x
||Σ̂−1(x){ρ(z, α̂Bn )ρ(z, α̂Bn )′ − ρ(z, α̂n)ρ(z, α̂n)′}Σ̂−1(x)||en−1

n∑
i=1

(ωi,n − 1)2
∥∥∥T̂Bi [v]

∥∥∥2

e

≤2 sup
x

sup
α∈Nosn

||Σ̂−1(x){ρ(z, α)ρ(z, α)′ − ρ(z, α0)ρ(z, α0)′}Σ̂−1(x)||en−1
n∑
i=1

(ωi,n − 1)2
∥∥∥T̂Bi [v]

∥∥∥2

e

where T̂Bi [v] ≡ dm̂B(Xi,α̂
B
n )

dα [v]. The second line follows because α̂B ∈ Nosn wpa1. The first term in
the RHS is of order oPZ∞ (1) by Assumption 4.1(iv). The second term is OPV∞|Z∞ (1) by Assumption
B.3(iii).

AB2n is of order oPV∞|Z∞ (1) wpa1(PZ∞) by Assumption B.3(ii).
Result (1) now follows from the same derivations as in the proof of Theorem 4.2(1) step 2a.
Given Result (1), Result (2) follows from exactly the same proof as that of Theorem 5.2(1),

and is omitted. Q.E.D.

B.4 Proofs for Section 6 on examples

Proof of Proposition 6.1. By our assumption over clsp{pj : j = 1, ..., J}, dm(x,α0)
dα [u∗n] ∈ clsp{pj :

j = 1, ..., Jn} provided k(n) ≤ Jn, and thus Assumption A.6 (i) trivially holds. Since Σ = 1,
Assumption A.6 (ii) is the same as Assumption A.6 (i).

We now show that Assumption A.6(iii)(iv) holds under condition 6.1. First, condition 6.1(i)
implies that {(E[h(Y2)− h0(Y2)|·])2 : h ∈ H} is a P-Donsker class and, moreover,

E[(E[h(Y2)− h0(Y2)|X])4] ≤ 2c× ||h− h0||2 → 0

as ||h−h0||L2(fY2
) → 0. So by Lemma 1 in Chen et al. (2003), Assumption A.6(iii) holds. Regarding

Assumption A.6(iv). By Theorem 2.14.2 in VdV-W, (up to omitted constants)

E

[∣∣∣∣∣ sup
f∈Fn

n−1/2
n∑
i=1

{f(Xi)− E[f(Xi)]}

∣∣∣∣∣
]
≤
∫ ||Fn||L2(fX )

0

√
1 + logN[](u,Fn, || · ||L2(fX))du

where Fn ≡ {f : f = g(·, u∗n)(m(·, α)−m(·, α0)), some α ∈ Nosn} and

Fn(x) ≡ sup
Fn
|f(x)| = sup

α∈Nosn
|g(x, u∗n){m(x, α)−m(x, α0)}|.

We claim that, under our assumptions,

N[](u,Fn, || · ||L2(fX)) ≤ N[](u,Λ
γ
c (X ), || · ||L∞).
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To show this claim, it suffices to show that given a radius δ > 0, if we take {[lj , uj ]}N(δ)
j=1 to be

brackets of Λγc (X ) under || · ||L∞ , then we can construct {[ln,j , un,j ]}N(δ)
j=1 such that: they are valid

brackets of Fn, under || · ||L2(fX). To show this, observe that, for any fn ∈ Fn, there exists a
α ∈ Nosn, such that fn = g(·, u∗n){m(·, α)−m(·, α0)}, and under condition 6.1, it follows that there
exists a j ∈ {1, ..., N(δ)} such that

lj ≤ m(·, α)−m(·, α0) ≤ uj , (B.35)

hence, there exists a [ln,j , un,j ] such that, for all x,

ln,j(x) = (1{g(x, u∗n) > 0}lj(x) + 1{g(x, u∗n) < 0}uj(x))g(x, u∗n),

and

un,j(x) = (1{g(x, u∗n) > 0}uj(x) + 1{g(x, u∗n) < 0}lj(x))g(x, u∗n).

such that ln,j ≤ fn ≤ un,j . Also, observe that

||ln,j − un,j ||L2(fX) =
√
E[(g(X,u∗n))2(uj(X)− lj(X))2] ≤ ||uj − lj ||L∞ ≤ δ

because E[(g(X,u∗n))2] = ||u∗n||2 = 1 and ||uj − lj ||L∞ ≤ δ by construction.
Therefore,

E

[∣∣∣∣∣ sup
f∈Fn

n−1/2
n∑
i=1

{f(Xi)− E[f(Xi)]}

∣∣∣∣∣
]
≤
∫ ||Fn||L2(fX )

0

√
1 + logN[](u,Λ

γ
c (X ), || · ||L∞)du.

Since by assumption γ > 0.5, it is well-known that
√

1 + logN[](u,Λ
γ
c (X ), || · ||L∞) is integrable,

so in order to show that E
[∣∣supf∈Fn n

−1/2
∑n

i=1{f(Xi)− E[f(Xi)]}
∣∣] = o(1), it suffices to show

that ||Fn||L2(fX) = o(1). In order to show this,

||Fn||L2(fX) ≤
√
E[(g(X,u∗n))2( sup

Nosn
|m(X,α)−m(X,α0)|)2]

=
√
E[(g(X,u∗n))2( sup

Nosn
|E[h(Y2)− h0(Y2)|X]|)2]

=

√
E[(g(X,u∗n))2 sup

Nosn

∫
(h(y2)− h0(y2))2fY2|X(y2, X)dy2]

=

√
E[(g(X,u∗n))2 sup

Nosn

∫
(h(y2)− h0(y2))2

fY2X(y2, X)

fY2(y2)fX(X)
fY2(y2)dy2]

≤ sup
x,y2

fY2X(y2, x)

fY2(y2)fX(x)
sup
Nosn
||h− h0||L2(fY2

)

√
E[(g(X,u∗n))2]

≤Const.×Mnδs,n → 0

where the last expression follows from the fact that E[(g(X,u∗n))2] = ||u∗n||2 = 1 and condition
6.1(ii), that states that

sup
x,y2

fY2X(y2, x)

fY2(y2)fX(x)
≤ Const. <∞.
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Hence, E
[∣∣supf∈Fn n

−1/2
∑n

i=1{f(Xi)− E[f(Xi)]}
∣∣] = o(1) which implies assumption A.6(iv).

Finally, Assumption A.7 is automatically satisfied with the NPIV model. Q.E.D.

Proof of Proposition 6.2. Assumptions A.6(i) and (ii) hold by the same calculations as those in
the proof of Proposition 6.1 (for the NPIV model). Also, under Condition 6.2(i), {E[FY1|Y2X(h(Y2), Y2, ·)|·] :
h ∈ H} ⊆ Λγc (X ) with γ > 0.5, Assumptions A.6(iii) and (iv) hold by similar calculations to those
in the proof of Proposition 6.1.

Assumption A.7(i) is standard in the literature. Regarding Assumption A.7(ii), observe that
for any h ∈ Nosn,∣∣∣∣dm(x, h)

dh
[u∗n]− dm(x, h0)

dh
[u∗n]

∣∣∣∣
=
∣∣E [{fY1|Y2X(h(Y2), Y2, x)− fY1|Y2X(h0(Y2), Y2, x)}u∗n(Y2) | X = x

]∣∣
=

∣∣∣∣∫ {∫ 1

0

dfY1|Y2X(h0(t)(y2), y2, x)

dy1
(h(y2)− h0(y2))u∗n(y2)dt

}
fY2|X(y2, x)dy2

∣∣∣∣
=

∣∣∣∣∫ (∫ 1

0

dfY1|Y2X(h0(t)(y2), y2, x)

dy1
dt

)
(h(y2)− h0(y2))u∗n(y2)fY2(y2)

(
fY2X(y2, x)

fY2(y2)fX(x)

)
dy2

∣∣∣∣
=

∣∣∣∣∫ Γ1(y2, x)Γ2(y2, x)(h(y2)− h0(y2))u∗n(y2)fY2(y2)dy2

∣∣∣∣
≤||Γ1(·, x)Γ2(·, x)||L∞ × ||h− h0||L2(fY2

)||u∗n||L2(fY2
)

where h0(t) ≡ h0+t{h−h0} and Γ1(y2, x) ≡
(∫ 1

0

dfY1|Y2X
(h0(t)(y2),y2,x)

dy1
dt
)

and Γ2(y2, x) ≡ fY2X
(y2,x)

fY2
(y2)fX(x) ;

the last line follows from Cauchy-Swarchz inequality.
Under Condition 6.2(ii), it follows that

sup
y1,y2,x

|
dfY1|Y2X(y1, y2, x)

dy1
| ≤ C <∞

and, under Condition 6.1(ii), it follows that

sup
x,y2

∣∣∣∣ fY2X(y2, x)

fY2(y2)fX(x)

∣∣∣∣ ≤ C <∞.

Then it is easy to see that ||Γj(·, x)||L∞(fY2
) ≤ C <∞ for both j = 1, 2. Thus∣∣∣∣dm(x, h)

dh
[u∗n]− dm(x, h0)

dh
[u∗n]

∣∣∣∣ ≤ C2 × ||h− h0||L2(fY2
)||u∗n||L2(fY2

)

and thus, Assumption A.7(ii) is satisfied provided that n×M2
nδ

2
n suph∈Nosn ||h−h0||2L2(fY2

)||u
∗
n||2L2(fY2

) =

o(1). Since ||u∗n||L2(fY2
) ≤ cµ−1

k(n) it suffices to show that

nM4
nδ

2
n(||Πnh0 − h0||L2(fY2

) + µ−1
k(n)δn)2µ−2

k(n) = o(1).

By assumption, ||Πnh0 − h0||L2(fY2
) ≤ Const.× µ−1

k(n)δn = O(δs,n) and δ2
n � Const.k(n)/n , then it

suffices to show that
nM4

nδ
4
s,n = o(1),

which holds by Condition 6.3.
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Regarding Assumption A.7(iii), observe that for any h ∈ Nosn,

d2m(x, h)

dh2
[u∗n, u

∗
n] =

∫
dfY1|Y2X(h(y2), y2, x)

dy1
(u∗n(y2))2fY2|X(y2, x)dy2.

Again by Conditions 6.2(ii) and 6.1(ii), it follows that
∣∣∣d2m(x,h)

dh2 [u∗n, u
∗
n]
∣∣∣ ≤ C2 × ||u∗n||2L2(fY2

). Since

||u∗n||L2(fY2
) ≤ const× µ−1

k(n), Assumption A.7(iii) holds because

µ−2
k(n) × (Mnδn)2 = o(1), or M2

nδ
2
s,n = o(1).

Finally, we verify Assumption A.7(iv). By our previous calculations∣∣∣∣dm(x, h1)

dh
[h2 − h0]− dm(x, h0)

dh
[h2 − h0]

∣∣∣∣
=

∣∣∣∣∫ (∫ dfY1|Y2X(h0(y2) + t[h1(y2)− h0(y2)], y2, x)

dy1
dt

)
(h1(y2)− h0(y2))(h2(y2)− h0(y2))fY2|X(y2, x)dy2

∣∣∣∣
≤C2 ×

∫
|(h1(y2)− h0(y2))(h2(y2)− h0(y2))|fY2(y2)dy2

≤C2 × ||h1 − h0||L2(fY2
)||h2 − h0||L2(fY2

),

where the first inequality follows from Conditions 6.2(ii) and 6.1(ii), and the last one from Cauchy-
Swarchz inequality. This result and Cauchy-Swarchz inequality together imply that∣∣∣∣E [g(X,u∗n)

(
dm(X,h1)

dh
[h2 − h0]− dm(X,h0)

dh
[h2 − h0]

)]∣∣∣∣
≤C2

√
E[(g(X,u∗n))2]||h1 − h0||L2(fY2

)||h2 − h0||L2(fY2
)

≤const× ||h1 − h0||L2(fY2
)||h2 − h0||L2(fY2

),

where the last line follows from E[(g(X,u∗n))2] = ||u∗||2 � 1. Thus, Assumption A.7(iv) follows if

δ2
s,n = (||Πnh0 − h0||L2(fY2

) + µ−1
k(n)δn)2 = o(n−1/2)

which holds by Condition 6.3. Q.E.D.

92



C Supplement: Proofs of the Results in Appendix A

In Appendix C, we provide the proofs of all the lemmas, theorems and propositions stated in
Appendix A.

C.1 Proofs for Section A.2 on convergence rates of bootstrap PSMD estimators

Proof of Lemma A.1: For Result (1), we prove this result in two steps. First, we show that
α̂Bn ∈ A

M0

k(n) wpa1-PV∞|Z∞ for any Z∞ in a set that occurs probability approaching PZ∞ one, where

AM0

k(n) is defined in the text. Second, we establish consistency, using the fact that we are in the

AM0

k(n) set.

Step 1. We show that for any δ > 0, there exists a N(δ) such that

PZ∞
(
PV∞|Z∞

(
α̂Bn /∈ AM0

k(n)|Z
n
)
< δ
)
≥ 1− δ, ∀n ≥ N(δ).

To show this, note that, by definition of α̂Bn ,

λnPen(ĥBn ) ≤ Q̂Bn (α̂n) + λnPen(ĥn) + oPV∞|Z∞ (
1

n
), wpa1(PZ∞).

By Assumption A.1(i) and the definition of α̂n ∈ Ak(n),

λnPen(ĥBn ) ≤ c∗0

(
Q̂n(α̂n) + λnPen(ĥn)

)
+ oPV∞|Z∞ (

1

n
), wpa1(PZ∞)

≤ c∗0

(
Q̂n(Πnα0) + λnPen(Πnh0)

)
+ oPV∞|Z∞ (

1

n
), wpa1(PZ∞).

By Assumptions 3.2(i)(ii) and 3.3(i),

λnPen(ĥBn ) ≤ c∗0c0Q(Πnα0) + λnPen(h0) +OPV∞|Z∞ (λn + o(
1

n
)), wpa1(PZ∞).

By the fact that Q(Πnα0) + o( 1
n) = O(λn), the desired result follows.

Step 2. We want to show that for any δ > 0, there exists a N(δ) such that

PZ∞
(
PV∞|Z∞

(
||α̂Bn − α0||s ≥ δ|Zn

)
< δ
)
≥ 1− δ, ∀n ≥ N(δ),

which is equivalent to show that PZ∞(PV∞|Z∞
(
||α̂Bn − α0||s ≥ δ|Zn

)
> δ) ≤ δ eventually. Note

that

PZ∞
(
PV∞|Z∞

(
||α̂Bn − α0||s ≥ δ|Zn

)
> δ
)

≤PZ∞
(
PV∞|Z∞

({
||α̂Bn − α0||s ≥ δ

}
∩ {α̂Bn ∈ A

M0

k(n)}|Z
n
)
> 0.5δ

)
+ PZ∞

(
PV∞|Z∞

(
α̂Bn /∈ AM0

k(n)|Z
n
)
> 0.5δ

)
.

By step 1, the second summand in the RHS is negligible. Thus, it suffices to show that

PZ∞
(
PV∞|Z∞

(
α̂Bn ∈ A

M0

k(n) : ||α̂Bn − α0||s ≥ δ|Zn
)
< δ
)
≥ 1− δ, ∀n ≥ N(δ).
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(henceforth, we omit α̂Bn ∈ A
M0

k(n)). Note that, conditioning on Zn, by Assumption A.1(i), the

definition of α̂n ∈ AM0

k(n), Assumption 3.2(i)(ii) and max{λn, o( 1
n)} = O(λn), we have:

PV∞|Z∞
(
||α̂Bn − α0||s ≥ δ|Zn

)
≤ PV∞|Z∞

 inf
{AM0

k(n)
: ||α−α0||s≥δ}

{
Q̂Bn (α) + λnPen(h)

}
≤ Q̂Bn (α̂) + λnPen(ĥ) + o(

1

n
)|Zn


≤ PV∞|Z∞

 inf
{AM0

k(n)
: ||α−α0||s≥δ}

{
c∗Q̂n(α) + λnPen(h)

}
≤ c∗0

[
Q̂n(α̂) + λnPen(ĥ)

]
+O(λn) + (δ

∗
m,n)2|Zn


≤ PV∞|Z∞

 inf
{AM0

k(n)
: ||α−α0||s≥δ}

{
c∗Q̂n(α)

}
≤ c∗0

[
Q̂n(Πnα0) + λnPen(Πnh0)

]
+O(λn) + (δ

∗
m,n)2|Zn

 .

Thus

PV∞|Z∞
(
||α̂Bn − α0||s ≥ δ|Zn

)
≤ PV∞|Z∞

 inf
{AM0

k(n)
: ||α−α0||s≥δ}

c∗Q̂n(α) ≤ c∗0Q̂n(Πnα0) +M(λn + (δ
∗
m,n)2)|Zn


+PV∞|Z∞

 sup
{AM0

k(n)
: ||α−α0||s≥δ}

Q̂Bn (α)− c∗Q̂n(α) < −M(δ
∗
m,n)2|Zn


+PV∞|Z∞

(
Q̂Bn (α̂)− c∗0Q̂n(α̂) > −o( 1

n
)|Zn

)
,

where the second and third terms in the RHS are negligible (wpa1(PZ∞)) by Assumption A.1(i)(ii).
Regarding the first term, by similar algebra, it can be bounded above by

PV∞|Z∞

 inf
{AM0

k(n)
: ||α−α0||s≥δ}

c∗cQ(α) ≤ c∗0c0Q(Πnα0) +M(λn + (δm,n + δ
∗
m,n)2)|Zn


+ PV∞|Z∞

 sup
{AM0

k(n)
: ||α−α0||s≥δ}

Q̂n(α)− cQ(α) < −M(δm,n)2|Zn


+ PV∞|Z∞

(
Q̂n(Πnα0)− c0Q(Πnα0) > −o( 1

n
)|Zn

)
.
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Therefore, for sufficiently large n,

PZ∞
(
PV∞|Z∞

(
||α̂Bn − α0||s ≥ δ|Zn

)
< δ
)
≤ 0.25δ

+ PZ∞

 inf
{AM0

k(n)
: ||α−α0||s≥δ}

c∗cQ(α) ≤ c∗0c0Q(Πnα0) +M(λn + (δm,n + δ
∗
m,n)2)


+ PZ∞

 sup
{AM0

k(n)
: ||α−α0||s≥δ}

Q̂n(α)− cQ(α) < −M(δm,n)2

+ PZ∞

(
Q̂n(Πnα0)− c0Q(Πnα0) > −o( 1

n
)

)
.

By Assumption 3.3, the third and fourth terms in the RHS are less than 0.5δ. The second ter-
m in the RHS is not random. By Assumptions 3.1(ii) and 3.2(iii), AM0

k(n) is compact, and so

is AM0 ≡ {α = (θ′, h) ∈ A : λnPen(h) ≤ λnM0}. This fact, and Assumption 3.1(iii) imply
that inf{AM0

k(n)
: ||α−α0||s≥δ}

c∗cQ(α) ≥ Q(α(δ)) some α(δ) ∈ AM0 ∩ {||α − α0||s ≥ δ}. By Assump-

tion 3.1(i), Q(α(δ)) > 0, so eventually, since c∗0c0Q(Πnα0) + M(λn + (δm,n + δ
∗
m,n)2) = o(1),

PZ∞

(
inf{AM0

k(n)
: ||α−α0||s≥δ}

c∗cQ(α) ≤ c∗0c0Q(Πnα0) +M(λn + (δm,n + δ
∗
m,n)2)

)
= 0.

For Result (2), we want to show that for any δ > 0, there exists a M(δ) such that

PZ∞
(
PV∞|Z∞

(
δ−1
n ||α̂Bn − α0|| ≥M ′ |Zn

)
< δ
)
≥ 1− δ, ∀M ′ ≥M(δ)

eventually. By Assumptions 3.4(iii) and A.1(iii), following the similar algebra as before, we have:
for M ′ large enough,

PV∞|Z∞
(
δ−1
n ||α̂Bn − α0|| ≥M ′ |Zn

)
≤PV∞|Z∞

(
inf

{Aosn: δ−1
n ||α−α0||≥M ′}

c∗cQ(α) ≤M(λn + δ2
n)|Zn

)
+ δ.

By Assumption 3.4(i)(ii) and δn =
√

max{λn, δ2
n}, we have:

PV∞|Z∞

(
inf

{Aosn: δ−1
n ||α−α0||≥M ′}

c∗cQ(α) ≤M(λn + δ2
n)|Zn

)
≤1{c∗cc1

(
M ′δn

)2 ≤M(λn + δ2
n)},

which is eventually naught, because M ′ can be chosen to be large. The rate under ||·||s immediately
follows from this result and the definition of the sieve measure of local ill-posedness τn.

For Result (3), we note that both α̂R,Bn , α̂n ∈ {α ∈ Ak(n) : φ(α) = φ(α̂n)}, and hence all the

above proofs go through with α̂R,Bn replacing α̂Bn . In particular, let AM0

k(n)(φ̂) ≡ {α ∈ AM0

k(n) : φ(α) =
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φ(α̂n)} ⊆ AM0

k(n). Then: for any δ > 0,

PV∞|Z∞
(
α̂R,Bn ∈ AM0

k(n)(φ̂) : ||α̂R,Bn − α0||s ≥ δ|Zn
)

≤ PV∞|Z∞

 inf
{AM0

k(n)
(φ̂) : ||α−α0||s≥δ}

{
Q̂Bn (α) + λnPen(h)

}
≤ Q̂Bn (α̂) + λnPen(ĥ) + o(

1

n
)|Zn


≤ PV∞|Z∞

 inf
{AM0

k(n)
(φ̂) : ||α−α0||s≥δ}

{
c∗Q̂n(α) + λnPen(h)

}
≤ c∗0

[
Q̂n(α̂) + λnPen(ĥ)

]
+O(λn) + (δ

∗
m,n)2|Zn


≤ PV∞|Z∞

 inf
{AM0

k(n)
: ||α−α0||s≥δ}

{
c∗Q̂n(α)

}
≤ c∗0

[
Q̂n(Πnα0) + λnPen(Πnh0)

]
+O(λn) + (δ

∗
m,n)2|Zn

 .

The rest follows from the proof of Results (1) and (2). Q.E.D.

C.2 Proofs for Section A.3 on behaviors under local alternatives

Proof of Theorem A.1: The proof is analogous to that of Theorem 4.3, hence we only present
the main steps. Let αn = α0 + dn∆n with dφ(α0)

dα [∆n] = 〈v∗n,∆n〉 = κn = κ× (1 + o(1)) 6= 0.
Step 1. By assumption 3.6(i) under the local alternatives, for any tn ∈ Tn,

0 ≤ 0.5
(
Q̂n(α̂n(tn))− Q̂n(α̂n)

)
= tn {Zn(αn) + 〈u∗n, α̂n −αn〉}+

Bn
2
t2n+oPn,Z∞ ([rn(tn)]−1) (C.1)

where [rn(tn)]−1 = max{t2n, tnn−1/2, s−1
n } and s−1

n = o(n−1). The LHS is always positive (up
to possibly a negligible terms given by the penalty function, see the proof of Theorem 4.1(1)

for details) by definition of α̂n. Hence, by choosing tn = ±{s−1/2
n + o(n−1/2)}, it follows that

{Zn(αn) + 〈u∗n, α̂n −αn〉} = oPn,Z∞ (n−1/2). Since 〈u∗n,αn − α0〉 = dnκn
||v∗n||sd

by the definition of local

alternatives αn, we obtain equation (C.2):{
Zn(αn) + 〈u∗n, α̂n − α0〉 −

dnκn
||v∗n||sd

}
= Zn(αn) + 〈u∗n, α̂n −αn〉 = oPn,Z∞ (n−1/2), (C.2)

where Zn(αn) is defined as that of Zn but using ρ(z,αn) instead of ρ(z, α0) (since m(X,αn) = 0
a.s.-X under the local alternative).

Next, by Assumption 3.6(i) under the local alternative, we have: for any tn ∈ Tn,

0.5
(
Q̂n(α̂Rn (tn))− Q̂n(α̂Rn )

)
= tn

{
Zn(αn) + 〈u∗n, α̂Rn −αn〉

}
+
Bn
2
t2n + oPn,Z∞ ([rn(tn)]−1). (C.3)

By Assumption 3.5(ii)

sup
α∈N0n

∣∣∣∣φ(α)− φ(α0)− dφ(α0)

dα
[α− α0]

∣∣∣∣ = o(n−1/2||v∗n||),

and assumption α̂Rn ∈ Nosn wpa1-Pn,Z∞ , and the fact that φ(α̂Rn )− φ(α0) = 0, following the same
calculations as those in Step 1 of the proof of Theorem 4.3, we have:

〈u∗n, α̂Rn − α0〉 = oPn,Z∞ (n−1/2).
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Since αn = α0 + dn∆n ∈ Nosn with dφ(α0)
dα [∆n] = 〈v∗n,∆n〉 = κn, we have:

〈u∗n, α̂Rn −αn〉 = 〈u∗n, α̂Rn − α0〉 −
dnκn
||v∗n||sd

+ oPn,Z∞ (n−1/2) = − dnκn
||v∗n||sd

+ oPn,Z∞ (n−1/2).

Therefore, by choosing tn ≡ −(Zn(αn)− dnκn
||v∗n||sd

)B−1
n in (C.3) with [rn(tn)]−1 = max{t2n, tnn−1/2, o(n−1)}

(which is a valid choice), we obtain:

0.5
(
Q̂n(α̂n)− Q̂n(α̂Rn )

)
≤ 0.5

(
Q̂n(α̂Rn (tn))− Q̂n(α̂Rn )

)
+ oPn,Z∞ (n−1)

= −1

2

(
(Zn(αn)− dnκn

||v∗n||sd
)

√
Bn

)2

+ oPn,Z∞ ([rn(tn)]−1).

By our assumption and the fact that ||u∗n|| ≥ c > 0 for all n, it follows that Bn ≥ c > 0 eventually,
so

0.5
(
Q̂n(α̂n)− Q̂n(α̂Rn )

)
≤ −1

2

(
(Zn(αn)− dnκn

||v∗n||sd
)

||u∗n||

)2

×
(
1 + oPn,Z∞ (1)

)
.

Step 2. On the other hand, suppose there exists a t∗n, such that (a) φ(α̂n(t∗n)) = φ(α0),
α̂n(t∗n) ∈ Ak(n), and (b) t∗n = (Zn(αn) − dnκn

||v∗n||sd
) (||u∗n||)

−2 + oPn,Z∞ (n−1/2). Substituting this into

(C.1) with [rn(t∗n)]−1 = max{(t∗n)2, t∗nn
−1/2, o(n−1)}, we obtain:

0.5
(
Q̂n(α̂n)− Q̂n(α̂Rn )

)
≥ 0.5

(
Q̂n(α̂n)− Q̂n(α̂n(t∗n))

)
− oPn,Z∞ (n−1)

= −Bn
2

(t∗n)2 + oPn,Z∞ ([rn(t∗n)]−1)

= −Bn
2

(Zn(αn)− dnκn
||v∗n||sd

)2 (||u∗n||)
−4 + oPn,Z∞ ([rn(t∗n)]−1)

= −1

2

(
Zn(αn)− dnκn

||v∗n||sd
||u∗n||

)2

×
(
1 + oPn,Z∞ (1)

)
where the second line follows from equation (C.2). Finally, we observe that point (a) follows from
Lemma B.2, with r = 0, which is of order n−1/2||v∗n|| and thus a valid choice. Point (b) follows
by analogous calculations to those in Step 3 of the proof of Theorem 4.3, except that now with
α̂(t∗n) = α̂n + t∗nu

∗
n,

φ(α̂(t∗n))− φ(α0) =
dφ(α0)

dα
[α̂n − α0] + t∗n

||v∗n||2

||v∗n||sd
+ oPn,Z∞ (n−1/2||v∗n||)

= −Zn(αn)||v∗n||sd +
dnκn
||v∗n||sd

||v∗n||sd +

(
(Zn(αn)− dnκn

||v∗n||sd
)
||v∗n||2sd
||v∗n||2

)
||v∗n||2

||v∗n||sd
+ oPn,Z∞ (n−1/2||v∗n||)

= oPn,Z∞ (n−1/2||v∗n||)

where the second line follows from equation (C.2) and some straightforward algebra.
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Step 3. Finally, the above calculations and κn = κ (1 + o(1)) imply that

||u∗n||2 ×
(
Q̂n(α̂Rn )− Q̂n(α̂n)

)
=

(
Zn(αn)− dnκ (1 + o(1))

||v∗n||sd

)2

×
(
1 + oPn,Z∞ (1)

)
. (C.4)

For Result (1), equation (C.4) with dn = n−1/2||v∗n||sd implies that

||u∗n||2 × Q̂LRn(φ0) =
(√
nZn(αn)− κ (1 + o(1))

)2 × (1 + oPn,Z∞ (1)
)
⇒ χ2

1(κ2),

which is due to
√
nZn(αn)⇒ N(0, 1) under the local alternatives.

For Result (2), equation (C.4) with
√
n dn
||v∗n||sd

→∞ implies that

||u∗n||2 × Q̂LRn(φ0) =

(√
nZn(αn)−

√
n
dnκ (1 + o(1))

||v∗n||sd

)2

×
(
1 + oPn,Z∞ (1)

)
=

(
OPn,Z∞ (1)−

√
n
dnκ (1 + o(1))

||v∗n||sd

)2

×
(
1 + oPn,Z∞ (1)

)
,

where the second line is due to
√
nZn(αn)⇒ N(0, 1) under the local alternatives. Since

√
ndnκ(1+o(1))

||v∗n||sd
→

∞ (or −∞) if κ > 0 (or κ < 0), we have that limn→∞

(
||u∗n||2 × Q̂LRn(φ0)

)
= ∞ in probability

(under the alternative). Q.E.D.

Proof of Proposition A.1. Recall that Q̂LR
0

n(φ0) denotes the optimally-weighted SQLR statistic.
By inspection of the proof of Theorem A.1, it is easy to see that

||u∗n||2 × Q̂LRn(φ0) =
(√
nZn(αn)− κ

)2
+ oPn,Z∞ (1)

and

Q̂LR
0

n(φ0) =

(√
nZn(αn)− κ ||v

∗
n||sd
||v0

n||0

)2

+ oPn,Z∞ (1)

for local alternatives of the form described in equation (A.2) with dn = n−1/2||v∗n||sd. Hence,

the distribution of ||u∗n||2 × Q̂LRn(φ0) is, asympotically close to χ2
1(κ2) and the distribution of

Q̂LR
0

n(φ0) is, asympotically close to χ2
1

(
||v∗n||2sd
||v0
n||20

κ2
)

.

Observe that ||v
∗
n||sd
||v0
n||0
≥ 1 for all n, and that for a noncentral chi-square, χ2

p(r), Pr(χ2
p(r) ≤ t) is

decreasing in the noncentrality parameter r for each t; thus Pr(χ2
p(r1) > t) > Pr(χ2

p(r2) > t) for
r1 > r2. Therefore, the previous results imply that, for any t,

lim
n→∞

Pn,Z∞
(
||u∗n||2 × Q̂LRn(φ0) ≥ t

)
= Pr(χ2

1(κ2) ≥ t)

≤ lim inf
n→∞

Pr

(
χ2

1

(
||v∗n||2sd
||v0

n||20
κ2

)
≥ t
)

= lim inf
n→∞

Pn,Z∞(Q̂LR
0

n(φ0) ≥ t).

Q.E.D.

Proof of Theorem A.2: The proof of Result (1) is similar to that of Theorem 5.3, so we only
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present a sketch here. By assumptions 3.6(i) and Boot.3(i) under local alternative, it follows that

0.5

(
Q̂Bn (α̂R,Bn (−Zω−1

n (αn)

Bω
n

))− Q̂Bn (α̂R,Bn )

)
= −Zω−1

n (αn)

Bω
n

{Zωn(αn) + 〈u∗n, α̂R,Bn −αn〉}+
(Zω−1

n (αn))2

2Bω
n

+ oPV∞|Z∞ (r−1
n ), wpa1(Pn,Z∞),

where r−1
n = max

{(
−Zω−1

n (αn)
Bωn

)2
,
∣∣∣−Zω−1

n (αn)
Bωn

∣∣∣n−1/2, o(n−1)

}
= OPV∞|Z∞ (n−1), wpa1(Pn,Z∞) un-

der assumption Boot.3(i)(ii) with αn (instead of α0).
By similar calculations to those in the proof of Result (1) of Theorem 5.3 (equation (B.23)),

√
n〈u∗n, α̂R,Bn − α̂n〉 = oPV∞|Z∞ (1), wpa1(Pn,Z∞),

i.e., the restricted bootstrap estimator α̂R,Bn centers at α̂n, regardless of the local alternative. Thus

〈u∗n, α̂R,Bn −αn〉 = 〈u∗n, α̂R,Bn −α̂n〉+〈u∗n, α̂n−αn〉 = 〈u∗n, α̂n−αn〉+oPV∞|Z∞ (n−1/2), wpa1(Pn,Z∞).

This result and equation (C.2) (i.e., Zn(αn) + 〈u∗n, α̂n −αn〉 = oPn,Z∞ (n−1/2)) imply that

0.5

(
Q̂Bn (α̂R,Bn (−Zω−1

n (αn)

Bω
n

))− Q̂Bn (α̂R,Bn )

)
= −Zω−1

n (αn)

Bω
n

{Zωn(αn) + 〈u∗n, α̂n −αn〉}+
(Zω−1

n (αn))2

2Bω
n

+ oPV∞|Z∞ (r−1
n ), wpa1(Pn,Z∞)

= −Zω−1
n (αn)

Bω
n

{Zω−1
n (αn) + oPn,Z∞ (n−1/2)}+

(Zω−1
n (αn))2

2Bω
n

+ oPV∞|Z∞ (r−1
n ), wpa1(Pn,Z∞)

= −(Zω−1
n (αn))2

2Bω
n

×
(

1 + oPV∞|Z∞ (1)
)
wpa1(Pn,Z∞).

Following the proof of Result (1) of Theorem 5.3 step 3 with Zω−1
n (αn) replacing Zω−1

n , we
obtain:

Q̂LR
B

n (φ̂n)

σ2
ω

=

(
√
n
Zω−1
n (αn)

σω
√
Bω
n

)2

×
(

1 + oPV∞|Z∞ (1)
)

= OPV∞|Z∞ (1), wpa1(Pn,Z∞).

This shows that, since for the bootstrap SQLR the “null hypothesis is φ(α) = φ̂n ≡ φ(α̂n)”, it
always centers correctly.

By similar calculations to those in the proof of Result (2) of Theorem 5.3, the law of

(
√
nZω−1

n (αn)

σω
√
Bωn

)2

is asymptotically (and wpa1(Pn,Z∞)) equal to the law of
(

Z
||u∗n||

)2
where Z ∼ N(0, 1). This implies

that the a-th quantile of the distribution of Q̂LR
B

n (φ̂n)
σ2
ω

, ĉn(a), is uniformly bounded wpa1(Pn,Z∞).

Also, following the proof of Result (2) of Theorem 5.3 we obtain:

sup
t∈R

∣∣∣∣∣∣PV∞|Z∞
Q̂LRBn (φ̂n)

σ2
ω

≤ t | Zn
− PZ∞ (Q̂LRn(φ0) ≤ t | H0

)∣∣∣∣∣∣ = oPV∞|Z∞ (1) wpa1(Pn,Z∞).

99



This and Theorem A.1 (and the fact that ||u∗n|| ≤ c < ∞) immediately imply Results (2).
Q.E.D.

Proof of Theorem A.3: The proof is analogous to that of Theorems 4.2 and A.1 so we only
present a sketch here.

Under our assumptions, Theorem 4.2 still holds under the local alternatives αn. Observe that,
with αn = α0 + dn∆n ∈ Nosn and dn = o(1),

Tn ≡
√
n
φ(α̂n)− φ0

||v̂∗n||n,sd
=
√
n
φ(α̂n)− φ0

||v∗n||sd
× (1 + oPn,Z∞ (1))

=
√
n〈u∗n, α̂n − α0〉 × (1 + oPn,Z∞ (1)) + oPn,Z∞ (1)

=

(
−
√
nZn(αn) +

√
n
dnκ (1 + o(1))

||v∗n||sd

)
× (1 + oPn,Z∞ (1)) + oPn,Z∞ (1),

where the second line follows from assumption 3.5; the third line follows from equation (C.2), and√
nZn(αn)⇒ N(0, 1) under the local alternatives (i.e., assumption 3.6(ii) under the alternatives).

For Result (1), under local alternatives with dn = n−1/2||v∗n||sd we have:

Tn = −
(√
nZn(αn)− κ (1 + o(1))

)
×
(
1 + oPn,Z∞ (1)

)
+ oPn,Z∞ (1), and Wn ≡ (Tn)2 ⇒ χ2

1(κ2).

For Result (2), under local alternatives with
√
n dn
||v∗n||sd

→∞ we have:

Wn ≡ (Tn)2 =

(
OPn,Z∞ (1)−

√
n
dnκ (1 + o(1))

||v∗n||sd

)2

×
(
1 + oPn,Z∞ (1)

)
+oPn,Z∞ (1)→∞ in probability.

Q.E.D.

Proof of Theorem A.4 For Result (1), following the proofs of Theorems 5.2(1) and A.2, we
have: under local alternatives αn defined in (A.2), for j = 1, 2,

ŴB
j,n = −

√
n
Zω−1
n (αn)

σω
√
Bω
n

+ oPV∞|Z∞ (1) wpa1(Pn,Z∞).

By similar calculations to those in the proof of Theorem 5.2(1), the law of
√
nZω−1

n (αn)

σω
√
Bωn

is asymp-

totically (and wpa1(Pn,Z∞)) equal to the law of Z ∼ N(0, 1). Then under the local alternatives
αn,

sup
t∈R

∣∣∣PV∞|Z∞ (ŴB
j,n ≤ t | Zn

)
− PZ∞

(
Ŵn ≤ t

)∣∣∣ = oPV∞|Z∞ (1) wpa1(Pn,Z∞), (C.5)

where limn→∞ PZ∞
(
Ŵn ≤ t

)
= Φ(t) (i.e., the standard normal cdf). Thus the a-th quantile of the

distribution of
(
ŴB
j,n

)2
, ĉj,n(a), is uniformly bounded wpa1(Pn,Z∞).

For Result (2a), by Theorem A.3(2), Result (1) (i.e., equation (C.5)) and the continuous
mapping theorem, we have:

Pn,Z∞ (Wn ≥ ĉj,n(1− τ))− PV∞|Z∞
((

ŴB
j,n

)2
≥ ĉj,n(1− τ) | Zn

)
= Pr

(
χ2

1(κ2) ≥ ĉj,n(1− τ)
)
− Pr

(
χ2

1 ≥ ĉj,n(1− τ)
)

+ oPV∞|Z∞ (1) wpa1(Pn,Z∞).
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Thus by the definition of ĉj,n(1− τ) we obtain:

Pn,Z∞ (Wn ≥ ĉj,n(1− τ)) = τ+Pr
(
χ2

1(κ2) ≥ ĉj,n(1− τ)
)
−Pr

(
χ2

1 ≥ ĉj,n(1− τ)
)
+oPV∞|Z∞ (1) wpa1(Pn,Z∞).

Result (2b) directly follows from Theorem A.3(2), equation (C.5) and the continuous mapping
theorem. Q.E.D.

C.3 Proofs for Section A.4 on asymptotic theory under increasing dimension
of φ

Lemma C.1. Let Assumption 3.1(iv) hold. Then: there exist positive finite constants c, C such
that

c2Id(n) ≤ D2
n ≤ C2Id(n),

where Id(n) is the d(n) × d(n) identity and for matrices A ≤ B means that B − A is positive
semi-definite.

Proof of Lemma C.1. By Assumption 3.1(iv), the eigenvalues of Σ0(x) and Σ(x) are bounded
away from zero and infinity uniformly in x. Therefore, for any matrix A,

A′Σ−1(x)Σ0(x)Σ−1(x)A ≥ dA′Σ−1(x)A

and
A′Σ−1(x)Σ0(x)Σ−1(x)A ≤ DA′Σ−1(x)A

for some finite constant 0 < d ≤ D < ∞, and for all x (for matrices A ≤ B means that B − A is

positive semi-definite). Taking expectations at both sides and choosing A′ ≡ dm(x,α0)
dα [v∗n]′, these

displays imply that
Ωsd,n ≥ dΩn and Ωsd,n ≤ DΩn

Thus

D2
n = Ω

1/2
sd,nΩ−1

n Ωsd,nΩ−1
n Ω

1/2
sd,n ≥ d{Ω

1/2
sd,nΩ−1

n Ω
1/2
sd,n} ≥ d

2Ω
1/2
sd,nΩ−1

sd,nΩ
1/2
sd,n = d2Id(n).

Similarly, D2
n ≤ D2Id(n). Q.E.D.

Lemma C.2. Let T Mn ≡ {t ∈ Rd(n) : ||t||e ≤Mnn
−1/2

√
d(n)}. Then:

||Ω−1/2
sd,n Zn||e = OP

(
n−1/2

√
d(n)

)
and Ω

−1/2
sd,n Zn ∈ T Mn wpa1.

Proof of Lemma C.2. Let Ω
−1/2
sd,n Zn ≡ n−1

∑n
i=1 ζin where ζin ∈ Rd(n). Observe that E[ζinζ

′
in] =

Id(n). It follows that

EP [(Ω
−1/2
sd,n Zn)′(Ω

−1/2
sd,n Zn)] = tr

{
EP [Ω

−1/2
sd,n ZnZ

′
nΩ
−1/2
sd,n ]

}
= n−2

n∑
i=1

tr
{
EP [ζinζ

′
in]
}

= n−1d(n),

and thus the desired result follows by the Markov inequality. Q.E.D.

Lemma C.3. Let Conditions for Lemma 3.2 and Assumption A.3 hold. Denote γ̃n ≡
√
sn(1 +

bn) + an. Then:
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(1)
∥∥∥Ω
−1/2
sd,n {Zn + 〈v∗′n , α̂n − α0〉}

∥∥∥
e

= OP (
√
d(n)γ̃n) = oP (n−1/2);

(2) further let Assumption A.2 hold. Then∥∥∥Ω
−1/2
sd,n {Zn + φ(α̂n)− φ(α0)}

∥∥∥
e

= oP (n−1/2).

Proof of Lemma C.3: For Result (1), note that ||t||2e =
∑d(n)

l=1 |tl|
2 and if we obtain |tl| = OP (γ̃n)

for γ̃n uniformly over l, then ||t||2e = OP (d(n)γ̃2
n).

The rest of the proof follows closely the proof of Theorem 4.1 so we only present the main steps.
By definition of the approximate PSMD estimator α̂n, and Assumption A.3(i),

0 ≤ t′Ω−1/2
sd,n

(
Zn + 〈v∗′n , α̂n − α0〉

)
+

1

2
t′Bnt+OP (r−1(t)).

We now choose t =
√
sne where e ∈ {(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 1)}, it is easy to see that

this t ∈ T Mn , and thus the display above implies

0 ≤ e′Ω−1/2
sd,n

(
Zn + 〈v∗′n , α̂n − α0〉

)
+OP (γ̃n).

By changing the sign of t, it follows that∣∣∣e′Ω−1/2
sd,n

(
Zn + 〈v∗′n , α̂n − α0〉

)∣∣∣ = OP (γ̃n).

Observe that the RHS holds uniformly over e, thus, since e ∈ {(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 1)},
it follows that ∥∥∥Ω

−1/2
sd,n

(
Zn + 〈v∗′n , α̂n − α0〉

)∥∥∥
e

= OP (
√
d(n)γ̃n) = oP (n−1/2),

where the second equal sign is due to Assumption A.3(ii).
For Result (2). In view of Result (1), it suffices to show that∥∥∥Ω

−1/2
sd,n {φ(α̂n)− φ(α0)− 〈v∗′n , α̂n − α0〉}

∥∥∥
e

= oP (n−1/2).

Following the proof of Theorem 4.1 we have:

〈v∗′n , α̂n − α0〉 =
dφ(α0)

dα
[α̂n − α0,n] =

dφ(α0)

dα
[α̂n − α0]− dφ(α0)

dα
[α0,n − α0].

Since Assumption A.2(ii)(iii) (with t = 0) implies that∥∥∥∥Ω
−1/2
sd,n {φ(α̂n)− φ(α0)− dφ(α0)

dα
[α̂n − α0] +

dφ(α0)

dα
[α0,n − α0]}

∥∥∥∥
e

= OP (cn),

the desired result now follows from Assumption A.2(iv) of cn = o(n−1/2). Q.E.D.

Proof of Theorem A.5. Throughout the proof let Ŵn ≡ n(φ(α̂n)−φ(α0))′Ω−1
sd,n(φ(α̂n)−φ(α0)).

By Lemma C.3(2),

Tn ≡ (φ(α̂n)− φ(α0) + Zn)′Ω−1
sd,n(φ(α̂n)− φ(α0) + Zn) = oP (n−1).
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Observe that

|(φ(α̂n)− φ(α0))′Ω−1
sd,n(φ(α̂n)− φ(α0))− (Zn)′Ω−1

sd,n(Zn)|

≤ Tn + 2||(φ(α̂n)− φ(α0) + Zn)′Ω
−1/2
sd,n ||e × ||Ω

−1/2
sd,n Zn||e

= oP (n−1) + 2||(φ(α̂n)− φ(α0) + Zn)′Ω
−1/2
sd,n ||e × ||Ω

−1/2
sd,n Zn||e = oP (n−1) + oP (n−1

√
d(n))

where the last equality is due to Lemmas C.2 and C.3(2). Therefore we obtain Result (1):

Ŵn = (
√
nZn)′Ω−1

sd,n(
√
nZn) + oP (

√
d(n)) ≡Wn + oP (

√
d(n)).

Result (2) follows directly from Result (1) when d(n) = d is fixed and finite.
Result (3) follows from Result (1) and the following property:

Ξn ≡ (2d(n))−1/2(Wn − d(n))⇒ N(0, 1)

where Wn ≡ (
√
nZn)′Ω−1

sd,n(
√
nZn), or formally,

sup
f∈BL1(R)

|E[f(Ξn)]− E[f(Z)]| = o(1)

where Z ∼ N(0, 1) and BL1(R) is the space of bounded (by 1) Lipschitz functions from R to R.
By triangle inequality it suffices to show that

sup
f∈BL1(R)

|E[f(Ξn)]− E[f(ξn)]| = o(1) (C.6)

and
sup

f∈BL1(R)
|E[f(ξn)]− E[f(Z)]| = o(1) (C.7)

where ξn ≡ (2d(n))−1/2(
∑d(n)

j=1 Z2
j − d(n)) with Zj ∼ N(0, 1) and independent across j = 1, ..., d(n).

We now show that both equations hold.

Equation C.6. Let t 7→ νM (t) ≡ min{t′t,M} for some M > 0. Observe∣∣∣E[f(Ξn)]− E
[
f
(

(2d(n))−1/2(νM (Ω
−1/2
sd,n

√
nZn)− d(n))

)]∣∣∣
=
∣∣∣E [f ((2d(n))−1/2(ν∞(Ω

−1/2
sd,n

√
nZn)− d(n))

)
− f

(
(2d(n))−1/2(νM (Ω

−1/2
sd,n

√
nZn)− d(n))

)]∣∣∣
=

∣∣∣∣∣∣
∫
{z:nz′Ω−1

sd,nz>M}

f
ν∞(Ω

−1/2
sd,n

√
nzn)− d(n)√

2d(n)

− f (M − d(n)√
2d(n)

)PZ∞(dz)

∣∣∣∣∣∣
≤2PZ∞

(
(
√
nZn)′Ω−1

sd,n(
√
nZn) > M

)
where the last line follows from the fact that f is bounded by 1. Therefore, by the Markov inequality,

for any ε, there exists aM such that the
∣∣∣E[f(Ξn)]− E

[
f
(

(2d(n))−1/2(νM (Ω
−1/2
sd,n

√
nZn)− d(n))

)]∣∣∣ <
ε for sufficiently large n. A similar result holds if we replace Ω

−1/2
sd,n

√
nZn by Zn = (Z1, ...,Zd(n))

′

with Zj ∼ N(0, 1) and independent across j = 1, ..., d(n). Therefore, in order to show equation

103



C.6, it suffices to show
sup

f∈BL1(R)
|E [f (ΞM,n)]− E[f(ξM,n)]| = o(1)

where ΞM,n ≡ (2d(n))−1/2(νM (Ω
−1/2
sd,n

√
nZn)− d(n)) and ξM,n ≡ (2d(n))−1/2(νM (Zn)− d(n)).

Since f is uniformly bounded and continuous, it is clear that in order to show the previous
display, it suffices to show that

(2d(n))−1/2|νM (Ω
−1/2
sd,n

√
nZn)− νM (Zn)| = oP (1). (C.8)

It turns out that |νM (t) − νM (r)| ≤ 2
√
M ||t − r||e, so t 7→ νM (t) is Lipschitz (and uniformly

bounded). So in order to show equation C.8 it is sufficient to show that for any δ > 0, there exists
a N(δ) such that

Pr
(

(2d(n))−1/2||Ω−1/2
sd,n

√
nZn −Zn||e > δ

)
< δ

for all n ≥ N(δ). Note that Ω
−1/2
sd,n

√
nZn = 1√

n

∑n
i=1 Ψn(Zi), with Ψn(z) ≡

(
dm(x,α0)

dα [v∗n]Ω
−1/2
sd,n

)′
ρ(z, α0),

and that Zn can be cast as 1√
n

∑n
i=1Zn,i with Zn,i ∼ N(0, Id(n)), iid across i = 1, ..., n. Following

the arguments in Section 10.4 of Pollard (2001), we obtain: for any δ > 0,

Pr

(∥∥∥∥∥√nZ′nΩ
−1/2
sd,n −

1√
n

n∑
i=1

Zn,i

∥∥∥∥∥
e

> 3δ

)
≤ Yd(n)

(
µ3,nnd(n)5/2

(δ
√
n)3

)
,

for any n, where x 7→ Yd(n)(x) ≡ Cx×(1+| log(1/x)|/d(n)) and µ3,n ≡ E

[∥∥∥∥(dm(X,α0)
dα [v∗n]Ω

−1/2
sd,n

)′
ρ(Z,α0)

∥∥∥∥3

e

]
.

Therefore,

Pr
(

(2d(n))−1/2||Ω−1/2
sd,n

√
nZn −Zn||e > δ

)
≤ Yd(n)

(
µ3,nnd(n)5/2

(δ/3)3d(n)3/2n3/2

)
= Yd(n)

(
n−1/2d(n)

µ3,n

(δ/3)38

)
→ 0

provided that d(n) = o(
√
nµ−1

3,n) which is assumed in the Theorem Result (3).

Equation C.7. Observe that ξn ≡ (2d(n))−1/2(
∑d(n)

j=1 Z2
j −d(n)) with Zj ∼ N(0, 1) i.i.d. across

j = 1, ..., d(n), E[(Z2
l − 1)] = 0 and E[(Z2

l − 1)2] = 2. Thus, ξn ⇒ N(0, 1) by a standard CLT.
Q.E.D.

Lemma C.4. Let all conditions for Theorem A.6(1) hold. Then there exists a tn (possibly random)
such that: (1) tn ∈ T Mn wpa1, (2) α̂n(tn) ∈ ARk(n) = {α ∈ Ak(n) : φ(α) = φ0} wpa1, and (3)

n
∣∣∣Q̂n(α̂n(tn))− Q̂n(α̂n(t∗n))

∣∣∣ = oP (
√
d(n)) where t∗n = DnΩ

−1/2
sd,n Zn.

Proof of Lemma C.4: The proof is very similar to Step 3 in the proof of Theorem 4.3. We choose
as a candidate

tn = −DnΩ
−1/2
sd,n 〈v

∗′
n , α̂n − α0〉+ DnΩ

−1/2
sd,n cn

where {cn ∈ Rd(n) : n = 1, 2, 3, ...} is a sequence to be determined later, but has the property that

||Ω−1/2
sd,n cn||e = OP (cn).
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Part (1). By Lemmas C.1, C.2 and C.3, and the choice of tn, we have:

||tn||e ≤ OP (
√
d(n){γ̃n + n−1/2}) +OP (cn)

where γ̃n ≡
√
|sn|(1 + bn) + an = o(n−1/2d(n)−1/2) (by assumption A.3(ii)) and cn = o(n−1/2)

(assumption A.2(iv)). Thus ||tn||e = OP (
√
d(n)n−1/2) so tn ∈ T Mn wpa1.

Part (2). We want to show that φ(α̂n(tn))−φ(α0) = 0 wpa1. then under null H0 : φ(α0) = φ0

we obtain α̂n(tn) ∈ ARk(n) wpa1.

Under Assumption A.2(i)(ii) and tn ∈ T Mn wpa1, we have:∥∥∥∥Ω
−1/2
sd,n

{
φ (α̂n(tn))− φ(α0)− dφ(α0)

dα
[α̂n(tn)− α0]

}∥∥∥∥
e

= OP (cn) .

Since α̂n(tn) = α̂n−v∗nΩ
−1/2
sd,n DnΩ

−1/2
sd,n 〈v

∗′
n , α̂n−α0〉+v∗nΩ

−1/2
sd,n DnΩ

−1/2
sd,n cn, and Ω

−1/2
sd,n DnΩ

−1/2
sd,n = Ω−1

n

the previous display implies that

OP (cn) =

∥∥∥∥Ω
−1/2
sd,n

{
φ (α̂n(tn))− φ(α0)− dφ(α0)

dα
[α̂n − α0] + 〈v∗′n ,v∗n〉Ω−1

n 〈v∗′n , α̂n − α0〉 − 〈v∗′n ,v∗n〉Ω−1
n cn

}∥∥∥∥
e

=

∥∥∥∥Ω
−1/2
sd,n

{
φ (α̂n(tn))− φ(α0)− dφ(α0)

dα
[α̂n − α0] + 〈v∗′n , α̂n − α0〉 − cn

}∥∥∥∥
e

=

∥∥∥∥Ω
−1/2
sd,n

{
φ (α̂n(tn))− φ(α0)− dφ(α0)

dα
[α0,n − α0]− cn

}∥∥∥∥
e

.

Therefore, there exists a (Fn)n such that Fn ∈ Rd(n), ||Fn||e = OP (cn) and

Fn = (Ωsd,n)−1/2

{
φ (α̂n(tn))− φ(α0)− dφ(α0)

dα
[α0,n − α0]− cn

}
.

If we set cn = (Ωsd,n)1/2Fn − dφ(α0)
dα [α0,n − α0], then ||Ω−1/2

sd,n cn||e ≤ ||Fn||e + ||Ω−1/2
sd,n

dφ(α0)
dα [α0n −

α0]||e = OP (cn) by Assumption A.2(iii), so it is indeed a valid choice. From this choice it is easy
to see that φ (α̂n(tn))− φ(α0) = 0 wpa1, as desired.

Part (3). Recall that α̂n ∈ Nosn wpa1 and α̂n(tn), α̂n(t∗n) ∈ Ak(n). Note that ||tn||e =

OP (
√
d(n)n−1/2) (by part (1)) and that ||t∗n||e = OP (

√
d(n)n−1/2) (by Lemmas C.1 and C.2. So

by Assumption A.3(i),

n
[
Q̂n(α̂n(tn))− Q̂n(α̂n(t∗n))

]
= n(tn − t∗n)′Ω

−1/2
sd,n {〈v

∗′
n , α̂n − α0〉+ Zn}+ 0.5n{t′nBntn − (t∗n)′Bnt∗n}

+ n×OP (sn + (||tn||e + ||t∗n||e)an + (||tn||2e + ||t∗n||2e)bn)

≡ nT1 + nT2 + n×OP (sn + (||tn||e + ||t∗n||e)an + (||tn||2e + ||t∗n||2e)bn).

Observe that tn − t∗n = −DnΩ
−1/2
sd,n {〈v

∗′
n , α̂n − α0〉+ Zn}+ DnΩ

−1/2
sd,n cn, so, by Lemmas C.1 and
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C.3(1) and Assumption A.2(iv),

|T1| ≤ ||Ω−1/2
sd,n {〈v

∗′
n , α̂n − α0〉+ Zn}||2e + ||Ω−1/2

sd,n {〈v
∗′
n , α̂n − α0〉+ Zn}||e × ||Ω−1/2

sd,n cn||e

= OP

(
d(n)γ̃2

n +
√
d(n)γ̃ncn

)
= oP (n−1).

Regarding T2, by Lemmas C.1 and C.3 and the definitions of tn and t∗n, it follows that

|T2| = |(tn − t∗n)′Bn(tn − t∗n) + 2(tn − t∗n)′Bnt∗n|
≤ OP ((bn + 1)||tn − t∗n||2e) +OP ((bn + 1)||tn − t∗n||e × ||t∗n||e)

= oP (n−1) + oP (n−1/2)×OP
(√

d(n)n−1/2
)

= oP (n−1
√
d(n)).

Finally, by the definitions of tn and t∗n and Assumption A.3(ii) it follows that

nsn+n(||tn||e+ ||t∗n||e)an+n(||tn||2e+ ||t∗n||2e)bn = nsn+OP

(√
d(n)n1/2an + d(n)bn

)
= oP (

√
d(n)).

Therefore

n
∣∣∣Q̂n(α̂n(tn))− Q̂n(α̂n(t∗n))

∣∣∣ = oP (1) + oP (
√
d(n)) + oP (

√
d(n)) = oP (

√
d(n))

and the desired result follows. Q.E.D.

Proof of Theorem A.6: The proof is very similar to that of Theorem 4.3 and we only provide
main steps here.

Step 1. Similar to Steps 1 and 2 in the proof of Theorem 4.3, by the definitions of α̂Rn and α̂n
and Assumption A.3(i), it follows that for any (possibly random) t ∈ T Mn ,

0.5Q̂LRn(φ0) ≥ 0.5n
(
Q̂n(α̂Rn )− Q̂n(α̂Rn (t))

)
− oP (1)

= −n
(
t′Ω
−1/2
sd,n {Zn + 〈v∗′n , α̂Rn − α0〉}+ 0.5t′Bnt

)
+OP (snn+ n||t||ean + n||t||2ebn).

By Assumption A.2(i)(ii),∥∥∥∥∥∥Ω
−1/2
sd,n

φ(α̂Rn )− φ(α0)︸ ︷︷ ︸
=0

−dφ(α0)

dα
[α̂Rn − α0]

∥∥∥∥∥∥
e

= OP (cn).

Hence, by Assumption A.2(iii), ∥∥∥Ω
−1/2
sd,n 〈v

∗′
n , α̂

R
n − α0〉

∥∥∥
e

= OP (cn). (C.9)

Since supt:||t||e=1 |t′{Bn − D−1
n }t| = OP (bn) by assumption, we have: t′Bnt ≤ |t′{Bn − D−1

n }t| +
t′D−1

n t ≤ ||t||2eOP (bn) + t′D−1
n t uniformly over t ∈ Rd(n) with ||t||e = 1. This, Assumption A.3(i)

and equation (C.9) together imply that

0.5Q̂LRn(φ0) ≥ −n
(
t′Ω
−1/2
sd,n Zn + 0.5t′D−1

n t
)

+OP (snn+ n||t||e(an + cn) + n||t||2ebn).

In the above display we let t′ = −Z′nΩ
−1/2
sd,n Dn, which, by Lemmas C.1 and C.2, is an admissi-
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ble choice and ||t||e = OP

(
n−1/2

√
d(n)

)
. Observe that t′nΩ

−1/2
sd,n Zn = −Z′nΩ

−1/2
sd,n DnΩ

−1/2
sd,n Zn and

t′nD−1
n tn = Z′nΩ

−1/2
sd,n DnΩ

−1/2
sd,n Zn, we obtain:

0.5Q̂LRn(φ0) ≥ 0.5(
√
nΩ
−1/2
sd,n Zn)′Dn(

√
nΩ
−1/2
sd,n Zn) +OP

(
snn+ n1/2

√
d(n)(an + cn) + d(n)bn

)
= 0.5(

√
nΩ
−1/2
sd,n Zn)′Dn(

√
nΩ
−1/2
sd,n Zn) + oP (

√
d(n)),

where the last equal sign is due to Assumptions A.2(iv) and A.3(ii).
Step 2. Similar to Step 3 in the proof of Theorem 4.3, by the definitions of α̂Rn and α̂n and the

result that α̂n(tn) ∈ ARk(n) (Lemma C.4), with tn and t∗n given in Lemma C.4, we obtain:

0.5Q̂LRn(φ0) ≤ 0.5n
(
Q̂n(α̂n(tn))− Q̂n(α̂n)

)
+ oP (1)

= 0.5n
(
Q̂n(α̂n(t∗n))− Q̂n(α̂n)

)
+ oP (

√
d(n)).

This, Assumption A.3(i)(ii) and the fact that ||t∗n||e = OP

(
n−1/2

√
d(n)

)
together imply:

0.5Q̂LRn(φ0) ≤ n(t∗n)′Ω
−1/2
sd,n {Zn + 〈v∗′n , α̂n − α0〉}+ 0.5n(t∗n)′Bnt∗n

+n×OP (sn + ||t∗n||ean + ||t∗n||2ebn) + oP (
√
d(n))

= n(t∗n)′Ω
−1/2
sd,n {Zn + 〈v∗′n , α̂n − α0〉}+ 0.5n(t∗n)′Bnt∗n + oP (

√
d(n)).

By Lemma C.3 (given that t∗n = DnΩ
−1/2
sd,n Zn, ||t∗n||e = OP

(
n−1/2

√
d(n)

)
) and the assumption that

supt:||t||e=1 |t′{Bn − D−1
n }t| = OP (bn), it follows

0.5Q̂LRn(φ0) ≤ 0.5n(t∗n)′D−1
n t∗n + oP

(√
d(n)

)
= 0.5(

√
nΩ
−1/2
sd,n Zn)′Dn(

√
nΩ
−1/2
sd,n Zn) + oP

(√
d(n)

)
.

Step 3. The results in steps 1 and 2 together imply that

Q̂LRn(φ0) = (
√
nΩ
−1/2
sd,n Zn)′Dn(

√
nΩ
−1/2
sd,n Zn) + oP

(√
d(n)

)
,

which establishes Result (1).

Result (2) directly follows from Result (1) and the fact that Dn = Id(n), Ωsd,n = Ω0,n when
Σ = Σ0.

Result (3) follows from Result (2), Ωsd,n = Ω0,n when Σ = Σ0, and the following property of
Wn ≡ nZ′nΩ−1

sd,nZn :

(2d(n))−1/2 (Wn − d(n))⇒ N(0, 1),

which has been established in the proof of Theorem A.5 Result (3). Q.E.D.
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C.4 Proofs for Section A.6 on series LS estimator m̂ and its bootstrap version

Proof of Lemma A.2: For Result (1), since

Mn(Zn) ≡ PV∞|Z∞
(

sup
Nosn

τn
n

n∑
i=1

∥∥m̂B(Xi, α)− m̃(Xi, α)− m̂B(Xi, α0)
∥∥2

e
≥M | Zn

)

≤PV∞|Z∞
(

sup
Nosn

τn
n

n∑
i=1

∥∥m̂B(Xi, α)− m̂(Xi, α)− {m̂B(Xi, α0)− m̂(Xi, α0)}
∥∥2

e
≥ M

2
| Zn

)

+ PV∞|Z∞

(
sup
Nosn

τn
n

n∑
i=1

‖m̂(Xi, α)− m̃(Xi, α)− m̂(Xi, α0)‖2e ≥
M

2
| Zn

)
≡M1,n(Zn) +M2,n(Zn),

we have: for all δ > 0, there is a M(δ) > 0 such that for all M ≥M(δ),

PZ∞ (Mn(Zn) ≥ 2δ) ≤ PZ∞ (M1,n(Zn) ≥ δ) + PZ∞ (M2,n(Zn) ≥ δ) .

By following the proof of Lemma C.3(ii) of Chen and Pouzo (2012a), we have that PZ∞ (M2,n(Zn) ≥ δ) <
δ/2 eventually. Thus, to establish Result (1), it suffices to bound

PZ∞
(
{M1,n(Zn) ≥ δ} ∩ {λmin((P ′P )/n) > c}

)
+ PZ∞(λmin((P ′P )/n) ≤ c).

By Assumption A.4(ii)(iii) and theorem 1 in Newey (1997) λmin((P ′P )/n) ≥ c > 0 with probability
PZ∞ approaching one, hence PZ∞(λmin((P ′P )/n) ≤ c) < δ/4 eventually. To bound the term
corresponding to M1,n, we note that21

n∑
i=1

∥∥m̂B (Xi, α)− m̂ (Xi, α)− {m̂B(Xi, α0)− m̂ (Xi, α0)}
∥∥2

e

=
n∑
i=1

∆ζB(α)′P (P ′P )−pJn(Xi)p
Jn(Xi)

′(P ′P )−P ′∆ζB(α)

= ∆ζB(α)′P (P ′P )−P ′∆ζB(α)

≤ 1

λmin((P ′P )/n)
{n−1∆ζB(α)′PP ′∆ζB(α)};

where ∆ζB(α) = ((ω1 − 1)∆ρ(Z1, α), ..., (ωn − 1)∆ρ(Zn, α))′ with ∆ρ(Z,α) ≡ ρ(Z,α) − ρ(Z,α0).
It is thus sufficient to show that, for large enough n,

PZ∞

(
PV∞|Z∞

(
sup
Nosn

τn
n2

∆ζB(α)′PP ′∆ζB(α) ≥M | Zn
)
≥ δ
)
< δ, (C.10)

which is established in Lemma C.5.
For Result (2), recall that `Bn (x, α) ≡ m̃(x, α) + m̂B(x, α0). By similar calculations to those

21To ease the notational burden in the proof, we assume dρ = 1; when dρ > 1 the same proof steps hold, component
by component.
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in Ai and Chen (2003) (p. 1824) it follows

EPV∞

[
n−1

n∑
i=1

∥∥m̂B(Xi, α0)
∥∥2

e

]
=EPV∞

[
pJn(Xi)

′(P ′P )−P ′EPV∞|X∞
[
ρB(α0)ρB(α0)′|Xn

]
P (P ′P )−pJn(Xi)

]
where ρB(α) ≡ (ρB(V1, α), ..., ρB(Vn, α))′ with ρB(Vi., α) ≡ ωiρ(Zi, α). Note that

EPV |X∞ [ρB(Vi, α0)ρB(Vj , α0)′|Xn] = EPΩ
[ωiωjEPV |X [ρ(Zi, α0)ρ(Zj , α0)′|Xi, Xj ]]

= 0 for all i 6= j,

and
EPV |X∞ [ρB(Vi, α0)ρB(Vi, α0)′|Xn] = σ2

ωΣ0(Xi).

So under Assumption Boot.1 or Boot.2, and by Assumptions 3.1(iv), and A.4(ii), we have: for all
δ > 0, there is a M(δ) > 0 such that for all M ≥M(δ),

PZ∞

(
PV∞|Z∞

(
Jn
n
n−1

n∑
i=1

∥∥m̂B(Xi, α0)
∥∥2

e
≥M | Zn

)
≥ δ

)
< δ.

To establish Result (2), with (τ ′n)−1 = max{Jnn , b
2
m,Jn

, (Mnδn)2}, it remains to show that

PZ∞

(
sup
Nosn

τ ′nn
−1

n∑
i=1

‖m̃(Xi, α)‖2e ≥M

)
< δ. (C.11)

By Lemma SM.1 of Chen and Pouzo (2012b), under Assumptions A.4 and A.5(i), we have: there
are finite constants c, c′ > 0 such that, for all δ > 0, there is a N(δ), such that for all n ≥ N(δ),

PZ∞

(
∀α ∈ Nosn : cEPX

[
||m̃ (X,α) ||2e

]
≤ 1

n

n∑
i=1

||m̃ (Xi, α) ||2e ≤ c′EPX
[
||m̃ (X,α) ||2e

])
> 1− δ.

Thus to show (C.11), it suffices to show that

sup
Nosn

τ ′nEPX

[
‖m̃(X,α)‖2e

]
= O(1).

By Assumption A.4(ii) it follows

sup
α∈Nosn

EPX

[
‖m̃(X,α)‖2e

]
≤ const. sup

Nosn
m(α)′P (P ′P )−2P ′m(α)

≤ const. sup
Nosn
{||(P ′P )−P ′(m(α)− Pπ(α))||2e + ||π(α)||2e}

≤ const. sup
α∈Nosn

max
{
b2m,Jn , ||α− α0||2

}
= O((τ ′n)−1),

where π is chosen as in Assumption A.4(iv). The last inequality follows from Assumptions A.4(ii)(iii)(iv)
and 3.4. We thus obtain Result (2).
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For Result (3), we note that

1

n

n∑
i=1

∥∥m̂B (Xi, α)
∥∥2

Σ̂−1 −
1

n

n∑
i=1

∥∥`Bn (Xi, α)
∥∥2

Σ̂−1 = RB1n(α) + 2RB2n(α),

where

RB1n(α) ≡ 1

n

n∑
i=1

∥∥m̂B (Xi, α)− `Bn (Xi, α)
∥∥2

Σ̂−1 , R
B
2n(α) ≤

√
RB1n

√√√√ 1

n

n∑
i=1

‖`Bn (Xi, α)‖2
Σ̂−1 .

By Result (1) and Assumption 4.1(iii), we have:

PZ∞

(
PV∞|Z∞

(
sup
Nosn

τnR
B
1n(α) ≥M | Zn

)
≥ δ
)
< δ

with τ−1
n = δ2

n(Mnδs,n)2κCn. By Results (1) and (2), and Assumption 4.1(iii), we have:

PZ∞

(
PV∞|Z∞

(
sup
Nosn

τ̃nR
B
2n(α) ≥M | Zn

)
≥ δ
)
< δ

with τ̃−1
n ≡Mnδ

2
n(Mnδs,n)κ

√
Cn. By Assumption A.5(iii) and the fact that Ln diverges, we obtain

the desired result. Q.E.D.
In the following we state Lemma C.5 and its proof.

Lemma C.5. Let Assumptions 3.4(i)(ii), A.4(iii), A.5(i)(ii) and either Boot.1 or Boot.2 hold.
Then: for all δ > 0, there is a M(δ) > 0 such that for all M ≥M(δ),

PZ∞

(
PV∞|Z∞

(
sup
Nosn

τn
n2

∆ζB(α)′PP ′∆ζB(α) ≥M | Zn
)
≥ δ
)
< 0.5δ

eventually, with τ−1
n ≡ (δn)2 (Mnδs,n)2κCn, where ∆ζB(α) = ((ω1−1)∆ρ(Z1, α), ..., (ωn−1)∆ρ(Zn, α))′

and ∆ρ(Z,α) ≡ ρ(Z,α)− ρ(Z,α0).

Proof of Lemma C.5: Denote

M ′1n(Zn) ≡ PV∞|Z∞
(

sup
Nosn

τn
n2

∆ζB(α)′PP ′∆ζB(α) ≥M | Zn
)
.

By the Markov inequality

M ′1n(Zn) ≤M−1EPV∞|Z∞

[
sup
Nosn

τn
n2

∆ζB(α)′PP ′∆ζB(α)

]
.

Hence it is sufficient to bound

PZ∞
(
M ′1n(Zn) ≥ δ

)
≤ 1

Mδ
EPV∞

[
sup
Nosn

τn
n2

∆ζB(α)′PP ′∆ζB(α)

]

=
τn
nMδ

Jn∑
j=1

EPV∞

 sup
Nosn

(
1√
n

n∑
i=1

(ωi − 1)fj(Zi, α)

)2
 ,
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where the first inequality follows from the law of iterated expectations and the Markov inequality,
and the second equality is due to the notation fj(z, α) ≡ pj(x){ρ(z, α)− ρ(z, α0)}.

Under assumption Boot.1, {(ωi − 1)fj(Zi, α)}ni=1 are independent, and thus, by proposition
A.1.6 in Van der Vaart and Wellner (1996) (VdV-W),

τn
nMδ

Jn∑
j=1

EPV∞

 sup
Nosn

(
n−1/2

n∑
i=1

(ωi − 1)fj(Zi, α)

)2


≤ τn
nMδ

Jn∑
j=1

(
EPV∞

[
sup
Nosn

∣∣∣∣∣n−1/2
n∑
i=1

(ωi − 1)fj(Zi, α)

∣∣∣∣∣
]

+
√
E[max

i≤n
sup
Nosn

∣∣n−1/2(ωi − 1)fj(Zi, α)
∣∣2]

)2

.

The second term in the RHS is bounded above by√
nn−1EPV∞ [(ωi − 1)2 sup

Nosn
|fj(Zi, α)|2] ≤

√
EPω [(ωi − 1)2]EPZ∞ [ sup

Nosn
|fj(Zi, α)|2] = O((Mnδs,n)κ)

by Assumptions A.4(iii), A.5(ii) and Boot.1. Hence, under assumption Boot.1 we need to control

τn
nMδ

Jn∑
j=1

(
EPV∞

[
sup
Nosn

∣∣∣∣∣n−1/2
n∑
i=1

(ωi − 1)fj(Zi, α)

∣∣∣∣∣
])2

+O

(
τnJn
nMδ

(Mnδs,n)2κ

)
. (C.12)

Under Assumption Boot.2, ((ωi − 1)fj(Zi, α))i are not independent. So we need to take some
additional steps to arrive to an equation of the form of (C.12). Under Assumption Boot.2, it follows

τn
Mδ

Jn∑
j=1

EPV∞

 sup
Nosn

(
n−1

n∑
i=1

(ωi − 1)fj(Zi, α)

)2


=
τn
Mδ

Jn∑
j=1

EPV∞

 sup
Nosn

(
n−1

n∑
i=1

ωifj(Zi, α)− n−1
n∑
i=1

fj(Zi, α)

)2


=
τn
Mδ

Jn∑
j=1

EPZ∞×PẐ∞

 sup
Nosn

(
n−1

n∑
i=1

(δẐi − Pn)[fj(·, α)]

)2
 ,

where the last line follows from the fact that ωi are the number of times the variable Zi appear on
the bootstrap sample. Thus, the distribution of ωiδZi is the same as that of δẐi where (Ẑi)i is the

bootstrap sample, i.e., an i.i.d. sample from Pn ≡ n−1
∑n

i=1 δZi . By a slight adaptation of lemma
3.6.6 in VdV-W (allowing for square of the norm), it follows

EPZ∞×PẐ∞

 sup
Nosn

(
n−1

n∑
i=1

(δẐi − Pn)[fj(·, α)]

)2
 ≤ EPZ∞

EPÑ∞
 sup
Nosn

(
n−1

n∑
i=1

ÑiδZi [fj(·, α)]

)2
 ,

where Ñi = Ni − N ′i with Ni and N ′i being iid Poisson variables with parameter 0.5 (PÑ∞ is the

corresponding probability). Note that now, {Ñifj(Zi, α)}ni=1 are independent. So by proposition
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A.1.6 in VdV-W,

τn
nMδ

Jn∑
j=1

EQ

 sup
Nosn

(
n−1/2

n∑
i=1

Ñifj(Zi, α)

)2


≤ τn
nMδ

Jn∑
j=1

(
EQ

[
sup
Nosn

∣∣∣∣∣n−1/2
n∑
i=1

Ñifj(Zi, α)

∣∣∣∣∣
]

+

√
E[max

i≤n
sup
Nosn

∣∣∣n−1/2Ñifj(Zi, α)
∣∣∣2]

)2

,

where Q ≡ PZ∞ × PÑ∞ . By Cauchy-Schwarz inequality, the second term in the RHS is bounded
above by√

nn−1EQ[|Ñ |2 sup
Nosn
|fj(Z,α)|2] ≤

√
EPÑ [|Ñ |2]EPZ [ sup

Nosn
|fj(Z,α)|2] = O((Mnδs,n)κ)

by Assumptions A.4(iii) and A.5(ii) and E[|Ñ |2] < ∞. Therefore, under Assumption Boot.2 we
need to control

τn
nMδ

Jn∑
j=1

(
EQ

[
sup
Nosn

∣∣∣∣∣n−1/2
n∑
i=1

Ñifj(Zi, α)

∣∣∣∣∣
])2

+O

(
τnJn
nMδ

((Mnδs,n)κ)2

)
. (C.13)

For both equations, (C.12) and (C.13), we can invoke lemma 2.9.1 in VdV-W and bound the
leading term in the equations as follows,

τn
nMδ

Jn∑
j=1

EPV∞

[
sup
Nosn

∣∣∣∣∣n−1/2
n∑
i=1

(ωi − 1)δZi [fj(·, α)]

∣∣∣∣∣
]

≤ τn
nMδ

Jn∑
j=1

{∫ ∞
0

√
P (|ω − 1| ≥ t)dt

}
max

1≤l≤n
EPZ∞×Pε∞

[
sup
Nosn

∣∣∣∣∣l−1/2
l∑

i=1

εiδZi [fj(·, α)]

∣∣∣∣∣
]
, (C.14)

and

τn
nMδ

Jn∑
j=1

EPZ∞

[
EPÑ

[
sup
Nosn

∣∣∣∣∣n−1/2
n∑
i=1

ÑiδZi [fj(·, α)]

∣∣∣∣∣
]]

≤ τn
nMδ

Jn∑
j=1

{∫ ∞
0

√
P (|Ñ | ≥ t)dt

}
max

1≤l≤n
EPZ∞×Pε∞

[
sup
Nosn

∣∣∣∣∣l−1/2
l∑

i=1

εiδZi [fj(·, α)]

∣∣∣∣∣
]
, (C.15)

where (εi)
n
i=1 is a sequence of Rademacher random variables.

Note that
{∫∞

0

√
P (|ω − 1| ≥ t)dt

}
<∞ (under Assumption Boot.1), and also

{∫∞
0

√
P (|Ñ | ≥ t)dt

}
≤
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2
√

2 (see VdV-W p. 351). Hence in both cases we need to bound

τn
nMδ

Jn∑
j=1

(
max

1≤l≤n
EPZ∞×Pε∞

[
sup
Nosn

∣∣∣∣∣l−1/2
l∑

i=1

εiδZi [fj(·, α)]

∣∣∣∣∣
])2

≤ τn
nMδ

Jn∑
j=1

(
max

1≤l≤n
EPZ∞×Pε∞

[
sup
Nosn

∣∣∣∣∣l−1/2
l∑

i=1

εiδZi [f̄j(·, α)]

∣∣∣∣∣
]

+ max
1≤l≤n

EPZ∞×Pε∞

[
sup
Nosn

∣∣∣∣∣l−1/2
l∑

i=1

εiEPZ [fj(Z,α)]

∣∣∣∣∣
])2

≤2
τn
nMδ

Jn∑
j=1

(
max

1≤l≤n
EPZ∞×Pε∞

[
sup
Nosn

∣∣∣∣∣l−1/2
l∑

i=1

εiδZi [f̄j(·, α)]

∣∣∣∣∣
])2

+ 2
τn
nMδ

Jn∑
j=1

(
max

1≤l≤n
EPZ∞×Pε∞

[
sup
Nosn

∣∣∣∣∣l−1/2
l∑

i=1

εiEPZ [fj(Z,α)]

∣∣∣∣∣
])2

. (C.16)

Note that

EPZ∞×Pε∞

[
sup
Nosn

∣∣∣∣∣l−1/2
l∑

i=1

εiEPZ [fj(Z,α)]

∣∣∣∣∣
]

= sup
Nosn
|EPZ [fj(Z,α)]|EPε∞

[∣∣∣∣∣l−1/2
l∑

i=1

εi

∣∣∣∣∣
]

≤ sup
Nosn
|EPX [pj(X)∆m(X,α)]|

√√√√√EPε∞

(l−1/2

l∑
i=1

εi

)2


≤
√
EPZ [|pj(X)|2] sup

Nosn

√
EPX [|∆m(X,α)|2]

√√√√EPε∞

[
l−1

l∑
i=1

(εi)
2

]

= O(
√
EPZ [|pj(X)|2]Mnδn) = O(M2

nδ
2
n),

where ∆m(X,α) ≡ m(X,α) −m(X,α0) and the inequality follows from Cauchy-Schwarz and the
fact that εi are independent, and the last two equal signs are due to Assumptions 3.4(i)(ii) and
A.4(iii).

Hence, by the “desymmetrization lemma” 2.3.6 in VdV-W (note that f̄j(Zi, α) are centered),
equation (C.16) is bounded above (up to a constant) by

τn
nMδ

Jn∑
j=1

max
1≤l≤n

(
EPZ∞

[
sup
Nosn

∣∣∣∣∣l−1/2
l∑

i=1

f̄j(Zi, α)

∣∣∣∣∣
])2

+ (Mnδn)2 τnJn
nMδ

.

Note that max
{

(Mnδn)2, (Mnδs,n)2κ
}

= (Mnδs,n)2κ (by assumption). and that τ−1
n ≡ Jn

n (Mnδs,n)2κCn,
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it suffices to show that

max
1≤j≤Jn

max
1≤l≤n

EPZ∞

 sup
α∈Nosn

(
l−1/2

l∑
i=1

f̄j(Zi, α)

)2
 ≤ const.× (Mnδs,n)2κCn. (C.17)

By Van der Vaart and Wellner (1996) theorem 2.14.2, we have (up to some omitted constant),
for all j,

EPZ∞

[
sup

α∈Nosn

∣∣∣∣∣l−1/2
l∑

i=1

f̄j(Zi, α)

∣∣∣∣∣
]

≤
{

(Mnδs,n)κ
∫ 1

0

√
1 + logN[](w(Mnδs,n)κ, Eojn, || · ||L2(fZ))dw

}
where Eojn = {pj(·)(ρ(·, α)− ρ(·, α0))− E[pj(·)(ρ(·, α)− ρ(·, α0)]) : α ∈ Nosn}.

Given any w > 0, let ({gml , gmu })m=1,...,N(w) be the ||.||L2(fZ)-norm brackets of Oon. If {ρ(·, α)−
ρ(·, α0)} ∈ Oon belongs to a bracket {gml , gmu }, then, since |pj(x)| < const < ∞ by Assumption
A.4(iii),

gml (Z) ≤ pj(X){∆ρ(Z,α)} ≤ gmu (Z)

(where {gml , gmu } are the original ones, buy scaled by a constant; we keep the same notation to ease
the notational burden) and from the previous calculations it is easy to see that

{gml (Z)− E[gmu (Z)]} ≤ pj(X)∆ρ(Z,α)− E[pj(X)∆ρ(Z,α)] ≤ {gmu (Z)− E[gml (Z)]}.

So functions of the form ({(gml (Z) − E[gmu (Z)]), (gmu (Z) − E[gml (Z)])})m=1,...,N(w) form ||.||L2(fV )-
norm brackets on Eojn. By construction, N[](w, Eojn, ||.||L2(fZ)) ≤ N(w). Hence (up to some omitted
constants)

EPZ∞

[
sup

α∈Nosn

∣∣∣∣∣l−1/2
l∑

i=1

f̄j(Zi, α)

∣∣∣∣∣
]

≤(Mnδs,n)κ max
j=1,...,Jn

{∫ 1

0

√
1 + logN[](w(Mnδs,n)κ,Oon, || · ||L2(fZ))dw

}
≤(Mnδs,n)κ

√
Cn,

where the last inequality follows from assumption A.5(ii). Notice that the above RHS does not
depend on l nor on j, so we obtain (C.17). The desired result follows. Q.E.D.

Proof of Lemma A.3: Denote

TBnI ≡ sup
Nosn

∣∣∣∣∣ 1n
n∑
i=1

(
dm̃(Xi, α)

dα
[u∗n]

)′
Σ̂(Xi)

−1`Bn (Xi, α)− 1

n

n∑
i=1

(
dm(Xi, α0)

dα
[u∗n]

)′
Σ(Xi)

−1`Bn (Xi, α)

∣∣∣∣∣ ,
and

TBnII ≡ sup
Nosn

∣∣∣∣∣ 1n
n∑
i=1

(
dm(Xi, α0)

dα
[u∗n]

)′
Σ(Xi)

−1`Bn (Xi, α)− {Zωn + 〈u∗n, α− α0〉}

∣∣∣∣∣ .
It suffices to show that for all δ > 0, there is N(δ) such that for all n ≥ N(δ),

PZ∞
(
PV∞|Z∞

(√
nTBnI ≥ δ | Zn

)
≥ δ
)
< δ (C.18)
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and
PZ∞

(
PV∞|Z∞

(√
nTBnII ≥ δ | Zn

)
≥ δ
)
< δ. (C.19)

We first verify equation (C.18). Note that

TBnI ≤ sup
Nosn

∣∣∣∣∣ 1n
n∑
i=1

(
dm̃(Xi, α)

dα
[u∗n]− dm(Xi, α0)

dα
[u∗n]

)′
Σ̂(Xi)

−1`Bn (Xi, α)

∣∣∣∣∣
+ sup
Nosn

∣∣∣∣∣ 1n
n∑
i=1

(
dm(Xi, α0)

dα
[u∗n]

)′
{Σ̂(Xi)

−1 − Σ(Xi)
−1}`Bn (Xi, α)

∣∣∣∣∣
≡TBnIa + TBnIb.

By Assumption 4.1(iii) and the Cauchy-Schwarz inequality, it follows that, for some C ∈ (0,∞),

PZ∞
(
PV∞|Z∞

(√
nTBnIa ≥ δ | Zn

)
≥ δ
)
≤

PZ∞

PV∞|Z∞
 sup
Nosn

√√√√∑n
i=1

∥∥∥dm(Xi,α0)
dα [u∗n]− dm̃(Xi,α)

dα [u∗n]
∥∥∥2
e

n

√∑n
i=1 ‖`Bn (Xi, α)‖2e

n
≥ Cδ√

n
| Zn

 ≥ δ


+ PZ∞
(
λmin(Σ̂(X)) < c

)
.

The second term in the RHS vanishes eventually, so we focus on the first term. It follows

PZ∞

PV∞|Z∞
 sup
Nosn

√√√√∑n
i=1

∥∥∥dm(Xi,α0)
dα [u∗n]− dm̃(Xi,α)

dα [u∗n]
∥∥∥2

e

n

√√√√ 1

n

n∑
i=1

‖`Bn (Xi, α)‖2e ≥
Cδ√
n
| Zn

 ≥ δ


≤PZ∞

PV∞|Z∞
 sup
Nosn

√√√√ 1

n

n∑
i=1

∥∥∥∥dm(Xi, α0)

dα
[u∗n]− dm̃(Xi, α)

dα
[u∗n]

∥∥∥∥2

e

√
Mn

τ ′n
≥ Cδ | Zn

 ≥ 0.5δ


+ PZ∞

PV∞|Z∞
 sup
Nosn

√√√√τ ′n
n

n∑
i=1

‖`Bn (Xi, α)‖2e ≥
√
M | Zn

 ≥ 0.5δ

 .

By Lemma A.2(2) the second term on the RHS is less than 0.5δ eventually (with (τ ′n)−1 =
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const.(Mnδn)2). Regarding the first term, note that

sup
Nosn

√√√√ 1

n

n∑
i=1

∥∥∥∥dm(Xi, α0)

dα
[u∗n]− dm̃(Xi, α)

dα
[u∗n]

∥∥∥∥2

e

√
n

τ ′n

≤ sup
Nosn

√√√√ 1

n

n∑
i=1

∥∥∥∥dm̃(Xi, α0)

dα
[u∗n]− dm̃(Xi, α)

dα
[u∗n]

∥∥∥∥2

e

× n

τ ′n

+ sup
Nosn

√√√√ 1

n

n∑
i=1

∥∥∥∥dm(Xi, α0)

dα
[u∗n]− dm̃(Xi, α0)

dα
[u∗n]

∥∥∥∥2

e

× n

τ ′n

≤ sup
Nosn

√√√√ 1

n

n∑
i=1

∥∥∥∥dm(Xi, α0)

dα
[u∗n]− dm(Xi, α)

dα
[u∗n]

∥∥∥∥2

e

× n

τ ′n
+ oPZ∞ (1),

by the LS projection property and the definition of m̃, as well as by the Markov inequality and
Assumption A.6(i). Next, by the Markov inequality and Assumption A.7(ii), we have:

PZ∞

 sup
Nosn

√√√√ 1

n

n∑
i=1

∥∥∥∥dm(Xi, α0)

dα
[u∗n]− dm(Xi, α)

dα
[u∗n]

∥∥∥∥2

e

√
n

τ ′n
≥ 0.5δ


≤ 2

δ

√√√√EPZ∞

[
sup
Nosn

∥∥∥∥dm(X,α0)

dα
[u∗n]− dm(X,α)

dα
[u∗n]

∥∥∥∥2

e

]
× n

τ ′n
→ 0.

Thus, we established that

PZ∞
(
PV∞|Z∞

(√
nTBnIa ≥ δ | Zn

)
≥ δ
)
< δ eventually.

By similar arguments, Assumptions 4.1(iii) and A.5(iv), Lemma A.2(2), and that 1
n

∑n
i=1

∥∥∥dm(Xi,α0)
dα [u∗n]

∥∥∥2

e
is bounded in probability, it can be shown that

PZ∞
(
PV∞|Z∞

(√
nTBnIb ≥ δ | Zn

)
≥ δ
)
< δ, eventually.

Therefore, we establish equation (C.18).

For equation (C.19), let g(X,u∗n) ≡
(
dm(X,α0)

dα [u∗n]
)′

Σ−1(X). Then

TBnII ≤ sup
Nosn

∣∣∣∣∣ 1n
n∑
i=1

g(Xi, u
∗
n)m̃(Xi, α)− 〈u∗n, α− α0〉

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

g(Xi, u
∗
n)m̂B(Xi, α0)− Zωn

∣∣∣∣∣
≡ TnIIa + TBnIIb.

Thus to show equation (C.19) it suffices to show that
√
nTnIIa = oPZ∞ (1) and that

PZ∞
(
PV∞|Z∞

(√
nTBnIIb ≥ δ | Zn

)
≥ δ
)
< δ eventually. (C.20)

First we consider the term TnIIa. This part of proof is similar to those in Ai and Chen (2003),
Ai and Chen (2007) and Chen and Pouzo (2009) for their regular functional λ′θ case, and hence we
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shall be brief. By the orthogonality properties of the LS projection and the definition of m̃(Xi, α)
and g̃(Xi, u

∗
n), we have:

n−1
n∑
i=1

g(Xi, u
∗
n)m̃(Xi, α) = n−1

n∑
i=1

g̃(Xi, u
∗
n)m(Xi, α).

By Cauchy-Schwarz inequality,

sup
Nosn

∣∣∣∣∣ 1n
n∑
i=1

{g̃(Xi, u
∗
n)− g(Xi, u

∗
n)}{m(Xi, α)−m(Xi, α0)}

∣∣∣∣∣
≤

√√√√ 1

n

n∑
i=1

||g̃(Xi, u∗n)− g(Xi, u∗n)||2e sup
Nosn

√√√√ 1

n

n∑
i=1

||m(Xi, α)−m(Xi, α0)||2e.

By assumption A.6(iii),
√
n supNosn

1
n

∑n
i=1

{
||m(Xi, α)−m(Xi, α0)||2e − EPX [||m(X1, α)−m(X1, α0)||2e]

}
=

oP (1). Thus, since supNosn EPX [||m(X1, α)−m(X1, α0)||2e] = O(M2
nδ

2
n), it follows

sup
Nosn

1

n

n∑
i=1

||m(Xi, α)−m(Xi, α0)||2e = OPZ∞
(

(Mnδn)2 + oPZ∞ (n−1/2)
)
.

This, Assumption A.6(ii) and δn = o(n−1/4) (by assumption A.5(iv)) imply that

sup
Nosn

∣∣∣∣∣ 1n
n∑
i=1

{g̃(Xi, u
∗
n)− g(Xi, u

∗
n)}{m(Xi, α)−m(Xi, α0)}

∣∣∣∣∣
≤ oPZ∞ (

1√
nMnδn

)×OPZ∞
(√

(Mnδn)2 + o(n−1/2)

)
= oPZ∞ (n−1/2)

Therefore,

√
nTnIIa =

√
n sup
Nosn

∣∣∣∣∣ 1n
n∑
i=1

g(Xi, u
∗
n)m(Xi, α)− 〈u∗n, α− α0〉

∣∣∣∣∣+ oPZ∞ (n−1/2).

By assumption A.6(iv),
√
n supNosn

∣∣ 1
n

∑n
i=1 g(Xi, u

∗
n)m(Xi, α)− EPX [g(X1, u

∗
n){m(X1, α)−m(X1, α0)]

∣∣ =
oPZ∞ (1). Thus, by Assumption A.7(iv), we conclude that

√
nTnIIa = oPZ∞ (1).

Next we consider the term TBnIIb. By the orthogonality properties of the LS projection,

n−1
n∑
i=1

g(Xi, u
∗
n)m̂B(Xi, α0) = n−1

n∑
i=1

g̃(Xi, u
∗
n)ρB(Vi, α0),

where ρB(Vi, α0) ≡ ωi,nρ(Zi, α0) and {ωi,n}ni=1 is independent of {Zi}ni=1.
Hence, by applying the Markov inequality twice, it follows that

PZ∞
(
PV∞|Z∞

(√
nTBnIIb ≥ δ | Zn

)
≥ δ
)

≤ δ−4EPV∞

n−1

(
n∑
i=1

{g(Xi, u
∗
n)− g̃(Xi, u

∗
n)}ρB(Vi, α0)

)2
 .
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Regarding the cross-products terms where i 6= j, note that

EPV∞
[
{g(Xj , u

∗
n)− g̃(Xj , u

∗
n)}{g(Xi, u

∗
n)− g̃(Xi, u

∗
n)}ρB(Vi, α0)ρB(Vj , α0)

]
=EPV∞

[
{g(Xj , u

∗
n)− g̃(Xj , u

∗
n)}{g(Xi, u

∗
n)− g̃(Xi, u

∗
n)}EPV∞|X∞

[
ρB(Vi, α0)ρB(Vj , α0) | Xn

]]
=EPV∞

[
{g(Xj , u

∗
n)− g̃(Xj , u

∗
n)}{g(Xi, u

∗
n)− g̃(Xi, u

∗
n)}EPV∞|X∞ [ωiωj |Xn]EPZ∞|X∞ [ρ(Zi, α0)ρ(Zj , α0) | Xn]

]
=0,

since EPZ∞|X∞ [ρ(Zi, α0)ρ(Zj , α0) | Xn] = EPZ|X [ρ(Zi, α0)Xi]EPZ|X [ρ(Zj , α0) | Xj ] = 0 for i 6= j.
Thus, it suffices to study

δ−4EPV∞

[
n−1

n∑
i=1

(g(Xi, u
∗
n)− g̃(Xi, u

∗
n))2 (ρB(Vi, α0)

)2]

= δ−4n−1
n∑
i=1

EPV∞
[
(g(Xi, u

∗
n)− g̃(Xi, u

∗
n))2EPV∞|X∞

[
(ωiρ(Zi, α0))2 | Xn

]]
.

By the original-sample {Zi}ni=1 being i.i.d., {ωi,n}ni=1 being independent of {Zi}ni=1, Assumption
3.1(iv) and the fact that σ2

ω < ∞, we can majorize the previous expression (up to an omitted
constant) by

δ−4EPV∞
[
(g(Xi, u

∗
n)− g̃(Xi, u

∗
n))2

]
= o(1),

where the last equality is due to Assumption A.6(ii). Hence we established equation (C.20). The
desired result now follows. Q.E.D.

Proof of Lemma A.4: By the Cauchy-Schwarz inequality and Assumption 4.1(iii), it suffices to
show that

PZ∞

PV∞|Z∞
 sup
Nosn

√√√√n−1

n∑
i=1

∥∥∥∥d2m̃(Xi, α)

dα2
[u∗n, u

∗
n]

∥∥∥∥2

e

sup
Nosn

√√√√n−1

n∑
i=1

‖`Bn (Xi, α)‖2e ≥ δ | Z
n

 ≥ δ
 < δ.

By Lemma A.2(2), it suffices to show that

PZ∞

 sup
Nosn

√√√√n−1

n∑
i=1

∥∥∥∥d2m̃(Xi, α)

dα2
[u∗n, u

∗
n]

∥∥∥∥2

e

≥ δ

Mnδn

 < δ.

Using Markov inequality twice and the LS projection properties, the LHS of the previous equation
can be bounded above by

M2
nδ

2
n

δ2
EPX

[
sup
Nosn

∥∥∥∥d2m̃(X,α)

dα2
[u∗n, u

∗
n]

∥∥∥∥2

e

]
≤ M2

nδ
2
n

δ2
EPX

[
sup
Nosn

∥∥∥∥d2m(X,α)

dα2
[u∗n, u

∗
n]

∥∥∥∥2

e

]
< δ

eventually, which is satisfied given Assumption A.7(iii). The desired result follows. Q.E.D.
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Proof of Lemma A.5: For Result (1), we first want to show that

sup
Nosn

∣∣∣∣∣ 1n
n∑
i=1

{∥∥∥∥dm̃(Xi, α)

dα
[u∗n]

∥∥∥∥2

Σ̂−1

−
∥∥∥∥dm(Xi, α0)

dα
[u∗n]

∥∥∥∥2

Σ−1

}∣∣∣∣∣ ≤ Tn,I + Tn,II + Tn,III = oPZ∞ (1)

(C.21)
where

Tn,I = sup
Nosn

∣∣∣∣∣ 1n
n∑
i=1

{∥∥∥∥dm̃(Xi, α)

dα
[u∗n]

∥∥∥∥2

Σ̂−1

−
∥∥∥∥dm̃(Xi, α0)

dα
[u∗n]

∥∥∥∥2

Σ̂−1

}∣∣∣∣∣ ,
Tn,II =

∣∣∣∣∣ 1n
n∑
i=1

{∥∥∥∥dm̃(Xi, α0)

dα
[u∗n]

∥∥∥∥2

Σ̂−1

−
∥∥∥∥dm(Xi, α0)

dα
[u∗n]

∥∥∥∥2

Σ̂−1

}∣∣∣∣∣ ,
Tn,III =

∣∣∣∣∣ 1n
n∑
i=1

{∥∥∥∥dm(Xi, α0)

dα
[u∗n]

∥∥∥∥2

Σ̂−1

−
∥∥∥∥dm(Xi, α0)

dα
[u∗n]

∥∥∥∥2

Σ−1

}∣∣∣∣∣ .
Therefore, to prove equation (C.21), it suffices to show that

Tn,j = oPZ∞ (1) for j ∈ {I, II, III}.

Note that for || · ||L2(Pn) with Pn being the empirical measure, |||a||2L2(Pn) − ||b||
2
L2(Pn)| ≤ ||a −

b||2L2(Pn) + 2|〈b, a − b〉L2(Pn)|. Now, let a ≡ dm̃(Xi,α)
dα [u∗n] and b ≡ dm̃(Xi,α0)

dα [u∗n]. In order to show

Tn,I = oPZ∞ (1), under Assumption 4.1(iii), it suffices to show√√√√n−1

n∑
i=1

∥∥∥∥dm̃(Xi, α0)

dα
[u∗n]

∥∥∥∥2

e

sup
Nosn

√√√√n−1

n∑
i=1

∥∥∥∥dm̃(Xi, α)

dα
[u∗n]− dm̃(Xi, α0)

dα
[u∗n]

∥∥∥∥2

e

= oPZ∞ (1).

By the property of LS projection, we have:

n−1
n∑
i=1

∥∥∥∥dm̃(Xi, α0)

dα
[u∗n]

∥∥∥∥2

e

≤ n−1
n∑
i=1

∥∥∥∥dm(Xi, α0)

dα
[u∗n]

∥∥∥∥2

e

= OPZ∞ (1)

due to iid data, Markov inequality, the definition of EPZ∞

[∥∥∥dm(Xi,α0)
dα [u∗n]

∥∥∥2

Σ−1

]
and Assumption

3.1(iv). Next, by the property of LS projection, we have:

sup
Nosn

n−1
n∑
i=1

∥∥∥∥dm̃(Xi, α)

dα
[u∗n]− dm̃(Xi, α0)

dα
[u∗n]

∥∥∥∥2

e

≤ sup
Nosn

n−1
n∑
i=1

∥∥∥∥dm(Xi, α)

dα
[u∗n]− dm(Xi, α0)

dα
[u∗n]

∥∥∥∥2

e

= oPZ∞ (1)

due to iid data, Markov inequality and Assumption A.7(ii). Thus we established Tn,I = oPZ∞ (1).
By similar algebra as before, in order to show Tn,II = oPZ∞ (1), given Assumption 4.1(iii), it

suffices to show√√√√n−1

n∑
i=1

∥∥∥∥dm(Xi, α0)

dα
[u∗n]

∥∥∥∥2

e

√√√√n−1

n∑
i=1

∥∥∥∥dm̃(Xi, α0)

dα
[u∗n]− dm(Xi, α0)

dα
[u∗n]

∥∥∥∥2

e

= oPZ∞ (1).
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The term n−1
∑n

i=1

∥∥∥dm(Xi,α0)
dα [u∗n]

∥∥∥2

e
= OPZ∞ (1) is due to iid data, Markov inequality, the definition

of EPZ∞

[∥∥∥dm(Xi,α0)
dα [u∗n]

∥∥∥2

Σ−1

]
and Assumption 3.1(iv). The term n−1

∑n
i=1

∥∥∥dm̃(Xi,α0)
dα [u∗n]− dm(Xi,α0)

dα [u∗n]
∥∥∥2

e
=

oPZ∞ (1) is due to iid data, Markov inequality and Assumption A.6(i). Thus Tn,II = oPZ∞ (1).

Finally, Tn,III = oPZ∞ (1) follows from the fact that n−1
∑n

i=1

∥∥∥dm(Xi,α0)
dα [u∗n]

∥∥∥2

e
= OPZ∞ (1) and

Assumption 4.1(iii). We thus established equation (C.21). Since

EPZ∞

[
n−1

n∑
i=1

∥∥∥∥dm(Xi, α0)

dα
[u∗n]

∥∥∥∥2

Σ−1

]
= EPX

[
g(X,u∗n)Σ(X)g(X,u∗n)′

]
≤ C <∞,

we obtain Result (1).
Result (2) immediately follows from equation (C.21) and Assumption B. Q.E.D.
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D Supplement: Sieve Score Statistic and Score Bootstrap

In the main text we present the sieve Wald, SQLR statistics and their bootstrap versions. Here
we consider sieve score (or LM) statistic and its bootstrap version. Both the sieve score test and
score bootstrap only require to compute the original-sample restricted PSMD estimator of α0, and
hence are computationally attractive.

Recall that α̂Rn is the original-sample restricted PSMD estimator (4.10). Let v̂∗Rn be computed
in the same way as v̂∗n in Subsection 4.2, except that we use α̂Rn instead of α̂n. And

||v̂∗Rn ||2n,sd = n−1
n∑
i=1

(
dm̂(Xi, α̂

R
n )

dα
[v̂∗Rn ]

)′
Σ̂−1
i ρ(Zi, α̂

R
n )ρ(Zi, α̂

R
n )′Σ̂−1

i

(
dm̂(Xi, α̂

R
n )

dα
[v̂∗Rn ]

)
Denote

Ŝn ≡ 1√
n

n∑
i=1

(
dm̂(Xi, α̂

R
n )

dα
[v̂∗Rn /||v̂∗Rn ||n,sd]

)′
Σ̂−1
i m̂(Xi, α̂

R
n )

Ŝ1,n ≡ 1√
n

n∑
i=1

(
dm̂(Xi, α̂

R
n )

dα
[v̂∗Rn /||v̂∗Rn ||n,sd]

)′
Σ̂−1
i ρ(Zi, α̂

R
n )

and

ŜBn ≡ 1√
n

n∑
i=1

(
dm̂(Xi, α̂

R
n )

dα
[v̂∗Rn /||v̂∗Rn ||n,sd]

)′
Σ̂−1
i {m̂

B(Xi, α̂
R
n )− m̂(Xi, α̂

R
n )}

ŜB1,n ≡ 1√
n

n∑
i=1

(
dm̂(Xi, α̂

R
n )

dα
[v̂∗Rn /||v̂∗Rn ||n,sd]

)′
Σ̂−1
i {(ωi,n − 1)ρ(Zi, α̂

R
n )}.

Then

V ar
(
ŜB1,n | Zn

)
=

σ2
ω

∑n
i=1

(
dm̂(Xi,α̂

R
n )

dα [v̂∗Rn ]
)′

Σ̂−1
i ρ(Zi, α̂

R
n )ρ(Zi, α̂

R
n )′Σ̂−1

i

(
dm̂(Xi,α̂

R
n )

dα [v̂∗Rn ]
)

n||v̂∗Rn ||2n,sd
= σ2

ω,

which coincides with that of Ŝ1,n (once adjusted by σ2
ω).

Following the results in Subsection 4.2 one can compute v̂∗Rn in closed form, v̂∗Rn = ψ̄k(n)(·)′D̃−1
n z̃n

where

z̃n =
dφ(α̂Rn )

dα
[ψ̄k(n)(·)], D̃n = n−1

n∑
i=1

(
dm̂(Xi, α̂

R
n )

dα
[ψ̄k(n)(·)′]

)′
Σ̂−1
i

(
dm̂(Xi, α̂

R
n )

dα
[ψ̄k(n)(·)′]

)
.

And ||v̂∗Rn ||2n,sd = z̃′nD̃−1
n f̃nD̃−1

n z̃n with

f̃n =
1

n

n∑
i=1

(
dm̂(Xi, α̂

R
n )

dα
[ψ̄k(n)(·)′]

)′
Σ̂−1
i ρ(Zi, α̂

R
n )ρ(Zi, α̂

R
n )′Σ̂−1

i

(
dm̂(Xi, α̂

R
n )

dα
[ψ̄k(n)(·)′]

)
.
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Therefore, the bootstrap sieve score statistic ŜB1,n can be expressed as

ŜB1,n =
1√
n

n∑
i=1

(
dm̂(Xi, α̂

R
n )

dα
[v̂∗Rn /||v̂∗Rn ||n,sd]

)′
Σ̂−1
i (ωi,n − 1)ρ(Zi, α̂

R
n )

=
(
z̃′nD̃−1

n f̃nD̃−1
n z̃n

)−1/2
z̃′nD̃−1

n

1√
n

n∑
i=1

(
dm̂(Xi, α̂

R
n )

dα
[ψ̄k(n)(·)′]

)′
Σ̂−1
i (ωi,n − 1)ρ(Zi, α̂

R
n ).

For the case of IID weights, this expression is similar to that proposed in Kline and Santos (2012)
for parametric models, which suggests the potential higher order refinements of the bootstrap sieve

score test
(
ŜB1,n

)2
. We leave it to future research for bootstrap refinement.

In the rest of this section, to simplify presentation, we assume that m̂(x, α) is a series LS
estimator (2.5) of m(x, α). Then we have:

m̂B(x, α̂Rn )− m̂(x, α̂Rn ) =

 n∑
j=1

(ωj,n − 1)ρ(Zj , α̂
R
n )pJn(Xj)

′

 (P ′P )−pJn(x).

When Σ̂ = I then we have:

Ŝn =
1√
n

n∑
i=1

(
dm̂(Xi, α̂

R
n )

dα
[v̂∗Rn /||v̂∗Rn ||n,sd]

)′
ρ(Zi, α̂

R
n ) = Ŝ1,n

ŜBn =
1√
n

n∑
i=1

(
dm̂(Xi, α̂

R
n )

dα
[v̂∗Rn /||v̂∗Rn ||n,sd]

)′
(ωi,n − 1)ρ(Zi, α̂

R
n ) = ŜB1,n.

Let {εn}∞n=1 and {ζn}∞n=1 be real valued positive sequences such that εn = o(1) and ζn = o(1).

Assumption D.1. (i) max{εn, n−1/4}Mnδn = o(n−1/2)

sup
Nosn

sup
u∈Vn : ||u||=1

n−1
n∑
i=1

∥∥∥∥dm̂(Xi, α)

dα
[u]− dm(Xi, α)

dα
[u]

∥∥∥∥2

e

= OPZ∞ (max{n−1/2, ε2n});

(ii) there is a continuous mapping Υ : R+ → R+ such that max{Υ(ζn), n−1/4}Mnδn = o(n−1/2)
and

sup
Nosn

sup
Vn : ||u∗n−u||≤ζn

n−1
n∑
i=1

∥∥∥∥dm(Xi, α)

dα
[u∗n]− dm(Xi, α)

dα
[u]

∥∥∥∥2

e

= OPZ∞ (max{n−1/2, (Υ(ζn))2});

(iii) ||û∗Rn − u∗n|| = OPZ∞ (ζn) where û∗Rn ≡ v̂∗Rn /||v̂∗Rn ||sd.

Assumption D.1(i) can be obtained by similar conditions to those imposed in Ai and Chen
(2003). Assumption D.1(ii) can be established by controlling the entropy, as in VdV-W Chapter

2.11 and E

[∥∥∥dm(X,α)
dα [u∗n]− dm(X,α)

dα [u]
∥∥∥2

e

]
= o(1) for all ||u∗n − u|| < ζn; this result is akin to that

in lemma 1 of Chen et al. (2003). However, Assumption D.1(ii) can also be obtained by weaker
conditions, yielding a (Υ(ζn))2 that is slower than O(n−1/2) provided that Υ(ζn)Mnδn = o(n−1/2).
In the proof we show that ||û∗Rn −u∗n|| = oPZ∞ (1); faster rates of convergence will relax the conditions
needed to show part (ii).
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Theorem D.1. Let α̂Rn be the restricted PSMD estimator (4.10), and conditions for Lemma 3.2
and Proposition B.1 hold. Let Assumptions 3.5, A.4 - A.7, 3.6(ii), 4.1, B.1 and D.1 hold and that
nδ2

n (Mnδs,n)2κCn = o(1). Then, under the null hypothesis of φ(α0) = φ0,

(1) Ŝn =
√
nZn + oPZ∞ (1)⇒ N(0, 1).

(2) Further, if conditions for Lemma A.1 and Assumptions Boot.3(ii), Boot.1 or Boot.2 hold,
then: ∣∣∣LV∞|Z∞(σ−1

ω ŜBn | Zn)− L(Ŝn)
∣∣∣ = oPZ∞ (1), and

sup
t∈R

∣∣∣PV∞|Z∞(σ−1
ω ŜBn ≤ t|Zn)− PZ∞(Ŝn ≤ t)

∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞).

Proof of Theorem D.1: We first note that by Lemmas ?? and 5.1, Assumptions 3.6(i) and
Boot.3(i) hold. Also, by Proposition B.1 we have α̂Rn ∈ Nosn wpa1 under the null hypothesis of
φ(α0) = φ0. Under the null hypothesis, and Assumption 3.5, we also have (see Step 1 in the proof
of Theorem 4.3): √

n〈u∗n, α̂Rn − α0〉 = oPZ∞ (1).

For Result (1), we show that Ŝn is asymptotically standard normal under the null hypothesis
in two steps.

Step 1. We first show that
∣∣∣ ||v̂∗Rn ||sd||v̂∗Rn ||n,sd

− 1
∣∣∣ = oPZ∞ (1) and ||û∗Rn − u∗n|| = oPZ∞ (1), where

û∗Rn ≡ v̂∗Rn /||v̂∗Rn ||sd and v̂∗Rn is computed in the same way as that in Subsection 4.2, except that
we use α̂Rn instead of α̂n.∣∣∣ ||v̂∗Rn ||sd||v̂∗Rn ||n,sd

− 1
∣∣∣ = oPZ∞ (1) can be established in the same way as that of Theorem 4.2(1). Also,

following the proof of Theorem 4.2(1), we obtain:∥∥∥∥ v̂∗Rn − v∗n||v∗n||

∥∥∥∥ = oPZ∞ (1),
||v̂∗Rn ||
||v∗n||sd

= OPZ∞ (1) , sup
v∈Vn

∣∣∣∣〈v∗n − v̂∗Rn , v〉
||v|| × ||v̂∗Rn ||

∣∣∣∣ = oPZ∞ (1).

This and Assumption 3.1(iv) imply that
∣∣∣ 〈v̂∗Rn ,v̂∗Rn −v∗n〉
||v̂∗Rn ||2sd

∣∣∣ = oPZ∞ (1) and
∣∣∣ 〈v∗n,v̂∗Rn −v∗n〉||v̂∗Rn ||2sd

∣∣∣ = ||v∗n||sd
||v̂∗Rn ||sd

×
oPZ∞ (1). Therefore,∣∣∣∣ ||v∗n||2sd||v̂∗Rn ||2sd

− 1

∣∣∣∣ ≤ ∣∣∣∣〈v̂∗Rn , v̂∗Rn − v∗n〉
||v̂∗Rn ||2sd

∣∣∣∣+

∣∣∣∣〈v∗n, v̂∗Rn − v∗n〉||v̂∗Rn ||2sd

∣∣∣∣ = oPZ∞ (1).

and ∣∣∣∣ ||v∗n||sd||v̂∗Rn ||sd
− 1

∣∣∣∣ = oPZ∞ (1).

Thus

||û∗Rn − u∗n|| =

∥∥∥∥ v̂∗Rn
||v̂∗Rn ||sd

− v∗n
||v∗n||sd

∥∥∥∥ =

∥∥∥∥ v̂∗Rn
||v∗n||sd

(1 + oPZ∞ (1))− v∗n
||v∗n||sd

∥∥∥∥
=

∥∥∥∥ v̂∗Rn − v∗n||v∗n||sd

∥∥∥∥+ oPZ∞ (
||v̂∗Rn ||
||v∗n||sd

) = oPZ∞ (1).
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Step 2. We show that under the null hypothesis,

Ŝn =
√
nZn + oPZ∞ (1) ≡ 1√

n

n∑
i=1

(
dm(Xi, α0)

dα
[u∗n]

)′
Σ(Xi)

−1ρ(Zi, α0) + oPZ∞ (1). (D.1)

By Step 1, it suffices to show that under the null hypothesis,

Sn ≡
1√
n

n∑
i=1

(
dm̂(Xi, α̂

R
n )

dα
[û∗Rn ]

)′
Σ̂−1(Xi)m̂(Xi, α̂

R
n ) =

√
nZn + oPZ∞ (1).

Recall that `n(x, α) ≡ m̂(x, α0) + m̃(x, α). We have:∣∣∣∣∣Sn − 1√
n

n∑
i=1

(
dm̂(Xi, α̂

R
n )

dα
[û∗Rn ]

)′
Σ̂(Xi)

−1`n(Xi, α̂
R
n )

∣∣∣∣∣
≤OPZ∞ (1)

√
n

√√√√n−1

n∑
i=1

∥∥∥∥dm̂(Xi, α̂Rn )

dα
[û∗Rn ]

∥∥∥∥2

e

√√√√n−1

n∑
i=1

‖m̂(Xi, α̂Rn )− `n(Xi, α̂Rn )‖2e,

where the OPZ∞ (1) is due to Assumption 4.1(iii). By Lemma A.2(1) and the assumption that
nδ2

n(Mnδs,n)2κCn = o(1), we have:√√√√n−1

n∑
i=1

‖m̂(Xi, α̂Rn )− `n(Xi, α̂Rn )‖2e = oPZ∞ (n−1/2).

Also n−1
∑n

i=1

∥∥∥dm̂(Xi,α̂
R
n )

dα [û∗Rn ]
∥∥∥2

e
� 1 by Step 1. Therefore

Sn =
1√
n

n∑
i=1

(
dm̂(Xi, α̂

R
n )

dα
[û∗Rn ]

)′
Σ̂(Xi)

−1`n(Xi, α̂
R
n ) + oPZ∞ (1).

Assumption D.1(i) implies that

n−1
n∑
i=1

∥∥∥∥dm̂(Xi, α̂
R
n )

dα
[û∗Rn ]− dm(Xi, α̂

R
n )

dα
[û∗Rn ]

∥∥∥∥2

e

= OPZ∞ (max
{
n−1/2, ε2n

}
).

And n−1
∑n

i=1

∥∥`n(Xi, α̂
R
n )
∥∥2

e
= OPZ∞ ((Mnδn)2) by Lemma A.2(2). These results, Assumption

D.1(i) and Assumption 4.1(iii) together lead to

1√
n

n∑
i=1

(
dm̂(Xi, α̂

R
n )

dα
[û∗Rn ]

)′
Σ̂(Xi)

−1`n(Xi, α̂
R
n )

=
1√
n

n∑
i=1

(
dm(Xi, α̂

R
n )

dα
[û∗Rn ]

)′
Σ(Xi)

−1`n(Xi, α̂
R
n ) + oPZ∞ (1)

=
1√
n

n∑
i=1

(
dm(Xi, α̂

R
n )

dα
[u∗n]

)′
Σ(Xi)

−1`n(Xi, α̂
R
n ) + oPZ∞ (1),

where the second equality is due to ||û∗Rn −u∗n|| = OPZ∞ (ζn) (Assumption D.1(iii)) and Assumption
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D.1(ii).
Since α̂Rn ∈ Nosn wpa1 under the null hypothesis,

√
n〈u∗n, α̂Rn −α0〉 = oPZ∞ (1), and by analogous

calculations to those in the proof of Lemma A.3, we obtain:

1√
n

n∑
i=1

(
dm(Xi, α̂

R
n )

dα
[u∗n]

)′
Σ(Xi)

−1`n(Xi, α̂
R
n ) =

√
nZn + oPZ∞ (1),

and hence equation (D.1) holds. By Assumption 3.6(ii) we have: Ŝn ⇒ N(0, 1) under the null
hypothesis.

For Result (2), we now show that ŜBn also converges weakly (in the sense of Bootstrap Section
5) to a standard normal under the null hypothesis. It suffices to show that

ŜBn =
1√
n

n∑
i=1

(ωi − 1)

(
dm(Xi, α0)

dα
[u∗n]

)′
Σ(Xi)

−1ρ(Zi, α0) + oPV∞|Z∞ (1) wpa1(PZ∞). (D.2)

Note that `Bn (Xi, α̂
R
n )−`n(Xi, α̂

R
n )) = m̂B(Xi, α0)−m̂(Xi, α0), and that n−1

∑n
i=1 ||m̂B(Xi, α0)−

m̂(Xi, α0)||2e = OPV∞|Z∞ (Jn/n) wpa1(PZ∞) (see the proof of Lemma A.2). We have, by calculations
similar to Step 2,∣∣∣∣∣ŜBn − 1√

n

n∑
i=1

(
dm(Xi, α̂

R
n )

dα
[u∗n]

)′
Σ(Xi)

−1{`Bn (Xi, α̂
R
n )− `n(Xi, α̂

R
n )}

∣∣∣∣∣ = oPV∞|Z∞ (1) wpa1(PZ∞).

By analogous calculations to those in the proof of Lemma A.3, we obtain equation (D.2). This
and Result (1) and Assumption Boot.3(ii) now imply that under the null and conditional on the
data, σ−1

ω ŜBn is also asymptotically standard normally distributed. The last part of Result (2) can
be established in the same way as that of Theorem 5.2(1), and is omitted. Q.E.D.
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