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Abstract

This paper considers inference on functionals of semi/nonparametric conditional moment re-
strictions with possibly nonsmooth generalized residuals, which include all of the (nonlinear) non-
parametric instrumental variables (IV) as special cases. There models are often illposed and hence
it is difficult to verify whether a (possibly nonlinear) functional is root-n estimable or not. We pro-
vide computationally simple, unified inference procedures that are asymptotically valid regardless
of whether a functional is root-n estimable or not. We establish the following new useful results:
(1) the asymptotic normality of a plug-in penalized sieve minimum distance (PSMD) estimator of
a (possibly nonlinear) functional; (2) the consistency of simple sieve variance estimators for the
plug-in PSMD estimator, and hence the asymptotic chi-square distribution of the sieve Wald s-
tatistic; (3) the asymptotic chi-square distribution of an optimally weighted sieve quasi likelihood
ratio (QLR) test under the null hypothesis; (4) the asymptotic tight distribution of a non-optimally
weighted sieve QLR statistic under the null; (5) the consistency of generalized residual bootstrap
sieve Wald and QLR tests; (6) local power properties of sieve Wald and QLR tests and of their
bootstrap versions; (7) asymptotic properties of sieve Wald and SQLR for functionals of increas-
ing dimension. Simulation studies and an empirical illustration of a nonparametric quantile IV
regression are presented.

Keywords: Nonlinear nonparametric instrumental variables; Penalized sieve minimum distance;
Irregular functional; Sieve variance estimators; Sieve Wald; Sieve quasi likelihood ratio; Generalized
residual bootstrap; Local power.
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1 Introduction

This paper is about inference on functionals of the unknown true parameters ag = (6, ho) satisfying

the semi/nonparametric conditional moment restrictions
Elp(Y,X;00,h)|X] =0 a.s. - X, (1.1)

where Y is a vector of endogenous variables and X is a vector of conditioning (or instrumental)
variables. The conditional distribution of Y given X, Fy|y, is not specified beyond that it satisfies
. p(+;60, ho) is a d, x 1—vector of generalized residual functions whose functional forms are
known up to the unknown parameters ag = (6p), ho) € © x H, with 0y = (61, ..., Ooq,)’ € © being a
dg x 1—vector of finite dimensional parameters and ho = (ho1(+), ..., hog(+)) € H being a 1xd,—vector
valued function. The arguments of each unknown function hy(-) may differ across ¢ = 1, ..., ¢, may
depend on 0, hy(-), ¢ # £, X and Y. The residual function p(-; &) could be nonlinear and pointwise
non-smooth in the parameters a = (6, h) € © x H.

The general framework nests many widely used nonparametric and semiparametric models
in economics and finance. Well known examples include nonparametric mean instrumental vari-
ables regressions (NPIV): E[Y; — ho(Y2)|X] = 0 (e.g., Hall and Horowitz (2005)), |Carrasco et al.|
(2007)), Blundell et al. (2007)), Darolles et al| (2011), Horowitz| (2011))); nonparametric quantile in-
strumental variables regressions (NPQIV): E[1{Y1 < ho(Y2)} — v|X] = 0 (e.g., Chernozhukov and|
Hansen| (2005)), |Chernozhukov et al| (2007), Horowitz and Lee (2007)), |Chen and Pouzo| (2012a),
|Gagliardini and Scaillet| (2012))); semi/nonparametric demand models with endogeneity (e.g.,
dell et al.| (2007), Chen and Pouzo (2009), Souza-Rodrigues| (2012))); semi/nonparametric ran-
dom coefficient panel data regressions (e.g., (Chamberlain| (1992), |Graham and Powell (2012))); se-

mi/nonparametric spatial models with endogeneity (e.g., Pinkse et al.| (2002), [Merlo and de Paulal
(2013)); semi/nonparametric asset pricing models (e.g., [Hansen and Richard| (1987), |Gallant and|
Tauchen| (1989)), Chen and Ludvigson| (2009), (Chen et al| (2013), Penaranda and Sentana/ (2013)));

semi/nonparametric static and dynamic game models (e.g., Bajari et al.| (2011))); nonparametric

optimal endogenous contract models (e.g., Bontemps and Martimort| (2013)). Additional examples
of the general model (|1.1)) can be found in |Chamberlain (1992), Newey and Powell (2003), |Ai and|
|Chen| (2003), Chen and Pouzo| (20124a), |Chen et al| (2014) and the references therein. In fact,

model (1.1)) includes all of the (nonlinear) semi/nonparametric IV regressions when the unknown

functions hy depend on the endogenous variables Y':

E[p(YI,Ho,ho(Yg))‘X] =0 a.s. — X, (12)

which could lead to difficult (nonlinear) nonparametric ill-posed inverse problems with unknown



operators.

Let {Z; = (Y/, X])'}__; be a random sample from the distribution of Z = (Y, X’)’ that satisfies
the conditional moment restrictions with a unique ag = (0}, ho). Let ¢ : © x H — R
be a (possibly nonlinear) functional with a finite dy > 1. Typical linear functionals include an
Euclidean functional ¢(a) = 6, a point evaluation functional ¢(a) = h(y,) (for 7, € supp(Ys)),
a weighted derivative functional ¢(h) = [w(y2)Vh(y2)dy, and many others. Typical nonlinear
functionals include a quadratic functional [w(y2) |h(y2)|* dya, a quadratic derivative functional
[ w(yz) IVh(y2)|? dya, a consumer surplus or an average consumer surplus functional of an endoge-
nous demand function h. We are interested in computationally simple, valid inferences on any
¢(ap) of the general model with i.i.d. dataﬁ

Although some functionals of the model , such as the (point) evaluation functional, are
known a priori to be estimated at slower than root-n rates, others, such as the weighted derivative
functional, are far less clear without a stare at their semiparametric efficiency bound expressions.
This is because a non-singular semiparametric efficiency bound is a necessary condition for ¢(ay)
to be root-n estimable. Unfortunately, as pointed out in |(Chamberlain| (1992)) and |Ai and Chen
(2012), there is generally no closed form solution for the semiparametric efficiency bound of ¢(ay)
(including ) of model (1.1)), especially so when p(-; 6o, ko) contains several unknown functions
and/or when the unknown functions hg of endogenous variables enter p(+; 0y, ho) nonlinearly. It is
thus difficult to verify whether the semiparametric efficiency bound for ¢(ayg) is singular or not.
Therefore, it is highly desirable for applied researchers to be able to conduct simple valid inferences
on ¢(ayp) regardless of whether it is root-n estimable or not. This is the main goal of our paper.

In this paper, for the general model that could be nonlinearly ill-posed and for any ¢ ()
that may or may not be root-n estimable, we first establish the asymptotic normality of the plug-in
penalized sieve minimum distance (PSMD) estimator ¢(ay,) of ¢(ag). For the model with
(pointwise) smooth residuals p(Z; ) in ag, we propose two simple consistent sieve variance estima-
tors for possibly slower than root-n estimator ¢(a,,), which immediately leads to the asymptotic
chi-square distribution of the sieve Wald statistic. However, there is no simple variance estimator
for ¢(a,) when p(Z, «) is not pointwise smooth in o (without estimating an extra unknown nui-
sance function or using numerical derivatives). We then consider a PSMD criterion based test of
the null hypothesis ¢(ag) = ¢o. We show that an optimally weighted sieve quasi likelihood ratio
(SQLR) statistic is asymptotically chi-square distributed under the null hypothesis. This allows us
to construct confidence sets for ¢(ap) by inverting the optimally weighted SQLR statistic, without
the need to compute a variance estimator for ¢(a,,). Nevertheless, in complicated real data analysis
applied researchers might like to use simple but possibly non-optimally weighed PSMD procedures
for estimation of and inference on ¢(cy). We show that the non-optimally weighted SQLR statistic

4See our Cowles Foundation Discussion Paper No. 1897 for general theory allowing for weakly dependent data.



still has a tight limiting distribution under the null regardless of whether ¢(«yp) is root-n estimable
or not. In addition, we establish the consistency of the generalized residual bootstrap (possibly
non-optimally weighted) SQLR and sieve Wald tests under virtually the same conditions as those
used to derive the limiting distributions of the original-sample statistics. The bootstrap SQLR
would then lead to alternative confidence sets construction for ¢(ag) without the need to compute
a variance estimator for ¢(a,). To ease notation burden, we present the above listed theoretical
results for a scalar-valued functional in the main text. In Appendix [A] we present the asymptotic
properties of sieve Wald and SQLR for functionals of increasing dimension (i.e., dy = dim(¢) could
grow with sample size n). We also provide the local power properties of sieve Wald and SQLR
tests as well as their bootstrap versions in Appendix [A] Regardless of whether a possibly nonlinear
functional ¢(ag) is root-n estimable or not, we show that the optimally weighted SQLR is more
powerful than the non-optimally weighed SQLR, and that the SQLR and the sieve Wald using the
same weighting matrix have the same local power in terms of first order asymptotic theory.

To the best of our knowledge, our paper is the first to provide a unified theory about sieve
Wald and SQLR inferences on (possibly nonlinear) ¢(«p) satisfying the general semi/nonparametric
model with possibly non-smooth residualsﬂ Our results allow applied researchers to obtain
limiting distribution of the plug-in PSMD estimator ¢(a,) and to construct confidence sets for any
¢(ap) regardless of whether it is regular (i.e., root-n estimable) or irregular (i.e., slower than root-n
estimable). Our paper is also the first to provide local power properties of sieve Wald and SQLR
tests and their bootstrap versions of general nonlinear hypotheses for the model .

Roughly speaking, our results extend the classical theories on Wald and QLR tests of nonlinear
hypothesis based on root-n consistent parametric minimum distance estimator @, to those based
on slower than root-n consistent nonparametric minimum distance estimator &, = (ég,ﬁn) of ap =
(05, ho) satisfying the model . The implementations of the sieve Wald and SQLR also resemble
the classical Wald and QLR based on parametric extreme estimators and hence are computationally
attractive. For example, our sieve t (Wald) test on a general nonlinear hypothesis ¢(hg) = ¢g of the
NPIV model E[Y; —ho(Y2)|X] = 0 can be implemented as a standard t (Wald) test for a parametric
linear IV model using two stage least squares (see Subsection . The proof techniques are quite
different, however, because one is no longer able to rely on the root-n asymptotic normality of &, and
then a standard “delta-method” to establish the asymptotic normality of \/n (¢(a,) — ¢(ap)). In
our framework (1.2)), v/n (#(@n) — #(ap)) could diverge to infinity under the combined effects of (i)
slower convergence rate of @, to ag due to the illposed inverse problem and (ii) nonlinearity in either
the functional ¢() or the residual function p(). Our proof strategy relies on the convergence rates
of the PSMD estimator &, to ag in both weak and strong metrics, and then the local curvatures

of the functional ¢() and the criterion function under these two metrics. The weak metric is

5We also provide asymptotic properties of sieve score and bootstrap sieve score statistics in online Appendix @



intrinsic to the variance of the linear approximation to ¢(a,) — ¢(ap), while the strong metric
controls the nonlinearity (in «) of the functional ¢() and of the conditional mean function m(-, o) =
Elp(Y,X;a)|X = -]. Unfortunately the convergence rate in the strong metric could be very slow
due to the illposed inverse problem. This explains why it is difficult to establish the asymptotic
normality of ¢(@,,) for a nonlinear functional ¢() even in the NPIV model. Our paper builds upon
the recent results on convergence rates in |Chen and Pouzo| (2012a)) and others. In particular, under
virtually the same conditions as those in |Chen and Pouzo| (2012a), we show that our generalized
residual bootstrap PSMD estimator of g is consistent and achieves the same convergence rates as
that of the original-sample PSMD estimator &,,. This result is then used to establish the consistency
of the bootstrap sieve Wald and the bootstrap SQLR statistics under virtually the same conditions
as those used to derive the limiting distributions of the original-sample statisticsﬁ

There are some published work about estimation of and inference on a particular linear func-
tional, the Euclidean parameter ¢(a) = 6, of the general model when 6y is assumed to be
regular (i.e., root-n estimable); see |Ai and Chen (2003), |Chen and Pouzo| (2009)), Otsu| (2011]) and
others. None of the existing work allows for irregular 6 identified by the model (1.1]), however.
When specializing our general theory to inference on a regular 6y of the model , we not only
recover the results of |Ai and Chen (2003]) and |(Chen and Pouzo (2009), but also provide local power
properties of sieve Wald and SQLR as well as valid bootstrap (possibly non-optimally weighted)
SQLR inference. Moreover, our results remain valid even when 6y might be irregular[]

When specializing our theory to inference on a particular irregular linear functional, the point
evaluation functional ¢(a) = h(yy), of the semi/nonparametric IV model (1.2)), we automati-
cally obtain the pointwise asymptotic normality of the PSMD estimator of hy(y,) and different
ways to construct its confidence set. These results are directly applicable to the NPIV example
with p(Y1; 600, ho(Y2)) = Y1 — ho(Y2) and to the NPQIV example with p(Y7;600,ho(Y2)) = 1{Y; <
ho(Y2)} —~. Previously, Horowitz (2007) and |Gagliardini and Scaillet| (2012]) established the point-
wise asymptotic normality of their kernel based function space Tikhonov regularization estimators
of ho(7y) for the NPIV and the NPQIV examples respectively. Immediately after our paper was
first presented in April 2009 Banff/Canada conference on semiparametrics, the authors of Horowitz
and Lee (2012) informed us that they were concurrently working on confidence bands for hy us-
ing a particular SMD estimator of the NPIV example. To the best of our knowledge, there is no

inference results, in the existing literature, on any nonlinear functional of Ay even for the NPIV

5The convergence rate of the bootstrap PSMD estimator is also very useful for the consistency of the bootstrap
Wald statistic for semiparametric two-step GMM estimation of regular functionals when the first-step unknown
functions are estimated via a PSMD procedure. See e.g., |Chen et al.| (2003)

It is known that 6y could have singular semiparametric efficiency bound and could not be root-n estimable; see
Chamberlain| (2010), |Kahn and Tamer| (2010), Graham and Powell (2012) and the references therein. Following |Kahn
and Tamer| (2010) and |Graham and Powell (2012) we call such a 6y irregular. Many applied papers on complicated
semi/nonparametric models simply assume that 6y is root-n estimable.



and NPQIV examples. Our paper is the first to provide simple sieve Wald and SQLR tests for
(possibly) nonlinear functionals satisfying the general semi/nonparametric IV model .

The rest of the paper is organized as follows. Section [2] presents the plug-in PSMD estima-
tor ¢(ay,) of a (possibly nonlinear) functional ¢ evaluated at ag = (6, ho) satisfying the model
(1.1). It also provides an overview of the main asymptotic results that will be established in
the subsequent sections, and illustrates the applications through a point evaluation functional
() = h(y,), a weighted derivative functional ¢(h) = [w(y2)Vh(y2)dys, and a quadratic func-
tional ¢(a) = [w(y2) |h(y2)|* dyz of the NPTV and NPQIV examples. Section [3 states the basic
regularity conditions. Section [4| provides the asymptotic properties of sieve t (Wald) and sieve
QLR statistics. Section |5| establishes the consistency of the bootstrap sieve t (Wald) and the boot-
strap SQLR statistics. Section [f] verifies the key regularity conditions for the asymptotic theories
via the three functionals of the NPIV and NPQIV examples presented in Section Section
presents simulation studies and an empirical illustration. Section [§] briefly concludes. Appendix
consists of several subsections, presenting (1) further results on sieve Riesz representation of a
functional of interest; (2) the convergence rates of the bootstrap PSMD estimator a2 for model
(1.1); (3) the local power properties of sieve Wald and SQLR tests and of their bootstrap versions;
(4) asymptotic properties of sieve Wald and SQLR for functionals of increasing dimension; (5)
low level sufficient conditions with a series least squares (LS) estimated conditional mean function
m(-,a) = E[p(Y, X;a)|X = ]; and (6) additional useful lemmas with series LS estimated m(-, ).
Online supplemental materials consist of Appendices [B], [C] and [D} Appendix [B] contains additional
theoretical results (including other consistent variance estimators and other bootstrap sieve Wald
tests) and proofs of all the results stated in the main text. Appendix [C| contains proofs of all the
results stated in Appendix [A]l Online Appendix [D] provides computationally attractive sieve score
test and sieve score bootstrap.

Notation. We use “=” to implicitly define a term or introduce a notation. For any column
vector A, we let A’ denote its transpose and ||A||. its Euclidean norm (i.e., ||A|l. = VA’A, al-
though sometimes we use |A| = ||A]|. for simplicity). Let ||A]|}, = A'W A for a positive definite
weighting matrix W. Let Apax(W) and Apin (W) denote the maximal and minimal eigenvalues
of W respectively. All random variables Z = (Y, X'), Z; = (Y/,X])' are defined on a com-
plete probability space (Z, Bz, Pz), where Py is the joint probability distribution of (Y”/, X'). We
define (Z2°°,B%, Pz) as the probability space of the sequences (Zi,Zs,...). For simplicity we
assume that Y and X are continuous random variables. Let fx (Fx) be the marginal densi-
ty (cdf) of X with support X, and fyx (Fy|x) be the conditional density (cdf) of Y given X.
Let Ep[-] denote the expectation with respect to a measure P. Sometimes we use P for Py
and E[-] for Ep,.[-]. Denote LP(Q,du), 1 < p < oo, as a space of measurable functions with
gl zr(@,an) = {Jq lg(t)[Pdu(t)}'/? < oo, where Q is the support of the sigma-finite positive mea-



sure dy (sometimes LP(du) and ||g||rr(qy) are used). For any (possibly random) positive sequences
{an}2 and {b,}22,, ap = Op(b,) means that lim. o limsup, Pr (a,/b, > ¢) = 0; a, = op(by)
means that for all £ > 0, lim,,_,o, Pr (a, /b, > ¢) = 0; and a,, < b, means that there exist two con-

7

stants 0 < ¢; < ¢g < oo such that cra, < b, < coa,. Also, we use “wpal-Pz=” (or simply wpal)
for an event A,, to denote that Pz~ (A,) — 1 as n — oco. We use A,, = Apn) and Hy = Hyp)
for various sieve spaces. We assume dim(Ay(,)) < dim(Hy,)) < k(n) for simplicity, all of which
grow to infinity with the sample size n. We use const., ¢ or C' to mean a positive finite constant
that is independent of sample size but can take different values at different places. For sequences,
(an)n, we sometimes use a,  a (a, N\, @) to denote, that the sequence converges to a and that

is increasing (decreasing) sequence. For any mapping F : H; — Hy between two generic Banach

spaces, %[v] = W is the pathwise (or Gateaux) derivative at «q in the direction
v € Hy. And %[v’] = (%[vl],w-,%[vk]) for v/ = (vq,---,vg) with v; € Hy for all

j=1, ..k

2 PSMD Estimation and Inferences: An Overview

2.1 The Penalized Sieve Minimum Distance Estimator

Let m(X, o) = E[p(Y, X; )| X]| = [ p(y, X; a)dFy|x(y) be a d, x 1 vector valued conditional mean
function, ¥(X) be a d, x d, positive definite (a.s. — X') weighting matrix, and

Qla)=FE [m(X, oz)'E(X)_lm(X, a)] =K [||m(X, a)||%,1]

be the population minimum distance (MD) criterion function. Then the semi/nonparametric con-
ditional moment model (1.1) can be equivalently expressed as m(X,ap) = 0 a.s. — X, where
ag = (0),ho) € A=0O x H, or as

inf Q(a) = Q(ag) = 0.

acA

Let Xo(X) = Var(p(Y, X; ap)|X) be positive definite for almost all X. In this paper as well as in
most applications %(X) is chosen to be either I, (identity) or Xo(X) for almost all X. We call
Q) = B [|lm(X, @)|I2.

Let ¢ : A — R% be a functional with a finite d, > 1. We are interested in inference on ¢(«yp).
Let

1| the population optimally weighted MD criterion function.

Onla) = % S (X, ) S(X) (X, ) (2.1)
=1

be a sample estimate of Q(a), where (X, @) and %(X) are any consistent estimators of m(X, o)



and (X)) respectively. When S(X) = f)o(X ) is a consistent estimator of the optimal weighting
matrix ¥o(X), we call the corresponding @n(a) the sample optimally weighted MD criterion @%(a).
We estimate ¢(ap) by ¢(ay,), where a,, = (5;“}7”) is an approximate penalized sieve minimum

distance (PSMD) estimator of ag = (6y, ho), defined as

On(@n) + AnPen(hy) < inf {@n(a) + )\nPen(h)} +opye (), (2.2)
aGAk(n)
where A\, Pen(h) > 0 is a penalty term such that A, = o(1); and Ay = © X Hyy, is a finite

dimensional sieve for A = © X H, more precisely, Hy(,) is a finite dimensional linear sieve for H:

k(n)
Myy = h €H R() = Brar(’) = B'¢*™() ¢, (2.3)
k=1

where {g;}72, is a sequence of known basis functions of a Banach space (H, ||-||;z) such as wavelets,
splines, Fourier series, Hermite polynomial series, etc. And k(n) — oo as n — oo.

For the purely nonparametric conditional moment models E [p(Y, X;ho)|X] = 0, Chen and
Pouzo (2012a) proposed more general approximate PSMD estimators of hg by allowing for possibly
infinite dimensional sieves (i.e., dim(Hy,)) = k(n) < oo). Nevertheless, both the theoretical
properties and Monte Carlo simulations in |Chen and Pouzo (2012a) recommend the use of the
PSMD procedures with slowly growing finite-dimensional linear sieves with a tiny penalty (i.e.,
k(n) — oo, @ — 0 asn — oo and A, = o(n~!), and hence the main smoothing parameter is
the sieve dimension k(n)). This class of PSMD estimators include the original SMD estimators of
Newey and Powell (2003) and |Ai and Chen| (2003)) as special cases, and has been used in recent
empirical estimation of semiparametric structural models in microeconomics and asset pricing with
endogeneity. See, e.g., Blundell et al.| (2007)), Horowitz| (2011), Chen and Pouzo| (2009), Bajari et al.
(2011), Souza-Rodrigues (2012)), |[Pinkse et al.| (2002), Merlo and de Paula/ (2013), Bontemps and
Martimort| (2013)), Chen and Ludvigson (2009)), Chen et al.| (2013)), Penaranda and Sentana/ (2013))
and others.

In this paper we shall develop inferential theory for ¢(ap) based on the PSMD procedures with
slowly growing finite-dimensional sieves Ay,,) = © X Hy(,). We first establish the large sample
theories under a high level “local quadratic approximation” (LQA) condition, which allows for any

consistent nonparametric estimator m(x, ) that is linear in p(Z, a):
n
Mz, 0) =Y p(Zi0) Ap(Xi, 7) (2.4)
i=1

where A, (X;,x) is a known measurable function of {X; }?:1 for all x, whose expression varies



according to different nonparametric procedures such as kernel, local linear regression, series and
nearest neighbors. In Appendix[A]we provide lower level sufficient conditions for this LQA assump-

tion when m(x, ) is the series least squares (LS) estimator (2.5):
n
iz, ) = (Z p(Zi, o)p”" (Xi)/> (P'P) p™ (), (2.5)
i=1

which is a linear nonparametric estimator with A, (X;,z) = p/n(X;) (P'P)~p’*(z), where
{p; };";1 is a sequence of known basis functions that can approximate any square integrable func-
tions of X well, p’*(X) = (p1(X),...,ps, (X)), P = (p’(X1),...,p""(X,))’, and (P'P)~ is the
generalized inverse of the matrix P’P. Following Blundell et al.| (2007) and |Chen and Pouzo
(2009), we let p’»(X) be a tensor-product linear sieve basis, and J,, be the dimension of p’»(X)

such that Jn2d9+k(n)—>ooand%—>0asn—>oo.

2.2 Preview of the Main Results for Inference

For simplicity we let ¢ : R% x H — R be a real-valued functional. Let $n = ¢(ay) be the plug-in
PSMD estimator of ¢(ap).

Sieve t (or Wald) statistic. Regardless of whether ¢(ay) is y/n estimable or not, Theorem
shows that Ye@n)—é(a0)} g asymptotically standard normal, and the sieve variance |[v}|%,

v llsa

has a closed form expression resembling the “delta-method” variance for a parametric MD problem:

lealiz = (e ) Dy (g ). (26)

/
where gF(")(.) = (1&9,qk(”)(')’> is a (dp + k(n)) x 1 vector with 1,4, a dg x 1 vector of 1’s,

N 1 k(n) (. o a /
d%ao) () = 9 (6o + 0, fg);/r B'q"™(-)) oo = <ad)a(9/0)’ d¢£§ho) [qk(n)(~)’]> (2.7)

and v = (0, 8) are (dg + k(n)) x 1 vectors, dd)(ao)[qk(”)(-)’] = 99(60:ho+5'¢5M () |g=0, and

dh a5
_ dm(X,0) gy ) _1 [(dm(X, 20) rny, v
D, =& | ) oo (g . (2.8
!/
5, = B[ (80 0(y)) 007 p(Z,awlp(Zuaoy 500 (LD oy
(2.9)
where WWC(”)(‘)I] = aE[p(Z’Hﬁe’hgjﬁlqk(n)('))|X] ly=0 is a d, x (dg + k(n)) matrix. The closed



form expression of |[v}]|%, immediately leads to simple consistent plug-in sieve variance estimators;

one of which is

B2 = Vi = (d‘“a") [qk<"><->]> D50 (W[q“m(-ﬂ), (2.10)

n,sd — do

an —Rk(Nn j— a gn HyAn /k(n) °
d¢>(a )[qk( )(.)] — 99(Ont ha;sﬁq ())’7:0 and

zn: [(W[q’“(")(-)']>/f(Xi)l <W[qk(")(-)’]>] . (211)

o= 23 (PO ) S0 ootz wa Sy (P o) ]

n “ da
i=1
(2.12)
Theorem then presents the asymptotic normality of the sieve (Student’s) t statisticﬁ

—~

W, = \/ﬁw = N(0,1).
[0 112,54
Sieve QLR statistic. In addition to the sieve t (or sieve Wald) statistic, we could also use

sieve quasi likelihood ratio for constructing confidence set of ¢(ap) and for hypothesis testing of
Hy : ¢(ap) = ¢po against Hy : ¢(ag) # ¢o. Denote

~

QLR,(¢0) =n ( Qnla) — @n@n)) (2.13)

inf
aC€Ay(ny:9(a)=¢o
as the sieve quasi likelihood ratio (SQLR) statistic. It becomes an optimally weighted SQLR s-
_—0 ~ ~
tatistic, QLR, (¢o), when Q,(c) is the optimally weighted MD criterion Q°(a). Regardless of
—0
whether ¢(ap) is v/n estimable or not, Theorems (2) and (4.4 show that QLR,,(¢o) is asymptoti-
cally chi-square distributed under the null Hy, and diverges to infinity under the fixed alternatives

_—0
H,. Theorem |A.1| in Appendix |A| states that QLR, (¢o) is asymptotically noncentral chi-square

distributed under local alternatives. One could compute 100(1 — 7)% confidence set for ¢(ap) as
———0
{r €R: QLR,(r) <cp(l - 7')} ,
where CX%(l — 7) is the (1 — 7)-th quantile of the x? distribution.

Bootstrap sieve QLR statistic. Regardless of whether ¢(ag) is y/n estimable or not, Theo-
rems 1) and M establish that the possibly non-optimally weighted SQLR statistic @n(gbo)

8See Theorems and for properties of bootstrap sieve t statistics.



is stochastically bounded under the null Hy and diverges to infinity under the fixed alternatives
_—~B

H;. We then consider a bootstrap version of the SQLR statistic. Let QLR,, denote a bootstrap

SQLR statistic:

aGAk(n):qﬁ(a):qASn ae'Ak(")

—~—B ~ ~ ~
QLR, (¢n) =n < inf QF(a) — inf Qf(@) , (2.14)
where ¢, = ¢(d,), and QB (a) is a bootstrap version of Qn ()
= Z (X;, ) S(X) "' (X5, ), (2.15)

where m P (z, ) is a bootstrap version of m(z,a), which is computed in the same way as that of
m(z,a) except that we use w;,p(Z;, ) instead of p(Z;, ). Here {w;,, > 0}, is a sequence of
bootstrap weights that has mean 1 and is independent of the original data {Z;}}" ;. Typical weights
include an i.i.d. weight {w; > 0} with E[w;] = 1, E[Jw; — 1]?] = 1 and E[jw; — 1|*"¢] < oo for
some € > 0, or a multinomial weight (i.e., (Wi, ..., Wnn) ~ Multinomial(n;n=t,...,n71)). For
example, if m(z,a) is a series LS estimator of m(x, ), then m?(z,a) is a bootstrap series

LS estimator of m(z, «), defined as:

a) = (Z wi,np(zi,a)pjn(xi)’> (P'P)~p' (). (2.16)
=1

We sometimes call our bootstrap procedure “generalized residual bootstrap” since it is based on
randomly perturbing the generalized residual function p(Z, «); see Section 5| for details. Theorems
and establish that under the null Hy, the fixed alternatives H; or the local alternativesﬂ
the conditional distribution of @f((ﬁl) (given the data) always converges to the asymptotic
null distribution of Q/LT%n(qbg). Let ¢,(a) be the a — th quantile of the distribution of Q/\LRf (QASn)
(conditional on the data {Z;}?_ ;). Then for any 7 € (0,1), we have lim,_, Pr{@n(qbo) >
¢n(1 —7)} = 7 under the null Hy, lim, Pr{@n(géo) > ¢,(1 — 7)} = 1 under the fixed
alternatives Hy, and lim,,_ Pr{@n(gbo) > ¢p(1 — 7)} > 7 under the local alternatives. We

could also construct a 100(1 — 7)% confidence set using the bootstrap critical values:

{reR OLR,(r) < (1—7)} (2.17)

The bootstrap consistency holds for possibly non-optimally weighted SQLR statistic and possibly

— _—~B ~
9See Section for definition of the local alternatives and the behaviors of QLR,,(¢0) and QLR,, (¢») under the
local alternatives.
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irregular functionals, without the need to compute standard errors.

Which method to use? When sieve Wald and SQLR tests are computed using the same
weighting matrix f], there is no local power difference in terms of first order asymptotic theories;
see Appendix [Al As will be demonstrated in simulation Section [7, while SQLR and bootstrap
SQLR tests are useful for models with (pointwise) non-smooth p(Z;«), sieve Wald (or t)
statistic is computationally attractive for models with smooth p(Z; ). Empirical researchers could
apply either inference method depending on whether the residual function p(Z;«) in their specific

application is pointwise differentiable with respect to « or not.

2.2.1 Applications to NPIV and NPQIV models

An illustration via the NPIV model. Blundell et al| (2007) and |Chen and Reif§ (2011)
established the convergence rate of the identity weighted (i.e., S =3 = 1) PSMD estimator
R € Hiny of the NPIV model:

Y| = hg(Yg) + U, E(U’X) = 0. (2.18)

o) — N (0,1) with ||ug][2, = 9h0) gk ()] D, 15, D, 22400 [gk(m) (),

By Theorem . fd) IIv

T
Dy = E (Bl ™ (V)IXIEG O (W)IXT), By = B (Bl (1) X]U B (%)|X]) - (2.19)
= %WM:O- For example, for a functional ¢(h) = h(7y,), or =
Jw(y)Vh(y)dy or = [w(y) [h(y)[ dy, we have Lol ()] = ¢H ™) (g,), or = [ w(y) Ve (y)dy

or =2 [ ho(y)w(y)q"™ (y)dy.
If 0 < inf, So(z) < sup, To(x) < 0o then [juj||2, = %) [gk(n) ()} D~ delho) [4k(n) ()] Without

n

and e gH00 ()]

endogeneity (say Yo = X) the model becomes the nonparametric LS regression

EY: = ho(Ya) + U, E(U|Y2) =

and the variance satisfies ||v};||? dex
Since the conditional expectation E[g*(™ (Y32)|X] is a contraction, D, < Dy, and |[v}]|2, >
Under mild conditions (see, e.g., Newey and Powell (2003), Blundell et al.| (2007),

Darolles et al. (2011), Horowitz (2011)), the minimal eigenvalue of D,, Apin(Dy), goes to zero

const.anHsdex

while Amin(Dhp er) stays strictly positive as k(n) — oo. In fact, Dy, ¢p = Iy(n) and Amin (Dnex) = 1
if {g;}32, is an orthonormal basis of L%(fy,), while Apin(Dyn) < exp(—k(n)) if the condition-

al density of Y5 given X is normal. Therefore, while limy g,y o0 v | |2 sder = 00 always implies

limy () o0 |05 |25 = 00, it is possible that limy(,) e anHsd er < 00 but hmk(n)_)Oo [vz| %, = .

11

= o) [ k) () Dy, 2R K ()], Dy, e = E[{g*™ (Y2) Ha* ™ (Y2)}].



For example, the point evaluation functional ¢(h) = h(7,) is known to be irregular for the nonpara-
metric LS regression and hence for the NPIV as well. Under mild conditions on the weight
w() and the smoothness of hg, the weighted derivative functional (¢(h) = [ w(y)Vh(y)dy) and the
quadratic functional (¢(h) = [w(y)|h(y)|* dy) of the nonparametric LS regression are typically
regular, but they could be regular or irregular for the NPIV . See Section |§| for details.

It is in general difficult to figure out if the sieve variance |[v};||%; of the functional ¢(h) (at ho)

goes to infinity or not. Nevertheless, this paper shows that the sieve variance ||v}||?, has a closed

nllsa

form expression and can be consistently estimated by a plug-in sieve variance estimator ||v
By Theorem . we obtain f% = N(0,1).

When the conditional mean function m(x, h) is estimated by the series LS estimator as in

Newey and Powell (2003)), Ai and Chen (2003) and Blundell et al.| (2007), with U = Yy — /fzn(Ygi),

the sieve variance estimator |[07]|2 n.sa glven in 1) has a more explicit expression:

9212 0= A—(?ﬁ?%fwmoit&ﬁ;(”ﬁ“mwwﬂ>,Wmm

ansd

00 +5/g ) (-

dd)(an) [qk(n)( )] = o |,8 0 and
1 _ A A& N kn
= LCa(PP7(Co)s Cu=3 a0 (Yay)p™ (X)),
j=1
= 15 Tn (X2 'Y= (Y
On = —Ci (P'P)~ <Zp DU (X)) (P'P)=(C,). (2.20)

Interestingly, this sieve variance estimator becomes the one computed via the two stage least squares
(2SLS) as if the NPIV model 1' were a parametric IV regression: Y; = qk(”)(ng)’ Bon + U,
E[¢"™) (Y5)U] # 0, E[p’(X)U] = 0 and E[p”(X)¢*™(Y5)'] has a column rank k(n) < J,. See
Subsection for simulation studies of finite sample performances of this sieve variance estimator

V4 for both a linear and a nonlinear functional ¢(h).

An illustration via the NPQIV model. As an application of their general theory, |Chen
and Pouzo| (2012a) presented the consistency and the rate of convergence of the PSMD estimator
Ty, € Hi(ny of the NPQIV model:

Y = ho(}/é) + U, Pr(U < 0|X) =. (2.21)

In this example we have 3¢(X) = v(1 — ). So we could use S(X) =y(1 — ) and @n(a) given in
(2.1) becomes the optimally weighted MD criterion.

12



/
By Theorem [1.1] ya?efo) = N(0,1) with [l = (420 ()]) D7 (%1500 )

and

I an

1
Y1 =)

Without endogeneity (say Y2 = X)), the model becomes the nonparametric quantile regression

Dy = E (Elfupy, x (0)d" (V2)| X1 ELfyy, x (0" (v2) X ) (2.22)

Y| = ho(Yg) + U, PI‘(U < 0|Y2) =

sd,ex n,er

s B Lo (03 {d" ™ (2)He* M (Y2)V]. Again Dy < Dy and [[v} I3 = [Jo}][34,,- Under
mild conditions (see, e.g., |(Chen and Pouzo| (2012a)), |Chen et al. (2014)), Amin(Dn) — 0 while
Amin(Dn.ex) stays strictly positive as k(n) — oo. All of the above discussions for a functional ¢(h)
of the NPIV now apply to the functional of the NPQIV . In particular, a functional

#(h) could be regular for the nonparametric quantile regression (limy(,)_o || o0) but

and the sieve variance becomes ||v}||%, .. = d¢(§}l:o) [qk(”)( )]> D (%[ k(")()]) with Dy, ¢q =

andex

irregular for the NPQIV - (imy ()00 |05 ]2 = 00). See Section |§| for details.

Applying Theorem [4.3] - , we immediately obtain that the optimally weighted SQLR statistic
CjL\R?l(qﬁo) = x? under the null of ¢(hg) = ¢o. Thus we can compute confidence set for a functional
o(h), such as an evaluation or a weighted derivative functional, as {r eR: @%Z(r) < ¢y (7‘)}
See Subsection for an empirical illustration of this result to the NPQIV Engel curve regression
using the British Family Survey data set that was first used in Blundell et al.| (2007). See Koenker
(2005) for the usefulness of quantile Engel curves. Instead of using the asymptotic critical values,

we could also construct a confidence set using the bootstrap critical values as in (2.17)).

3 Basic Regularity Conditions

Before we establish asymptotic properties of sieve t (Wald) and SQLR statistics, we need to present
three sets of basic regularity conditions. The first set of assumptions allows us to establish the
convergence rates of the PSMD estimator a,, to the true parameter value g in both weak and
strong metrics, which in turn allows us to concentrate on some shrinking neighborhood of aj in the
semi/nonparametric model . The second and third regularity conditions are respectively about
the local curvatures of the functional ¢() and of the criterion function under these two metrics. The
weak metric || - || is closely related to the variance of the linear approximation to ¢(a,) — ¢(ap),
while the strong metric || - ||s is used to control the nonlinearity (in «) of the functional ¢() and
of the conditional mean function m(z, ). This section is mostly technical and applied researchers
could skip this and directly go to the subsequent sections on the asymptotic properties of sieve
Wald and SQLR statistics.
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3.1 A brief discussion on the convergence rate of the PSMD estimator

For the purely nonparametric conditional moment model F [p(Y, X; ho(+))|X] = 0, Chen and Pouzo
(2012a) established the consistency and the convergence rates of their various PSMD estimators
of hg. Their results can be trivially extended to establish the corresponding properties of our
PSMD estimator &, = (ég,ﬁn) defined in . For the sake of easy reference and to introduce
basic assumptions and notation, we present some sufficient conditions for consistency and the
convergence rate here. These conditions are also needed to establish the consistency and the
convergence rate of bootstrap PSMD estimators (see Lemma. We first impose three conditions
on identification, sieve spaces, penalty functions and sample criterion function. We equip the

parameter space A =0 x H C R% x H with a (strong) norm [|a||, = ||0]|, + ||h]lg-

Assumption 3.1 (Identification, sieves, criterion). (i) E[p(Y,X;a)|X] = 0 if and only if a €
(A, |I]l,) with |a — agll, = 0; (ii) For all k > 1, A, = © x Hy, O is a compact subset in R%,
{Hi : k > 1} is a non-decreasing sequence of non-empty closed subsets of (H, ||-|y) such that
H = cl (UxHr), and there is Tl,,ho € Hyny with |[Tl,ho — holla = o(1); (iid) Q : (A, ||-]l,) — [0,00)
s lower semz’contmuousﬂ (iv) X(x) and Xo(z) are positive definite, and their smallest and largest

eigenvalues are finite and positive uniformly in x € X.

Assumption 3.2 (Penalty). (i) A, > 0, Q(Il,ap) + o(n™t) = O(\,) = o(1); (ii) |Pen(Il,hg) —
Pen(hg)| = O(1) with Pen(hg) < oo; (i) Pen : (H, ||-|lg) — [0,00) is lower semz’compactﬂ

Let I,a = (¢',11,,h) € -Ak(n) =0 x Hk(n)- Let A%’?E) = 0O x 7‘[2/([2) ={a = (¢,h) € Ak(n) :
AnPen(h) < A\,My} for a large but finite My such that I, € “42/([2) and that a, € “42{2) with
probability arbitrarily close to one for all large n. Let {5%771}%0:1 be a sequence of positive real

values that decrease to zero as n — oo.
Assumption 3.3 (Sample Criterion). (i) @n(Hnao) < coQ(IL,c0)+0pyee (1) for a finite constant
co > 0; (ii) Qulr) > Q) — Op,ee (02, ,) uniformly over A%‘;) for some 62, , = o(1) and a finite

constant ¢ > 0.
The following result is a minor modification of Theorem 3.2 of |Chen and Pouzo (2012a).

Lemma 3.1. Let a, be the PSMD estimator defined in , and Assumptions and

~

hold. Then: ||ay, — aplls = 0p, (1) and Pen(hy,) = Op, (1).

Given the consistency result, we can restrict our attention to a convex, || - ||s—neighborhood

around o, denoted as A, such that

Aos C{a e A |la—ap|ls < My, MpPen(h) < A\, Mp}

'A function Q is lower semicontinuous at a point a, € A iff lim|q_q, |, 0 Q(a) > Q(aw); is lower semicontinuous
if it is lower semicontinuous at any point in A.
"' A function Pen is lower semicompact iff for all M, {h € H: Pen(h) < M} is a compact subset in (H, ||||5)-
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for a positive finite constant My (the existence of a convex A, is implied by the convexity of .4

and quasi-convexity of Pen(-)). For any a € A,s we define a pathwise derivative as

M[O&—ao] = dE[p(Z,(l _T)a0+7a)iX] a.s. X
da dr =0

Following |Ai and Chen! (2003) and |Chen and Pouzo (2009)), we introduce two pseudo-metrics || - ||

and || - |Jo on Aps as: for any aj, ag € Aps,
dm (X, a ! 1 (dm(X, «
s = call = £ | (P52 0 - ag]) 200 (e —a) [ )
X ' X
lar — asll3 = E [(dm(da’“@[al = a2]> So(X) 7 <d7”(da’o‘°)[a1 = a2]>] . (32)
It is clear that, under Assumption iv), these two pseudo-metrics are equivalent, i.e., ||-|| < ||-||o

on A,s. This is the reason why we impose the sufficient condition, Assumption (iv), throughout
the paper.

Let Apsn = Aos N Ag(n)- Let {0,172, be a sequence of positive real values such that 6, = o(1)
and 6, < Smm.

Assumption 3.4. (i) There ezists a || - ||s—neighborhood of ag, Ass, such thatlﬂ Aops is conver,
m(-, ) is continuously pathwise differentiable with respect to a € A,s, and there is a finite constant
C > 0 such that ||a — agl|| < Clla — agl|s for all a € Aos; (ii) Q) < ||a — apl|? for all o € Ags;
(iii) Qn(c) > cQ(ar) — Op,o0 (62) uniformly over Apsn, and max{62, Q(Il,ap), An,0o(n™1)} = 62;
(iv) An X SUD, orea,, |[Pen(h) — Pen(h')| = o(n™') or Ay = o(n™1).

Assumption [3.4(ii) is about the local curvature of the population criterion Q(a) at ag. When
@n(a) is computed using the series LS estimator 1D Lemma C.2 of|Chen and Pouzo (2012al) shows
that Qn () = Qo) — Op,o. (62) uniformly over A,g, and hence Assumption iii) is satisfied.

Recall the definition of the sieve measure of local ill-posedness

—1I
Tn = sup w. (3.3)
a€Aosn:||a—TIl,ap||£0 HOé - HnOé()H
The problem of estimating g under || - ||5 is locally ill-posed in rate if and only if lim sup,, ,. 7, =

0o. We say the problem is maildly ill-posed if 7, = O([k(n)]*), and severely ill-posed if 7, =

2Given the consistency result, the PSMD estimator will belong to any || - ||s—neighborhood around ag with
probability approaching one.
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O(exp{5k(n)}) for some finite a > 0. The following general rate result is a minor modification of

Theorem 4.1 and Remark 4.1(1) of |(Chen and Pouzo (2012al), and hence we omit its proof.

Lemma 3.2. Let @y, be the PSMD estimator defined in (2.9), and Assumptions 3.4(i1) (iii),
and [3.4)(i) (i) (iii) hold. Then:

Han - Oéo|| = OPZoo (5n) and ||an - aOHs = OPZoo (||Oéo - Hna0”s + Tn(sn) .

The above convergence rate result is applicable to any nonparametric estimator m(X,a) of
m(X,a) as soon as one could compute §2, the rate at which Qn(e) goes to Q(a). See [Chen and
Pouzo| (2012a) and |Chen and Pouzo| (2009) for low level sufficient conditions in terms of the series
LS estimator of m(X, ).

Let {0, : n > 1} be a sequence of real positive numbers such that ds,, = ||ho — I, hol|s +700n =
o(1). Lemma implies that a, € Nysn C Nys wpal-Pgze, where

Nos = {aeA: ||la—aol| < Mpdy, |la—aolls < Mpdsn, AnPen(h) < AyMo},
Nosn = Nos N Ag(ny,  with M,, =log(log(n)).

We can regard N, as the effective parameter space and N, as its sieve space in the rest of the
paper. Assumption (iv) is not needed for establishing a convergence rate in Lemma but, it
will be imposed in the rest of the paper so that we can ignore penalty effect in the first order local

asymptotic analysis.

3.2 (Sieve) Riesz representation and (sieve) variance

We first introduce a representation of the functional of interest ¢() at aq that is crucial for all the
subsequent local asymptotic theories. Let ¢ : R% x H — R be continuous in || - ||;. We assume
that 240)[.] ; (Rd x H,|| - |[;) = R is a || - ||s—bounded linear functional (i.c., %[U]( < c||v]]s

uniformly over v € R% x H for a finite positive constant ¢), which could be computed as a pathwise

(directional) derivative of the functional ¢ (-) at g in the direction of v = a — g € R% x H :

dé(ag) . Op(ag + Tv)
ol e
o T =0
Let V be a linear span of A,s — {ap}, which is endowed with both || - ||s and || - || (in equation
(3.1))) norms, and ||v|| < C||v||s for all v € V (under Assumption (1)) Let V = clsp(Aos —{aw}),
where clsp(-) is the closure of the linear span under || - ||. For any v1,v9 € V, we define an inner
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product induced by the metric || - ||:

(1,03 = E [(M[vﬂ)/E(X)l (e

da da
and for any v € V we call v = 0 if and only if ||[v]| = 0 (i.e., functions in V are defined in
an equivalent class sense according to the metric || - ||). It is clear that (V,]|| - ||) is an infinite
dimensional Hilbert space (under Assumptions [3.1)i)(iii) (iv) and [3.4)i)(ii)).
If the linear functional %[-] is bounded on (V,||-1]), i.e.
d
|t o]
sup < 00,
veV, v#£0 HUH
then there is a unique extension of % [-] from (V,||-]]) to (V,]]-]|), and a unique Riesz representer

v* €V of 90 (] on (V,]] -[]) such thaf]

dé(ao) dé(ao)
d = | 42e) ) | 224200 [y
¢c§§0) [v] = (v*,v) forallv eV and [v*[|= sup deH = sup d|| H < 0.
vEV,0£0 vEV,v#£0 v
(3.4)
If %H is unbounded on (V,|| -||), i.e.
do(a
‘ ¢Cgao) [U]‘
sup ————— = 09,
vEV v#£0 HUH
then there is no unique extension of the mapping %[-] from (V,|| - ||) to (V,||-]|), and nor
existing any Riesz representer of %[-] on (V.|| -|)-
Since ||v]| < C||v||s for all v € V, it is clear that a || - ||s—bounded linear functional %[-]

could be either bounded or unbounded on (V, || -||). As explained in Appendix [A] in this paper we
also call ¢() regular (or irregular) at g whenever %[-] is bounded (or unbounded) on (V,||-||).

Sieve Riesz representation. Let ag, € R% x Hi(n) be such that

l|o,n — o] = min [lae — apl]. (3.5)
acR% XHp(n)

Let Vi) = clsp (Aosn — {@0,n}), where clsp(.) denotes the closed linear span under [-||. Then
Vi(n) is a finite dimensional Hilbert space under ||-||. Moreover, V) is dense in 'V under |-||. To

simplify the presentation, we assume that dim(Vk(n)) = dim(Ay,)) < k(n), all of which grow to

13See, e.g., page 206-207 and theorem 3.10.1 in [Debnath and Mikusinski| (1999)).
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infinity with n. By definition we have (v, ag, — ag) = 0 for all v, € Vk(n).
Note that Vk:(n) is a finite dimensional Hilbert space. As any linear functional on a finite
dimensional Hilbert space is bounded, we can invoke the Riesz representation theorem to deduce

that there is a v}, € Vk(n) such that

do(a
O 1] (ug ) for all v e Vi) and [ = ] (3.6
doy V| = (Up,V or all v k(n) an Upll = sup HQ}H Q. .

VeV () illo 0

We call v} the sieve Riesz representer of the functional %[-] on Vk(n). By definition, for any

non-zero linear functional %H, we have:

0 <l = E [(‘W’O‘O)[U*])/ S(X)"! (dm(X’O‘O)[U*]ﬂ is non-decreasing in k(n).

do " do n

We emphasize that the sieve Riesz representer v} of a linear functional % [

d¢£§go) [

on Vk(n) always
exists regardless of whether is bounded on the infinite dimensional space (V|| -||) or not.
Moreover, v, € Vi, and its norm |Jv;|| can be computed in closed form (see Subsection .
The next Lemma allows us to verify whether or not d¢(g°) [-] is bounded on (V,]||-|) (i.e., ¢ (-) is

regular at ap) by checking whether or not limy,) o [lvy;]] < 00

Lemma 3.3. Let {Vk}k 1 be an increasing sequence of finite dimensional Hilbert spaces that is
dense in (V, ||-||), and v}, € Vi) be defined in (E/ (1) If di O“))[] is bounded on (V,|| -|), then

holds, v} = argmlnvevk(n) [v* =, |[v* = vpll = 0 and limy(n) o0 (|5 ]| = [[0*]| < 00; (2) Let
dzia)[] be bounded on (V,|| - ||s) and {V i}, be dense in (V,||||,). If %[-] is unbounded on
(VL[ 1D then limy ) o0 o] = .

Sieve score and sieve variance. For each sieve dimension k(n), we call

S, = <dm(Xz‘, ap)
do

[v;n) S(X0) " p(Z0, a0) 37)

the sieve score associated with the i-th observation, and ||v}; ||8d =Var (Sf”) as the sieve variance.
Recall that o(X) = Var(p(Z; ap)|X) a.s.-X. Then

o = 187570 = & [ (2200 ) w00 maoz0n ! ()]

See Subsection [4.1.1] m for closed form expressions of |[v[|%;. Under Assumption (iv), we have

o |12, = [vi]?, and hence |[vf |2, — oo iff [[v%]|* — oo (iff ¢ (-) is irregular at ag). Moreover, if
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¢ (+) is regular at ag then we can define

5= (TS 1) 00 oz

as the score associated with the i-th observation, and |[v*||2, = Var (S}) as the asymptotic variance.
By Lemma 1) for a regular functional we have: ||v*[|%; < |[v*| < oo and Var (S;" — S;Z) =
|v* — v*||* = 0 as k(n) — co. See Remark in Appendix [A| for further discussion.

3.3 Two key local conditions

For all k(n), let

,U*

n (3.9)

103l s

Uy,
be the “scaled sieve Riesz representer”. Since ||v I S0 = vy |? (under Assumption (iv)), we have:
|luy|| < 1 and ||uy||, < e7, for 7, defined in and a finite constant ¢ > 0.

Let 7, = {t € R: [t| < 4M?26,} with M, and J,, given in the definition of Njgy.

Assumption 3.5 (Local behavior of ¢). (i) v — ﬂ[v] is a non-zero linear functional mapping
from V to R; {Vk}zozl is an increasing sequence of finite dimensional Hilbert spaces that is dense
in (V,||-[); and L2l = o(1);

(ii) V|6 (o + tut) — dlag) — 2490 (o + tur — ag]
1 sup

(@) ENpsn X Tr, v ]

\f‘ d¢(a0) [0 n—ﬂo]‘

(iii) = =o(1).

Since [|v]|2; = ||vf]|? (under Assumption (iv)), we could rewrite Assumptionusing lur Il sq
* (|12
As it will become clear in Theorem that % is the variance of ¢(ay) — ¢(ap),

instead |[vf|.

Assumption [3.5i) puts a restriction on how fast the sieve dimension k(n) could grow with the
sample size n.

Assumption [3.5[(ii) controls the nonlinearity bias of ¢ (-) (i.e., the linear approximation error of
a possibly nonlinear functional ¢ (-)). It is automatically satisfied when ¢ (-) is a linear functional.
For a nonlinear functional ¢ (-) (such as the quadratic functional), it can be verified using the
smoothness of ¢ (-) and the convergence rates in both || - || and || - ||s metrics (the definition of
Nosn). See Section [6] for verification.

Assumption (iii) controls the linear bias part due to the finite dimensional sieve approxi-
mation of g to ap. It is a condition imposed on the growth rate of the sieve dimension k(n).

When ¢ (-) is an irregular functional, we have [[v}|| * co. Assumption [3.5(iii) requires that the
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sieve bias term, %[O{Q’n — ap]|, is of a smaller order than that of the sieve standard deviation

term, n—1/2

v}l 4q- This is a standard condition imposed for the asymptotic normality of any
plug-in nonparametric estimator of an irregular functional (such as a point evaluation functional

of a nonparametric mean regression).

Remark 3.1. When ¢ (-) is a reqular functional (i.e., ||[v}] /7 ||v*]] < 00), since (v}, a0 pn — ag) =0
(by definition of a,) we have %[

[3.9(iii) is satisfied if

agn —aol| < |lv* —vh| X ||eon — aol]l. And Assumption

[lo" = w3l x [lao.n — aol| = o(n™"/2). (3.10)

This is similar to assumption 4.2 in |Ai and Chen| (2003) and assumption 3.2(iii) in |Chen and
Pouzo (2009) for the reqular Euclidean parameter 8 satisfying the model . As pointed out by
Chen and Pouzo (2009), Condition could be satisfied when dim(Ay,)) < k(n) is chosen to
obtain optimal nonparametric convergence rate in || - ||s norm. But this nice feature only applies to

reqular functionals.

The next assumption is about the local quadratic approximation (LQA) to the sample criterion
difference along the scaled sieve Riesz representer direction u;, = v}/ ||v ||
For any (a,t) € Npsn X T, we let Ay (a(t),a) = 0.5{Qn(a(t)) — Qn(a)} with a(t) = « + tur.

Denote

*
Sn,i

[z

Zo=n1Y (W[@]) S(X) " p(Zi a0) = n! ZT (3.11)

i=1

sd.
Assumption 3.6 (LQA). (i) a(t) € Ayp) for any (,t) € Nosn X Tn; and with ro(t,) =

(max{t2, t,n=1/2 o(n=1)}) ",

_ 5
An(atn), @) = tn {Zn + (a0 — a0} = 215

sup Tn (tn) = 0P, (1)7

(aztn)eNosn XTn

where (By)y is such that, for each n, By is Z™ measurable positive random variable and B, =
Op,e (1); (ii) /nZ, = N(0,1).

Assumption [3.6[(ii) is a standard one, and is implied by the following Lindeberg condition: For

(i) e
105 ]| s evnl|villa
which, under Lemma 1) and Assumption [3.1f(iv), is satisfied when the functional ¢(-) is regular
(logll,g = llvgll = llv*]l < o0). This is why Assumption [3.6(ii) is not imposed in |Ai and Chen
(2003) and |Chen and Pouzo| (2009)) in their root-n asymptotically normal estimation of the regular
functional ¢(a) = N6.

all € > 0,

limsup £

n—oo

> 1}] =0, (3.12)
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Assumption [3.6[i) implicitly imposes restrictions on the nonparametric estimator m(z,a) of
m(x,a) = E[p(Z,a)|X = z] in a shrinking neighborhood of «ag, so that the criterion difference
could be well approximated by a quadratic form. It is trivially satisfied when m(z, «) is linear in «,
such as the series LS estimator when p(Z, «) is linear in . There are two potential difficulties
in verification of this assumption for nonlinear conditional moment models with nonparametric
endogeneity (such as the NPQIV model). First, due to the non-smooth residual function p(Z, «v),
the estimator m(z,a) (and hence the sample criterion @n(a)) could be pointwise non-smooth
with respect to o. Second, due to the slow convergence rates in the strong norm || - ||s present in
nonlinear nonparametric ill-posed inverse problems, it could be challenging to control the remainder
of a quadratic approximation. When m(x, «) is the series LS estimator , Lemma in Section
shows that Assumption [3.6[(i) is satisfied by a set of relatively low level sufficient conditions
(Assumptions - in Appendix . See Section |§| for verification of these sufficient conditions
for functionals of the NPQIV model.

4 Asymptotic Properties of Sieve Wald and SQLR Statistics

In this section, we first establish the asymptotic normality of the plug-in PSMD estimator ¢(a,)
of ¢(ay) for the model , regardless of it is root-n estimable or not. We then provide a simple
consistent variance estimator and hence the asymptotic standard normality of the corresponding
sieve t statistic for a real-valued functional ¢ : R% x H — R. We finally derive the asymptotic
properties of SQLR tests for the hypothesis ¢(ag) = ¢o. See Appendix [A| for the case of a vector-

valued functional ¢ : R% x H — R% (where dy could grow slowly with n).

4.1 Asymptotic normality of the plug-in PSMD estimator

The next result allows for a (possibly) nonlinear irregular functional ¢() of the general model (1.1).

Theorem 4.1. Let &, be the PSMD estimator and Assumptions - hold. If Assump-
tions [3.5 and[3.6 hold, then:

V2@ = 9a0) oy o (1) = N(0,1).

V5] sa

When the functional ¢(-) is regular at o = g, we have |[v}|,, < [Jvp|l = O(1) and ¢(ay)
converges to ¢(ap) at the parametric rate of 1/y/n. When the functional ¢(-) is irregular at oo = a,

we have ||v}]|,; < |lvs]] = oo; so the convergence rate of ¢(&,) becomes slower than 1//n.
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For any regular functional of the semi/nonparametric model (|1.1)), Theorem implies that

Vi (6(@n) — oo :_n—mz i + 0P, (1) = N(0,07.), with

o2 = Jm il = o712 = 2 [ () 00y mn ().

Thus, Theorem is a natural extension of the asymptotic normality results of |Ai and Chen| (2003])
and |Chen and Pouzo| (2009)) for the specific regular functional ¢(c) = N6y of the model (1.1)). See
Remark in Appendix [A] for further discussion.

4.1.1 Closed form expressions of sieve Riesz representer and sieve variance

To apply Theorem one needs to know the sieve Riesz representer v}, defined in (3.6) and the

sieve variance ||v||2, given in (3.8). It turns out that both can be computed in closed form.
Lemma 4.1. Let Vi) = R% x {v,(-) = YFOYB B e RFMWY = {u(-) = (n)( Yy iy €
R4k be dense in the infinite dimensional Hilbert space (V, |-||) with the norm ||-|| defined in

. Then: the sieve Riesz representer vy, = (vg',, vy, () € Vi) of d¢ ao [[] has a closed form

eTPTession:

n * —k(n * * —
v = (Wpl, (Y B2Y = T ()az, and vf = Dy (4.1)

Q

— KN ! m Q — RN e} — RN
with D, = E [(d’”%’%)w’“( () D) (e ’(-)’])} and 1o = 42 [ (). Thus
Vi ll* = 7' Duvy = F Dy o (4.2)
The sieve variance (@ also has a closed form expression:

will2s = F 1Dy 0Dy F o, (4.3)

00 = 8 [ (OGO 1) 2x) o2 gt aa mx) (P ) .

Let Apn) = © X Hy(n) With Hy,) given in 1D Then Vk(n) = clsp (Ak(n) — {aon}) and one
could let Ek(n) () = 7" (-) in Lemma and 1D becomes the sieve variance expression given
in .

Lemmas andimply that ¢ (-) is reqular (or irreqular) at o = ap iff limy ) oo (F;Dgan) <
oo (or = o0).
According to Lemma we could use different finite dimensional linear sieve basis 1% to

compute sieve Riesz representer vy, = (vy,, v}, (1)) € Vi, [Jv > and [|v]|%;. Most typical

nll
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choices include orthonormal bases and the original sieve basis ¢*(") (used to approximate unknown
function hg). It is typically easier to characterize the speed of ||[v*||* = [/, D;'F, as a function
of k(n) when an orthonormal basis is used, while there is a nice interpretation in terms of sieve
variance estimation when the original sieve basis ¢*(™ is used. See Sections and@ for related

discussions.

4.2 Consistent estimator of sieve variance of ¢(a,,)

In order to apply the asymptotic normality Theorem we need an estimator of the sieve variance
||U:L||§d defined in . We now provide one simple consistent estimator of the sieve variance when
the residual function p() is pointwise smooth with respect to ag. See Appendix |B| for additional
consistent variance estimators.

The theoretical sieve Riesz representer vy, is unknown but can be estimated easily. Let [-[|,,

denote the empirical norm induced by the following empirical inner product

A o3 o) DY LB S) (4.0

: do da
=1

for any vy, v € Vk(n), where M), ; is some (almost surely) positive definite weighting matrix.

We define an empirical sieve Riesz representer v}, of the functional %[-] with respect to the

empirical norm || - || ., as
~ do(@n) 1,112
do(ay,) . SRS
o(a )[v;] = sup 7‘ da2 ] < 0 (4.5)
da vevk(n)7y;¢é0 ||/U||’T'L,§:_1
and
do(ay, . —
Qscéa )[v] = <vn,v>n’§,1 for any v € V(). (4.6)

s n,~n,

For ||vi|%, = E (S * SH ) given in |D we can define a simple plug-in sieve variance estimator:
~k ()12 1 ¢ O*  Q/ 1 ¢ dm(X’wan) ~ ,A—l ~~\ -1 dm(X’Han) ~k
HUan,sd = E Z Sn,iSn,i = E Z T[vn] Ez (plpz) Zz T[vn] (47)
i=1 i=1

with p; = p(Z;, a,) and S = 2(X;).
Under condition stated in Lemma vy defined in (4.5H4.6)) also has a closed form solution:

~x —k ~k ~k AN—-17
vr =1 (n)(')'fyn, and 7 = Dann, (4.8)
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. =~ M(X;,0n) (kN = (X, 0in) (7R (0 r &n) (7,
with Dy = 3 S0 (PG 0) 57 (PEAE)) and P =GR

Hence the sieve variance estimator given in (4.7)) now becomes
n

Iy <dm Xi, @) Ty ])lifl (5:7) S (WW’“(-)’]) '

=1

3\'—‘

In particular, with /%" = ¢*(") the sieve variance estimator ||o7||2 sq given in 1} becomes the

one given in (2.10]) in Subsection
/
Let (v1,vo)p = F [(W[Uﬂ) M (dm(ii’ao) [vg])} Then (v, v9)x-1 = (v1, v2) and (vl,vg)za1 =

(v1,v2)0 for all v1, vy € Vi,,). Denote Vk = {v e Vi : lJv]] =1}.

d d
Assumption 4.1. (i) sup,cp,., S wp, gt ) (sta) [v] — %[v]‘ =o0(1);

(it) for each k(n) and any a € Nosn, v € Vi) — %[v] € L%(fx) is a linear functional
measurable with respect to Z™; and sup

et [ 0102051 = (0102051 ] = 0pe (1)

(iii) supyey ||E(x) — B(@)|[e = 0Py (1);
(ZU) SUPrcx E [SupaeNosn ”p(Z? OZ)[)(Z, 04)’ - p(Za Oé())p(Z, O[O)I||8|‘){ = :L‘] = 0(1)
() 0D, gt (0, 0)nar — {0,0) 1] = 0, (1) with M = 5-1p(Z, a0)o(Z, 05

Assumption (1) becomes vacuous if ¢ is linear; otherwise it requires smoothness of the family

{d‘flfla) [v] : @ € Nogn} uniformly in v € Vi(n). Assumption (ii) implicitly assumes that the

residual function p(z,-) is “smooth” in @ € Ny, (see, e.g., Al and Chen|(2003))) or that M[ ]
can be well approximated by numerical derivatives (see, e.g., [Hong et al. (2010)). Assumption
4.1|(iii) assumes the existence of consistent estimators for ¥. In most applications, ¥(-) is either
completely known (such as the identity matrix) or Xo; while Xy(x) could be consistently estimated

via kernel, series LS, local linear regression and other nonparametric procedures (see, e.g., |Ai and
Chen (2003) and |Chen and Pouzo| (2009))

Theorem 4.2. Let Assumptions[3.]] - [3.4 hold. If Assumption is satisfied, then:
(1) |Wallest 1| = o, (1) for |03l given in

(2) If, in addition, Assumptions cmd hold, then:

P

W, = \/HM = —/nZy, + op,. (1) = N(0,1).

193]l sa

Theorem [4.2[2) allows us to construct confidence sets for ¢(ag) based on a possibly non-

optimally weighted plug-in PSMD estimator ¢(ay,). A potential drawback, is that it requires a
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consistent estimator for v +— %[U], which may be hard to compute in practice when the resid-

ual function p(Z, @) is not pointwise smooth in o € N, such as in the NPQIV (2.21]) example.

o@n)-00\> _ (177 é(c0)—¢o |2 ”
Remark 4.1. Let W, = (ﬁW) = (Wn +/n ||ﬁ*0|| d“) be the Wald test statistic. Then
Thearem (with % = % = ogl)) immediately implies the following results:
Under Hy : d(co) = ¢o, W = (Wn> = 2.

_ 2 . -
Under Hy : ¢(ap) # do, Wa = (Op(1) + v/l |v| |} [d(a0) — ¢o] (1 + 0p(1)))” — oo in probability.
See Theorem [A.3 in Appendiz[4] for asymptotic properties of W, under local alternatives.

4.3 Sieve QLR statistics

We now characterize the asymptotic behaviors of the possibly non-optimally weighted SQLR statis-

tic QLR, (¢o) defined in (2.13).

Let AkR(n) = {a € Aym): ¢(a) = ¢o} be the restricted sieve space, and aff AkR(n) be a

n

restricted approximate PSMD estimator, defined as

On(@") + AnPen(hf) < inf {@n(a) + )\nPen(h)} +op,(nh). (4.10)

R
aEAk(n)

Then:

T €Ak (n)

éﬁ%ww—nﬁaﬁm—éamo—n<iﬁ Qnla) - m*ém®)+wmu»

—0
Recall that u); = vy, / ||v;]] .4, and that QLR (¢o) denotes the optimally weighted (i.e., ¥ = X)

n

SQLR statistic in Subsection We note that ||u)|| = 1 for the optimally weighted case.
Theorem 4.3. Let Assumptions - hold with | By, — [|upl|?| = op,e(1). If G € Nogn
wpal-Pge, then: (1) under the null Hy : ¢(ag) = ¢o,

lluz][? x QLR,(¢0) = (VnZy)® + op,e (1) = X3

(2) Further, let oy, be the optimally weighted PSMD estimator with ¥ = Xg. Then: under
Ho : ¢(an) = ¢o,

———0 2

QLR,(90) = (VAZy)” + 0pye (1) = X3

See Theorem in Appendiz 4] for the asymptotic behavior under local alternatives.

Compared to Theoremon the asymptotic normality of ¢(ay, ), Theoremon the asymptotic

null distribution of the SQLR statistic requires two extra conditions: |By,, — ||u}||?*| = 0p,e (1) and

25



R

€ Nysn wpal-Pze. Both conditions are also needed even for QLR statistics in parametric

Q
extremum estimation and testing problems. Lemma [5.1] in Section [f] provides a simple sufficient
condition (Assumption for | B, — \|u7;||2| =0p,e (1). Proposition in Appendixestablishes
al € N,ysn wpal-Pgze under the null Hy : ¢(ag) = ¢o and other conditions virtually the same as
those for Lemma (i.e., Qn € Npspn wpal-Pyos).

Theorem [£.3(2) recommends to construct an asymptotic 100(1 — 7)% confidence set for ¢(c)
by inverting the optimally weighted SQLR statistic: {r eR: Q/LT%E(?’) <cez(l- T)} This result
extends that of |(Chen and Pouzo| (2009) to allow for irregular functionals.

Next, we consider the asymptotic behavior of @n(qﬁo) under the fixed alternatives Hi :
P(ao) # do.

Theorem 4.4. Let Assumptions cmd hold. Suppose that supycqy Pen(h) < oo and ¢

is continuous in || - ||s. Then: under Hy : ¢(ap) # bo, there is a constant C > 0 such that
QLR
lim inf m >C >0 in probability.
n—00 n

5 Inference Based on Generalized Residual Bootstrap

The inference procedures described in Sections |4 and are based on the asymptotic critical values.
For many parametric models it is known that bootstrap based procedures could approximate finite
sample distributions more accurately. In this section we establish the consistency of the bootstrap
sieve Wald and SQLR statistics under virtually the same conditions as those imposed for the
original-sample sieve Wald and SQLR statistics.

A bootstrap procedure is described by an array of “weights” {Wi,n}?zl for each n, where each
bootstrap sample is drawn independently of the original data {Z;}_ ;. Different bootstrap proce-
dures correspond to different choices of the weights {w; , };-_; but all satisfy w;, > 0 and Efw; ] = 1.
For the time being we assume that lim, . Var(w;,) = o2 € (0,00) for all 4.

In this paper we focus on two types of bootstrap weights:

Assumption Boot.1 (Li.d Weights). Let (w;)"_; be a sequence such that w; € Ry, w; ~ iidP,,
Elw] =1, Var(w) = 02, and fooo P(lw — 1] > t)dt < oo.

The condition [>°\/P(Jw — 1] > t)dt < oo is implied by E[lw — 1|2T€] < oo for some € > 0.
0 P y

Assumption Boot.2 (Multinomial Weights). Let (w;)?; be a triangular array of random vari-

ables such that (w1, ..., wnn) ~ Multinomial(n;n=t, ... ,n71).

We sometimes omit the n subscript from the weight series. Note that under Assumption [Boot.2]
Elw] = 1, Var(w) = (1 = 1/n) - 1 = 02 and Cov(w;,w;) = —n~t (for i # j). Finally,
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n~tmaxi<i<n(w; — 1)2 = op,(1); see p. 458 in [Van der Vaart and Wellner| (1996) (henceforth,
VdV-W). We use these facts in the proofs.
Let V; = (Zi,win) and
PP (Vi,a) = winp(Ziy ),

be the bootstrap residual function. Let m?(x, a) be a bootstrap version of m(x, ), that is, m?(z, a)
is computed in the same way as that of m(z, ) except that we use p?(V;, a) instead of p(Z;, ).
In particular, mP(z,a) = Y0 | winp(Zi,a)An(X;,x) for any linear estimator m(z,«) of
m(z, ). For example7 if m(x, ) is a series LS estimator , then m?(z,a) is the bootstrap
series LS estimator ) defined in Subsection

Let @E( y=1 El L m (Xi,a)’i(Xi)*lmB(Xi,a) be a bootstrap version of Qy(c), and aB
be the bootstrap PSMD estimator, i.e., @2 is an approximate minimizer of {Q\f(a) + )\nPen(h)}

on Ay ). Denote an = ¢(ap). Then

QLR G = (| r 0k
k(n): P(0)=0n

is the (generalized residual) bootstrap SQLR test statistic. And an = (f %H%HM’L) is one
simple bootstrap Wald test statistic (see Subsectionfor another simple bootstrap Wald statistic).

Additional notation. To be more precise, we introduce some definitions associated with the
new random variables V; = (Z;,w;,) and the enlarged probability spaces. Let Q@ = {w;,: i =
1,..,n; n = 1,...} be the space of weights, defined as a triangle array with elements in R, the
corresponding o-algebra and probability are (Bq, Pn). Let V*° = Z°° x Q, B> = B}’ x Bg be the
o-algebra, and Py~ be the joint probability over V°°. Finally, for each n, let B"™ be the o-algebra
generated by V" = Z" x (w1 n, ..., wWnn), where each w; ,, acts as a “weight” of Z;. Let A,, be a random
variable that is measurable with respect to B", and Ly e|zoo (An|Z™) (01 Pyoc|zee (An < - | Z7)) be
the conditional law (or conditional distribution) of A, given Z". Let B, be a random variable
measurable with respect to BY, and L(By,) (or Pze (B < -)) be the law (or distribution) of B,,.
For two real valued random variables, A,, (measurable with respect to B") and B (measurable with
respect to some o-algebra Bp), we say |Ly |z (An|Z™) — L(B)| = 0p,o (1) if for any § > 0, there
exists a N(9) such that

Pyoe < sup |E[f(An)|2"] - E[f(B)]| < 5) >1-6 foralln> N(),
fEBLy

(i-e., supsepr, |Elf(An)|Z"] — E[f(B)]| = 0P, (1)), where BL; denotes the class of uniformly
bounded Lipschitz functions f : R — R such that ||f||z~ < 1 and |f(2) — f(Z')] < |z — 2/|. See
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chapter 1.12 of VAV-W for more details.

We say A, is of order OPy oo | 700 (1) in Pz~ probability, and denote it as A,, = OPy oo 700 (1) wpal(Pz),
if for any € > 0, Pzoo (Pyoc|z00 (|An| > €| Z™) > €) — 0 as n — oc.

We say A, is of order Opvwlzoo (1) in Pzec probability, and denote it as A,, = Opvoo‘zoo (1) wpal(Pgzeo),
if for any € > 0 there exists a M € (0,00), such that Pzec (Pyec|zee (|An| > M | Z™) > €) — 0 as

n — 0.

5.1 Bootstrap local quadratic approximation (LQA?)

Lemma in Appendix [A| shows that the bootstrap PSMD estimator af € Nysn wpal under
Assumptions [3.1]- 3.4 and In the following we introduce a condition that is a bootstrap version
of the LQA Assumption For any o € Nogp, we let Kf(a(tn),a) = O.S{QE(Q(tn)) — @,ff(a)}

with a(t,) = a + t,u), for t, € T,,. For any sequence of non-negative weights (b;);, let

n /
25 =013, <W[u;]> 5(X:) " p(Zi, a0) = ZbH e
Up sd

=1

Assumption Boot.3 (LQAP). (i) a(t) € Ay for any (a,t) € Nogn X T, and with ry(t,) =

(max{t tan~1/2, o(n_l)})_l,

w

KB (a(tn),0) — 1 {Z5 + (w0 — ag)} — =212

W rata) :

(a:tn)eNosn X Tn

= OPVoo‘Zoo (1) wpal(PZOO)

where BY is a V™ measurable positive random variable such that BY = Op. o, . (1) wpal(Pgz=);
n n Voo |z

w—1

(i1) ‘ﬁvwww (\/ﬁzn

| Z”> —E(Z)‘ =op, (1),

w
where 7 18 a standard normal random variable.

Assumption ( ) implicitly imposes restrictions on the bootstrap estimator m?(z, ) of the
conditional mean function m(x, «). Below we provide low level sufficient conditions for Assumption
i) when mP(z, ) is a bootstrap series LS estimator.

Let g(X, up) = {5 up]YS(X) ™. Then B [9(X;, u7)2(X:)g(Xi, uf)] = [Juy >

1y Ym 1y ¥

Assumption B. For I'(-) € {X(+), Xo(+)},

_129 iU n ) (X“un) E[ (X%un)F(X )g(Xlaun),] :OPZOO(I)'

Lemma 5.1. Let Assumptions[3.1] - and [A]] -[A.7 hold.
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(1) Let i be the series LS estimator (2.5). Then Assumption [3.6|(i) is satisfied. Further, if
Assumption@ holds then ’Bn — ||u;';||2‘ = 0p, (1).

(2) Let mPB(-, ) be the bootstrap series LS estimator , Assumption and either As-
sumption [Boot.d| or [Boot.4 hold. Then Assumption [Boot.3(i) holds with BY = B,. Further, if
Assumption@ holds then |B% — ||uy|?| = OPyoo| 700 (1) wpal(Pgze).

Lemmal5.I]indicates that the low level Assumptions[A.4]-[A-7|are sufficient for both the original-
sample LQA Assumption () and the bootstrap LQA Assumption ( ).

Assumption (11) can be easily verified by applying some central limit theorems. For
example, if the weights are independent (Assumption , we can use Lindeberg-Feller CLT; if
the weights are multinomial (Assumption we can apply Hayek CLT (see Van der Vaart and

Wellner| (1996) p. 458 ). The next lemma provides some simple sufficient conditions for Assumption
Booti).

Lemma 5.2. Let either Assumption or Assumption hold. If there is a positive real
sequence (by)n such that b, = o(y/n) and

limsup E |(g(X,u})p(Z, ap))? 1 { (9(X, up)p(Z, 00))” > 1}] =0. (5.1)

n—o0 b?’L

Then: Assumptions [Boot.3(ii) and[3.¢(ii) hold.

5.2 Bootstrap sieve Student t statistic

Lemma shows that aﬁ € Nysn wpal under virtually the same conditions as those for the
original-sample estimator &, € N, wpal. This would easily lead to the consistency of the simplest

bootstrap sieve t statistic Wl = fw

w5 ln,sd

We now establish the consistency of another bootstrap sieve t statistic W2 =/ QL)HT;(ZM)

)

where |[07%]|% ., is a bootstrap sieve variance estimator:
k)

1 dm(X;, ) e [(dm(Xi, an)
- e — Z 1y &n 1y Gn > n 2
nZ( 8 e awea a5 (POEEE) 6
with o(Vi, @) = (win — 1)p(Zi, a) = pP(Vi, @) — p(Z;, @) for any a.

We note that |[0}]|% sq 1s an analog to [05]12 sq defined in (4.7) but using the bootstrapped
generalized residual o(V;, &,,) instead of the Orlglnal sample fitted residual p(Z;, ay,). It also has a

closed form expression: |[0%||% ., = F 5D, 'OED1F,, with

57 = 130 (OB G0 (1) 5 0t 7 (B 0 ).

: da da
=1
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That is, |[07]|% sq 1s computed in the same way as |[vy, Hn d = D10, D;'F , given in (4.9) except

using Uf instead of O,,.

Assumption Boot.4. SUP vt [(v,0),, xy5—0O o2 (v, V) 11l = OPyoo yoo (1) wpal(Pze) with MP =
(win — 1)2M; and M; = 37" p(Z;,80)p(Zs, an) 257

This assumption can be verified given Assumptions [Boot.I| or [Boot.2] The following result is a

bootstrap version of Theorem [4.2{(1)

Theorem 5.1. Let Assumptions - and[Boot.4) hold. Then:

[031B.sd
aul|vp]sd

- 1‘ = 0P| 00 (1) wpal(Pzee).

Recall that Wn =n M, whose probability distribution Pze <Wn < ) converges to

071l sa
the standard normal cdf ®(-). The next result is about the consistency of the bootstrap sieve t

statistic I//[\/'QBn
Theorem 5.2. Let &, be the PSMD estimator and Q2 the bootstrap PSMD estimator. Let

Assumptions - and hold. Let Assumptions and hold.
(1) Let Assumptions and [Boot.j) hold. Then:

iuIIR? Pyoc| g0 <W2n <t| Z”) — Py (/Wn < t)‘ = 0Pyoo| oo (1) wpal(Pzee).
€

(2) If ¢ is regular, without imposing Assumptions and we have:

sup
teR

SBY _ ol
Pyoc) 700 (\/ﬁdan)d)(”) <t| Z”) — Pzee (Vn (6(an) — ¢(a0)) < 1)| = 0Pyoo oo (1) wpal(Pz).

w

For a regular functional, Theorem (2) provides one way to construct its confidence sets
without the need to compute any variance estimator. This extends the result in |(Chen and Pouzo
(2009) for a regular Euclidean parameter X'6 to a general regular functional ¢(«). Unfortunately

for an irregular functional, we need to compute a consistent bootstrap sieve variance estimator

|05 1|2 % sa 10 apply Theorem [5 . . Luckily |[77][% sd 1S easy to compute when the residual function
p(Z;, ) is pointwise smooth in . Moreover, since F ||@;§HQB7Sd | Z”) = o2|[vz|? sa We suspect

that the bootstrap sieve t statistic /WQBn might have second order refinement property by choices of
bootstrap weights {w; }. This will be a subject of future research.

The bootstrap sieve t statistic /WQBTL requires to compute the original sample PSMD estimator
0, and the bootstrap PSMD estimator aﬁ . In online supplemental Appendix |§| we present a sieve
score test and its bootstrap version, which only use the original sample restricted PSMD estimator

a and do not use a , and hence are computationally simple.
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Remark 5.1. Theorems (2) and (1) imply that the bootstrap Wald test statistic WQEfn =

N2
<Wan> always has the same limiting distribution x3 (conditional on the data) under the null and
the alternatives. Let ¢y pn(a) be the a — th quantile of the distribution of an (conditional on the

data {Z;}7_ ). Let Wy, = (\fﬁlsﬁlll)n ‘ZO) be the original sample Wald test statistic. Then Remark
and Theorem[5.9(1) immediately imply that for any T € (0,1),

under Hy : ¢(ap) = ¢o, limy, oo Pr(Wy, > Co (1 — 7)) = 7;

under Hy : ¢(ag) # ¢o, limp oo Pr W, > (1 — 1)) = 1.

See Theorem [A.]] in Appendiz[4] for properties under local alternatives.

See online supplemental Appendix [B| for consistency of an = ( /@) —dn #(@B) ) and other

UWanHn sd

bootstrap sieve Wald (t) statistics based on different sieve variance estimators.

5.3 Bootstrap SQLR statistic

If ¥ # X, the SQLR statistic @%n(d)o) =n (@n(&ff) - @n(an)) is no longer asymptotically
chi-square even under the null; Theorem (1), however, implies that the SQLR statistic converges
weakly to a tight limit under the null. In this subsection we show that the asymptotic null distribu-
tion of the SQLR can be consistently approximated by that of the (generalized residual) bootstrap
SQLR statistic Cﬁf(gn) Recall that

_——~—B ~ ~
QLR, (6n) = n (QE@HF) = QE(@E)) + 0o o (1) wpal (Pyec)
where (En = ¢(ay,), and altB is the restricted bootstrap PSMD estimator, defined as

S - . ~ 1
QB(@kB) + N\, Pen(hiP) < inf {Qf(a) + )\nPen(h)} + 0Py oo oo (=) wpal(Pzeo).
aeAk(n)¢(a):¢n n
(5.3)
Lemma in Appendix [A| implies that Ei,lf’B, aB € N,s, wpal under both the null Hy :
d(ap) = ¢o and the alternatives Hy : ¢(ap) # ¢o. This indicates that the bootstrap SQLR statistic
_—~B ~
QLR,, (¢,) is always properly centered and should be stochastically bounded under both the null

and the alternatives, as shown in the next theorem. Let Pz (QLR (¢o) < - | H0> denote the

probability distribution of Q/LT%R(%) under the null Hy : ¢(ag) = ¢g, which would converge to the
—_— —0

cdf of x? when QLR,,(¢0) = QLR,,(¢o) (the optimally weighted SQLR).

Theorem 5.3. Let Assumptions[3.1] -[3.] and[A1) hold. Let Assumptions and[Boot.3 hold
with ‘B,‘;’ — ||ux||?

nlP]

= Opvoolzoo(l) wpa].(PZoo) Then

QLR (n) _ < g

: owlu]]

2
: ) 0y g (1) = Oy o (1) wpal (Py); - and

(1)
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——B ~
(2) sup | Pz Q“z(‘” <t]2" | = Pz (QLR,(60) < t| Ho)| = 0pye o (1) wpal (Pe).
Theorem allows us to construct valid confidence sets (CS) for ¢(ag) based on inverting
possibly non-optimally weighted SQLR statistic without the need to compute a variance estimator.
We recommend this procedure when it is difficult to compute any consistent variance estimator
for ¢(a), such as in the cases when the residual function p(Z;«) is pointwise non-smooth in ayg.
See, e.g., |/Andrews and Buchinsky| (2000)) for a thorough discussion about how to construct CS via

bootstrap.

——B ~
Remark 5.2. Let ¢,(a) be the a — th quantile of the distribution of %5(%) (conditional on the

data {Z;} ). Then Theorems and [5.3 immediately imply that for any T € (0,1),
under Hy : ¢(ag) = ¢p, limy, o0 Pr (@n(qbg) > Cn(1 — r)) =7;

under Hy : ¢(a) # ¢o, limy, o0 Pr (@n(qbo) > (1 — 7')) =1.
See Theorem [A.3 in Appendiz[4] for properties under local alternatives.

6 Verification of Assumptions and [3.6|(i)

In this section, we illustrate the verification of the two key regularity conditions, Assumption [3.5

and Assumption i), via some functionals ¢(h) of the (nonlinear) nonparametric IV regressions:
Elp(Vis ho(¥2))[X] =0 as. — X, (6.1)

where the scalar valued residual function p() could be nonlinear and pointwise non-smooth in h.
This model includes the NPIV and NPQIV as special cases. To be concrete, we consider a PSMD
estimator h € Hi(n) of ho with S =% = 1, and m(-, h) being the series LS estimator 1} of

m(-,h) = E[p(Y1; h(Y2))|X = -] with J, = ck(n) for a finite constant ¢ > 1. We assume that
ho € H = A ([—1,1]) with smoothness ¢ > 1/2 (a Holder ball with support [—1,1], see, e.g.,
Chen et al. (2003))@ By definition, H C L?(fy,) and we let || - ||s = || - z2(sy,)- We assume that

Hin) = clsplar, - Qun) + With {gr}72, being a Riesz basis of (H, || - ||s). The convergence rates of
h to ho in both || - || and || - ||s = || - |2 fy,) metrics have already been established in |Chen and
Pouzo| (2012a)), and hence will not be repeated here.

We use Hos and Hosp for Ays and Ay, defined in Subsection (since there is no € here).

14This Hélder ball condition and several other conditions assumed in this subsection are for illustration only, and
can be replaced by weaker sufficient conditions.
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Denote T = % : Hos C L2(fy,) — L*(fx), i.e., for any h € Hos C L2(fy,),

dE[p(Y1;ho(Y2) + 7h(Y2))|X = -]
dr 7=0 '

Th =

Let T* be the adjoint of T. Then for all h € H,s, we have ||h||> = ||Th||?, = |[(T*T)Y?h| %5, .

L2(fx) L2(fy,)
Under mild conditions as stated in |Chen and Pouzo (2012a)), 7" and T* are compact. Then T has
a singular value decomposition {p; ¥, dor}ire,, where {ur > 0}72, is the sequence of singular
values in non-increasing order (ug > pg+1 > ...) with liminfy oo pp = 0, {¢x € L2(fy2)}z°:1 and

{por € L?(fx)}32, are sequences of eigenfunctions of the operators (T*T)"/2 and (TT*)"/2

Ty = prdoe, (T, = e and  (TT*)Y2¢o, = pndor  for all k.

Since {qx}32, is a Riesz basis of (H,|| - |[s) we could also have Hy,) = clsp{¢1, ..., Ypmn)}- The
sieve measure of local ill-posedness now becomes 7,, = ,u]:(ln) (see, e.g., Blundell et al. (2007)
and (Chen and Pouzo| (2012a)), and hence |u
pho = argminpey,, |[h = holls = Zk;:1 (ho, ¥i) st is the LS projection of hy onto the sieve

nlls

< cu,;(ln) for a finite constant ¢ > 0. Also,

space H,, under the strong norm |- ||s = ||- ||L2(fY2). Recall that ho, = argminpey,,, || — hol |2 =

arg minpey, , [|TTh — ho]HL2 (fx): We have:

(n) k(n)
ho,n = arg 1{1111}1 Z ((hos P)s — ar)? g + Z ho,?/)k 2| = (ho,vw)sthr = nuho. (6.2)
R =t k=k(n k=1

The next remark specializes Theorem to a general functional ¢(h) of the model (6.1)).

Remark 6.1. Let m be the series LS estimator for the model with & = % = 1, and

Assumptions (i)(ii), (i) (i), and hold with 6, = O <\/k(nn)> = o(n~Y*) and 8y, =

O ({k(n)}— —l—,u,;(ln) @ =o(1). Let Assumption equation (3.14) and Assumptions|A.4| -
hold. Then:

V2 00) (0,1 with 132 = (0 ) Dy 0,0 (U ),
Upllsd

D, = E[(Tld(Y)) (Tl (Y])| and B, = B [(Td())) 02, h0)? (Tl ()])]

Remark includes the NPIV and NPQIV examples in Subsection as special cases. In
particular, the sieve variance expression (6.3) reproduces the one for the NPIV model (2.18)
with T[¢*™(-)] = E[¢"™(Y3)'|X], and the one for the NPQIV model with T[¢F™) ()] =
E[fU\Yg,X(O)qk(n)(}/2)/|X]‘
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k*

—n
n

By the result in |Chen and Pouzo| (2012a), the sieve dimension & satisfying {k};}~° =< M;;;l X
leads to the nonparametric optimal convergence rate of ||ﬁ — holls = Op e (65 ,,) = o(1) in strong
norm, where d3,, < {k;}7°. In particular, k;, < nZFIF and Ospn = n”IF0 for the mildly
ill-posed case py, < k=% for a finite a > 0; and 03, = {Inn}~* for the severely ill-posed case py =<
exp{—0.5ak} for a finite a > 0. However this paper aims at simple valid inferences on functional
@(ho). As will be illustrated in the next subsection, although the nonparametric optimal choice k'
is compatible with the sufficient conditions for the asymptotic normality of \/ﬁ(cf)(ﬁ) — ¢(hg)) for
a regular linear functional ¢(hg) (see Remark [3.1), it is typically ruled out by Assumption [3.5[(iii)

for irregular functionals.

6.1 Verification of Assumption

Let by = %400 [;()] for al j. By Lemmalt.1] D, = B [(T(a"™ ()))' (T1g"™)())| = Diag {4, i }

and
\rv:er—(%]}j“[qk<"><->1) o (o) - Z/ﬂb? (6.4

By Lemmau gb ) of the model is regular (at h = hg) iff Z; 11 2b2 < 00, and is irregular
(at h = ho) iff 352, p;2b? = oc.
For the same functional ¢(h) of a model (6.5) without endogeneity:

E[p(Yl; h()(YQ))‘YQ] =0 a.s. — YQ, (65)

we have Dy, < I, and [|v}|[* < Z]( 1) b? Thus, ¢(h) of the model 1) is regular (or irregular)
iff >27, b? < oo (or = o0).

Since pipny — 0 as k(n) — oo, if a functional ¢(h) is irregular for the model (6.5) without
endogeneity, then it is irregular for the model (6.1]). But, even if a functional ¢(h) is regular for the

model (6.5) without endogeneity, it could still be irregular for the model (6.1) with endogeneity.

6.1.1 Linear functionals of the model (6.1))

For a linear functional ¢(h) of the model (6.1)), given relation (6.2)), Assumption is satisfied
provided that the sieve dimension k(n) satisfies (6.6)):

| 2240 T, ko — hol|

o

||onll —o(1) and n

= o(1). (6.6)

ol
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When ¢(h) of the model (6.1)) is regular, Remark implies that is satisfied provided

o0 [o¢]

Zu;ijz <oo and mn X Z u;be X ||, ho — hol|* = o(1). (6.7)
j=1 J=k(n)+1

We shall illustrate below that both these sufficient conditions allow for severely ill-posed problems.

Example 1 (evaluation functional). For ¢(h) = h(7s), we have: |[v}||> = Zf("l o [ (75))%,

de(ho)

I (I, ho — ho)

= [(Ia10) (F2) = ho(Ha2)| < [[Tnho — holloo < const.{k(n)}™*

To provide concrete sufficient condition for , we assume |[vE||? < E (Z ja gt 2l (Ya)]?) =

Zk ! pk . Since limy ;) o0 [[v:]|* = oo, the evaluation functional is irregular. Condition 1@' is

satisfied provided that

(AT o/ P CC0) el L )

n ez~ 1y 3

= o(1). (6.8)

Condition allows for both mildly and severely ill-posed cases.
(a) Mildly ill-posed: py =< k= for a finite a > 0. Then ||v}||? < {k(n)}?**L. Condition is
1 1
satisfied by a wide range of sieve dimensions, such as k(n) < n2¢+a+1 (Inlnn)® or n26+a+1 (Inn)®

for any finite o > 0, or k(n) < n° for any € € ( Note that any k(n) satisfying

AFareT )
Condition also ensures d5, = o(1). However, it does require k(n)/k; — oo, where k =<
nm is the choice for the nonparametric optimal convergence rate in strong norm.

(b) Severely ill-posed: py < exp{—0.5ak} for a finite @ > 0. Then [|v}|]? =< exp{ak(n)}.
Condition is satisfied with k(n) < ™! [Inn — wln(lnn)] for 0 < w < 2. In addition we need

w > 1 (and hence ¢ > 1/2) to ensure 65, = O ({k(n)}< + M;(Z) k(")) = o(1).

n

Example 2 (weighted derivative functional). For ¢(h) = [ w( y)dy, where w(y) is a
weight satisfying the integration by part formula: ¢(h) = fw(y)Vh(y)dy =— f h(y)Vw(y)dy, we
have: |[v}||? = Zf(”l) 14 72b% with by = [ 4;(y)Vw(y)dy for all j, and

= ‘/[tho(y) — ho(y)]Vw(y)dy‘ < C x| hg — h0||L2(fy2) < const.{k(n)}~*

2
provided that E ([Xngi” = Zjo 1 b? C < oco. That is, the weighted derivative is assumed to
2
be regular for the model (6.5) without endogeneity.
(i) When the weighted derivative is regular (i.e., 3322, u;2b? < o0) for the model 1) Condi-

tion 1’ is satisfied provided that n x Z;’ik(n) 41 ,uj_zbjz x 82 = 0(1), which is the condition imposed
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in |Ai and Chen| (2007)) for their root-n estimation of an average derivative of NPIV example, and
is shown to allow for severely ill-posed inverse case in |Ai and Chen| (2007)).

(ii) When the weighted derivative is irregular (i.e., >3, ,uj_zb? = oo) for the model ,
Condition is satisfied provided that

(AT /e U7, AP L00) S N L0

1 2 k _
n n MlallP - Lok -2y

= o(1). (6.9)

Condition allows for both mildly and severely ill-posed cases. To provide concrete sufficient
conditions for we assume b? = (j1n(y ))_1 in the following calculations. )
(a) Mildly ill-posed: py, =< k= for a finite @ > 0. Then ||v}|? € [clﬁgg()n)),c’k(n)za] for some

0 < ¢ < < oco. Condition and ds, = o(1) are jointly satisfied by a wide range of sieve

T
dimensions, such as k(n) =< n26+e (Inn)® for any finite w > or k(n) < n¢ for any € €

(3tcray 2ars) and ¢ > 1/2.
(b) Severely ill-posed: iy, < exp{—0.5ak} for a > 0. Then [|v}]|[* € [Ckefg}{ﬁ'féﬁﬁ)’C’e’iﬁEZfég"‘))}]
for some 0 < ¢ < ¢ < o0o. Condition and d5, = o(l) are jointly satisfied by k(n) =<

a~![In(n) — @wIn(ln(n))] for w € (1,2¢ — 1) and ¢ > 1.

_1
2(s+a)’

6.1.2 Nonlinear functionals

For a nonlinear functional ¢(h) of the model , Assumption is satisfied provided that the
sieve dimension k(n) satisfies (or if ¢(h) is regular) and Assumption [3.5{ii), which is
implied by the following condition:

Assumption (ii)’: there are finite non-negative constants C' > 0,wi,we > 0 such that for all
(a,t) € Nosn X Tn,

do(ao)
da

dla+tuy) — d(ag) — [a+ tu)y, — apl| < C x (|Ja—ag + tuy || X ||a — ap + tu|[<?), and
Vv x (6, (1 + Mg))wl X (05 + MgdnHu;‘;Hs)”Q

1c]

C x

=o0(1).

Assumption ii) or (ii)’ controls the nonlinearity bias of ¢ (-) (i.e., the linear approximation
error of a nonlinear functional ¢ (+)). It typically rules out nonlinear regular functionals of severely
illposed inverse problems, but allows for nonlinear irregular functionals of severely illposed inverse
problems.

Example 3 (weighted quadratic functional). For ¢(h) = % [w(y) \h(y)|* dy, we have
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% k(n) — . .
[ ]|? = S5 15202 with by = [ ho(y)w(y)e;(y)dy for all j, and

do(h
‘ UL

= ‘/w(y)ho(y)[ﬂnho(y) - ho(y)]dy’ < const. x ||, hy — h0||L2(fy2)

J=1"3
the weighted quadratic functional is regular for the model (/6.5 without endogeneity. Also,

provided that sup, fz(l(/;) < 0o. This and F ([ho(Yg)]Q) < oo imply that Y2, b2 < co. That is,
2

de(ho) 1
00 = o) = 00001~ | = 5 [ w0 100) ~ Ha)?d < const. x 10— Dol
(i) When the weighted quadratic functional is regular (i.e., > 72, ju; 2b2 oo) for the model

, Condition is satisfied provided that n x Z;’;k(n) 1 H 2b§ x 02 = o(1), which allows for
severely ill-posed cases. But Assumption(ii)’ requires that \/nx 02, = /nx( {k(n)} = + ,u,;(ln)
o(1), which clearly rules out severely ill-posed inverse case where py < exp{—0.5ak} for some finite
a > 0.

(ii) When the weighted quadratic functional is irregular (i.e., > 72, p; 2b2 o0) for the model

(6.1), Condition is satisfied provided that Condition holds with b; = [ ho(y)w(y)y;(y)dy
for Example 3. Assumption [3.5((ii)’ is satisfied provided that

2
g Vi (y g /) i ki)
SR < p1/2 He(n)

] ] STOpET

= o(1). (6.10)

Any k(n) satisfying Conditions and (6.10]) automatically satisfies d,, = o(1). In addition, both
conditions allow for mildly and severely ill-posed cases. To provide concrete sufficient conditions
we assume b2 (jIn(4))"" in the following calculations.

idly ill-posed: pp < k™% tor a finite a > 0. en ||v S ,C or some
Mildly ill-posed k= for a fini 0. Then [[v}|[2 ’Cg())) 'k(n)%] f

0 < ¢ < < co. Conditions and (| are satisfied by a wide range of sieve dimensions,

1
such as k(n) < n2¢+a) (Inn)® for any ﬁmte W > say OF k(n) < nc for any € € (ﬁ 5-1-) and

§+a) S+a)’ 2a+2

¢>1.
(b) Severely ill-posed: i, =< exp{—0. 5ak} for a > 0. Then ||[v:||? € [c e(Xp){lil(ﬁlg?g) , eﬁig“ggj;@)}] for
some 0 < ¢ < ¢ < co. Conditions (6.9 . and (6.10] are satisfied with k(n) < a™! [In(n) — @ In(In(n))]

and w € (3,2¢ — 1) for ¢ > 2.
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6.2 Verification of Assumption [3.6/(i)

By Lemma (1), to verify Assumption i), it suffices to verify Assumptions - in
Appendix [A] Note that Assumptions [A:4] and do not depend on sieve Riesz representer at

all, and have already been verified in |Chen and Pouzo| (2009)), Ai and Chen| (2007) and others for
(penalized) SMD estimators for the model (6.1]). Assumptions and do depend on the scaled

*
n

(2003)), |Chen and Pouzo| (2009), |Ai and Chen (2007)) for examples of regular functionals of the
model (6.1]). Here, we present verifications of Assumptions and for irregular functionals of
the NPIV and NPQIV examples.

sieve Riesz representer u) = v /||v}||sq. Both these assumptions are also verified in |Ai and Chen

Condition 6.1. (i) {E[L(Y2)] : h € H} C AXX), with v > 05; (ii) sup,, 22X <
’ 2

Const. < 0.
Proposition 6.1. Let all conditions for Remark [6.1) hold. Under Condition[6.1], Assumptions[A.d]
and hold for the NPIV model .

Proposition allows for irregular functionals of the NPIV model with severely ill-posed case.

Condition 6.2. (i) {E[Fy,jy,x (h(Y2), Y2, )| : h € M} C AU(X), withy > 0.5 (ii) sup,, ,,, |0y 00020)) o

C < oo.
Condition 6.3. n(loglogn)*ss, = o(1)

Proposition 6.2. Let all conditions for Remark hold. Under conditions [6.1|(ii) and [6.36.3,
Assumptions (md hold for the NPQIV model :

It is clear that Condition [6.3] rules out severely ill-posed case, and hence Proposition [6.2] only
allows for irregular functionals of the NPQIV model with mildly ill-posed case.

7 Simulation Studies and An Empirical Illustration

In this section, we first present simulation studies for SQLR and sieve t tests of linear and nonlinear
hypotheses for the NPQIV and NPIV models respectively. We then provide an empirical illustration
of the optimally weighted SQLR inferences for a NPQIV Engel curve. In this section, we use the
series LS estimator of m(z, h) with p’»(z) as its basis, and ¢*("™ as the basis approximating
the unknown structure function hg. We use p/ = P — Spline(r, k) to denote rth degree polynomial
spline with & (quantile) equally spaced knots, hence J = (r + 1) + k is the total number of sieve
terms. We use p’ = Pol(.J) to denote power series up to (J — 1)th degree. See |Chen| (2007) for

definitions.

38



7.1 Simulation Studies

We run Monte Carlo (MC) studies to assess the finite sample performance of SQLR and sieve t
procedures in two models: the NPQIV and the NPIV . We also consider linear and
non-linear functionals.

For all cases, our design is based on the MC design of Newey and Powell (2003) and Santos
(2012)) for a NPIV model, which we adapt to cover both NPIV and NPQIV models. Specifically,

we generate i.i.d. draws of (Y3, X, U*) from

Yy 1 08 05
x* | ~N[0,lo8 1 o0]],
U* 05 0 1

and Y2 = 2(®(Y5/3) — 0.5) and X = 2(®(X*/3) — 0.5). The true function hg is given by ho(-) =
2sin(7-). We consider 5,000 MC repetitions and n = 750 for each of the cases studied below. We
use Pen(h) = ||h|[3. + [|VA]|7, in all the simulations, and have used a very small A, = 107 in
most cases (except for the cases we study the sensitivity to the choice of A,).

Summary of MC findings: For both NPQIV and NPIV, for both SQLR and sieve t tests,
for both linear and nonlinear hypotheses, as long as .J,, > k(n) + 1 with not too large k(n), the MC
sizes of the tests are good and are insensitive to the choices of basis ¢ and p’ or the very small
penalty A,. This is consistent with previous MC findings in Blundell et al.| (2007) and |Chen and
Pouzo| (2012al) for PSMD estimation of NPIV and NPQIV respectively.

NPQIV model: SQLR test for an irregular linear functional. We consider the NPQIV
model Y7 = ho(Y2) + U = 2sin(nYs) + U with U = 2(®(U*) — ). This last transformation is
done to ensure that E[1{U < 0}|X] = . To save space we only present the case with v = 0.5.
The parameter of interest is ¢(hg) = ho(0), hence ¢ is a irregular linear functional. We study
the finite sample properties of the SQLR and bootstrap-SQLR tests. The SQLR-based confidence
intervals are specially well-suited for models like NPQIV where the generalized residual function is
non-smooth and also where the optimal weighting matrix is easy to compute.

Size. Table reports the simulated size of the SQLR test of Hy: ¢(hg) = 0 as a function

k() and p’r, and different values of the tuning

of the nominal size (NS), for different choices of ¢
parameters (A, k(n), Jp).

Table shows that for small value of k(n), say in (k(n),J,) = (4,7) (i.e., rows 1-3), the SQLR
test performs well and is fairly insensitive to different choices of \,,. For a fixed relatively small
Jn = 7, rows 1-6 indicate that as k(n) increases, the results become a bit more sensitive to the

choice of \,. For a fixed very small penalty \, = 107>, rows 7-15 show that the results are fairly
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gF) p/n An 10% 5% 1%
Pol(4) Pol(7) (1x1073) [ 0.099 0.055 0.008
Pol(7) (2x10°%) | 0.096 0.048 0.008

Pol(7) (4x1075) | 0.107 0.053 0.010

Pol(6) Pol(7) (1x1073) [ 0.133 0.068 0.011
Pol(7) (2x 104 | 0.091 0.036 0.006

Pol(7) (4x1075) | 0.105 0.052 0.008

Pol(6) Pol(9) (1x1075) [ 0.107 0.055 0.012
Pol(15) (1x1075) | 0.109 0.058 0.014

Pol(21) (1x1075) | 0.112 0.058 0.013

P-Spline(3,2) Pol(9) (1x1075) [ 0.103 0.049 0.010
Pol(15) (1x1075) | 0.105 0.049 0.009

Pol(21) (1x1075) | 0.105 0.052 0.009

P-Spline(3,2) P-Spline(5,3) (1 x 1077) | 0.098 0.049 0.008
P-Spline(5,9) (1x1075) | 0.103 0.050 0.009
P-Spline(5,18) (1 x 107%) | 0.106 0.051 0.009

Table 7.1: Size of the SQLR test of ¢(ho) = 0 for NPQIV model.

insensitive to different choices of .J,, and basis for p/» and ¢*™ as long as J,, > k(n) + 1.

Local power. The dashed blue line in Figure shows the rejection probabilities at 5% level
of the null hypothesis as a function of r where r: ¢(hg) = r. We do this for the specification
corresponding to Pol(4) for ¢*™) and )\, = 2 x 10~%. We note that since our functional ¢(h) = h(0)
is estimated at a slower than root-n rate, the deviations considered for r which are in the range
of {0,1/y/n,...,8/y/n} are indeed “small”. Finally, we study the finite sample behavior of the
generalized residual bootstrap SQLR corresponding to Pol(4) for "™ and A, = 2 x 1074, using
multinomial bootstrap weights. We employ 250 bootstrap evaluations, and lower the number of
MC repetitions to 500 to ease the computational burden. The solid red line in Figure[7.1| shows the
rejection probabilities at 5% level of the null hypothesis as a function of r where r: ¢(hg) = r. We
can see from the figure that the bootstrap SQLR performance is similar to its non-bootstrapped

counterpart. We expect that the performance will improve if we increase number of bootstrap runs.

NPIV model: sieve variance estimators for an irregular linear functional. We now
consider the NPIV model: Y7 = ho(Yz) + 0.76U = 2sin(nY2) + 0.76U, with U = U* so the
identifying condition of NPIV holds: E[U|X] = 0. The parameter of interest is ¢(hg) = ho(0),
and the null hypothesis is Hy: ¢(hg) = 0. We focus on the finite sample performance of the sieve

variance estimators for irregular linear functionals. We compute two sieve variance estimators:

where D,, = n~! (6n(P’P) %), C, = S q"™) (Yo )p”n (X5, 0, is given in equation (|2.20)),
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Figure 7.1: Rejection probabilities at 5% level of the null hypothesis as a function of r = ¢(ho) for the SQLR
(dashed blue line) and for the bootstrap SQLR (solid red line).

and 0, = 1C,(P'P) (Z?:1 pJ"(Xi)flo(Xi)pJ"(Xi)’) (P'P)~C", with U; = Yi; — h(Ya;) and
So(z) = (Z;‘:l ﬁfp‘]" (Xj)’) (P'P)~p’»(z). (See Theorem in Appendix (B for the definition

and consistency of V5 as another sieve variance estimator for any plug-in PSMD ¢(a).)
Table reports the results for different choices of bases for ¢ and p/», and for dif-

ferent values of k(n) and J,; in all cases we use a very small \, = 107°. This table shows
Medyc { ﬁ - 1H for j = 1,2, where |[v}||sq is computed using the MC variance of \/7hy,(0)
nllsd

and Medysc|-] is the MC median. It also shows the nominal size and MC rejection frequencies of

the two sieve t tests ;t\j = \/ﬁw for j =1,2.
i
We can see that the two sieve variance estimators have almost identical performance and the

associated sieve t tests have good rejection probabilities. These results are fairly robust to different
choices of basis for ¢*(™) and p’» and different values of k(n) and .J, as long as .J, > k(n) + 1.
Figure (first row) shows the QQ-Plot for the sieve t tests tAj = \/ﬁh"(o\/;_o under the null for

Vi

j = 1,2 for the case Pol(4)-Pol(16) in the table; the right panel in the first row corresponds to #;
and the left panel in the first row to o. Both sieve t tests are almost identical to each other and

to the standard normal.

NPIV model: sieve variance estimators for an irregular nonlinear functional. This
case is identical to the previous one for the NPIV model, except that the functional of interest
is ¢(ho) = exp{ho(0)}, and the null hypothesis is Hy: ¢(ho) = 1. This choice of ¢ allows us to
evaluate the finite sample performance of sieve t statistics for a nonlinear functional.

Table shows Medy;c and rejection probabilities for this nonlinear case. By comparing the
results with those in Table we note that the results are very similar in both cases; the rejections
probabilities being slightly higher for the nonlinear functional case. Overall, we think that these
results suggest that our sieve t tests perform equally well for both functionals. Figure (second

row) shows the QQ-Plot for the two sieve t tests for the non-linear case; the right panel in the
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Medyo 5% 10%

g™ p’n Vi Va Vi Va Vi Va
Pol(4) Pol(6) 0.0946 0.0937 | 0.0512 0.0514 | 0.0980 0.0974
Pol(lO 0.0922 0.0920 | 0.0536 0.0532 | 0.0992 0.0990

)
Pol(12) 0.0918 0.0917 | 0.0538 0.0532 | 0.1002 0.0998

Pol(16) 0.0911 0.0912 | 0.0540 0.0538 | 0.1000 0.0998

Pol(4) P-Spline(3,2) | 0.0939 0.0942 | 0.051 0.0516 | 0.0984 0.0986
P-Spline(3,5) | 0.0939 0.0920 | 0.053 0.0532 | 0.099 0.0984
P-Spline(3,11) | 0.0923 0.0925 | 0.055 0.0548 | 0.1014 0.1014
P-Spline(3,17) | 0.0922 0.0917 | 0.0542 0.0538 | 0.100 0.1008

P-Spline(3,2) Pol(12) 0.0938 0.0930 | 0.0572 0.0564 | 0.1082 0.1074
Pol(16) 0.0936 0.0936 | 0.0582 0.0578 | 0.1082 0.1082

Pol(18) 0.0936  0.0935 | 0.0580 0.0578 | 0.1088 0.1086

Pol(20) 0.0936  0.0937 | 0.0580 0.0574 | 0.1086 0.1092

P-Spline(3,2) P-Spline(3,2) | 0.1106 0.1116 | 0.0606 0.0598 | 0.1130 0.1120
P-Spline(3,5) | 0.1019 0.1023 | 0.0584 0.0574 | 0.1122 0.1116
P-Spline(3,11) | 0.0961 0.0960 | 0.0572 0.0566 | 0.1100 0.1094
P-Spline(3,17) | 0.0949 0.0944 | 0.0570 0.0566 | 0.1082 0.1080

P-Spline(3,2)  P-Spline(5,3) | 0.1007 0.0998 | 0.0586 0.0576 | 0.1102 0.1088
P-Spline(5,6) | 0.1011 0.1009 | 0.0586 0.0578 | 0.1100 0.1092
P-Spline(5,12) | 0.1007 0.1009 | 0.0580 0.0572 | 0.1110 0.1096
P-Spline(5,18) | 0.1009 0.1010 | 0.0580 0.0570 | 0.1106 0.1092

Table 7.2: Relative performance of \71 and Vg: Medyc [ #
nllsd

quencies for t tests £; for j = 1,2 for a linear functional of NPIV.

-1

}, and Nominal size and MC rejection fre-

second row corresponds to ¢; whereas the left panel in the second row corresponds to ts. Again
both t tests are almost identical to each other, and to the standard normal.

Finally we wish to point out that we have tried other bases such as Hermite polynomials and
cosine series and even larger .J,, in these two NPIV MC studies, the results are all similar to the

ones reported here and hence are not reported due to the lack of space.

7.2 An Empirical Application

We compute SQLR based confidence bands for nonparametric quantile IV Engel curves using the
British FES data set from [Blundell et al.| (2007)):

E[1{Y1; < ho(Y2,:)} | Xi] = 0.5,

where Y7 ; is the budget share of the i—th household on a particular non-durable goods, say food-in
consumption; Y3 ; is the log-total expenditure of the household, which is endogenous, and hence we

use X;, the gross earnings of the head of the household, to instrument it. We work with the “no
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Figure 7.2: QQ-Plot for t tests fj for j = 1,2 for a linear functional (first row) and a nonlinear
functional (second row) of NPIV, with ¢*(®) = Pol(4) and p’» = Pol(16).

kids” sub-sample of the data set, which consists of n = 628 observations. Blundell et al. (2007)
estimated NPIV Engel curves using this data set. But, as pointed in Koenker| (2005) and others,
quantile Engel curves are more informative.

We estimate ho(-) for foot-in quantile Engel curve via the optimally weighted PSMD procedure
with & = Xy = 0.25, using a polynomial spline (P-spline) sieve Hyny With k(n) = 4, Pen(h) =
||R||2,+||Vh|[2, with A, = 0.0005, and p”»(X) is a Hermite polynomial basis with J,, = 6. We also
considered other bases such as P-splines as p/»(X) and results remained essentially the same. See
Chen and Pouzo| (2009) for PSMD estimates of NPQIV Engel curves for other non-durable goods.

We use the fact that the optimally weighted SQLR of testing ¢(h) = h(y2) (for any fixed ys) is
asymptotically x? to construct pointwise confidence bands. That is, for each y, in the sample we
construct a grid of points for the SQLR test; each of these points where the value of SQLR test
corresponding to h(y2) = r; for (r;)32,. We then, take the smallest interval that included all points
r; that yield a corresponding value of the SQLR test below the 95% percentile of X%E Figure
presents the results, where the solid blue line is the point estimate and the red dashed lines are
the 95% pointwise confidence bands. We can see that the confidence bands get wider towards the
extremes of the sample, but are tighter in the middle.

To test whether the quantile Engel curve for food-in is linear or not, one can test whether ¢(hg) =
i }VZh(yg)‘2 w(y2)dys = 0 using our SQLR test. Let w(-) = (oy,) exp (—%(0;21(- - uy2))2> H{to.01

5The grid (r;)7~; was constructed to have 15 = hin (y2), for all ¢ <15 741 < 7; < r15 decreasing in steps of length
0.002 (approx) and for all ¢ > 15 r;41 > 7r; > r15 increasing in steps of length 0.008 (approx); finally, the extremes,
r1 and 730, were chosen so the SQLR test at those points was above the 95% percentile of x%. We tried different
lengths and step sizes and the results remain qualitatively unchanged. For some observations, which only account
for less than 4% of the sample, the confidence interval was degenerate at a point; this result is due to numerical
approximation issues, and thus were excluded from the reported results.
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Medyo 5% 10%

g™ p’n Vi Va Vi Va Vi Va
Pol(4) Pol(6) 0.0990 0.0985 | 0.0528 0.0530 | 0.0982 0.0988
Pol(lO 0.0971 0.0958 | 0.0524 0.0522 | 0.1014 0.1012

)

Pol(12) 0.0967 0.0959 | 0.0526 0.0526 | 0.1020 0.1018

Pol(16) 0.0961 0.0958 | 0.0524 0.0528 | 0.1018 0.1014
Pol(4) P-Spline(3,2) | 0.0996 0.0983 | 0.0534 0.053 | 0.0978 0.0976
P-Spline(3,5) | 0.0982 0.0969 | 0.0538 0.0542 | 0.099 0.0992
P-Spline(3,11) | 0.0985 0.0984 | 0.0554 0.0552 | 0.1014 0.101
P-Spline(3,17) | 0.0982 0.0978 | 0.0544 0.0546 | 0.101 0.1008

P-Spline(3,2) Pol(12) 0.1011 0.1009 | 0.0580 0.0568 | 0.1120 0.1122
Pol(16) 0.1014  0.1005 | 0.0588 0.0574 | 0.1128 0.1126
Pol(18) 0.1014 0.1007 | 0.0582 0.0568 | 0.1130 0.1122
Pol(20) 0.1015 0.1006 | 0.0580 0.0568 | 0.1138 0.1128

P-Spline(3,2)  P-Spline(3,2) | 0.1191 0.1192 | 0.0620 0.0612 | 0.1132  0.1120
P-Spline(3,5) | 0.1090 0.1103 | 0.0596 0.0594 | 0.1140 0.1134
P-Spline(3,11) | 0.1028 0.1032 | 0.0582 0.0572 | 0.1130 0.1126
P-Spline(3,17) | 0.1029 0.1029 | 0.0588 0.0580 | 0.1124 0.1112

P-Spline(3,2)  P-Spline(5,3) | 0.1059 0.1064 | 0.0594 0.0592 | 0.1114 0.1104
P-Spline(5,6) | 0.1066 0.1076 | 0.0598 0.0586 | 0.1124 0.1118
P-Spline(5,12) | 0.1071 0.1079 | 0.0594 0.0586 | 0.1126 0.1120
P-Spline(5,18) | 0.1069 0.1079 | 0.0594 0.0586 | 0.1122 0.1120

Table 7.3: Relative performance of \71 and Vg: Medyc [ #
nllsd

quencies for t tests £; for j = 1,2 for a nonlinear functional of NPIV.

-1

}, and Nominal size and MC rejection fre-

- < to.99} where py,, oy,, too1 and tpg9 are the sample mean, standard deviation and the 1% and
99% quantiles of Y5. For this specification, the p-value is smaller than 0.0001 and we consequently

reject the hypothesis of linearitym

8 Conclusion

In this paper, we provide unified asymptotic theories for PSMD based inferences on possibly
irregular parameters ¢(ap) of the general semi/nonparametric conditional moment restrictions
E[p(Y,X;a0)|X] = 0. Under regularity conditions that allow for any consistent nonparametric
estimator of the conditional mean function m(X,a) = E[p(Y, X;a)|X], we establish the asymp-
totic normality of the plug-in PSMD estimator ¢(a,) of ¢(ag), as well as the asymptotically tight
distribution of a possibly non-optimally weighted SQLR. statistic under the null hypothesis of
d(ap) = ¢o. As a simple yet useful by-product, we immediately obtain that an optimally weighted

'We use the standard Riemann sum with 1000 terms to compute the integral. We also considered other choices
of w such that w(-) = 1{to.25s < < tors} and w(-) = 1{to.01 < - < to.99}. Although the numerical value of the SQLR
test changes, all produce p-values below 0.0001.
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Figure 7.3: PSMD Estimate of the NPQIV food-in Engel curve (blue solid line), with the 95% pointwise confidence
bands (red dash lines).

SQLR statistic is asymptotically chi-square distributed under the null hypothesis. For (pointwise)
smooth residuals p(Z;«) (in «), we propose several simple consistent sieve variance estimators for
(@) (in the text and in online Appendix , and establish the asymptotic chi-square distribution
of sieve Wald statistics. We also establish local power properties of SQLR and sieve Wald tests in
Appendix [A] Under conditions that are virtually the same as those for the limiting distributions
of the original-sample sieve Wald and SQLR statistics, we establish the consistency of the gener-
alized residual bootstrap sieve Wald and SQLR statistics. All these results are valid regardless of
whether ¢(ag) is regular or not. While SQLR and bootstrap SQLR are useful for models with
(pointwise) non-smooth p(Z; ), sieve Wald statistic is computationally attractive for models with
smooth p(Z;«). Monte Carlo studies and an empirical illustration of a nonparametric quantile IV
regression demonstrate the good finite sample performance of our inference procedures.
This paper assumes that the semi/nonparametric conditional moment restrictions E[p(Y, X; a9)| X] =

0 uniquely identifies the unknown true parameter value oy = (6, ho), and conduct inference that
is robust to whether or not the semiparametric efficiency bound of ¢(ag) is singular. Recently,
Santos| (2011) proposed a root-n asymptotically normal estimation of a regular linear functional of
ho in the NPIV model E[Y7 — ho(Y2)|X] = 0, and Santos| (2012]) considered Bierens’ type of test
of the NPIV model without assuming point identification of ho(-). In |Chen et al. (2011) we are
currently extending the SQLR inference procedure to allow for partial identification of the general
model E[p(Y, X;ap)|X] =0.
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A Additional Results and Sufficient Conditions

Appendix [A| consists of several subsections. Subsection presents additional results on (sieve)
Riesz representation of the functional of interest. Subsection derives the convergence rates
of the bootstrap PSMD estimator. Subsection presents asymptotic properties under local
alternatives of the SQLR and the sieve Wald tests, and of their bootstrap versions. Subsection [A.4]
provides some inference results for functionals of increasing dimension. Subsection provides
some low level sufficient conditions for the high level LQA Assumption (1) and the bootstrap
LQA Assumption[Boot.3{i) with series LS estimated conditional mean functlons m(-, ). Subsection
states useful lemmab with series LS estimated conditional mean functions m(-,«). See online
supplemental Appendix [C] for the proofs of all the results in this Appendix.

A.1 Additional discussion on (sieve) Riesz representation

The discussion in Subsection on Riesz representation seems to depend on the weighting matrix
5, but, under Assumption [3.1](iv), we have || - || < || ||o, (i.e., the norm || - || (using X) is equivalent
to the norm || - ||p (using ¥¢) defined in ), and the space V (or V) under |- || is equivalent to
that under || -||o. Therefore, under Assumption (iv) d¢(ao) [-] is bounded on (V,||-]|) iff d¢(§30) []
is bounded on (V,||-1|o), i.e

d¢cgao) [U]‘
sup e 7 < 00,
vEV v#£0 HUHO

which corresponds to non-singular semiparametric efficiency bound, and in this case we say that
¢ (+) is regular (at o = ag) Likewise, %[-] is unbounded on (V,||-|]) iff %[-] is unbounded

on (V,||-lo) i-e., supyev 20 {‘dqﬁégo) [v]) / ||v||0} = 00, in this case we say that ¢ (-) is irregular

(at o = a).
It is known that non-singular semiparametric efficiency bound (i.e., ¢ (-) being regular or %[ ]
being bounded on (V|| -||o)) is a necessary condition for the root-n rate of convergence of ¢(a,,) —

¢(ap). Unfortunately for complicated semi/nonparametric models (1.1)), it is difficult to compute

d¢
supuev,v;éo{ 530)
For a semi/nonparametric conditional moment model with ag = (6, ho), it is convenient to

rewrite D,, and its inverse in Lemma [£.1] as

_ Ill In,12 -1 _ IH —Il_lljmlgfgf
D= < I 12 In22 > and - D= In %2—7, 12]11 I?’QLQ ’

n,

v]) / Hv||0} explicitly; and hence difficult to verify its root-n estimableness.

! /
I —E [(mgfw) z(xrmgxﬂ] Lupm=FE [(mwwm) B(X) L (Al ke .y 1)} ,
/ -1
I, =F {(‘m(fﬁ) N(X)! (WW’“(”)(')'])]’ L' = (Iu _In,1217;%2j7/1721) and I3 =
(In22 — [7/1,21[1—11[%12)_1_

Remark A.l. For the Euclidean parameter functional ¢p(a) = N6, we have f, = ()\/,O;Q(n))’
with O;f(n) = [O,...jO]lxk(n), and hence v} = (v en,wk(” ()BE) e Vk(n) with U;,n = I\ B =

"Following the proof in appendix E of [Ai and Chen| (2003, it is easy to see the equivalence between

SUD, % v0 {‘dd’(a‘]) [v] ‘ /lvllo } < oo and the semiparametric efficiency bound being non-singular.

49



_I;%2I7/z,21v;,nf and ||vE]|? = NIMX. Thus the functional ¢(o) = N6 is regular i limy () oo NIUN <
00; in this case,
lim vi]? = lim NIMX=NZ7P\ = |v*)?,

k(n)—
where )
. _1 (dm(X,00) dm(X, ap)
T, :lng HE(X) 2 ( 7T - 7 [w] | (A.1)
and v* = (v}',v5 () € V where v; = I\, v; = —w* x v}, and w* solves . That 1s,
v* = (vy', v (-)) becomes the Riesz representer for ¢p(o) = N8O previously computed in |Ai and

Chen) (2005) and |Chen and Pouzo (2009). Moreover, if (X)) = Xo(X), then Z, becomes the
semiparametric efficiency bound for 0y that was derived in |Chamberlain (1992) and Ai and Chen
(2005) for the model . Lemma implies that one could check whether 0y has non-singular
efficiency bound or not by checking if limy,(n) o0 NIMN < oo or not.

A.2 Consistency and convergence rate of the bootstrap PSMD estimators

In this subsection we establish the consistency and the convergence rate of the bootstrap PSMD
estimator @2 (and the restricted bootstrap PSMD estimator ok ’B) under virtually the same condi-
tions as those imposed for the consistency and the convergence rate of the original-sample PSMD
estimator a,.

The next assumption is needed to control the difference of the bootstrap criterion function
QB() and the original-sample criterion function Q,(a). Let {5:%”}%0:1 be a sequence of real

valued positive numbers such that g;kn’n = o(1) and g;kn’n > 0. Let ¢ and c* be finite positive
constants.

Assumption A.1 (Bootstrap sample criterion). (i) @E(&n) < c[’;@n(&n)—i—oPVoolzoo (%) wpal(Pg );
(ii) QB(a) > c¢*Qnla) — Opvoo‘zoo((gj,m)Z) uniformly over A%‘i) wpal(Pz=); (iii) QF(a) >
c*@n(a) = OPyoo 700 (62) uniformly over Aosn wpal(Pgs ).

Assumption i)(ii) is analogous to Assumption for the original sample, while Assumption
M(iii) is analogous to Assumption (iii) for the original sample. Again, when m?(z,a) is the
bootstrap series LS estimator (2.16]) of m(x, «), under virtually the same sufficient conditions as
those in |(Chen and Pouzo (2012a) and (Chen and Pouzo| (2009) for their original-sample series LS
estimator m(x, ), Assumption can be VeriﬁedE

Lemma A.1. Let Assumption[A.](i)(i1) and conditions for Lemma hold. Then:
(1) 113Z = aolls = 0pyee oo (1) wpal(Pz=) and Pen (ﬁf) = Opyoo oo (1) wpal(Pye).

(2) In addition, let Assumption[3.4)(i)(ii)(iii) and Assumption [A.1(iti) hold, then:

@y — aol| = OPyoo| g0 (0n) wpal(Pzee);
165 — aolls = Opyee; oo (IMnco — 0|5 + 7 % 8n) wpal(Pze).
B _R,B

(8) The above results remain true when @, is replaced by an

n

18The verification is amounts to follow the proof of Lemma C.2 of |Chen and Pouzo| (2012a) except that the
original-sample series LS estimator 7 (z, «) is replaced by its bootstrap version m” (x, a).
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Lemma (2) and (3) show that aZ € N, wpal and alB e Noon wpal regardless of whether
the null Hy : ¢(ag) = ¢p is true or not.

A.3 Asymptotic behaviors under local alternatives

In this subsection we consider the behavior of SQLR, sieve Wald and their bootstrap versions
under local alternatives. That is, we consider local alternatives along the curve {a, € Nys, : n €
{1,2,...}}, where

oy, = oo+ dp A, with d¢cgzo) [Ap] =k x(140(1))#0 (A.2)
for any (d,,A,) € Ry x Vk(n) such that d,||Ayn|| < Mpdy, dp||An|ls < Myds, for all n. The
restriction on the rates under both norms is to ensure that the required assumptions for studying
the asymptotic behavior under these alternatives (Assumption in particular) hold. This choice
of local alternatives is to simplify the presentation and could be relaxed somewhat.

Since we are now interested in the behavior of the test statistics under local alternatives, we
need to be more explicit about the underlying probability, in a.s. or in probability statements.
Henceforth, we use P, 7z to denote the probability measure over sequences Z°° induced by the
model at o, (we leave Pz~ to denote the one associated to ayp).

A.3.1 SQLR and SQLR? under local alternatives

In this subsection we consider the behavior of the SQLR and the bootstrap SQLR, under local
alternatives along the curve {a, € Nysp : n € {1,2,...}} defined in (A.2)).

Theorem A.l. Let conditions for Lemma and Proposition and Assumption (with
| B — llus|[?| = 0B, 4o (1)) hold under the local alternatives o, defined in . Let Assumption
[3.8] hold. Then, under the local alternatives o,

(1) if dn =0~V [0}|[sa, then ||ui]* x QLR,(¢0) = x3(5%);

(2) if n1/2|]v;§|\gd1dn — 00, then lim, (Hu;‘LH2 X Cﬁn(gbo)) = 00 in probability.

The statement that assumptions hold under the local alternatives «, really means that the
assumptions hold when the true DGP model is indexed by a, (as opposed to «p). For instance,
this change impacts on Assumption by changing the “centering” of the expansion to a,, and
also changing “in probability” statements to hold under P, z~ as opposed to Pyzeo.

If we had a likelihood function instead of our criterion function, we could adapt Le Cam’s 3rd
Lemma to show that Assumption [3.6] under local alternatives holds directly. Since our criterion
function is not a likelihood we cannot proceed in this manner, and we directly assume it. Also, if
we only consider contiguous alternatives, i.e., curves {au, }y, that yield probability measures P, zoo
that are contiguous to Pz, then any statement in a.s. or wpal under Pz« holds automatically
under P, ze.

The next proposition presents the relative efficiency under local alternatives of tests based on
the non- and optimally weighted SQLR statistics. We show —aligned with the literature for regular
cases— that optimally weighted SQLR statistic is more efficient than the non-optimally weighted
one.

o1



Proposition A.1. Let all conditions for Theorem[A ] hold. Then, under the local alternatives a,
defined in with dp, = n~Y2||vX||sa, we have: for any t,

— —0
lim Pz (JJub| |2 x QLR,,(¢o) > t) < lim inf P 7o (QLR,,(¢0) = 1).

The next theorem shows the consistency of our bootstrap SQLR statistic under the local alter-
natives o, in (|A.2). This result completes that in Remark

Theorem A.2. Let conditions for Theorem hold under local alternatives o, defined in .
Then: (1)

LR, (én 7 e,
QLR (6n) = ( n(a)) + 0Pyoo g0 (1) = OPyos; oo (1) wpal(Pp ze); and

oz owllu]]
QLR, (5)
su]g Pyroo| 7o U+n <t|Z" ]| — Pz (QLRn(¢0) <t| H(]) = OPyoo|yoo (1) wpal(Fy, ze).
te w

(2) In addition, let conditions for Theorem hold. Then: for any T € (0,1),
T < limy 00 P, z00 (Q/ﬁ%n(d)o) >¢,(1=7)) < 1 under d,, = n~Y2||v%||sa;

ity o0 P 7o (Q/ﬁ%n(%) > (1 — T)) =1 under nV/2||v5|| 7 dn — oo,

——B ~
where ¢, (a) is the a — th quantile of the distribution of %2(%) (conditional on data {Z;}1, ).

A.3.2 Sieve Wald and bootstrap sieve Wald tests under local alternatives

~ 2
The next result establishes the asymptotic behavior of the sieve Wald test statistic W,, = (ﬁ%)
under the local alternative along the curve a, defined in ((A.2]).

Theorem A.3. Let &, be the PSMD estimator , conditions for Lemma and Theorem
and Assumption hold under the local alternatives o, defined in . Let Assumption hold.
Then, under the local alternatives «,,

(1) if dp = = Y2||0E | sq, then Wy = X3 (K2);

(2) if n1/2|]v;‘LH;d1dn — 00, then lim,_,oc Wy, = 00 in probability.

Remark A.2. By the same proof as that of Proposition[A 1], one can establish the asymptotically
relative efficiency results for the sieve Wald test statistic.

The next theorem shows the consistency of our bootstrap sieve Wald test statistic under the
local alternatives au, in (A.2)). This result completes that in Remark

Theorem A.4. Let all conditions for Theorem (1) hold under local alternatives o, defined in
. Then: (1) for j =1,2,

su}g ‘onowoo (an <t| Z”) — Pyoo (Wn < t)’ = 0Pyoo| g0 (1) wpal(Pp, zo).
te

(2) In addition, let conditions for Theorem hold. Then: for any T € (0,1),
(2a) If d,, = n~Y2||v||sq then:

Py z00e Wy >¢jn(1 —7)) =7+Pr (X%(ﬁ) >cin(l— T))—Pr (X% >cin(l— T))—FOPVOO‘ZOO (1) wpal(Py, z)
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and 7 < limy, 00 P, Zoo Wp>¢n(1—1)) <1,
(2b) If /n||vE|| o) dn — 00 then: limy, oo Py zoe Wy > Cjn(l — 7)) =

where ¢jp(a) be the a — th quantile of the distribution of WB = (WB (condztzonal on the data

{Z:})-

A.4 Local asymptotic theory under increasing dimension of ¢

In this section we extend some inference results to the case of vector-valued functional ¢ (i.e.,
dy = d(n) > 1), and in fact d(n) could grow with n.
We first introduce some notation. Let v;n be the sieve Riesz representer corresponding to ¢;

for j = 1,...,d(n) and let v} = (v’l"m,...,v;(n)n). For each z, we use W[vz] to denote a
d, x d(n)—matrix with dm(;;ao) [U;,n] as its j—th column for j = 1,...,d(n). Finally, let
dm(X ’ dm(X
Qsd,n = [(Tn(d’ao)[v;‘;]> Eil(X)EO(X)Zfl(X) (Tn(d’ao)[v;]>] e Rd(n)xd(n)
« o

and

QmﬂﬁwszK“ﬁf“in1@%?%2%%mﬂewwww

Observe that for d(n) = 1, Qsq,, = [|v}]|%; and Q, = |Jv};|[%. Also, for the case & = Xy, we would

have oy 8 KW [v:;]>/ g (X) (W[V;Jﬂ .

Let
TM = (¢ e RYY - ||t]]. < Mpon~Y2\/d(n)} and  a(t) = a + vi(Quan) "2t

Let (¢n)n be a real-valued positive sequence that converges to zero as n — oo. The following
assumption is analogous to Assumption but for vector-valued ¢. Under Assumption (iv), we
could use €, instead of Qyq,, in Assumption [A.2{ii)(iii) below.

Assumption A.2. (i) for each j = 1,...,d(n), d(b’c'lslao) satisfies Assumption (i); and for each

v #0, d¢ ao [v] = (d(btl(aao) [v], ..., d¢d aO) v]) 1s linearly independent;
. _ do(a
@ s [@un {6 a0) - oo - a0 - ail}| =0
(o,t)ENosn X T,M o e

(i) || (Qoan) 22422 00,0 = aol]| = O (en); (i) e = o(n™1).

nsv) to denote a d(n) x 1 vector with components (v},,v)
for j = 1,...,d(n). Then “°0[] = (vi/ v) with 2] = (v* 0} for j = 1,. d(n) Let
Z, = ( 1 nllsds --de(n),nHU;(n) Wlsa)’s where Zj, IS "the notation for Zy, defined in cor-
responding to the j—th sieve Riesz representer.

The next assumption is analogous to Assumption [3.6i) but for the vector valued case. Let

(an, b, Sn)n be real-valued positive sequences that converge to zero as n — oo.

For any v € Vk(n), we use (v
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Assumption A.3. (i) For alln, for all (o, t) € Nosn x T,M with a(t) € Ay,

- By,
sup — 7a(tn) [An((tn), @) = 1, (Quan) ™ {Zn + (v, 0 = a0)} — £, | = Opyec (1)
(aytn)eNosanM

where 1y, (t) = (max{|[tn]|2bn, |[tn]|can, sn})_l and (By,)n is such that, for each n, B, is a Z"™ mea-
surable positive definite matriz in RW*M) and B, = Op_., (1); (i) spnd(n) = o(1), by\/d(n) =
o(1), \/nd(n) x a, = o(1).

In the rest of this section as well as in its proofs, since there is no risk of confusion, we use op
and Op to denote op,.. and Op,., respectively.
The next theorem extends Theorem u to the case of vector-valued functionals ¢ (of increasing

'91/2(dm<§°“°>[ 1) (7, 0) 3].

sd,n a
Theorem A.5. Let Conditions for Lemma[3.3, Assumptions[A.3 and[A-3 hold. Then:
(1) n(8(n) — 0(a0) Ut (8(@n) — 9(a0) = nZ ek, 2o+ op (/)
(2) for a fized d(n) = d, if \/ﬁQ_l/QZn = N(0, 1) then

sd,n

dimension). Let pu3, = E

n(¢(@n) = ¢(0)) Uy, (¢(@n) — $lan)) = xa;
(3) if d(n) — oo, d(n) = 0(\/5/13:711), then:

n($(an) — (o)), (9(@n) — ¢(a0)) — d(n)
2d(n)

= N(0,1).

Theorem MB) essentially states that the asymptotic distribution of n(é(a,)—¢(ao)) Q) (H(an)—

sd,n
¢(ap)) is close to X?I(n)' Moreover, as N(d(n),2d(n)) is close to X?l(n) for large d(n) one could sim-
ulate from either distribution. However, since d(n) grows slowly (depends on the rate of ugm)ﬂ it
might be more convenient to use Xczi(n) in finite samples.
Let
— /2 0-1ql/2

sd,n""n sd,n

which, under Assumption (iv), is bounded in the sense that D, < Iy, (see Lemma in
Appendix . It is obvious that if ¥ = ¥ then Dy, = Iy(,). Note that D, becomes |[uy,|
scalar-valued functional ¢.

The next result extends Theorem [£.3] for the SQLR statistic to the case of vector-valued func-

tionals ¢ (of increasing dimension). Recall that QLR (¢o) is the SQLR statistic QLRn(qSO) when
2= ¥,

for a

Theorem A.6. Let Conditions for Lemma (3.2 E and Proposition |B.1| (in Appendix @ hold. Let
Assumptions |A.29 and - hold with maxyjy|,— |t'{B, — D, *}t| = Op(b ). Then: under the null
hypothesis of 5(ao) = Go,

(1) QLR (¢0) = (v 122,V D (12 12 Z0r) + 0p(y/d(0));

The condition d(n) = o(v/nus. 1) is used for a coupling argument regarding Q2
Gaussian N(0, I(n)). See, e.g., Section 10.4 of [Pollard (2001).

f Z., and a multivariate

sdn
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(2) if ¥ = %o, then @SL<¢O) = WZZQ&,%ZM-OP (x/d(n)> ; for a fizedd(n) =d if\/ﬁﬁ&iﬂzn =
——0
N(0,1;) then QLR, (¢o) = X2

—0
(3) if £ = % and d(n) — oo, d(n) = o(y/nuz..), then: %jg—)d(”) = N(0,1).
’ n

Theorem [A.6]2) is a multivariate version of Theorem [4.3|2). Theorem [A.6{3) shows that the
optimally weighted SQLR preserves the Wilks phenomenon that is previously shown for the like-
lihood ratio statistic for semiparametric likelihood models. Again, as d(n) grows slowly with n,

——0
Theorem [A.6(3) essentially states that the asymptotic null distribution of QLR,,(¢g) is close to
2
Xd(n)*

Given Theorems and [A.6and their proofs, it is obvious that we can repeat the results on the
consistency of the bootstrap SQLR and sieve Wald as well as the local power properties of SQLR
and sieve Wald tests to vector-valued ¢ (of increasing dimension). We do not state these results
here due to the length of the paper. We suspect that one could slightly improve Assumptions [A.2]
and and the coupling condition d(n) = o(y/nuz, 1) so that the dimension d(n) might grow faster
with n, but this will be a subject of future research.

A.5 Sufficient conditions for LQA(i) and LQA?(i) with series LS estimator m

Assumption A.4. (i) X is a compact connected subset of R% with Lipschitz continuous boundary,
and fx is bounded and bounded away from zero over X; (ii) The smallest and largest eigenvalues
of Elp”"(X)p’"(X)'] are bounded and bounded away from zero for all J,; (iii) sup,cy |pj(z)| <
const. < oo for all j = 1,...,J,, and Jylog(J,) = o(n) for p’»(X) a polynomial spline or wavelet
or trigonometric polynomial sieve; (iv) There is p’(X)'m such that sup, |g(z) — p’n(z)'n| =
O(bp,,,) = o(1) uniformly in g € {m(-, ) : v € A%{;)}.

Thanks to lemma 5.2 in[Chen and Christensen|(2013), Assumption[A.4{iii) now allows .J,, log(J,,) =
o(n) for p/»(X) being a (tensor-product) wavelet or a trigonometric polynomial in addition to a
polynomial spline sieve. Let Oy, = {p(+, ) — p(-, ) : @ € Nosp }. Denote

1
1</C, ;/0 /L 108N (w0 (M8 V5, O |27 e < .

Assumption A.5. (i) There is a sequence {pn(Z)},, of measurable functions such that SUPA£4(0> lp(Z,a)| <

pn(Z) a.s.-Z and E[|p,(2)|?|X] < const. < oo; (ii) there exist some k € (0,1] and K: X — R
measurable with E[|K(X)|?] < const. such that V6§ > 0,

E sup |p(Z,0) = p(Z, o/)Hi X = 2| < K(2)%%, Vo' € Nys, U{ag} and all n,
a€ENosn @ |la—a!||s<8

and max {(Mnén)2, (Mnésm)%} = (Mp0s.0)*; (iii) nd2 (M5 n)" v/ Cr, max {(Mn557n)”\/Cn, Mn} =

o(1); (iv) supy ||Z(2)=S(@)|| X (Mnbp) = 0p,ee (n712); 8 = ([ 22 = max{y/ 2, by, 5, } = o(n~1/4).

Let m(X, o) = (31, m(Xi, a)p” (X;)) (P'P)"p’»(X) be the LS projection of m(X, ) onto

p’"(X), and let g(X,u}) = {W[u:]}’Z(X)*l and §(X,u}) be its LS projection onto p’» (X).

Assumption A.6. (i) Ep,. [HW[U*] — M[u:]

2
n da e

| 00,8.7 = o1
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(i1) Ergue 150X, 05) = 9(X, ui)|12] (Madn)? = o(n™1);
(i) supp,,, =t S (X, o) [2 = Ellm(X1, )2} = op(n~Y/2);
(iv) supy;,,, =t o {g(Xi, up)m(Xi, @) — Elg(X1, up)m(X1, )]} = op(n™/2).

Assumption A.7. (i) m(X, ) is twice continuously pathwise differentiable in o € Ny, a.s.-X;

(i) B D) g s 0l

sup
O46-/\/10371

2
] x (My6,)? = o(n™1);

d2m(X,a)[ * *]

2
(iii) E {supae/\/osn ] X (M,6,)% = o(1); (iv) Uniformly over ay € Nys and ag €

da? ns Un
NOSTL}
dm(X dm(X

Assumptions and are comparable to those imposed in (Chen and Pouzo| (2009) for a
non-smooth residual function p(Z, ). These assumptions ensure that the sample criterion function
@n is well approximated by a “smooth” version of it. Assumptions and are similar to those
imposed in |Ai and Chen| (2003)), Ai and Chen|(2007) and |Chen and Pouzo| (2009), except that we use
the scaled sieve Riesz representer w) = vy, / ||v ||, This is because we allow for possibly irregular
functionals (i.e., possibly ||v}|| — o0), while the above mentioned papers only consider regular
functionals (i.e., ||v}]| — ||[v*]] < 00). We refer readers to these papers for detailed discussions and
verifications of these assumptions in examples of the general model .

A.6 Lemmas for series LS estimator m(z,«) and its bootstrap version
The next lemma (Lemma A.2)) extends Lemma C.3 of |Chen and Pouzo| (2012a) and Lemma A.1 of
Chen and Pouzo| (2009) to the bootstrap version. Denote

bz, ) = m(z,0) + Mz, a0) and £2(z,0) = m(z,a) + mP(z, ).

Lemma A.2. Let mP(-,a) be the bootstrap series LS estimator . Let Assumptions (z'v),

[3-4(i) (i), [4-1)(ii), [4.5(i)(ii), and[Boot.1| or [Boot.3 hold. Then: (1) For all § > 0, there is a
M(5) > 0 such that for all M > M(0),

Pyo <PVooZoo ( sup Z Hm (X, a) — (Xi,a)Hi > M | Z") > 5) <46

osn

eventually, with 7,1 = (0,)? (Mnés,n)% C,.
(2) For all 6 > 0, there is a M(6) > 0 such that for all M > M(9),

Py (PVOOZOO ( sup ZHE Xz,oz 2 M | Z") > 5) <

aeN, osn

eventually, with

(/)1 = max{ b2, T (Mo )2} = const. x (M,,6,)>.
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(3) Let Assumption [A.5(iii) hold. For all § > 0, there is N(6) such that, for all n > N(4),

n n
Py (on0|2°° (;up P (el = )16 (XK @)g | 2 ) Z”) 25) <9

i=1 =1
with
1 < (50)2(Min6sn)"\/C max {(Mném)“ C. Mn} Ln = o(nY),

where {Ly},> | is a slowly divergent sequence of positive real numbers (such a choice of L, exists

under assumption[A.|(iii)).

Recall that

1 n dm(Xi,ozg) !
= — in T TE— :L EXZ Zz, ’L7 n 2 ZZ? N
23w 03]) 00 p(Zco Zg 4 JsuplZes0)

; do
=1

Lemma A.3. Let all of the conditions for Lemma[A.9(2) hold. If Assumptions[A.](iv), and
[A.7(i) (i) (iv) hold, then: for all 6 > 0, there is a N (0) such that for all n > N (),
25 Z”) > 5)

Pz (onﬂzoc (
Nosn
< 4.

Lemma A.4. Let all of the conditions for Lemma[A.9(2) hold. If Assumption [A.7(i)(iii) holds,
then: for all § > 0, there is a N(§) such that for all n > N(9),

n 25(X:. o I
Py (ono|z<>o (supn IZ <Ci(§;f’)[%um> (E(X3) 71} (X, 0) > 6 | Z”) > 5) <4

osn

Z(dm X, ) u*]) (S(X)™ LB (X a) — {Z% + (uf,, a — ap)}

=1

Lemma A.5. Let Assumptions [3.1(i), [3.4(i), [{-4|(iii), [A4], [A-6(i), [A.7(ii) hold. Then: (1) For
all 5 > 0 there is a M(0) > 0, such that for all M > M (),

Py <sup 3 (W[@])li—l(m () = M> <3

No@n i=1

eventually.
(2) If in addition, Assumption [B holds, then: For all § > 0, there is a N (&) such that for all

n > N(J),
P> (W[um) 27X (W{um) —lul2| 2 5) <6

57



B Supplement: Additional Results and Proofs of the Results in
the Main Text

In Appendix [B], we provide the proofs of all the lemmas, theorems and propositions stated in the
main text. Additioal results on consistent sieve variance estimators and bootstrap sieve t statistics
are also presented.

B.1 Proofs for Section [3] on basic conditions

Proof of Lemma For Result (1). Observe that %[-] is bounded on (V,|| - ||); and

in this case equation 1} holds. By definitions of v} and v*, we have: %[v] = (v}, v) and
%[v] = (v*,v) for all v € Vi,,). Thus
(v —vp,v) =0forall v € Vi and  [Jo*|> = [lv* — oj||* + [Jof]|>.
Since V) is a finite dimensional Hilbert space we have v, = arg minvgvk( : [v* — vl|. Since Vi,
is dense in (V, || - ||) we have ||[v* — v%|| — 0 and ||v}] — ||v*]| < oo as k(n) — oo.
For Result (2). We show this part by contradiction. That is, assume that limy(,) e [V} ]| =
C* < oo. Since % is unbounded under || - || in V, we have: for any M > 0, there exists a

var € V such that ‘%[W]‘ > M]|oull.

Since vpr € V, and {Vy}; is dense (under || - |[s) in V, there exists a sequence (vy ar)n such
that v, ;1 € Vi) and limy, oo |[va,p — var|ls = 0. This result and the fact that || - [| < Cf| - |[[s
for some finite C' > 0, imply that lim, o ||vn, || = ||va]]- Also, since %[] is continuous or

bounded on (V|| - ||s), we have:

dg(ao)
da

lim ‘ [Un, M — vM]‘ =0.
n—o0
Hence, there exists a N(M) such that

' dé(a)
do

mm' > Ml[oa ]

for all n > N(M). Since vy a1 € Viy), the previous inequality implies that

d
Will=  swp Loy

d(ac)
‘TO [U]’
veVimllelzo Il

for all n > N(M). Since M is arbitrary we have limy ) [|v;;]| = 00. A contradiction. Q.E.D.

B.2 Proofs for Section 4] on sieve t (Wald) and SQLR

Lemma B.1. Let a, be the PSMD estimator and conditions for Lemma hold. Let
Assumptions [3.5(i) and[3.¢(i) hold. Then:

Vn(uy, & — ap) = —/nZn + 0p,e (1).
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Proof of Lemma [B.1; We note that n='>"" | H'r?L(Xi,a)H%,l = Qn(a). By Assumption (i),
we have: for any €, € Ty,

_1 Z Hm Xuan + enu ”E 1 IZ Hm lean —1
i=1

=26, {Zp + (v}, 8p — ap)} + B, + OPyoo (rnl), (B.1)
where 7,1 = max{e2, e,n /2, 5,1} with ;' = o(n~!), and
e dm(XG a0) L2 1
Zn=n z; <da[un]> S(X:) " p(Zi, ).
By adding

- vy ~
E,(ap,€e,) = o(n_l) + A\ (Pen (hn + €, f’n > — Pen (hn>>

103l sa

to both sides of equation (B.1]), we have, by the definition of the approximate minimizer &, and
the fact @, + epu;, € Ay, that, for all €, € T,

2en{Zn + (uf,Qp — ap)} + €2 By + Ey(@n, €n) + 0pyoo (15,1) > 0.

Or, equivalently, for any § > 0 and some N ()
Pz (Ven © Qn + equly € Nosny 260{Zy + (ul,@n — a0)} + €2 By + By (G, €6,) > —0r,') > 16 (B.2)
for all n > N(¢). In particular, this holds for €, = :t{s_1 /2 +0(n~12)} = £o(n~'/2) since sy /2

o(n~/2). Under this choice of €,, r;’ = max , Sn. Y21/ 2}. Moreover Assumptions ( ) (i
and [3.4(iv) imply that E(Qn,€,) = 0pye (n‘ " Thus Ve, tE(Qn, €n) = 0pye (Ve Int)
‘

0P, (1). Thus, from equation (B.2]), it follows,

ImE

PZ°° (An,5 Z \/E{Zn + <u:,7an - Ol()>} 2 Bn,&) Z 1-6

eventually, where
Ans = —0.5vne, By, — dv/ne, ' r b +0.56

and
B, s = —0.5v/ne, By, — 0.5v/nde,, 'r, L — 0.56

(here the 0.5 follows from the previous algebra regarding v/ne,, ' E(Qp, €,)). Note that /ne, = o(1),
Bn = Op,. (1), and /ne, trt = j:max{s;lﬂ\/ﬁ, 1} < £1. Thus

Pzee (26 > /n{Zn + (u}y, G — )} > —26) > 1 — 6, eventually.

Hence we have established /n(u},, &, — ag) = —/nZy + 0p,e (1). Q.E.D.

Proof of Theorem[4.1} By Lemma[B.1Jand Assumption|[3.6(ii), we immediately obtain: \/n(u}, @, —
ap) = N(0,1). Hence in order to show the result, it suffices to prove that

\/ﬁw = \/ﬁ<u;, Oy — O£0> + 0p 00 (1)

V7 l]sa
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By Riesz representation Theorem and the orthogonality property of o, it follows

dp(ag)

dov [Oén - aO,n} = <'U;;> an - aO,n> = <'U:—27 an - aO> .

By Assumptions [B.1fiv) and [3.5(i) we have ||v};||sq =< ||v}||. This and Assumption [3.5 (ii)(iii) imply

vl 2200 _ e 4980 ) 4 op, (1)

|07 ]|sa

— VAl 1d¢(a°)[ ~ a0 + VAl I 229 0, — ag] 4 0, (1)

= Vallo) ””’(0‘0) (G — an] + 0Py (1)
- f””n”gd (Un7 Qp — Oé()) + OPzc0 (1)

Thus N R
\/ﬁd’(an) *_ ¢(a0) _ \/ﬁ<’l);, a: - a0>
03] |sa 107 ]|sa
and the claimed result now follows from Lemma and Assumption [3.6(ii). Q.E.D.

Proof of Lemma By the definitions of Vk(n) and the sieve Riesz representer v} € Vk( ) of

d¢(a°)[] given in 1.) we know that vy, = (v, vy, (1)) = (v en,wk )(-)'BE) € V(n) solves the
following optimization problem:

+ Opzoo (1)7

‘ 6¢(ao) vg + 3¢(ao) [a ()] ’2

SO = il = s
v:(fug,vh) EVi(n),v#0 [(W[UD E(X)—l (dm(;i,ao) [U])}
/ /
— sup M7 (B.3)
1= (5, 7) Rt 20 V' DY

where D, = E [(dmﬁi’%) B 0) B (o) w’“"’«)’]ﬂ is a (dp + k(n)) x (dg + k(n)

positive definite matrix such that

YDpyy=E [(‘W[@)l »(X)7! <‘W[v]>] for all v = (vg,w'f<">(-)'5)' € Vi)

/ —k(n
and f, = <6¢a(90fo), %W)k(")(')/]) = %[wk( )()} is a (dg + k(n)) x 1 vector.
The sieve Riesz representation 1) becomes: for all v = (v, ¢k(")(-)’6)/ € Vk(n),

d
¢0§§°) [v] = F iy = (vp,0) = 73/ Dpy  for all y = (vp, 8) € R, (B.4)

It is obvious that the optimal solution of 7 in (B.3) or in (B.4]) has a closed-form expression:

v = (3. BY) = Dy F .

60



The sieve Riesz representer is then given by

*

n — (U;,/nﬂ U;:,n ())/ = (v;,/nv wk(n)()/B;)/ S Vk(n)
Consequently, ||vt]|* = v Dpyt = FL, Dy . Q.E.D.
Another consistent variance estimator. For ||v:|%, = E (S;:ZSZ’ z) given in || and 1'

by Lemma [£.1], it has an alternative closed form expression:

v

[osll2g = F Dy QD F o,

dm(X, ag) —k(n ! _ _1 {dm(X, o) —k(n

Q, = B | (500 G0 ) w0 1080 (2R g )|~
da da

Therefore, in addition to the sieve variance estimator ||v}; ||, sq given in (4.7)), we can define another

simple plug-in sieve variance estimator:

N N 1 (dm(Xs,an) u\ a1a ooy [dm(X;, ay)
vai,sd = ||U;ZHZ7§_1§0§_1 ~ Z <d;n[vn]> 2 1202‘Zi ! (W[U;] (B.5)
i=1

with S; = So(X;) where So(z) is a consistent estimator of Xo(z), e.g. En[p(Z,an)p(Z, )" |
X = z|, where E,[- | X = x] is some consistent estimator of a conditional mean function of X,
such as a series, kernel or local polynomial based estimator.

The sieve variance estimator given in can also be expressed as

15212 o0 = Vo = F1,D; ' 0, D, with (B.6)
~ 1 n d’l/ﬁ(Xi,an) —k(n) , \s ,/\,1’\ S—1 dm(xiyan) —k(n) , \/
Qn=2-) (—522 V) 7S | —— R
”H( o W) ) Z B0 o W ()]

Assumption B.1. (i) SUP, vt ‘(v,v>n72_1202_1 — <v,v>2_1202_1’ = 0p, (1); and

(i) SUPaen,,, SWPsex || Enlp(z, a)p(z, )/ |X = a] = Elp(z,a)p(z, @) |X = z]|le = op e (1).
Theorem B.1. Let Assumption (z')—(iv), Assumption and assumptions for Lemma hold.
Then: Results (1) and (2) of Theorem hold with Hﬁlei,sd given in .

Monte Carlo studies indicate that both sieve variance estimators perform well and similiarly in
finite samples.

Proof of Theorems and In the proof we use simplified notation op,.. (1) = op(1).
Also, Result (2) trivially follows from Result (1) and Theorem So we only show Result (1).
For Result (1), by the triangle inequality, we have: that

|07 In,sd =[5 |sa 7lln,sa = [[Vallsa| | | [O5llsa = [[vnl]sd
V7] sa - V7 ]sa V7 ]sa
| llnsd — [W5llsa| | |05 — vnllsd
- 07| sa [0 lsa

Sk

This and the fact [Zp=vpllsa — ITa—val (under Assumption (iv)) imply that Result (1) follows

[0 ] sa (o3 ]]

from:

=op(1), (B.7)

61



and

v — ||

I nHde* |[07]sd — op(1). (B.8)
o5l lsa

We will establish results and (B.8) in Step 1 and Step 2 below.

STEP 1. Observe that result is about the consistency of the empirical sieve Riesz repre-

senter Uy in || - || norm, which is the same whether we use p;p; or Xo; to compute the sieve variance
estimators 1' or 1) By the Riesz representation theorem, we have for all v € Vi,
do(an) - dp(ao)
dan [’U] = </U:nv>n7§;71 and dov [’U] - <U:,U> = <’U;7U>E*1'

Hence, by Assumption (i), we have:

(b\:wv>n D <U;kwv>
op(l) = sup :
e ol
V)51 = Onv) (@) — (v, )
= sup = [opl] +
B B 1T ] Tl
Uy —vp, v _ _ .
> s (Bt ap @), - (@) < L
ver(n) HUH wevk(n):HwH:l
where w = v/||v|| and @} = v /||v}||. First note that

A~

T, + ‘<7%;;1w>n,2*1 - (w;7w>2*1|

(@ )5 — @ )| < (@ @) ss — @ @Dnm

By Assumption (ii), we have: SUD e, el |l |Ton ()| = op(1). Note that

Ty () = 0™ ; (PCeigy) (51 - 3o (PGB ).

By the triangle inequality, Assumptions [3.1iv) and [4.1ii)(iii), we obtain

2 n

n—1 Z

€ i=1

< op(1) x Op (\/@;;,z%m’z,l x \/<w,w>n7271> = op(1) x Op(1) = op(1).

dm(Xi, an)

. d(X;, @)
_n) ]

Tin()] < sup 1874 @) = S @)y [ 1D o0 ]

TeX i—1

e

Hence . .
sup |00 ) g

vevk(m

o]l
. o v
In particular, for v = v}, — v}, this implies

|07, — o

777“ — OP(]-) X
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Note that Igii” < W + 1, and thus, the previous equation implies
PO %
o = valliy 1)) = op(1) ama [ll = 0,0,
o3l 1
STEP 2. We now show that result (B.8) holds for the sieve variance estimators H@:‘LHEL g defined
in and (B.5). By Assumption |3.1{iv), we have:
07l sa = V7 ]]sa 10aln,sa = [[nllsa| . [[Oallsa _ [[[Wallnsa | I3l
V3]s 05 ]sa llopllsa ~ | 1153]]sa 1
¢ ([ ) Pl ) I Tillisa | 113
|10 |sa Gxllsa loall | 115112, V3]
_ 1oal1* [l
= |[I@nll7.a = l1E5]12a] ¥
2l allsal > 105112 [zl
= [lI@4][7 50 = [1@0l12a] x OP(1),

where @ wn - ’Un/HU H7 HU*H -

i.i.d. data). Thus, it suffices to show that

Op(1) (by Step 1), and 12l

nsd

= Op(1) (by Assumption (iv) and

o7 15a

134] = op(1). (B.9)

I,

STEP 2A FOR THE ESTIMATOR ||f);;|\%’sd DEFINED IN (4.7)). We now establish the result
when the sieve variance estimator is defined in (4.7]).
Let M(Zi,a) = 37 0(Zi, ) p(Zi, )'S7t and M(z,00) = %71

z (2)p(2 c0)p(z a0)'S ! (z) and
M; = M(Z;, o). Also let Tj[v,] = = dmXi00)

[v,] and X(z, ) =

Elp(Z,a)p(Z, &)’ |z].

”nsd_ H

= dRlRtnl [y, ], Tifu,] = 420
It turns out that ’H

! d‘ can be bounded above by

71 T -1 s
SEII) ZT vp)’ Z,,an T;[vn] ZT vn) M;T; vn]
Un€Vk(n)
+ sup (070 Tifon) MiTi[vn] — E[T;[vn) MiT;[vy]
vnEVi(n) =1
+ sup |E[T[vn) MiT[vn]] — E[T; [0S H(X0) (X5, a0) 27 HXG) Tilvn]] |
’Unevllc(n)

EAI?’L + A2n + A3n-

Note that As, = 0 by the fact that E[M;|X;] =

Eil(Xi)E(Xi,ao)Eil(Xi), and that Ao, = Op(l)

by Assumption v). Thus it remains to show that A, = op(1). We note that

A <sup sup |[M(z,a) — M(2,aq)

z aeNosn

<Const. X sup sup ||]\7(z,a) -
z aENosn

n
[l sup. n- ZT vp) T [vn)
vnEV i=1
n —~ ~
M(z,a0)|le sup (1Y Tifvn) M(Zi, a)T;[vy]
vnev; =1
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where the first inequality follows from the fact that for matrices A and B, |A’BA| < ||A]|¢||B]le
and Assumption [3.1](iv). Observe that by Assumptions [4.1fiii)(iv) and [3.1]iv),

sup sup HM(Z,O&)—M(Z,Q())HE
z OcENosn

< sup sup 127" (@) {p(z, @)p(z, )" = plz, 00)p(z, c0) 1= (@) |e
z  a&Nosn

+sup 157 (@)p(2, a0)p(z, a0) 574 @) — B7Hx)p(z, a0)p(z, a0) B (@) e

The first term in the RHS is op(1) by Assumptions [4.1f(iii)(iv) and [3.1[iv); the second term in the
RHS is also of order op(1) by Assumptions [4.1iii) and 3.1](iv) and the fact that p(Z, ag)p(Z, o) =
Op(1). By Assumption ( ), sup, ) -1 Yoy T [on]) M (Z;, ao)ﬁ[vn]’ = Op(1). Hence Ay, =

op(1) and result holds.
STEP 2B FOR THE ESTIMATOR ||0;]|2 ., DEFINED IN (B.5)). Since we already provide a detailed

nlln

proof for result in Step 2a for the case of (4.7]), here we present a more succinct proof for the

case of (B.5)).

By the triangle inequality,

I e — 151 2] < [l1E5% + 187112 5-15gm-1 = 13114] = Ban + Ran.
By Assumptions [3.1)(iv) -(111 iv and-, we have:

sup 1£71 (@) S0 (2) 7 (2) = =71 (2)Zo(2) 5 (@)]]e = op(1),

nsd H HnZ 1ypx-1

where 3o(z) = Ey[p(Z, é)p(Z, é)'|z]. Therefore, by Assumptions (iv) and (ii) and similar
algebra to the one used to bound T3, (w), we have:

X Q
RlnSOP 2 n

— (@]

= Op(l) X Op(l) = 0p(1).

e

Also by Assumption Ra, = op(1). Thus result holds. Q.E.D.

Before we prove Theorem [4.3] we introduce some notation that will simplify the presentation
of the proofs. For any ¢ € R let A(¢) = {a € A : ¢(a) = ¢}, and Ak(n)((ﬁ) = A(p) N Ai(ny- In
particular, let A = A(¢(ap)) and .A = Apn)(¢(0))-

Also, we need to show that for any dev1at10n of a of the type o+ tu,,, there exists a t such that
d(a+tuy) is “close” to ¢(ap). Formally,

Lemma B.2. Let Assumption[3.5 hold. For any n € {1,2,....}, any r € {|r| < 2M,||v}||6,}, and
any o € Nogn, there exists a t € Ty, such that ¢(a + tu},) — ¢(ag) = r and o + tuy, € Ay,).

Proof of Lemma We first show that there exists a ¢ € Ty, such that ¢(a +tu)) — d(ag) = 7.
By Assumption there exists a (F},), such that F, > 0 and F,, = o(n~'/?|[v}]|) and, for any
a € Ny, and t € T,

* (12
‘gb(a—l—tu,*l) — ¢(ap) — (v, — ) — ¢ va” < F. (B.10)
|07 lsa

(note that by assumption F,, does not depend on « nor t).
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For any r € {|r| < 2M,||v}||0n}, we define (£;);=1 2 as
tillun|[* = —(up, & = a0) + agu Pl v |55+ rllvn]1 -

where a; = (—1)'2. Note that, by assumption (1) (the second part), ||uf||~2 < ¢72, and thus

ol
- -1 -1
[ta] < 72 ([Junl] % lae = ol | + 2| En| x [[op] 5 + el x [JoplI5) -
Without loss of generality, we can re-normalize M, so that ¢=2C < M, and C > 1. Hence,

] < ™2 ([Jupl| % [ler = aol| + 2| Fn| X [[opllog + Ir] x Jopll)
=72 (Jupll x [l = aol| + 2| Fn| x [[op]l5g =+ Ir|  [[on]|~Hlup]])
< 20 (lugl] % lla = aoll + 2B x [[ogl2 + Il x [[o57) < 4026,
where the third inequality follows from Assumption [3.5(i) (the second part), and the last inequality
follows from the facts that a € Nogn, ¢ 2C2|F,| x [|vi]|of = o(n™Y/2) < M25,, r € {|r| <

2M,||v} |10, }. Thus, t; is a valid choice in the sense that t; € T, for [ = 1, 2.
Thus, this result and equation (B.10) imply

* (12
d(a+tiuy,) — dap) <(vy,a — ap) + t1 [[vnll + F,
o3 sd
=[|v}llsa ((uhy, @ = ag) + ta||us|[* + Fallvill )
=r—F, <r
Hence, ¢(a + t1u)) — ¢p(ap) < r. Similarly,
* |12
B+ tau7) — Blao) 2 (v — ag) + el _ F,
o3| |sa
=[[vpllsa ((up, o = o) + ta|lus | = Fullogll )

=r+F,>r

and thus ¢(a + tau)) — ¢(ap) > r. Since t — ¢(a + tu)) is continuous, there exists a t € [ti, to]
such that ¢(a + tu)) — ¢(ap) = r. Clearly, t € Tp,.

The fact that a(t) = a + tu) € Ap(n) for a € Nosn, and t € T, follows from the fact that the
sieve space Ajy,) is assumed to be linear. Q.E.D.

Proof of Theorem Result (2) directly follows from Result (1) with ¥ = ¥ and ||u)|| = 1.
The proof of Result (1) consists of several steps.
STEP 1. For any t,, € T, wpal., by Assumption [3.6| and Lemma [B.I] we have:

-~

0.5 (@n(an(—tn)) — Qn(an)) =t {Z + (0, @ — ag)} + %ti +opye (7))

B
:?nti—l—olazoo (7“;1), (B.11)

where 71 = max{t2,t,n" 12,51} and 5! = o(n~1).
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And under the null hypothesis, af € N,s, N Ag(n) wpal,

~ ~ . ~ B, _
0.5 (Qn(af(tn)) - Qn(aff)) =tn{Zy + (uj, A — ag)} + 77531 + 0Py (1)
B, 3
=tn Ty + 12 + 0p e (17 1), (B.12)

where the last line follows from the fact that ¢, (u}, 8% — ag) = 0p,.. (r;1). To show this, note that

under the null hypothesis, af € N, N Ag(n) wpal. This and Assumption (ii) imply that

~ d ~ _
$(a,) — o) —¢C§a0) (@5 — aol| = op,e (0205 1)
— «
=0
Thus
Pyoo < vn d¢(a°)[a§—ao]’ < 5) >1-4
il | dex

eventually. By similar calculations to those in the proof of Theorem we have
Py (ﬁ\w;,aff - a0>’ < 5) >1—0, eventually.

Hence, (uf,af — ag) = 0p,e. (n71/2), and thus ¢, (u%, @F — ag) = 0p,e (N7V21,) = 0p,ee (17 h).

STEP 2. We choose ¢, = —ZnB,jl. Note that under assumption t, € T, wpal. By the
definition of &y, we have, under the null hypothesis,

05 (Qu(@) ~ Qul@n)) 205 (Qu(@) — Qu(@f(t))) ~ opyec (™)

1
:§Z?LB;1 — 0Pyeo (maX{quZi, —B;lznnflﬂ, s;l}) — 0Pyeo (nil)

where the first inequality follows from the fact that, since t, € T, and af € Ny, wpal, then

n

ak(t,) e Ap(n) wpal; and the second line follows from equation 1) with ¢, = ~Z, B, '

STEP 3. We choose t;, € T, wpal such that (a) ¢(a,(t),)) = é(a), An(t),) € Ak, and (b)
vi||? _ —
t;; — Zn|||‘07%|||f2d + 0Pyoo (n 1/2) — Oono (n 1/2).

Suppose such a t% exists, then [, (t%)] " = max{(t5)? t:n~"2 o(n~1)} = Op,.. (n~'). By the
definition of @, we have, under the null hypothesis,

0.5 (@u(@) = Qu(@n)) <05 (Qu(@n(t) = Qu(@n) ) + 0rpe (n71)
By

2 (67 + 0pyee (n7)

=t {Zn, + (u),,an — o)} +

B (3, Il

- n * ]2
2 ||
1

_*ZZB_l + 0P, 00 (n—l) _

_2nn

2
+0py <n-1/2>) T opye (1Y)

Z2\|UZ”§d+ ( —1)
Mgl " e
n

DN |
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where the second line follows from Assumption (1) and the fact that ¢* satisfying (b), [r,(t*)] ' =

Op, (n71); the third line follows from equation (B.11)) and the fact that ¢} satisfying (b); and the
last line follows from Assumptions (1) and (ii), By — ||[up| | = opyee (1) and ufy = v / |05 || o4-

We now show that there is a ¢} € 7,, wpal such that (a) and (b) hold. Denote r = ¢(a,) —¢(a).
Since @y, € Nyen, wpal and ¢(an) — ¢(ag) = Op, (||v]|//1) (see the proof of Theorem , we
have |r| < 2M,||v}||0,. Thus, by Lemma [B.2] there is a ¢ € 7, wpal such that &,(t}) =
Qn + thuy, € Agny and ¢(ay(t))) = ¢(ap), so (a) holds. Moreover, by Assumption ii), such a
choice of ¢ also satisfies

~ ok de(a .
$(@a(t3) — olan) ~ A0 @, — a1 tr3)| = op, (0} 1/VR).
~;
By Assumption (1) and the definition of w) = v}/ ||v;||,; we have: d¢(a°) [truk] =t ‘|||:EL‘||I1' Thus

A1

do(ao)
do

PZ”(H% 8 - ]”Z|’|| Tloa <5> =1=0

eventually. By similar algebra to that in the proof of Theorem [.1] it follows that the LHS of the
equation above is majorized by

* |12
Pgoo < \/? (vy, Qi — ap) + va” <<5> +0
[ |51
* |12
U,
( Vvn Tl [0 |laa + £ ||! n|||| <5> 45
Unlls
* (12
o (vl | g I )y
[|vz| vl 15

v llsa

where the second line follows from the proof of Lemma Since IIv*ISi = const. (by Assumption
3.5(1)), we obtain:

* (12
Pyoo (\/ﬁ tr — Zn|’||1;z|"|s2d < 5) > 16, eventually.
n

Since /nZ, = Op, (1) (Assumption ii)), we have: t% = Op,..(n~/2), and in fact, \/nt}, =

ViZ,Welly 4 op, (1) and hence (b) holds. Q. E.D.

Let A" = {a € A: ¢(a) = ¢o} be the restricted parameter space. Then ag € A iff the null
hypothesis Hy : ¢(ap) = ¢ holds. Also, .AkR(n) = {a € Ag(n): #(a) = ¢o} is a sieve space for AR,
Let {ao,n € AkR(n)} be a sequence such that ||ag,, — aolls < infaeAkR( : lla — aplls + o(nfl)m

Assumption B.2. (i) |Pen(hon)—Pen(ho)| = O(1) and Pen(ho) < oo; (ii) @n(do,n) < coQ(vo,n)+
0P,e (N71).

This assumption on &g, € .AkR(n) is the same as Assumptions (ii) and (1) imposed on
pa0 € Ag(n), and can be verified in the same way provided that ag € AR,

20Gufficient conditions for @, € AkR(n) to solve infaeAkR( ) |l — aol|, under the null include either (a) Ag(,) is

compact (in || - ||s) and ¢ is continuous (in || - ||s), or (b) Ak is convex and ¢ is linear.
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Proposition B.1. Let af ¢ AR be the restricted PSMD estimator and oy € AR, Let
Assumptions H -(m) -(u), h and Q(&pn) +o(n™t) = O(\,) = o(1) hold. Then:

(1) Pen(hF) = Op, . (1) and |[aF — agll, = 0, (1);

(2) Further, let Q(ap,) =< Q(II nao) and Assumptions [3.9(ii), [3.3(i) and [3.4|(i)(ii)(iii) hold.

Then: ||af — apl| = Op,e (0n) and lal — ag||s = Op,o (|lao — o] s + Tn6n).

Proof of Proposition The proof is very similar to those for theorem 3.2 and remark 4.1 in
Chen and Pouzo (2012a) by recognizing that AkR(n) is a sieve for ag € AR,

For Result (1), we first want to show that af € AR )N {Pen(h) < M} for some M > (0 wpal-

Pyzs. By definitions of & and &y ,,, Assumption ( )(11) and the condition that Q(ag,)+o(n™t) =
O(An), we have:

Qn( n) —I—Pen(ho O+ O(n_l) < Q(ao,n) +o(nh)

Pen(ﬁﬁ) y 3

+O0pye (1) = Opyec (1).

Therefore, for any € > 0, Pr(Pen(ﬁff) > M) < € for some M, eventually
We now show that Pr(||af —ag||s > €) = o(1) for any € > 0. Let A k(n ﬂ{Pen( ) < M}

and AfM = AR N {Pen(h) < M}. These sets are compact under || - HS %)y Assumption (111))
Assumptions i)(iv) and [B.2(i) imply that ag € A% and ap, € A7 ). Under assumptlon

(11) cl (UpAg) 2 A and thus cl (UkAR M) D ARM " Therefore Hagm — aplls = o(1) by the

definition of &y, and the fact that AR being dense in ARM
By standard calculations, it follows that, for any € > 0,

Pr(||af—agl]s > €) < Pr inf {Qn(a) + A Pen(h)} < Qun(do.n) + AnPen(hon) +op(n) | +0.5¢

AR la—aol s>

Moreover (up to omitted constants)

Pr (|[aZ — apl|s > €)

< Pr inf {Q(@) + AnPen(h)} < Q(d0n) + AnPen(hon) + Op(6,,) +op(n™) | +e

R,M
‘Ak(n) a—aolls>e

S“(ﬂMﬁf|;Qw+&mmwnSM%m+xmm@m+om&@+@m*Q+a
» a—agl|s>€

where the first line follows by Assumptions (ii) and and the second by AkR(’TJL\;[ C ARM,
Since A®M is compact under || - ||s, ap € A%M is unique and Q is continuous (Assumption ,
then inf gr,um .o —aq|[,>e{ @(@) + AnPen(h)} > c(€) > 0; however, the term Q(ao,n) + AnPen(hon) +
Op(6%,,) +op(n™') = op(1) and thus the desired result follows.

For Result (2), we now show that [[a% — ao|| = Op,w (kn) Where k2 = max{62, ||ao, —
aol?, An,o(n™1)}. Let .Aosn = {a € Apsn : 9p(a) = ()} and AL = {a € Ay : ¢(a) = ¢p(ap)}.

Result (1) implies that af € AL wpal. To show Result (2), we employ analogous arguments to
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those for Result (2) and obtain that for all large K > 0,
P (I3 — ol 2 Kro)

< Pr (A inf Q(a) + AnPen(h) < Q(aon) + AnPen(ho) + Op(82) + OP(n_1)> +e€

ﬁsn:Ha*aOHZKIQn
= ( m [l = | [* < Const.{||aon — aol[* + AnPen(hon) + Op(37) + op(n_1)> +e
AE||a—ao||>Kkn

< Pr (K%@i < Const.||agn — aol|? + O(\n) + Op(62) + Op(n_l)) + ¢,

where the first inequality is due to Assumption (ii) and the assumption that Q, () > cQ(a) —
Op,o (62) uniformly over A,gy,; the second inequality is due to Assumption By our choice of
Kn the first term in the RHS is zero for large K. So the desired result follows. The fact that s,
coincides with d,, follows from the fact that ||ag., — ao||? < Q(&on) < Q(IT,ap) by assumption in
the Proposition.

Finally, the convergence rate under || - ||s is obtain by applying the previous result and the
definition of 7,. Q.E.D.

Proof of Theorem Since supj,cy Pen(h) < oo, the relevant parameter set is AM = {a €
A : Pen(h) < M} with M = supj,cy Pen(h), which is non-empty and compact (in || - ||s) under
Assumptions ( )(ii) and (3.2} .(111 Let ABM = AM N {a € A: ¢(a) = ¢o}. Since ¢ is continuous
in || |]s, .ARM is also compact (in || - ||s). Note that g € A®M iff the null Hy : ¢(ap) = ¢o holds.

If ABM is empty, then there does not exist any o € AM such that ¢(a) = ¢g, and hence it
holds trivially that Q/L\Rn(gég) > nC for some C > 0 wpal.

If A®%M is non-empty, under Assumption iii) we have: min,c 4rm Q(«v) is achieved at
some point within AM | say, @ € AM, ThlS and Assumption ( )(iv) imply that Q(@) =
min, gz.m Q(a) >0 = Q(p) under the fixed alternatives Hi : ¢(ayp) 7é ®0-

By definitions of &, and II,ag and Assumption (i), we have:

Q\n(an) < Q\n(nnao) < COQ(HnaO) + 0p 00 (n_l)'

Since M = supy,cqy Pen(h) < oo, we also have that a al e .AR M C .A Wpal so by Assumption
3.3|(ii), we have:

~

Qu(@y) 2 Q@) = Opyoc (07) 2 ¢ min  Q(ar) = Opes (57, 1)-

ac ARM

Thus

Qn(@F) — Qn(@n) > cx min_ Q(a) - coQ(yag) — 0pym (N71) = Opye (32,,,) = cQ(@) + 0pyeo (1)

acARM
Thus under the fixed alternatives Hy : ¢(ag) # ¢o,

lim inf —"—~ QLE (%) > liminf [cQ(@) + 0p, (1)] = cQ(@) > 0 in probability.

n—o0 n—oo

Q.E.D.

A consistent variance estimator for optimally weighted PSMD estimator. To stress

the fact that we consider the optimally weighted PSMD procedure, we use v and |[v9]|o to denote
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the corresponding v} and ||v}|| computed using the optimal weighting matrix ¥ = ¥,. That is,

0312 =:19‘:(“””Eﬁ;(””[v2]>/§*ﬂ3‘>1 <Ohngiicuﬁ[”2]>}‘

/
We call the corresponding sieve score, 5271- = (W[vg]) Yo(X:)"1p(Z;, ap), the optimal sieve

score. Note that |[v9|[%, = Var(S%i) = [[v9]|2. By Theorem [[09][2, = |[v3]|3 is the variance of
—_—

the optimally weighted PSMD estimator ¢(a,,). We could compute a consistent estimator |[v9||3
of the variance |[v0]|3 by looking at the “slope” of the optimally weighted criterion Q9:

1011 =

o N -1
s (Q%(%)—Q%(an)> 7 (B.13)

2
€n

where &, is an approximate minimizer of Q% () over {a € Ain): ¢(a) = ¢(Qn) — en}-

Theorem B.2. Let &, be the optimally weighted PSMD estimator with ¥ = g, and condi-

tions for Lemma Assumptions (md hold with ||v2||sa = |[v8]|o and |Bn — 1| = 0p,e (1).
Let en™ Y2 < Sn_ < 6, for finite constants ¢,C > 0. Then: &y € Noyg, wpal-Pge, and

= llvallo

=1+ 0P 00 (1)

When @, is the optimally weighted PSMD estimator of o, Theorem m suggests |[v9]|2 defined
in (B.13) as an alternative consistent variance estimator for ¢(a, ). Compared to Theorems and

—

B.1| this alternative variance estimator |[v9||2 allows for a non-smooth residual function p(Z, )
(such as the one in NPQIV), but is only valid for an optimally weighted PSMD estimator.

Proof of Theorem Recall that for the optimally weighted criterion case u}, = v9/|[v9]|o, and
hence ||uy|| =1, Bn =1+ 0p, (1).

We first show that a, € N,s, wpal. Recall that a, is defined as an approximate optimally
weighted PSMD estimator constrained to {a € Ay): ¢(a) = ¢(an) — en}. In the following since
there is no risk of confusion, we use p instead of p,... Define

— o~ 1971 *
=T ol
where ¥, = —, — 1 =< 6, |[02|]0 and r,, = o(n"'/2|[1°||o) (to be determined below). We first show

that (a) @y, € Nosn, wpal.; and 9,[|00||g* € Tn, and (b) @y, € {a € Ai(n): d(a) = ¢(@n) —en}. We
note that the definitions of &@,, and 1,, imply

l|an — aol| < 6n +19n||vo||61 < 20p,

and

[ — aolls < [|an — aolls +19n\|v0|]51‘|u;|]5 < s ""ﬁn””OHalTn

which is of order d;,,. It is easy to see that 19nHU2||al € Tp. Hence (a) @, € N,s, wpal. is shown.
Regarding (b), by assumption and (a),

¢(an) - d’(ao) = <Ugv an - a0>0 + 1971 +ry, = ¢(an) - (b(aO) + 19n + 7
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with r,, = o(n~'/2|[02|]). Thus, ¢(@n) — ¢(an) = Vn + 1 = —&n, and hence (b) follows.
We now establish the consistency of &, using the properties of &,. We observe that, for any
e >0,

~

Pr(|[Gn — aglls > €) < Pr (B () £ Qulean) +on ) + AnPenwn))
n:l|la—ag||s>e
where B, = {a € ./42/(1%) t ¢(a) = ¢(an) — e} and the inequality is valid because &, € B, by (a)
and (b). Under (a) and Lemma A Pen(hy,) = Op(\,) = o(n™1).
By (a), under assumption [3.6])

Qu(@n) =Qu(@n) + Oullvllg {Zn + (w5, @ — a0)} + 0.5(0nl[op]]5")?
+op(@alloplly 'n ™ + (Onllonlly)? + o(n ™).

By Lemma Lo + (U, G — ag) = op(n~'/2) and thus, given that ¥,, = —&, — 1, < 6,|[09]]o,
the previous display implies that
Qn(@n) < Qn(@n) + op(n /26, + 82 + o(n™1)) < Op(52)
Therefore,

~

Pr(a —aoll 2 9 < Pr( il Qu(@) < @@ + 00w+ ).

Bn:|la—ap||s>€

Since @n(&n) < @n(Hnao) +O(\,) by definition of &, and from the fact that B,, C Ai\{%), it follows
that

Pr(||a, — aolls > €) < Pr < inf Qn(a) < Qn(Muag) + O\, + 5,%)) .

M,
A O:[la—ao||s>e

The rest of the consistency proof follows from identical steps to the standard one; see (Chen and
Pouzo (2009).

In order to show the rate, by similar arguments to the previous ones

under our assumptions Qn (&) > ¢||dn — ao||> — Op(62) and Q, (I,a0) < coQ(Mpar) +o0p(n1), so
the desired rate under || - || follows. The rate under || - ||s immediately follows using the definition
of sieve measure of local ill-posedness 7,,. Thus &, € N,s, wpal.

We now show that HZ%H% =14 0p,. (1). This part of proof consists of several steps that are
similar to those in the proof of Theorem [£.3] and hence we omit some details. We first provide an
asymptotic expansion for n(Qn(an) — Qn(an)) using Assumption (1) (with B, =14 op, (1)),
and then show that this is enough to establish the desired result.

In the following we let t, = e, /|[v2|Jo. By the assumption on &, we have: ecn=/2 < t,, < C6,,.

Lp~1/2 = 0Py (1).

Therefore, t, € Ty, tn = 0py (1) and op,o (En
STEP 1: First, we note that a,, € N,s, wpal, that —t,, € T, and @, (—t,) € Ap(n)- So we can
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apply Assumption (1) with o = &, and —t,, as the direction, and obtain:

~ ~

(Qn(an(_tn)) - Qn(an)) — ?{Zn + <U:p an _ a0>} + 1 + op <max {17 n’l/Z O(bel) })

t2 t, = t2

n n

=1+ o0p,. (1), (B.14)

where the last equality follows from the fact that (u},@, — o) + Zn = 0p,e (n"1/?) (by Lemma
B.1), and that op,.. (inn_l/2> = 0p,o (1) (by our choice of ).

z
STEP 2: Since &, € Nosn, wpal, t, € T, and &, (t,) € Ap(n), We can apply Assumption i)
with o = &, and t,, as the direction, and obtain:

~

(Qn(&n(tn)t)z_ @nl@n)) _ ;{Zn + (uy, a0 — )} +1+o0p (max {17 Ll/27 o(n”!) })

n tn t121

= —1—|-0PZOO (1)’ (B15)

where the last line follows from the definition of the restricted estimator c,. This is because
¢(an) = ¢(Qn) — €n, by Assumptions [3.5|(1)(ii)

dé(ao) ~
Tt T T a [an — o] :Oono(HU?zHO/\/ﬁ)'
Hence (v, &, — ag) = (00, @n — a0) —n +0p,00 (||v9]|0/+/1). This implies that Z,, + (u;, &y, — ) =
_Hzi% + 0P (n71/2) = _tn + 0Py (n~ 1/2

STEP 3: It is easy to see that, from equation (B.15) and by the definition of &,

(Qn(@n) = Qu(@n)) - (Qn(@n)) = Qn(@n(tn))
t2 - t2

n

— 0P, (1) =1+ 0p, (1).

Also, from equation (B.14)), Assumption i) and by the definition of &,

~

(1
t% = t% +op, ( )
25T + (@ — a0} + (8)? + 0p (max { (#7)? 072, 0(n ) })
= v +op(1)

n
_2 . ~
= T{Zn‘i‘<Um06n—040>}+1+0PZoo(1)
n
= 1+0pzoo(]~)a

provided that there is a t € 7, such that (3a) ¢(an(t))) = ¢(an) —en and (3b) & = —t, X
(14 0p,e(1)). In Step 5 we verify that such a ¢ exists.
By putting these inequalities together, it follows

[lonll5
7’L
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STEP 4: By equation (B.16|) we have:

~ -~

[00] 3 — (Qn@» - Qn@n))l’

S0 =1 4 op,e (1), with [[0Q|)2 =

2
JEIR “n
0112
which implies that 0.5 < Hﬁg%g < 1.5 with probability Pz~ approaching one. By continuous
Un 0
mapping theorem, we obtain:
[lvnll3
o213 ’

STEP 5: We now show that there is a ¢ € T, such that (3a) and (3b) in Step 3 hold. Denote r =
#(An) —d(ap)—en. Since g, < C|[v8]|06n, and @y, € Ny, wpal, ¢(ay)—o(an) = Op(|[v2||o/v/n) (by
Theorem, we have || < [|[00||o6n (M, +C) < 2M,|[v0||0d, (since C < M, eventually). Thus, by
Lemma there exists a t;, € Ty, such that ¢(a,(t;,)) = ¢(Qn) —en and Qi (t),) = An+thuy, € Ay,
and hence (3a) holds. Moreover, by Assumption [3.5{(i)(ii), such a choice of t}, also satisfies

~ * ~ d¢(@0) * ok —
¢(a”(tN)) B ¢(a") - do [tnun] = 0Pz (||’02H07’L 1/2)'
=—en
Since u} = vY/|[v8]|o for optimally weighted criterion case, we have: L’égo) [uf] = |[v0]]o. Thus

|[—en = tallonllo] = or,e (Ilopllon™"/%).
Since t, = &, /|[v2||o, We obtain: |—t, — 5| = 0p,e (n"1/?), and hence
th = —tn+ 0pye (N7H?) =t X (1 + 0p,c (1)) = 0pyec (1)
where the second and third equal signs are due to the fact that cn=1/2 < t, < C§,. Thus (3b)
holds. Q.E.D.
B.3 Proofs for Section [5| on bootstrap inference

Throughout the Appendices, we sometimes use the simplified term “wpal” in the bootstrap world
while its precise meaning is given in Section

/
Recall that Z% = 1 "% | wig(X;,ul)p(Zi, ap) with g(X;,u) = (M[u*]) »(X;)~ L

n 1y Y'n 1y “'n do n

Lemma B.3. Let a2 be the bootstrap PSMD estimator and conditions for Lemma and Lemma
hold. Let Assumption [Boot.3(i) hold. Then: (1) for all § > 0, there exists a N(J) such that
for all n > N(0),

Pgoe (Pyooizee (VR |(uh, @F — ag) + 2] > 6|Z") < 6) > 1—34.
(2) If, in addition, assumptions of Lemma hold, then
Vn(uy, @ — @) = —/nZe ! 4 0P oo (1) wpal(Pgeo).

Proof of Lemma The proof is very similar to that of Lemma so we only present the
main steps.
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For Result (1). Under Assumption (1) and using the fact that @2 is an approximate
minimizer of QB (@) + AnPen(h) on Ay, it follows (see the proof of Lemma H for details), for
sufficiently large n,

Pgoc (Pyoo|zoo (26n{Zi + (us,, O, al —ap)} + €BY + Ey(af e,) > —0r, M| Z™) > 1-6) > 1 -4,

where 7, and E,, are defined as in the proof of Lemma and €, = i{sgl/Q +o(n~'/2)}. Dividing
by 2¢, and multiplying by /n, it follows that

Pgoe (Pyoojze (A% 5 > /n{Zy + (us, ag)} > Bys|Z") >1—6) >1-6
eventually, where

“ 5= —0.5vne, BY — dv/neytryt +0.56
s = —0.5v/nep By — 6v/ne, 'yt — 0.56.

Since /ne, = o(1) and By = Opyuo 500 (1) Wpal(Pze) and |v/ne trt| < 1, it follows, for
sufficiently large n,

Pgoo (Pyooizee (26 > Vn{Z2 + (u}h, @8 — ag)} > —26|2") >1—-6) > 1—4.
Or equivalently, for sufficiently large n,
Pgoe (Pyoczoe (|VR{Zs + (uh, aF — ag)}| > 268]127) < 6) > 1—34.

Result (2) directly follows from Result (1) and Lemma [B.1} Q.E.D.
Proof of Theorem .We note that Assumptlonlmphes that =130 T, [vn] MP Ti[vn] —
o2n~! Zz:1Tz[Un] M;T[vy]| = OPyoo| 7o (1), uniformly over v, € Vk(n) with M; = M(Zz,ozn) and
Ti[vn) = W[%]' The rest of the proof follows directly from that of Theorem . for the
sieve variance defined in (4.7)) case. Q.E.D.

Proof of Theorem By Lemma and steps analogous to those used to show Theorem

it follows .

faﬁ( n) — o(@n )__f

owl|vpllsd
For Result (1), we note that the result for an follows directly from Theorem and the
proof of the Result (1) for VV1 =V M.

owl[0g]ln,sd

We now focus on establishing Result (1) for an. Theorem (1) and equation 1) imply
that

t O0Pyoo|z00 (1) wpal(Pzs). (B.17)

w—1

— Z
Wan = _\/ﬁ "
) Oy
Equation (B.18) and Assumptions [3.6[(ii) and [Boot.3{(ii) imply that:

v (W5 127) = £ (1)

+ 0Py oo 50 (1) wpal(Pze); (B.18)

= 0p o (1).
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Result (1) now follows from the following two equations:

Sup | Pyooj 700 (W, < U1Z7) = @(t)] = 0Py ec oo (1) wpal(Pge<), (B.19)
c
and
su]g |Pzoe (Wy, <t) — ®(t)| = 0Py (1), (B.20)
te

where ®() is the cdf of a standard normal. Equation follows directly from Theorem [4.2)2)
and Polya’s theorem (see e.g., Kosorok (2008))). Equation follows by the same arguments in
Lemma 10.11 in Kosorok| (2008) (which are in turn analogous to those used in the proof of Polya’s
theorem).

Result (2) follows from equation and the fact that ||v)||sqa = ||[v*|]sq € (0, 00) for regular
functionals. @Q.E.D.
Proof of Theorem For Result (1), denote

inf, G QU =QR@Y)  GIRY(G.)  GB@RF) - OBl
Ak(n)(¢n) 5 — Q RT; (an) = nQn (an ) 5 Qn (an ) +0ono|zoo (1) wpal(PZOO)
g, 04 9

Fon=n

where Ak(n)((gn) = {a € Ayt ¢(a) = ¢(an)}. Since 0p, 00 (1) wpal(Pzee) will not affect the
asymptotics we omit it from the rest of the proof to ease the notational burden. We want to show
that for all § > 0, there exists a N(§) such that

2(5|Z”> <5) >1-9

wal 2
STEP 1. By assumption |BY — ||u||?| = 0Py oo 00 (1) wpal(Pze<) and [|uy|| € (¢,C), we have:

owlluzll
for all n > N(9). We divide the proof in several steps.

% - 1‘ = 0Py |00 (1) wpal(Pze). Therefore, it suffices to show that
2
Zw—l
Pgoo | Pyocjzoo | |[Fn— | Vn—"== ] | 202" | <d]| 2196 (B.21)
owy/BY
eventually.

STEP 2. By Assumption i), for all 6 > 0, there is a M > 0 such that
Pgee (Pyoejzoe (VAIZ 7By > M | Z7) < 6) 216

eventually. Thus t, = —Z<~1/B¥ € T,, wpal. By the definition of @2, and the fact that an” €

Nopsn wpal (by Lemma (3)),

AB/~R,B NB(~R.B
t
o2 |

Fn =
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By specializing Assumption i) to a = altB and t, = ~7271/BY it follows

0508 @A (-2 1) - 0Bk (B.22)
Zw 1 (Zw—l)Q

= — AL+ (@ — ag)} +

B + 0Pyoo| 700 (r 1) wpal(Pge).

n
2B
By Assumption ()( i), and the fact that a5°" € N, wpal,

N
ol

do(ao)

- @B —q, ] >6|2" | <6] >1-6

$(a,") — p(an) —

eventually. Also by definition %[@E B @, = (vf,af® — @,). This and Assumption i)
imply that
Vi (U, @1P = ) = 0Py 00 o0 (1) wpal(Pze). (B.23)

Equation (B.23) and v/n(u}, &n — ag) = —/nZy + 0p, (1) (Lemma [B.1)) imply that
Vnlu®, et B — ag) = —/nZ, + OPyoo| 7o (1) wpal(Pzeo).
Thus we can infer from equation (B.22|) that

Zw—l
—_n_
By

(Zs™)?

05(QE G (-5 ) ~ QR @R = g

+ 0Pyoo oo (T ) wpal(Pze). (B.24)
Since 7, < n, multiplying both sides by —2no 2 we obtain:

2
ze-1
‘Fn > <\/HO'_B°‘)> - OPVOO\ZOO (1) wpal(PZOO)

STEP 3. In order to show

2
zs
fn < (\/E%\/B—%> + 0ono‘zoo (1) Wpal(PZOO)7 (B'25)

we can repeat the same calculations as in Step 2, provided there exists a t;, € T, wpal such that
() 6(@7 (1)) = d(@n) with aZ(t;) € Apgn), and (b) tr = Z27/||up|* + 0pyocy e (07?) =
OPyoo) 700 (n=1/2) wpal(Pge).
Because, by (a) and the definition of 5",
AB(~R,B AB (A~ AB(AB [ x AB (A~
QB@IT) - QB@y) _ QB@E() - QF@Ek)

2 2
9y 04

By specializing Assumption i) to a@ = a8 € Nys, wpal (by Lemma (2)), and ¢ as the

+ 0Pyoo g0 (1) wpal(Pzee).
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direction, it follows

0.5(QF @7 (1) - Q7 @x)

* * B * —
= {7 + (uf,aP — ag)} + 7”(15”)2 + OPyoo| goo (r1) wpal(Pge)

Bw Zw 1 172 2 .
(| 12 + 0Pyoo| 7o (T )) + 0Pyoo oo (T ) wpal(Pz)

1zt -1
= 3 NET, + 0Pyoo|goo (T ) wpal(Pze),
where the second equality is due to Lemma [B.3|(2) and (b), the third equality is due to the assump-
tion |BY — ||uX||?] = OPyoo) 00 (1) wpal(Pze) and [[uy[| € (¢, C). Thus equation (B.25) holds.
STEP 4. We now show that there exists a ¢ such that (a) and (b) hold in Step 3.
Let r = ¢(dn) — ¢(ag). Since a8 € N, wpal, and ¢(<3én) — ¢(ag) = Opy (|lUg]l/v/1),
by Lemma there is a t, € T, wpal satisfying (a) with af(t;) = af + thu}, € Ay, and
d(@B(t:)) — ¢(ag) = r. Moreover, by assumption (1)( i), such a choice of ¢} also satisfies

do(aw) g

[

$(@y, (1)) — $(an) —

=0

— 8+ 03] = 0Py e ([03]]/3/) wpal (Pz).

Thus, for sufficiently large n,

n
PZoo <onozoo < f

dd(00) 5 o) ?
Tzl (B = Bl 15

da =" il lsa

>5\Z”><6>>1—5

By Assumption [3.5(i) and Lemma[B.3|(2), it follows that the LHS of the above equation is majorized

by
* |2
Py (pvoolzm < VI GB Gy 4t H”:H > 92§ | Z”) <5> +6
||v5; |55 ]sd
Vvn 1y, [lvnl
= Pz (ono|zoo (v* —Z, 1an‘|sd+t:”v*n” 220 Z" ) <6 )+4,
n sd
Therefore,

Vnth = nZ87 k|2 + OPyoo| 700 (1) wpal(Pzeo).

Since \/nZ%~! = = OPyoo; 40 (1) With probability Pze approaching one (assumption (ii)) and
[[uz]]> = O(1), we have tf = OPyoo| 7o (n~'/2) with probability Pze approaching one. Thus (b)
holds.

Before we prove Result (2), we wish to establish the following equation (B.26)):

QLR, (¢n)

UJ

Lysiz= 12" = £(QLR,(60) | Ho)| = 0, (1), (B.26)

where £ (@n(%) | Ho) denotes the law of QLR, (¢) under the null Hy : ¢(a) = oo, which will
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be simply denoted as L (@H(QZ)O) in the rest of the proof. By Result (1), it suffices to show
that for any 6 > 0, there exists a N(d) such that

Zw—l 2
Pz | sup f [\/ﬁ”*} | Z"
fEBLy ow| ||
for all n > N(§). Let Z denote a standard normal random variable (i.e., Z ~ N(0,1)). If the
following equation (B.27) holds, which will be shown at the end of the proof of equation (B.26]),

2(=y

E — E[f(QLR,(¢0))]

Sé) >1-9

T,= sup |E

feBLy

- E[f(@n(%))]‘ = o(1), (B.27)

then, it suffices to show that

w—172 2

Pz | sup |E|f {\/HZ"*] | Z"| —E | f [Z*] <4l >1-6 (B.28)

feBLy ou|uzl ||

for all n > N(9).
Suppose we could show that

Z(‘riil n *—1

sup |E|f(vn — | 1 2" = E[f (Z]|up]]7")]| = 0, wpal(Pze), (B.29)
feBLy UUJHunH

or equivalently,

PZoo<

Then, by the continuous mapping theorem (see Kosorok (2008) Theorem 10.8 and the discussion
in section 10.1.4), we have:

Pze (ﬁvw|zoo ((ﬁzlf | Z“) — £ (2l ™)?)

0wl
and hence equation (B.28)) follows.
It remains to show equation (B.29). By Assumption [Boot.3(ii), and the fact that if a sequence
converges in probability, for all subsequence, there exists a subsubsequence that converges almost
surely, it follows for all subsequence (ny ), there exists a subsubsequence (ny;)); such that

w—1
Zn

k
w n

Lumize (VATE127) - L@ )

< (5) >1—19, eventually.

< 5) >1—9, eventually,

— 0, a.s. — PZoo.
Ow

zg-1
Lyroo| 7o ( ) — | anm) — L(2)

*
Tk (3)

such that lim;j_, [|u

Since [[uy, || € (¢, C), then there exists a further subsequence (which we still denote as ny;),

*

w—1
. || = deo € [c,C]. Also, since \/ﬁzﬁ—w is a real valued sequence, by Helly’s
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theorem, convergence in distribution also holds for (nk(j)) j- Therefore, by Slutsky theorem,

z7e—1
) , -
Lyos| 700 ( TG )W’“JH | Z”k(y)) - L (Zdool) — 0, a.s. — Pge.
"k (4)
Since lim; o0 ||uy,, (j)|| = ds € [¢,C] and Z is bounded in probability, this readily implies
w—1
Lyroo| 700 Nk(; # | Z"k@) (ZHu I 1) — 0, a.s. — Pge.
| ( (4) Uw”“nk(j)H Nk ()

Therefore, it follows that

w—1
7 (v Z”’“” | 270

Since the argument started with an arbitrary subsequence ny, equation holds.

To conclude the proof of equation , we now show that equation in fact holds
(i.e., T,, = o(1)). Again, it suffices to show that for any sub-sequence, there exists a sub-sub-
sequence such that T,y = o(1). For any sub-sequence, since (||u}||)n is a bounded sequence
(under Assumption iv)), there exists a further sub-sub-sequence (which we denote as (n(j));)
such that lim;_, Hu;;(j)H = ds € [, C] for finite ¢, C > 0. Observe that

sup |FE

feBLy

_ [ (ZHURM)H 1)]'—>0, a.s. — Pye.

2

Z z1*
E - FE -
Ty <f§§21 [ / ({dm] )]
7 1? [
<o Pl ([E))] - () @

+ swp (B [f (QLR,(@0))| - B | (Hdw H) QLR,,(;)(¢0)

feBLy

The first term vanishes because Z is bounded in probability and lim;_, Hu;:(j) || = doo > 0; the third

term follows by the same reason (by Theorem and Assumption (ii), @%n(qﬁo) is bounded
in probability).

Finally, for any f € BLy, let f(d3!-) = fod22(-). Since f od? is bounded and |fod 2(t) — fo
d2(s)| < d2|t—s| < ¢ 2|t—s|, we have { fod 2 : f € BL1} C BL, 2. Therefore, the second term in

7 (2P)] = B [£ (Ilip 1P x QLR 55 (60))] |

the previous display is majorized by sup;cpy, ,
Hence, to conclude the proof we need to show that

lim sup
J=0 feBL,

E[£(Z3)] = B[ (Iluy) I x QLR () ) || = 0. (B.30)

Theorem (ie., |[uf]]* x Q/L\Rn(d)o) [\/nZy)? + op(1)) and Assumption (ii) directly imply
that the above equation actually holds for the whole sequence, which readily implies that for
any sub-sequence (n(j)); there is a sub-sub-sequence (which we still denote as (n(j));) for which
the previous display holds.
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Finally for Result (2), we want to show that

LR, (¢n
I P K12 AT

<t]2"| = Pz~ (QLR,(¢0) <t | Ho)| = opm (1).
teR Uw

Let fi(-) = 1{- <t} for t € R. Under this notation, the previous display can be cast as

QLR, (¢n n ST
A, = sup Epy o) g0 fi # | Z" | — Ep,e [ft (QLRH((ﬁO))} = 0p, (1).
teR )
Denote Z? ~ x3 and
QLR, (6n)
Aip = sup Epyoo goe | for | lun|? x Ung = zr - Efe(2%)]],
IG w

A2,n

sup |Br . [fo (Iuz 1 x QLR (60)] ~ B [f (22)]]

Notice that

——B
Av = sp By | a1 222280 N 20| B, [ (1 PGER, (00)) ]
teR o,
i) |
< swp sup | Bpye e |fue | 105252 | | 27| = B [fue (1] PQLR, (90))]

teR dele,C) 04

. QLR, (¢n
< sup | Brm e | fir | N #

t'e w

< Al,n + A2,n

| 27| = By [fo (il % QLT (00) ) |

where the first line follows from the property that fi(-) = fix(A x -) for any A € Ry ; the second
line follows because by assumption, ||[u%||?> € [¢?, C?]; the third line follows simply because {1{- <
tA}:teRand A € Ry} C {1{- <t} :t € R}. Finally, the last line is due to the triangle inequality
and the definitions of A;, and Ag,,.

By Theorem under the null, |[u}|* x Q/Ij%n(qbo) converges weakly to Z? ~ x?, whose
distribution is continuous. Therefore, by Polya’s theorem, Az, = o(1). Similarly,

QLR, (é)

Al p = sug Pyroc| zoo [[uk]|? x T; <t|zr|-P (Z2 <t)| =opye (1)
t'e )

by equation (B.26) and by the same arguments in Lemma 10.11 in Kosorok (2008) (which are in
turn analogous to those used in the proof of Polya’s theorem). Q.E.D.

We first recall some notation introduced in the main text. Let T, = {t € R: [t| < 4M2§,}. For

*

tn € T, a(ty) = a+tyu), where u)) = vy / ||vt]| 4 and vl = (vy’,, ) ( ))’. To simplify presentation
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we use 1y, = 7 (t,) = (max{t2, t,n /2, 0(n"1)})" B

Proof of Lemma [5.1} For Result (1), if w =1, then Assumption [Boot.3(i) simplifies to

Py <PVooZoo ( sup Tn >4 Z”) < 5) > 1-96;
(a’tn)e-/\/‘osnx%
B
2

iff

- 5,
An(atn), a) = tn {Zn + (u;, 0 — a0)} — 15

An(altn), @) =ty {Zy + (u}), 0 — ag)} —

Pyoo sup Tn
(aztn)eNosn ><7Tn

where IA\n(a(tn), a) = O.S(Qn(a(tn)) — @n(a)) and B, is a Z" measurable random variable with
By, = Op,e(1). Therefore, if we could verify Assumption [Boot.3(i) in Result (2), we also verify

Assumption [3.6[i).
25 Z”) .
1

For Result (2), we divide its proof in several steps.
B w * BTU; 2
An (a(tﬂ)’ Oé) —ln {Zn + <un7 Q= O[0> - Ttn
o > { R alt) 200 T (X altn) — 07 (X @) S(6) T (X 0) }

Po(Z™) = Pyoo|zeo ( sup Tn
(a:tn)eNosn xXTn

STEP 1: We first introduce some notation. Let
Recall that (2 (z, o) = m(x, o) + mP(x, ap). Let
2n

i=1

LE(a(ty),a) =

We need to show that Pze(P,(Z") < §) > 1 — ¢ eventually which is equivalent to show that
Py (Pp(Z™) > §) < § eventually. Hence, it suffices to show that
Py ({PL(Z") > 6} N Sp) + Pz (SS) < 6, eventually,

for some event S,, that is measurable with respect to Z", and some P’ (Z") > P,(Z") a.s., here S
denotes the complement of S,. In the following we take

Sp=42": Pyoojzeo sup
(aytn)eNosnXITn

and

ro |AB (a(tn), a) — Ef(a(tn),a)‘ > 0.56 | Z”> < 0.55} ,

~ " Bw
P (Z"™) =Pyoo|zoo ( S}\lfp o |LB(a(tn), @) — tn {7 + (uf, 0 — o)} — =212
(a tn)e 05n><7;l

> 0.56 | Z“)

~

r [AB (a(ty), @) — DB (alty), a)( > 0.5 | zn> .

+ Pyoo|zec sup
(avtn)e-/\/—osn X 7;1

It follows that we “only” need to show that

Pz (SY) <0.56 and Pz ({P.(Z") > 6} N S,) < 0.50, eventually.
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Since Pz (SS) can be expressed as

Py <PV00|Z(>O < sup T Kf(a(tn),a) - Ef(a(tn),a)‘ > 0.50 | Z”) > 0.55) ,
(

a,tn)EAR X Th
which, by Lemma (3)7 is in fact less than 0.55. We only need to verify
Py ({P,(Z™) > 6} N S,) < 0.58, eventually.
It is easy to see that

Py ({PL(Z7™) > 5} N Sy)

L N B
L2 (altn). @) = tn {25 + (0 — ag)} = <22

<Py (onolzoo ( sup T > 0.50 | Z") > 0.55) )
(

a,tn)eNosn X7Tn

Hence, in order to prove the desired result, it suffices to show that

Pzoo | Pyoo|zes sup T
(a’tn)ENosn X 7;1,

eventually.

- Be
LE(a(ty),a) =ty {Z2 + (uf, 0 — ag)} — 7”@21

25\Z”>>5><6

(B.31)

STEP 2: For any a € Nyg,, and t,, € Tp, a(t,) = o + tyu), under Assumption (i), we can
apply the mean value theorem (wrt ¢,,) and obtain

LE(a(tn), o) :%‘ i: (W[u:])li(xi)—lef(xi,a)
3 () s (G D) s

=1

2 27/% i, (S * * /A —

+L Z(W[u u ]) S(X0) M (Ziyals))ds
1

2
=t, T8 (a) + 3"{T2n(04) + T4 ()},
where a(s) = a + styu), € Nogy.

From these calculations and the fact that Pyec|zee (an +bp > d|Z") < Pyoo|zeo(an > 0.5d|2™) +
Pyooizoo (b > 0.5d|Z™) a.s. for any two measurable random variables a,, and by, it follows that

L . BY
L2 (alta),a) = ta {Z + {ul, 0 — a0)} = 82

Pyroo| 700 <( sup T > 0.50 | Z")

avtn)eNosn XTn

<Pyos|zoo < sup Tntn ‘Tﬁ(@) —{Z + (u), a — ag)}| > 0.256 | Z")
(avtn)ENosn XTn

(avtn)ENosan
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Hence, in order to show equation (B.31]), it suffices to show that

Pyo <ono|Zoo ( sup Tntn |T5L(a) —{Zg + (w00 — ag)}| > 6 | Z”) > 5> <46
(avtn)ENosn XTn

and

ntr
Pyoo | Pyooi oo sup | {Thn(a) + TE ()} = BY| > 6| 27| > 6] <6
(a:tn)eNosnXﬂz 2

eventually.

Since rpt, < n'/2, by Lemma the first equation holds. Since r,t2 < 1, then in order to
verify the second equation it suffices to verify that, for any § > 0,

Py ( sup |Ton(a) — BY| > 5> <0, Yn > N(9),

OCENosn

and

Py (onolzoo < sup ‘Tzﬁ(a)‘ >0 | Z”) > 5) < 0, Yn > N(9).
N

aENosn

By Lemmas 1) and these two equations hold.

By our choice of £3() (in particular the fact that m is measurable with respect to Z"), it follows
that By = B, = Op, o400 (1) wpal(Pzes). Thus we verified Assumption (1)

Finaally, Lemma (2) implies |BY — Hu,*1||2} = OPyoo| 5o (1) wpal(Pz) and |Bn —||up|?| =
0P, (1). Q.E.D.

The following lemma is a LLN for triangular arrays.

Lemma B.4. Let ((X;n)l )52, be a triangular array of real valued random variables such that
(a) Xin,...,Xnn are independent and X;,, ~ P;p, for all n, (b) E[X;,] =0 for all i and n, and
(c) there is a sequence of non-negative real numbers (by)y, such that b, = o(y/n) and

limsupn_l ZEHXz,nHﬂXz,n’ > an =0.
Then: for all € > 0, there is a N(¢) such that

n
Pr ( nilzXLn > 6) <€
=1

It is easy to see that a sufficient condition for condition (c) in Lemma[B.4is that: E[|X;,]o(|X;])] <
Nn < oo for all n, where ¢ : Ry — R, is a strictly increasing bounded function, and (1), a se-
-1 2
quence of non-negative real numbers, such that o(b,) = (41,/€?) and % = o(1), for some
constant ¢ > 0.

Proof of Lemma We obtain the result by modifying the proofs of |Billingsley| (1995) theorem
22.1 and of [Feller| (1970) (p. 248). For any € > 0, let

for all n > N(e).

Xip = Xinl{|Xin| < ba} + Xinl{|Xin| > b} = X7, + X7,

i\n
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Thus,

Z

Pr ( > 0.56) + Pr (

By conditions (b) and (c), it is easy to see that, for large enough n,

n~t Z{Xz,Bn - E[Xz],gn]}
i=1
i=1

n n
n~t ZXZ?" > e) < Pr ( nt Zan
i=1 i=1

= Tl,e + T276.

>056>

Tl,e < Pr (

:Pr<

for some finite constant const > 0, where the last inequality is due to Hoeffding inequality (cf
Van der Vaart and Wellner| (1996) Appendix A.6). Thus, there is a N(¢€) such that for all n > N (e),
Ty, < 0.5

For T, ¢, by Markov inequality and then by condition (c), we have:

Ty < (¢/2)71 —12/ || Py (d2)

{|z|>bn}

> 0.25e> + 1{E[X]] > 0.25¢}

2
> 0.256) < 2exp <—con3t.€bf) ,

n

= (¢/2)"'n7! Z/ |2[1{|x| > by} P;n(dz) < 0.5¢
=1

eventually. Q.E.D.
Proof of Lemma We divide the proof into several steps.

STEP 1. We first show that

el g

occurs wpal(Pyze). For this we apply Lemma Using the notation in the lemma, we let X; , =
(9(Xs, u)p(Zi, a0))? — Elg(X,u?)So(X)g(X,ur)'], and thus conditions (a) and (b) of Lemma
immediately follow (note that E[g(X,u})YX0(X)g(X,u’)'] = 1). In order to check condition (c),
note first that for any generic random variable X with mean p < oo, it follows

_12 X, ) p(Zi, o)) — Elg(X,ut)E0(X)g(X, ub)]

Ellz — p|ll{|z — p| =2 bn}] < Eflz[1{|z] = b — [pl}] + [u| Pr{|z| = by — |u[}.
Since b, is taken to diverge, we can “redefine” b, as b, — |u|. Moreover,
Pr{|z[ > by, — |pl} < Elmax{|z|, 1}1{[z| = by — [u[}].

Again, since b, is taken to diverge the only relevant case is |x| > 1. Therefore, it suffices to study
E[|z|1{|x| > b,}] in order to bound El|lx — u|1{|x — u| > b,}]. Thus, applied to our case, it is
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sufficient to verify that

limsupnilz [( (Xi,ury)p(Zi, ap)) 1{ Xi,uy ) p(Zi, ap) Qan}]:

This holds under our equation ([5.1)).

STEP 2. Step 3 below shows that under assumption

sup
feBLy

B[ (i) 1 2] - £U @) = ore 1)

where Z ~ N(0,1). Also, Step 4 below shows that the same result holds under assumption

w—1
STEP 3. Let \/ﬁzgw = %Z?:l ¢isin where ¢ = (w; — 1ot and sin = 9(Xi,u})p(Zi, ap).
We first want to show that

1 n
N Z GiSijn = Z, wpal(Pz).
i=1

Thus, it suffices to show that any sub-sequence, contains a further sub-sequence, (ng)g, such that
(see Billingsley| (1995) Theorem 20.5, p. 268)

\/ngsmk =7, a.s. — (Pg).

Since S,, occurs wpal(Pze) (Step 1), it follows that any sub-sequence, contains a further sub-
sequence such that n,' S (s;,,)2 — 1, a.s. — (Pz). Moreover, maxi<n, |Sin.|//mk = o(1),
a.s. — (Pze). This follows since, for any ¢ > 0,

n

Py <max|sm| > ef) P, (ds) < e nt / 52Pi,n(d5)
Z |s|zev/m Z; ls|=ev/n
= 2p ! Z E[s?, {[sin| > ev/n}].
=1

We note that 1{|s; | > ey/n} < 1{|s;n|> > b,} (provided that |s;,| > 1, but if it is not, then the
proof is trivial). Hence by equation ({5.1]) and the fact that s; ,, are row-wise iid, the RHS is of order
o(1). Going to a sub-sequence establishes the result. Hence, for any € > 0.

N
”1;1 Z(Si,nk)2EPQ [4121{@|SZ7711€’ > €y ni}] =0
i=1

By Lindeberg-Feller CLT, it follows that \/% ik CiSimy, = Z, a.s. — (Pgze) where Z ~ N(0,1).
We have thus showed that any sub-sequence, contains a further sub-sequence such that the
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above equation holds; therefore

1 n
— iSin | | 2"
f<ﬁ;<s,>|

E - E[f(Z)]

sup
feBLy

= 0Pz (1)

STEP 4. We proceed as in Step 3. The difference is that now ((;); are not iid, but exchangeable.
To overcome this, we follow lemma 3.6.15 in VAV-W. As before, we want to show that any sub-
sequence, contains a further sub-sequence, (ng)x, such that

1 &
Tk ZQSZ‘/’% =7, a.s. — (ono).
v =1

To do this we follow lemma 3.6.15 (or rather their lemma A.5.3) in VAV-W for a given sub-
sequence (ny)r. Let (using their notation) n = ng, ani = sjn, and Wy = ¢ = (win — 1). By
assumption nES W =0, n7 Y0 W2 — 1 and n™! maxi<i<, W2, = op,(1). And
n-1 o ani = @y < 0o (in their lemma, VAV-W require @, = 0, but is easy to see that it is not
necessary if n=t Y " | W, = 0, see Preastgaard (1991) lemma 5, p. 35), n~! maxj<;<, a2, = o(1)
(this can be establish in the exact same way as it was done in step 3), and finally we need:

n n
limsupn =2 ZZ(anam)Ql{]aman\ > ey/n} =0, a.s. — Pye.

n—oo i=1 j=1

To show this, we note that

Py <max Wi > Lnn0'5_c> = o(1)

1<i<n

for any ¢ < 0.5 and L,, = log(n) or log(log(n)). This follows from the same calculations used to

2
bound n~! maxj<;<, a2; and the fact that E[|W,,;|T-2¢] < const. < oo for n large enough. We can
obtain a a.s. version of this result by going to a sub-sequence.
Since

B n n B n n \/’ran .
12 (Wajani) 1 |aniWas| > ev/n} <07t (ani)*1{|ani| > T /L,},
i=1j=1 i=1 j=1

\Wni|nc
and choosing ¢ such that b, < n¢/L, (since b, = o(n'/?) we can always find such ¢ < 0.5).
So, by lemma 3.6.15 (or lemma A.5.3) in [Van der Vaart and Wellner| (1996),

then by the previous result vnLn > 1 a.s.-— Pz~ and the desired result follows from equation 1)

1 &

\/77 Zgisi,nk = Z, a.s. — (PZoo).
=1

The rest of the steps are analogous to those in Step 3 and will not be repeated here. Q.E.D.
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B.3.1 Alternative bootstrap sieve t statistics
#(ain)—¢(a0)
||6:1||n,9d

is the original sample sieve t statistic. The first one is I//[\/fn f Hay)—¢(Gn) Ty the defini-

%an\lns
A

tion of W2n one could also define ||}, ||Bsd using 38 = E,[o(V,a,)0(V,d,)'|X = X;] instead of
o(Vi,an)o(Vi, @), Wthh will be a bootstrap analog to anH sq defined in equation (B.5).

Let /an f ¢( ¢(a" where |[05]|% ., i3 a bootstrap sieve variance estimator that is

In this subsection we present additional bootstrap sieve t statistics. Recall that /Wn =./n

constructed as follows F 1rst we define
" fdmB(X;,aB) )\ dinB(X;,aB)
2 _ -1 1y Gy 1y ey
p— —_— | TL’L —_— | 9
H’UHB,M n ;:1 ( dov H) M, ( dov [])

where M, ; is some (almost surely) positive definite Welghtlng matrix. Let 92 be a bootstrapped

empirical Riesz representer of the linear functional 92 “)H under || - |[5¢-1. We compute a
bootstrap sieve variance estimator as:

< al ’ A mP(X;,a8)
1581 = > (PE0E 060 ) s ayemiafy st (P (B

P da da

with o(V;,a) = (win — Vp(Zi,a) = pP(Vi,a) — p(Zi,a) for any a. That is, ||5f||2378d is a
bootstrap analog to |[0%]|% sa defined in equation 1’ One could also define |[92]|% ., using
Enlo(V,a2)o(V,aB) | X = Xi] instead of o(V;,a%)o(V;,a2)’, which will be a bootstrap analog to

v defined in equation (B.5)). In addition, one could also define |[02||% ., using @, instead
n 1 B,sd

n| |n sd
of af. In terms of the first order asymptotic approximation, this alternative definition yields the
same asymptotic results. Due to space considerations, we omit these alternative bootstrap sieve
variance estimators.

The bootstrap sieve variance estimator ||02| |QB . 2lso has a closed form expression: |[05| |QB sd =

(FBY(DB)-'88 (DB)~'F B with

~ d ab —k(n / =~ 1 " dAB Xz,/\g —K(n / /Af dAB X747A7§ —R\n /
i=1

- 1 n dmB XZ,(/)&\E —k(n /A_ N PN dm® Xz,af —k(n
68, = 23 (TSSO} E s - 10l A ez RS (TGS 1)
=1

This expression is computed in the same way as ||0|[% ., = F ,D;; 0, D' F ,, given in 1) but

using bootstrap analogs. Note that this bootstrap sieve variance only uses @?, and is easy to
compute.

When specialized to the NPIV model in subsectlon 1, the expression ||05|(% sq Simpli-
~ B ~p
fies further, with /7 = %2 [g")(.)], D = %CE(P’P)‘(CE) LCF = Xy wind™ ™ (Yo )p" (X5’

~ 1 ~ ~ ~ ~

On =, (Zp‘“ [(wip — TF 2 <Xi>') (P'P)~(CEY, with UF = Yi;—hE (V).
’ n

This expression is analogous to that for a 2SLS t-bootstrap test; see |Davidson and MacKinnon
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(2010). We leave it to further work to study whether this bootstrap sieve t statistic might have
second order refinement by choice of some IID bootstrap weights.
Recall that MP = (w;,, — 1)2M; and M; = 371 p(Z;, @) p(Zi, G0 ) 35

2

Assumption B.3. (i) sup [(v1,v2) Bx-1 — (V1,V2)n 51| = 0Py poo (1) wpal(Pze);

v1,v26Vi<n)
(ii) supvev}g(n) |<U’U>B,MB — 03<v,v>n7M| = OPvDO|zoo(1) wpal(Pge);

~B  ~B 2
WMH@ = OPVOO|ZOO(1) wpal(Pg).

(iti) sup 71 nt Y (Wi — 1) ’

Assumption [B.3{i)(ii) is analogous to Assumption [4.1](ii)(v). Assumption [B.3iii) is a mild one,
for example, it is implied by Assumptions for Lemmal[A.T|and uniformly bounded bootstrap weights
(i.e., lwin| < C < oo for all ).

The following result is a bootstrap version of Theorem

Theorem B.3. Let Conditions for Theorem (1) and Lemma Assumption hold. Then:

197 11,5

Tul|vplsa

(1)

(2) If further, conditions for Theorem[5.4(1) hold, then:

o 1
W =—vn

w—
ZTL
w

- + OPyoo| goo (1) wpal(Pze),

i (W1 27) = £ (1)

sup ‘ono|zoo (/an <tZ") — Pz (/Wn < t)‘ = OPyoo|zo0 (1) wpal(Pze).
teR

Proof of Theorem For Result (1), the proof is analogous to the one for Theorem [1.2(1).
As in the proof of Theorem [£.2(1), it suffices to show that

16, — vpll

V3]

= OPyoo| g0 (1) wpal(Pze), (B.33)

and 5 s
anHB,sd_ ||Un||8d _
[lonl] — THveize

Following the same derivations as in the proof of theorem 1) step 1, for equation (B.33)), it
suffices to show

(1) wpal(Pze). (B.34)

’<7Aﬂfaw>3,zfl - <@§7w>372*1| = OPVOO‘Zoo(l) and |<@§aw>B,Z*1 - <7Aﬂ§,w>2*1‘ = Oono‘Zoo(]‘)
wpal(Pz), uniformly over w € Vi(n); where &5 = |IZ£H' The first term follows by Assumptions

4.1(iii) and [3.1(iv) and the fact that (@, @)ps-1 = Opyeo 00 (1) wpal(Pze) (by Assumptions
3((i) and ii)). The second term follows directly from these two assumptions.
Regarding equation (B.34)), following the same derivations as in the proof of Theorem step 2,
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it suffices to show that |||&8||% ., — [|&8]%

= OPyoo| o0 (1) wpal(Pz). By the triangle inequality,

Sup (0, 0) g yirs = 05 {v, ),y < sup ‘(vvv>B,WB_<v7U>B,MB‘+ sup ‘<U7U>B,MB—05<M>”,M
vEVk(n) vGVk(n) vEVk(n)

= A}, + A,

with WP = 57 0(Vi, aF)o(Vi, a8)' 57 = (win — 1?57 p(Zs, a8 p(Zs, aF Y2 and MP = (win —
1)2M; and M; = 37 p(Zs, @0)p(Ziy G ) S0
It is easy to see that A is bounded above by

sup 157 @) oz, a0)p(2,67) = p(z, dn)p(z,60) YT (@) |en ™" Y (win — 1) | T [0] j
i=1
<2sup sup [[S7(@){p(z,a)p(z, @) = p(z,00)p(z,a0) =T (@) |len ™ Y (Wi — 1) (| T [0] Z
=1

T agNosn

where TP [v] = W[v]. The second line follows because &% € N, wpal. The first term in

the RHS is of order op,. (1) by Assumption (iv). The second term is Opy o 4o (1) by Assumption
[B.3(iii).

AB s of order OPy oo 00 (1) wpal(Pze) by Assumption B.3[ii).

Result (1) now follows from the same derivations as in the proof of Theorem [4.2)(1) step 2a.

Given Result (1), Result (2) follows from exactly the same proof as that of Theorem [5.2(1),
and is omitted. Q.E.D.

B.4 Proofs for Section [6] on examples

dm(z,a0)

Proof of Proposition By our assumption over clsp{p; : j = 1,..., J}, === [u};] € clsp{p; :
j =1,..,J,} provided k(n) < J,, and thus Assumption (i) trivially holds. Since ¥ = 1,
Assumption (ii) is the same as Assumption (1).

We now show that Assumption [A.6[iii)(iv) holds under condition First, condition [6.1(i)
implies that {(E[h(Y2) — ho(Y2)|-])? : h € H} is a P-Donsker class and, moreover,

E[(E[A(Y2) — ho(Y2)|X])"] < 2¢ x |[h — ho[[* — 0

as |[h—holl2(#y,) — 0. So by Lemma 1 in|Chen et al.| (2003), Assumption (iii) holds. Regarding
Assumption |[A.6{iv). By Theorem 2.14.2 in VdV-W, (up to omitted constants)

||Fn||L2(f )
E g/o U g Ny, B - [l e

sup n~"/2 S {F(X) - E[f(Xim‘
i=1

JeFn

where F, = {f : f = g(,u})(m(-,a) — m(-,ap)), some a € Npg,} and

Fo(z) =sup|f(z)| = sup |g(z,u,){m(z, @) —m(z,a0)}|.

n QENosn

We claim that, under our assumptions,

Ny, Fo, [ 22 (px)) < Ny, AL, [] - | z)-
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To show this claim, it suffices to show that given a radius § > 0, if we take {[lj,uj]}év:(f) to be
brackets of AJ(X) under || - ||5s, then we can construct {[l,, ;, umj]};y:(f) such that: they are valid

brackets of Fp, under || - [|z2(s,). To show this, observe that, for any f, € JF,, there exists a
& € Noysn, such that f, = g(-,uj,){m(-,a) —m(-, ap)}, and under condition[6.1] it follows that there
exists a j € {1,..., N(d)} such that

L < m( ) - m(- a0) < uj, (B.35)
hence, there exists a [l j, un, ;] such that, for all z,

Inj(x) = (H{g(z,uy) > 0} (2) + Hg(e, up) < Otuy(z))g(z, up),
and

unj(2) = (Hg(z, up) > 0}uj(z) + Hg(z, uy) < 0}j(2))g(z, uy,)-

such that [, ; < fn, <y j. Also, observe that

llnj = wnjllL2(rx) = \/E[(Q(X, ui))?(ug (X) = (X)) < fluj = Ll <6

because E[(g(X,u}))?] = ||uf]|> =1 and |Ju; — ;]| < § by construction.
Therefore,

E

& 1Fnllz2(rx)
~1/2 ) — . < log Ny (u, AZ(X), || - || e ) du.
sup i§1{f(X) E[f(X )]}u </0 \/1+ 0g Npj(u, Ae (&), [[ - ||Lo< ) du

Since by assumption v > 0.5, it is well-known that \/1 + log Njj(u, AL(X), || - || L) is integrable,
]

so in order to show that E [|supf€;n n~125" {f(X0) — E[f (X)) H = o(1), it suffices to show
that [|Fy|[2(f¢) = o(1). In order to show this,

osn

EnllL2(px) S\/E[(Q(X> uy))?(sup [m(X, a) —m(X, ao)|)?]

:\/E[(g(X, u))?(sup | E[h(Ya) — ho(Y2)| X]|)?]

osn

osn

_\/E[(Q(X7 u},))? sup /(h(yg) — ho(y2))% fry|x (2, X)dys]

frax (Y2, X)
=|E[(g(X,u%))? su /h —h 220 P d
\/ [(9(X; uiy)) sup (h(y2) = ho(y2)) fYQ(yQ)fX(X)fYQ(yz) Yol
szX(yQ,CU)
<sup —2222 sup ||k — hol| 2 E[(g(X,uf))?
zys S (42) X (T) N = Follz2(gyy) VUG (X )
<Const. x Mpdsn, — 0
where the last expression follows from the fact that E[(g(X,u?))?] = |[u%||*> = 1 and condition

[6.1fii), that states that
frax (y2, )
sup

< Const. < 0o.
we Jyo (Y2) fx(z) —
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Hence, E [|supjcr, nT23 (X)) — E[f(X:)]}|] = o(1) which implies assumption (iv).
Finally, Assumption [A.7]is automatically satisfied with the NPIV model. Q.E.D.
Proof of Proposition Assumptions[A.6{i) and (ii) hold by the same calculations as those in
the proof of Proposition (for the NPIV model). Also, under Condition (i), {E[Fy; v, x (h(Y2), Yo, )| -] :
h € H} C A(X) with v > 0.5, Assumptions [A.6{iii) and (iv) hold by similar calculations to those
in the proof of Proposition [6.1

Assumption (1) is standard in the literature. Regarding Assumption (ii), observe that
for any h € Nogn,

dh " dh "
= |E [{fvijvax (h(Y2), Ya, %) — fyy vy x (ho(Y2), Ya, ) }us (Y2) | X = ]|

_ /{/01 dfy,vox (ho(t)(y2), y2, ) (h(y2) —ho(yz))u;(yg)dt} Fyaix (2, %) dys

dy
_ U dfysvyx (ho(t)(y2), 2, @) . fvax (y2, )
-1/ ( - 1) (o) = P o) o ) (2250200 g

- / L (2, 2)Ta (o, ) (W) — o (y2) )1 () fra (42) o

S| ( 2)Ta (s )| zee X Ih = hollz2(gy,) lunl |25y,

where hq(t) = ho+t{h—ho} and T'1(yo, x) = (fol dfylW?X(hg;f)(yQ)’yQ’I) dt) and Ty(y2, 1) = 7)05%;2()?}12),

the last line follows from Cauchy-Swarchz inequality.
Under Condition [6.2[(ii), it follows that

dfyi1vax (Y1, Y2, ©)

sup | | <C <o
Y1,y2,% dy
and, under Condition [6.1](ii), it follows that
sup | LX) | oo
z,Y2 sz <y2)fX(x>

Then it is easy to see that [|I'; (-, ) (fy,) < € < oo for both j = 1,2. Thus

dm(z, h) ] — dm(x, hg) ]
dh " dh "

<C%x||h— holl 2 (fyy) 1l | L2 (py,))

and thus, Assumption[A.7(ii) is satisfied provided that nx M252 suppear,.. |]h—h0||2L2(fY )||u;';| ‘%z(fy )=
- 2 2
—1

k(n

o(1). Since [[uy,|[r2(fy,) < cp ) it suffices to show that

nMy 7 (|| Tho — hOHLZ(fyz) + M;;(Z)(Sn)Q:UJ;(%L) =o(1).

By assumption, |[Inho — hollr2(,,) < Const. x ,u];(ln)dn = O(8s,,) and 62 < Const.k(n)/n , then it
suffices to show that
nM2st, = o(1),

nvs,n

which holds by Condition [6.3}
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Regarding Assumption [A.7(iii), observe that for any h € Nysn,

(ur (42))* frafx (v2, @) dya.

dzm(ac,h)[ * *] :/dfylsz(h(y2)7y27x)
dh? e dy

Again by Conditions (ii) and (ii), it follows that )M[u* ul]| < C? x ||ufl\|%2(fy ) Since
2

dh? nsy “n

lJum 2 fvy) < cOMSE X /L;&), Assumption (iii) holds because
M;:fn) X (Mn6,)? = o(1), or Mgégm =o(1).

Finally, we verify Assumption [A.7{iv). By our previous calculations

~dm(z, ho)

‘WW ~ ol an 12— hol
_ ‘/ </ dfyvy|v,x (ho(y2) + t[gyll(w) — ho(y2)], y2, ) dt) (h1(y2) — ho(y2))(ha(y2) — ho(y2)) frax (Y2, ) dy2

<C?* x / [(h1(y2) — ho(y2))(h2(y2) — ho(y2))] fy, (y2)dy2
<C% x [|h1 = hollz2(gy)|1h2 = holl2(py, )

where the first inequality follows from Conditions[6.2{(ii) and [6.1](ii), and the last one from Cauchy-
Swarchz inequality. This result and Cauchy-Swarchz inequality together imply that

<C*VE[(g(X, u))2llhy = Roll 22 gy l1h2 = Rol 224y,

<const X ||[h1 — h0HL2(fY2)Hh2 — h0HL2(fY2),
where the last line follows from E[(g(X, u;‘;))Q] = Hu*HQ = 1. Thus, Assumption (iv) follows if
52n = (IMho = hollz2sy,) + buyn)” = o(n™"?)

which holds by Condition Q.E.D.
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C Supplement: Proofs of the Results in Appendix [A]

In Appendix [C| we provide the proofs of all the lemmas, theorems and propositions stated in
Appendix [A]

C.1 Proofs for Section on convergence rates of bootstrap PSMD estimators

Proof of Lemma u For Result (1), we prove this result in two steps. First, we show that
ab e A%%) wpal-Pyeo|zec for any Z°° in a set that occurs probability approaching Pz« one, where

.A%SL) is defined in the text. Second, we establish consistency, using the fact that we are in the

“42/([2) set.
STEP 1. We show that for any § > 0, there exists a N(J) such that
Pyee (PVOOW (@,ff ¢ AQ{;;);Z”) < 5) >1-4, ¥n> N().
To show this, note that, by definition of a2,
MaPen(hB) < QB (@) + AnPen(hn) + 0py (%), wpal(Pye).
By Assumption (1) and the definition of &, € Ay,

~ o - 1
AoPen(hB) < ¢ (Qn(an) + /\nPen(hn)> + OPyoo| g0 (ﬁ)’ wpal(Pge)

IN

« (A 1
o (Qn(Hnao) + )\nPen(tho)> + 0Pyoo) o0 (ﬁ)’ wpal(Pye).
By Assumptions [3.2(i)(ii) and [3.3(i),
~ 1
AnPen(hB) < cieoQ(Ia0) + AnPen(ho) + OPyoo| goo (An + 0(5)), wpal(Pge).

By the fact that Q(II,a0) + o(2) = O(\y), the desired result follows.
STEP 2. We want to show that for any § > 0, there exists a N(J) such that
Pgos (Pyooizee (|68 — aolls > 6|2™) < 8) > 1 -6, Vn > N(9),

which is equivalent to show that Pze(Pye|ze (||65 — aglls > 6|Z™) > §) < & eventually. Note
that

<Pye (pvoo,zm ({Haf —aglls > 0} n{ad € A;V(fg)}\zn) > 0.55)
+ Pre (Pyeeiz (68 ¢ AL 127) > 0.56)
By step 1, the second summand in the RHS is negligible. Thus, it suffices to show that

Pgee (pvww (df € AN [[GE — aol|, > 5;2”) < 5) >1-4, ¥n > N().
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(henceforth, we omit &2 € AMO)). Note that, conditioning on Z", by Assumption |A.1{i), the
definition of a,, € .Ak(o Assumption 1)(11) and max{\,,o(2)} = O(\,), we have:

Pyooize (||6 = anl]s > 6|1 27)

~ 1
< Pywig= | iwf QE(a) + AnPen(h) } < QE(@) + AnPen(h) + of )| 2"
{AL0): lla—aols>5} n
< Pyojze | inf ¢ Qula) + MPen(h) } < ¢ |Qu(@) + MPen(h)| + O0) + (3,.,)212"
{Ak(g): [la—aol[s>d}
< Prwige | inf c*@n(a)} < [@n(ﬂnao) n Anpen(nnho)} + O\ + (Br0) 2"
(AL lla—aols>5}
Thus
Pyeoizoo ([lag; — aolls > 6|12")
< Pz | inf *Qn(@) < §Qn(Mnag) + M\, + (3, )3 2"
(A0 lla—aolls>5}
+Pyoo| 7 sup QF(a) — " Qula) < —M(6,, )| 2"
{AL 0y : la—aolls >3}

+Pyize (@2(@) - 50u@) > ~o(2)12").

where the second and third terms in the RHS are negligible (wpal(Pze)) by Assumption [A.1](i)(ii).
Regarding the first term, by similar algebra, it can be bounded above by

PV°°\Z°° Mo inf c*eQ(a) < coeoQ(Ilag) + M (A, + (Sm,n + g;,n)z)’Zn
{Arn) ¢ lla—aolls=6}

+ Pyoc| g0 sup Qn(a) = cQ(a) < =M Gmn)?| 2"
{40+ lla—aol[s >}

+ PVOOlZoo <Q\n(HnOé0) - COQ(HnOL()) > —O(i)’Zn> .
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Therefore, for sufficiently large n,

Pgoe (Pyooize (|6l — al|s > 6|1 2™) < 6) < 0.256

+ Pz . inf c*eQ(a) < cfeoQ(Mpag) + M (A + (O + S*m’n)2)
{Ak(g): Ha_O‘OHSZd}
2 = ~ 1
+ Pzeo sup Qn(a) —cQ(a) < =M (Smn)? | + Pzeo (Qn(Hnao) — coQ(nap) > —o(n)> :
{4y, ¢ lla—aolls >}

By Assumption [3.3] the third and fourth terms in the RHS are less than 0.56. The second ter-
m in the RHS is not random. By Assumptions H(u) and (iii), A]k\?fl) is compact, and so
is AMo = {a = (0,h) € A: M\ Pen(h) < \Mp}. This fact, and Assumption (iii) imply
that inf{AM0 oo || >5) c*eQ(a) > Q(a(d)) some a(s) € AMo N {||a — ap|ls > §}. By Assump-
k(n) sZ

tion (i), Q(a(8)) > 0, so eventually, since cfeoQ(Il,a0) + M (A + (O + 3:17“)2) = o(1),

Pgyoo inf, -5} c*eQ(a) < cgeoQ(pap) + M (A + (S + 5:171)2)) = 0.

{A

w0 ool s

For Result (2), we want to show that for any ¢ > 0, there exists a M (J) such that
Pyoe (Pyeoiz (6, |6y — aol| > M"|Z") < 6) > 1 =6, YM' > M(6)

eventually. By Assumptions [3.4(iii) and [A.1fiii), following the similar algebra as before, we have:
for M’ large enough,

Pyoojzee (6,167, — || > M |Z7)

<Pyoo|goo inf Qo) < MMy + 62)|Z™ | +6.
{Aosn5 551”‘1_0‘0HZM'}

By Assumption (i)(ii) and 0, = \/max{\,, 62}, we have:

onolzoo inf c*eQa) < M(An + 5721)‘Zn
{Aosn: 67:1“O‘_O‘0||2M/}

<1{c*cc; (M/5n)2 < M\, +63)},

which is eventually naught, because M’ can be chosen to be large. The rate under ||-||s immediately

follows from this result and the definition of the sieve measure of local ill-posedness 7.

For Result (3), we note that both a5”, @, € {a € Arm): ¢(a) = ¢(an)}, and hence all the

above proofs go through with alB replacing 2. In particular, let ,4%01)(5) ={ac A]k\f%): d(a) =
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o(an)} C AQ/(I%). Then: for any § > 0,

Pysiz (a7 € A0 (3) 16527 = ol > 612"

< Pyoo|geo o inf {@f(a) + )\nPen(h)} < @{f(a) + )\nPen(ﬁ) + o(l)]Z"
AL (@) [la—aolls>6} n

< Pyoejz= | inf ¢ Qnl@) + MPen(h) } < ¢ |Qu(@) + MaPen(R)| + O0) + (5,,)212"
{Ak(%>(¢)3 HO‘_QOHsZé}

< Pyojze | inf {C*@n(a)} < [@n(nnao) + )\nPen(tho)} L O + (T2 2"
{AXO)+ lla—aolls>3)

The rest follows from the proof of Results (1) and (2). Q.E.D.

C.2 Proofs for Section [A.3l on behaviors under local alternatives

Proof of Theorem The proof is analogous to that of Theorem hence we only present
the main steps. Let a,, = g + d,, Ay, with %[An] = (vS,Ap) = kn =k X (1+0(1)) #0.

STEP 1. By assumption (1) under the local alternatives, for any ¢, € Ty,

0. 05 (@n(@n(tn)) — Qn(@n)) = tu {Zn(n) + s Gn — @)} + 282 +0p, o (fra(t)] ™) (C1)

where [r,(t,)]" = max{t2,t,n /2 5.1} and s,;! = o(n~!). The LHS is always positive (up
to possibly a negligible terms given by the penalty function, see the proof of Theorem (1)
for details) by definition of @,. Hence, by choosing t, = +{s, 12 4 o(n=1/2)}, it follows that
{Zn(on) + (uy,, & — an) } = 0p, 4o (n=1/2). Since (u*, o, — ag) = 192%2 by the definition of local

o7 sd
alternatives «,, we obtain equation (C.2)):
PN dnkn, _ * _ —1/2
L (0tp) + (uy, Qn, — ) — Torla ) Zn(n) + (Uy, Gn — @n) = 0p, oo (™ /%), (C.2)
nlls

where Z,(a,) is defined as that of Z,, but using p(z, ) instead of p(z, ap) (since m(X, a,) =0
a.s.-X under the local alternative).
Next, by Assumption (1) under the local alternative, we have: for any t,, € T,,

0.5 <@n(a§<tn)) - @n(af)) =tn {Zn(an) + <u2,@ff - an>} + %ti + 0P, 4 ([rn(tn)]_l)- (C.3)

By Assumption [3.5((ii)

8() — dao) — LD [0 _ ag]| = o203,

sup dor

OéENon

and assumption aff € Ny, wpal-P, ze, and the fact that ¢(all) — ¢(ap) = 0, following the same
calculations as those in Step 1 of the proof of Theorem we have:

R

(up, @5 — o) = op, 4o (n71/2).
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Since o, = ag + d,A\,, € Ny, with %[An] = (v}, Ay) = Ky, we have:

n?

dnkn

V5] sa

dpkn

w3l sa

(un, @y — o) = (uy;, Gy — @) +0p, 4 (n71/?) = + 0, 4o (071/2).

Therefore, by choosing t,, = —(Zy,(ot,)—&25-) B! in {i with [r, (t,)] " = max{t2, t,n "2 o(n=1)}

~ Tvallsa
(which is a valid choice), we obtain:

IN

0.5 (Qu(@n) = Qul@) < 05 (Qui@k(ta)) ~ Qui@)) + o, e (1)
_ 1 <(Z”(O‘") ~ fi
2 VB,

| > ¢ > 0 for all n, it follows that B,, > ¢ > 0 eventually,

) 2
) + 0P, oo ([ra(tn)] ™)
|

1 <(Zn(a"> — [

By our assumption and the fact that ||u
S0

05 (Qul@n) = Q@) < =5 | =

) 2
) X (1+o0p, o (1)) .

STEP 2. On the other hand, suppose there exists a ¢}, such that (a) ¢(an(t))) = ¢(ao),
an(ty) € Apmy, and (b) t, = (Zn(an) durn ) (|ly% )72 4 0P, 400 (n~1/2). Substituting this into

 Twillsa

with [, (t5)] 71 = max{(t*)?, t:n"'/2 o(n=1)}, we obtain:
0.5 (Qu(@n) = Qu(@l!)) 2 05 (Qu(@n) ~ Qu(@n(t1))) — o, o (n™)
= )2 4 op, e ()]

2
) (sl ™ + 0p, zoo ([ra(ti)] )

B, dpkn
— 2 T(er) —
g (Bnlen) = T

dnk 2
-5 ( ||vn||sd> X (1 —|—OPTL,Z°O(1))

[z

where the second line follows from equation (C.2)). Finally, we observe that point (a) follows from
Lemma with r = 0, which is of order n=1/2||v}|| and thus a valid choice. Point (b) follows
by analogous calculations to those in Step 3 of the proof of Theorem [£.3] except that now with
a(t5) = an + thus,

dé(a)

* |2
~ « ||V
0) 5 o 11 5]

lonllsa

HU*HndH”:LHsd + <(Zn(an) -
nlils

p(a(ty)) — ¢lan) = + 07, 7o (02U )

dpkn

V7] sa

dnk

= —~Zn(on)||vy]lsa +

)Ilv2|!§d> ol ?

103117 ) {10 |sa
+0p, oo (02 03]])

= 0P, oo (02| [3]])

where the second line follows from equation (C.2)) and some straightforward algebra.
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STEP 3. Finally, the above calculations and k,, = k (1 + o(1)) imply that

dpk (1+0(1

40P  (Qu(@f) = Qul@n) = (Zutern) - Y 1 or,eW). (O

V3]s
For Result (1), equation (C.4) with d,, = n="/2||v}||sq implies that
" — 2
llupl[? x QLR (¢0) = (VnZn(etn) — K (1 +0(1)))" x (L +0p, 4o (1)) = xi(K%),

which is due to \/nZy(a,) = N(0,1) under the local alternatives.
For Result (2), equation (C.4) with \/ﬁuﬂﬁ — oo implies that

2
[uil[2 % OLR, (d) — (ﬁmm—ﬁW) < (14 0p, (1)
dori (14 o(1))

_ (opn,zoo(l) —n )2 X (14 0p, 4o (1)),

07 ]sa

where the second line is due to v/nZ,(a,) = N(0, 1) under the local alternatives. Since \/ﬁw —

||vn||5d
oo (or —o0) if K > 0 (or k < 0), we have that lim, (||UZ||2 X QLRn(qf)o)) = o0 in probability
(under the alternative). Q.E.D.

——0
Proof of Proposition|A.1. Recall that QLR,,(¢o) denotes the optimally-weighted SQLR statistic.
By inspection of the proof of Theorem it is easy to see that

lluz][? x QLR,(¢0) = (vVnZn(an) — k) + op, 4o (1)

and

QLR (6) = (f Zon(ctn) ‘,’(j}o"’fd) T op e (1)

for local alternatives of the form described in equation (A.2) with d, = n='/2||v%||sq. Hence,
the distribution of ||u}||? x QLR,,(¢o) is, asympotically close to x?(x?) and the distribution of

AT . - 2 (a2, , 2
QLR, (¢0) is, asympotically close to xi ( nled o )

lwp 113

Observe that ‘|||”"‘|||5‘1 > 1 for all n, and that for a noncentral chi-square, X;Q)(r), Pr(X;%(r) <1t)is

decreasing in the noncentrality parameter r for each ¢; thus Pr(xzz,(rl) > 1) > Pr(xg(rg) > t) for
ry > ro. Therefore, the previous results imply that, for any ¢,

Tim Pz ([lsll? x QLR,(60) = t) = Pr(d (x2) = 1)

Slimianr( ( T(L)Sd 2 >
n—0o0 TL

= linr_1>inf P, 7o (QLRH(QZ) ) >t

Q.E.D.
Proof of Theorem The proof of Result (1) is similar to that of Theorem so we only
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present a sketch here. By assumptions [3.6(i) and [Boot.3(i) under local alternative, it follows that

5 (@f(afﬂ—%’flff““)) - éi?(aﬁﬁ))

Bn
79 Y 791 (. ))2 B
n n
w— 2 w—
where r; ! = max (—W) , ’—W n~1/2, o(n_l)} = OPyoo g0 (n™Y), wpal(Pp ze) un-

der assumption [Boot.3(i)(ii) with «,, (instead of «y).
By similar calculatlons to those in the proof of Result (1) of Theorem (equation (B.23))),

Vvn(ul, aRB Q) = OPy oo 700 (1), wpal(Py, ze),

i.e., the restricted bootstrap estimator altB centers at Qn, regardless of the local alternative. Thus

aRB

(U, — o) = (u, @R —an) + (uh, an — ) = (ug, E)‘\n*0‘71>+01Dv°0|zc>o (n_1/2), wpal(Py ze).

This result and equation 1D (ie., Zn(an) + (up, Gn — 0n) = 0p, oo (n=/2)) imply that

0.5 (@,’? <a§’B<—Z°’i;ffy”)>) - Qf <aff’B>>

=B ) + -y + B o ), wpt(Pze)

. _Z%_;;;W{Zorjl(an) +0p, oo (WY} + W + 0Pyoo 700 (T ), wPal (P, z)
_ _W % (14 08y o (1) wPal(Py ).

Following the proof of Result (1) of Theorem step 3 with Z¥~!(a,) replacing Z¥~1, we
obtain:
_——B ~ wel
QLR (b) (-2 (e
O'2 T /B

w
This shows that, since for the bootstrap SQLR the “null hypothesis is ¢(a) = ¢, = d(Qn)”, it
always centers correctly.

2
)) ( +0on0|200(1)> = OPyoo o0 (1), wpal(Py z).

w—1 2
\/ﬁZn (an)
owr/BY

2
is asymptotically (and wpal(P, z=)) equal to the law of (ﬁ) where Z ~ N(0,1). This implies

N

By similar calculations to those in the proof of Result (2) of Theorem the law of

that the a-th quantile of the distribution of M, ¢n(a), is uniformly bounded wpal(P, z).
Also, following the proof of Result (2) of Theorem [5.3] we obtain:

LR —_—
sup | Pyoo| zo0 QUQM)) St|Z% ]| = Pgeo (QLRn(%) <t] Ho) = OPyoo oo (1) wpal(Fp zo).

teR w
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This and Theorem (and the fact that ||u}]| < ¢ < o0) immediately imply Results (2).
Q.E.D.

Proof of Theorem The proof is analogous to that of Theorems and so we only
present a sketch here.

Under our assumptions, Theorem still holds under the local alternatives a,. Observe that,
with a,, = ag + dp A, € Nosn and dy, = o(1),

= @) —do_ m@) =t L gy

an\lnsd V7 ]sa

= Vn{uy, @n — ag) X (14 0p, 40 (1)) + 0P, 40 (1)

_ (—\/ﬁzmn) n ﬁd‘”“”) % (14 0p, (1)) + 0, o (1),

V7 ]sa

where the second line follows from assumption the third line follows from equation (C.2)), and
VnZy(e,) = N(0,1) under the local alternatives (i.e., assumption [3.6{ii) under the alternatives).
For Result (1), under local alternatives with d,, = n~2||v}||sq We have:

To = — (VnZn(an) — £ (14 0(1))) x (1+ 0p, 4o (1)) + 0P, 4o (1), and Wy, = (To)* = x3(k?).

For Result (2), under local alternatives with /n—%— o — 00 we have:

7l

dpk (140

2
= (Th)* = (Opn,zoo (1) —v/n (1))> X (14 0p, 4o (1))+0p, 4o (1) = 00 in probability.

0515
Q.E.D.

Proof of Theorem |A.4] For Result (1), followmg the proofs of Theorems [5.2(1) and [A.2] we
have: under local alternatlves o, defined in , for j =1,2,

. Zw—l(
B __ n
Win

= - —I-OP
V00| Zo0
Uw\/
an)

By similar calculations to those in the proof of Theorem ( ), the law of f \/T is asymp-

(1) wpal(Py zoo).

totically (and wpal(P, z~)) equal to the law of Z ~ N(0,1). Then under the local alternatives
Qp,

up (ono|zoo (an <t Zn) _ Py <Wn < t)‘ = 0Py e (1) wpal (Prz=),  (C.5)
€

where lim,,_,oo Pz (Wn < t) = ®(t) (i.e., the standard normal cdf). Thus the a-th quantile of the

. \2
distribution of (an) , ¢jm(a), is uniformly bounded wpal(P,, z).
For Result (2a), by Theorem 2), Result (1) (i.e., equation (C.5))) and the continuous
mapping theorem, we have:

Pn,Zoo (an/c\]m(l—T) PVoo‘Zoo (( ) >Cjn 1—7') |Zn>

= Pr (X%(RQ) > Cin(l— )) Pr ( >cin(l— T)) + OPyoo| go0 (1) wpal(Py, z).
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Thus by the definition of ¢; (1 — 7) we obtain:
Py g0 Wn >¢in(l—71)) =7+Pr (X%(ﬁ) > Cin(1— T))—Pr (X% > Cin(1— T))—i—OpVoo‘ZOO (1) wpal(Py, zo).

Result (2b) directly follows from Theorem (2), equation ((C.5)) and the continuous mapping
theorem. Q.E.D.

C.3 Proofs for Section on asymptotic theory under increasing dimension
of ¢

Lemma C.1. Let Assumption (iv) hold. Then: there exist positive finite constants c,C such
that
Cz[d(n) < ]D)121 < Cz[d(n)v

where Ly is the d(n) x d(n) identity and for matrices A < B means that B — A is positive
semi-definite.

Proof of Lemma By Assumption iv), the eigenvalues of ¥o(z) and 3(z) are bounded
away from zero and infinity uniformly in x. Therefore, for any matrix A,

AL H2)Zo(2) 27 H(z)A > dA'S () A
and
AY N (2)8(2)2 " Hz)A < DA'S Hx)A

for some finite constant 0 < d < D < oo, and for all z (for matrices A < B means that B — A is

positive semi-definite). Taking expectations at both sides and choosing A" = W[v;]’ , these

displays imply that
Qscl,n > dQn and Qsd,n < DQn

Thus
D2 = QY2 010,907 > a{Ql2 0102y > 22 sl o2 = &Py,

n sd,n""n n sd,n sd,n""n sd,n sd,n""sd,n"“sdn

Similarly, D2 < D?Iy,,. Q.E.D.
Lemma C.2. Let ;Y = {t ¢ R*™ : ||t||. < M,n~'/2\/d(n)}. Then:

HQ_l/2ZnHe =Op <n_1/2 d(n)) and Q_ 1?7, € TM wpal.

sd,n sd,n

Proof of Lemma|C.2, Let Q;dlﬂ/fzn =n"1Y " | Cin where Gy, € R ™) Observe that E[CinCl,] =
Iy(n)- Tt follows that

sd,n sd,n sd,n n-“sdn

Bpl( Q0 Zn) () Zn)] = tr { EplQ P 202,012} = 0727 tr { EplGinGiul} = n~'d(n),
i=1

and thus the desired result follows by the Markov inequality. Q.E.D.

Lemma C.3. Let Conditions for Lemma and Assumption hold. Denote ¥, = /sn(1 +
bn) + ayn. Then:
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(1) HQsd17/12 <Vn ) an —Qp }H = OP \/ 'Yn = OP 1/2)
(2) further let Assumption[A.4 hold. Then
|20 l24Z0 + 6(@n) — dlao)}]| = op(n12).
Proof of Lemma For Result (1), note that |[t||? = Zﬁq) |t:|* and if we obtain |t;| = Op(F»)
for 7, uniformly over [, then |[t||> = Op(d(n)72).

The rest of the proof follows closely the proof of Theorem so we only present the main steps.
By definition of the approximate PSMD estimator &,, and Assumption (i),

sd,n

1
0 <0, (Zn + (v, @0 — a0)) + 5Bt +Op(r ().

We now choose t = /spe where e € {(1,0,...,0),(0,1,0,...,0),...,(0,...,1)}, it is easy to see that
this t € ’7;1M , and thus the display above implies

1/2
sd,n

0<eQ /" (Zy+ vy, an — ) + Op(Fn).

By changing the sign of ¢, it follows that

e (Z + (v, A — a()))] = Op(Fn).

sd,n

Observe that the RHS holds uniformly over e, thus, since e € {(1,0,...,0),(0,1,0,...,0),...,(0,..., 1)},
it follows that

|05l (2o + (36— a0)) | = Op(Vln)in) = op(nY2),

where the second equal sign is due to Assumption [A.3{ii).
For Result (2). In view of Result (1), it suffices to show that

|2cif0(@n) - éa0) = (vil.Gn — a)}|| = or(n™2).

Following the proof of Theorem [4.1] we have:

B I R e < L
Since Assumption [A.2[(ii)(iii) (with ¢ = 0) implies that
Jo2 0@ - o(00) - 22205, — o] + 40 g, —cul}| ~Onea)

the desired result now follows from Assumption [A.2(iv) of ¢, = o(n~'/?). Q.E.D.

Proof of Theorem E Throughout the proof let W,, = n(¢(a,) — ¢(a0))’§2;d17n(¢(62n) — ¢(ap)).
By Lemma [C.3(2),

Ty = (¢(@n) — d(a0) + Zn)' Q. (4(@n) — d(0) + Zn) = op(n).
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Observe that

($(@n) — d(0)) U (B(@n) — d(0)) — (Z0) Ut (Z1r)]
< Ty + 2/[(6(@n) — d(c0) + Zn)' ) 22l % 11920122

sd,n sd,n

= op(n™Y) + 2/[(6(Gn) — 3(a0) + Zn)' Uy Llle X |12 1 Znlle = 0p(n™) + 0p(n~1y/d(n))

sd,n

where the last equality is due to Lemmas and [C.3|2). Therefore we obtain Result (1):

W = (Vi) Ut (VZ) + 0p(y/d(n)) = W, + 0p(/d(n)).

Result (2) follows directly from Result (1) when d(n) = d is fixed and finite.
Result (3) follows from Result (1) and the following property:

En = (2d(n))"Y*(W,, — d(n)) = N(0,1)
where W, = (/nZ,)'Q}, (vV/nZy), or formally,

sup |E[f(Zn)] — E[f(Z)]] = o(1)

feBL1(R)

where Z ~ N(0,1) and BL;1(R) is the space of bounded (by 1) Lipschitz functions from R to R.
By triangle inequality it suffices to show that

sup |E[f(En)] — E[f(&)]] = o(1) (C.6)
feBL1(R)
and
sup |E[f(&)] — E[f(Z)]| = o(1) (C.7)
fe€BL1(R)

where §, = (2d(n))_1/2(zgl(:nl) ZJZ —d(n)) with Z; ~ N(0,1) and independent across j =1, ...,d(n).
We now show that both equations hold.

Equation Let t — vy (t) = min{t't, M} for some M > 0. Observe

E[f(En)] - B[ ((2d(n) 20 (12 Vi Za) — dn)) )|
=| B |1 (a00) 2 (P VZ0) — ) ) = £ (2d(m) ™2 0ar ()20 Za) — d(n) )]

_ / ; Voo (g V/iza) = d(n) | £ (M —dtn)
a {z:nz’Q;d{nz>M} 2d(n) 2d(n)

<2Py ((VAZ0)' O3, (VZ0) > M)

PZoo (dZ)

where the last line follows from the fact that f is bounded by 1. Therefore, by the Markov inequality,
for any e, there exists a M such that the ‘E[f(En)] —-F [f ((2d(n))‘1/2( M (S, sdn fZ )—d(n )))} ‘ <

e for sufficiently large n. A similar result holds if we replace Q;dlf\/ﬁzn by 2, = (Z1, s L))’
with Z; ~ N(0,1) and independent across j = 1,...,d(n). Therefore, in order to show equation
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it suffices to show
sup |E[f (Emn)] = E[f(€mn)]l = o(1)
feBL1(R)
where S, = (2d(n)) "2 (var () /nZn) — d(n)) and Ear = (2d(n)) 2 (var(2,) — d(n).
Since f is uniformly bounded and continuous, it is clear that in order to show the previous
display, it suffices to show that

(2d(n)) ™2 |uar (@ VnZn) = var(Z0)] = 0p(1). (C.8)

It turns out that |var(t) — var(r)| < 2V M|[t — rle, so t — vps(t) is Lipschitz (and uniformly
bounded). So in order to show equation it is sufficient to show that for any J > 0, there exists
a N(0) such that

Pr ((2d(n))—1/2|m—1/2¢ﬁzn — Zle > 5) <6

sd,n

!/
foralln > N(9). Note that Q_l/Qon = le L U (Z;), with U, (2) = (W[V;]Q_lp) p(z, ap),

sd,n fo' sd,n
and that Z,, can be cast as ﬁ Yoy Zni with 2,5 ~ N(O,Id(n)), iid across i = 1, ...,n. Following
the arguments in Section 10.4 of |Pollard (2001), we obtain: for any § > 0,

nd(n)®/?
(‘ > 36) < Vi(n) <u3ﬂ(16\c/l(a):)3 ) ;

3
for any n, where z +— V() (7) = Cxx(1+|log(1/x)|/d(n)) and 3 = E ‘ ] .

" d 5/2 B n
Pr ((Zd( )) 1/2’|Qsd17/l2\/ﬁzn — ZnHe > 5) < yd(n) <(5//;3)’3;(T§;)/2n3/2> = yd(n) <n 1/2d(n) (5/;?‘:);)38> —0

n
o-1/2 1
n sdn % ZZ’NJ
i=1

(M[V ]Qsdlff)/p(z, o)

Therefore,

provided that d(n) = o(v/nug 1) which is assumed in the Theorem Result (3).

Equation |C.7, Observe that &, = (2d(n))_1/2(2?(:nl) Z? —d(n)) with Z; ~ N(0,1) i.i.d. across
j=1,...d(n), E[(Z} —1)] = 0 and E[(Z} — 1)?] = 2. Thus, &, = N(0,1) by a standard CLT.
Q.E.D.

Lemma C.4. Let all conditions for Theorem[A.6(1) hold. Then there exists a t,, (possibly random)
such that: (1) t, € TM wpal, (2) Q,(t,) € AkR(n) ={a € Ay : ¢(a) = ¢o} wpal, and (3)

1| Qu(@n(tn) — Qu(@nlts)] = op(V(m)  where  t; = Du0 ) 2.

Proof of Lemma[C.4} The proof is very similar to Step 3 in the proof of Theorem We choose
as a candidate
= D, P (v, G — o) + Daf, [ cn

sd,n
where {c,, € RU™) . =1,2,3, ...} is a sequence to be determined later, but has the property that
—-1/2
192545, €nlle = Op(cn).

sd,n
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Part (1). By Lemmas [C.1} [C.2] and [C.3] and the choice of t,,, we have:
Italle < Op(v/d(n){Fn +n~"/?}) + Op(cn)
where 3, = v/[sn|(1 + bn) + an = o(n~'/2d(n)~/?) (by assumption (ii)) and ¢, = o(n~1/?)
ﬂ(

(assumption iv)). Thus ||t,||le = Op(y/d(n)n=/?) so t, € TM wpal.

Part (2). We want to show that ¢(ay(t,)) — ¢(ap) = 0 wpal. then under null Hyp : ¢(ap) = ¢o
we obtain a,(t,) € Al | wpal.
Under Assumptionh(i)(ii) and t, € T, wpal, we have:

o2 {6 @t — o000 - 2242V ) — ]}

=Op(cp).

e

Since Gn(tn) = Gn— Vi, LD P (v, G —a) V0L P DR, ey, and Q2D 12 = 0,

n"“sdn sd,n sd,n sd,n sd,n n

the previous display implies that

O (cn) = |01 {6 @(t) = 6(00) = 2018, - au] + (w210 (07, — ) = (v V)0 e |
= Qs_dly/zz {‘b (Qn(tn)) — (o) — dgil(z())[an —ag] + (V;';/, Qn — o) — Cn}

= [zt {6 @atenn - sta0) - 2 e, )~}

e

Therefore, there exists a (F},), such that F, € RY™ ||F,||. = Op(c,) and

Fo = () {6 @nt) = 600) = 22 fan, — ad] - . |

If we set ¢, = (Qsan)/2Fn — 248 (g, — ag], then 10,/ 2enlle < [|Fulle + 195,22 222 [ag, —

aol|le = Op(cy) by Assumption [A.2[iii), so it is indeed a valid choice. From this choice it is easy
to see that ¢ (0 (tn)) — ¢(ap) = 0 wpal, as desired.

Part (3). Recall that &, € Nysp wpal and Qn(tn),@n(t;) € App). Note that |[t,|le =

Op(\/d(n)n=1/2) (by part (1)) and that ||t%|lc = Op(y/d(n)n"'/2) (by Lemmas [C.1] and So
by Assumption [A.3|i),

7 | @u(@n(tn)) = Qu(@n(t;))]

= 0ty — 5) Q2L @y — o) + T} + 050 {8, Bty — (£5) Bt}

+1 % Op(sn + (|[talle + |[Ehlle)an + ([talZ + |6:12)0n)

= nT1 + 0Ty +n % Op(sn + ([[talle + [[t5]le)an + ([l 2+ [1£5]]2)05)-

—1/2
sd,n

—-1/2

sdé Cn, S0, by Lemmas |C.1| and

Observe that t,, — t% = =D, Q_,“{(v¥ a, — ap) + Zn} + D0
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C.3|(1) and Assumption iv),

T3] < 190 22 (vE @ — o) + Zn |2 + |00 2 VE  @n — a0) + Za}|e % |95, cnlle

sd,n Vi sd,n sd,n
=O0p ( (n)32 + \/d(n):yncn> = op(n1).
Regarding T3, by Lemmas [C.1] and [C.3| and the definitions of ¢, and ¢, it follows that
Tal = [(ta — t7) Balts — t1,) + 2(tn — 1) Buty,|
Op((bn + V)l[tn — t5]12) + Op((bn + D)[[tn — th e < [[t5]]e)
op(n™Y) + op(n"12) x Op ( d(n)n—1/2) — op(n~1\/d(n)).

IN

Finally, by the definitions of ¢, and ¢}, and Assumption [A.3(ii) it follows that
-+ 1({tnll+ 12110 )an + (a2 1) = 250+ Op (/&I 201 + dlm)on) = o (/).
Therefore

1| Qo @a(t)) — Qu(@(t2)| = 06 (1) + 0p(V/d) + 0p(+/dm)) = op(+/d(m)

and the desired result follows. Q.E.D.

Proof of Theorem [A.6} The proof is very similar to that of Theorem and we only provide
main steps here.

STEP 1. Similar to Steps 1 and 2 in the proof of Theorem by the definitions of & and @,
and Assumption (i), it follows that for any (possibly random) t € T,M

0.5QLR, (¢0) > 0.5n (Qu(@f) — Qu(@f(1))) — op(1)

—n (VI Zn + (vl GE — o)} + 0.5¢ Byt ) + Op(sun -+ nllt]can + nllt] 2b,).

sd,n

By Assumption [A.2](i)(ii),

- - do(ag)
0,17 [ o(ah) — ota0) 2V i@ o) | | = Op(en).
—_———
=0 .
Hence, by Assumption (iii),
HQsd17/12 Vo aﬁ - Oéo> = OP(Cn)- (Cg)

Since supyy,—1 |t'{Bn — D' }t| = Op(b,) by assumption, we have: t'B,t < [¢'{B, — D,"'}t| +
D1t < |[t]|20p(by) + t'D;; 't uniformly over ¢t € R¥™ with ||t||c = 1. This, Assumption i)
and equation (C.9) together imply that

0.5QLR, (¢0) > —n (t’grl/?zn + 0.51&’1[);115) + Op(snn + nl[t|le (an + ) + n[t]2by).

sd,n

In the above display we let t/ = —Z/ o Y ’D,,, which, by Lemmas |C.1] and [C.2] is an admissi-

n="sdn
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ble choice and ||t||l. = Op <n—1/2 d(n)). Observe that t.Q /%7, = 7' Q- /*D, 0?7, and

n"“sdn n°"sdn sd,n
' D1, = 2/ *D,Q 27, we obtain:

n=“sd,n sd,n

0.5QLE, (¢0) = 0.5(vnQ ] ) Da(ViQ 1 Z) + Op (san + n'/2\/d(0) (an + e0) + d(n)b, )
= 0.5(VQ 1 Z) D (v Qsdiéz )+ op(V/d(n)),

where the last equal sign is due to Assumptions m A.2(iv) and - A3(ii)
STEP 2. Similar to Step 3 in the proof of Theorem 4.3 ., by the deﬁmtlons of @' and @, and the
result that &y, (t,) € A ) (Lemma, with ¢, and ¢} given in Lemma we obtaln

0.5QLR,(¢n) < o.5n(@n<an<tn>>—c§n<an>)+0P<1>
= 050 (Qu(@n(t1)) ~ Qu(@n) ) + op(\/d(n).

This, Assumption |A.3(i)(ii) and the fact that ||¢}||c = Op (n_l/%/d(n)) together imply:

0.5QLR,(¢o) < n(t5) Q)12 + (VE,@n — ag)} + 0.5n(t5) Byt

sd,n
+n x Op(sy + [|t;, Hean + Ht:zHgbn) +op(v/d(n))
= () QT+ (v A — o)t + 0.50(E) Buth, + op(1/d(n)).

sd,n

sd,n

SUP|[¢)j =1 [t {Bn — D, 1}t| = Op(by), it follows

By Lemma [C.3| (given that ¢, = D, '/27, Z,,||t:|le =Op <n_1/2\/d(n))) and the assumption that

0.5QLR, (¢0) < 0.5n(t%) D1 + op ( d(n))
= 05(vRQ ) D (VI ) + 0 (V/d())
STEP 3. The results in steps 1 and 2 together imply that
QLR (60) = (Vi 1P Z0) Du(Vi 11 2) + 0p (V) )
which establishes Result (1).

Result (2) directly follows from Result (1) and the fact that Dy, = Iy0,), Qsan = Qo When
X =2.

Result (3) follows from Result (2), Qsq., = Qo,n When 3 = ¥y, and the following property of
W, = nZ, Q) Z, :

(2d(n))""* (W, = d(n)) = N(0,1),
which has been established in the proof of Theorem Result (3). Q.E.D.
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C.4 Proofs for Section on series LS estimator m and its bootstrap version

Proof of Lemma For Result (1), since

osn

My (Z™) = Pyoo g0 (/svup —ZHm (X, ) — (Xi,oz)—fﬁB(Xi,ao)Hz > M | Z”)

osn

~ ~ ~ 2 M
<Pyoo|goe (i/up —Z Hm (X;,a) —m(X;, o) — {mP (X, ag) — m(Xi,ao)}He > > ] Z")

n
T, ~ ~ . M
+ Pyoo|z00 (ﬁ}lp Zn D (X, @) — m(Xi, @) — (X, a0) |7 > > | Z”)
osn i=1

EMLn(Zn) + ngn(Zn),
we have: for all § > 0, there is a M (§) > 0 such that for all M > M (6),
Pgoo (M, (Z") > 26) < Pgoo (M1n(Z"™) > 0) + Pzeo (Mo n(Z") > 6).

By following the proof of Lemma C.3(ii) of (Chen and Pouzo| (2012a), we have that Pze (M3, (Z") > 0) <
d/2 eventually. Thus, to establish Result (1), it suffices to bound

Pzoe ({M1n(Z™) > 6} N {Amin((P'P)/n) > ¢}) + Pzoe Amin((P'P)/n) < ¢).
By Assumption [A.4{ii)(iii) and theorem 1 in Newey (1997) Apmin((P'P)/n) > ¢ > 0 with probability

Pz~ approaching one, hence Pz (Amin((P'P)/n) < ¢) < d/4 eventually. To bound the term
corresponding to My ,, we note tha@

Z [P (X, @) = (X, @) = {P (X, a0) — 1 (X, a0)} |

= Z AP () P(P'P)~p”(Xi)p” (X:)'(P'P)” P'ACP ()
—AcB< )'P(P'P)”P'ACP(a)

; n—l B Ozl / B a)):
<y A PPAC @)

where ACP(a) = (w1 — D)Ap(Z1, @), ..., (wn — 1)Ap(Zn, @) with Ap(Z,a) = p(Z,a) — p(Z, ag).
It is thus sufficient to show that, for large enough n,

Pgoo (PVOOZOO <sup l’;AgB(a)’PP’AgB(a) > M | Z") > 5) <4, (C.10)
n
which is established in Lemma

For Result (2), recall that £2(z,a) = m(z,a) + m?(z,ap). By similar calculations to those

21To ease the notational burden in the proof, we assume d, = 1; when d, > 1 the same proof steps hold, component
by component.
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in |Ai and Chen| (2003)) (p. 1824) it follows

n
nt Y || (X, a0)|;
=1

~Erye [p" (X)) (P'P)" Py e [0%(00)0” (00) |X"] P(P'P)"p" (X0)]

Epy o

where pB(a) = (pP(V1, ), ..., pP (Vyr, ) with pP(Vi,, ) = wip(Z;, a). Note that
Epy oo [P7 (Vi a0)p” (Vj, a0) | X"] = Epg [wiw; Epy [p(Zi, a0)p(Z5, a0)' | X, X;]]
=0 foralli#j,

and
Epy oo 07 (Viy a0)p" (Vi, ag) | X7] = 02 50 (X,).

So under Assumption [Boot.1] or [Boot.2] and by Assumptions [3.1(iv), and [A.4]ii), we have: for all
d > 0, there is a M(§) > 0 such that for all M > M (J),

(onolzoo (n_le X»L,Oé() ‘ Z M ’ Zn> 2 5) < 0.

To establish Result (2), with (7/,)~! = max{= In 2 (M,6,)?}, it remains to show that

'y Vm,

Pyes (sup > I (X, o) > M) < 6. (C.11)

osn i=1

By Lemma SM.1 of |Chen and Pouzo| (2012b), under Assumptions and [A.5{i), we have: there
are finite constants ¢, ¢’ > 0 such that, for all § > 0, there is a N(9), such that for all n > N(4),

_ IR _
Pz (Va € Nosn © cEpy [|lm (X, ) |2] < EZHm(XZ,a)Hi < dEp, [||m(X,a) Hﬁ]) >1—46.
i=1

Thus to show (C.11]), it suffices to show that

sup 71,y [[I(X, 0)[12] = 0(1).

osn

By Assumption [A.4[(ii) it follows

sup Ep, [Hm(X a)ll: } < const. sup m(a)' P(P'P)~2P'm(«)
a€Nosn Nosn

< const. sup {||(P"P)"P'(m(a) — Pr(a))|[7 + [Im ()2}

< const. sup max{bm gl = a2} = O((7)) ™),

Oéej\/oan

where 7 is chosen as in Assumption iv). The last inequality follows from Assumptions ii) (iil) (iv)
and We thus obtain Result (2).
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For Result (3), we note that
1 n
- Z H XZ) Od H%fl - E Z HES (X’Lv a)||2§71 = Ran(a) + 2R2Bn(a)7
i=1

where

1 n
ZH (Xi,0) = 68 (Xi,0)[[51 , RE,(0) < /RE, 2 167 (O @)l

By Result (1) and Assumption [4.1(iii), we have:

Pyoo (PVooZoo (sup mRE (a) > M | Z”) > 5) <4d

osn

with 7,1 = §2(M,05.,)*C,,. By Results (1) and (2), and Assumption (iii), we have:

Py <PVOOZOO (sup FnRE (a) > M | Z") > 6) <4
NOSTL
with 7,1 = M,,62(M,,05,,)"v/Cp. By Assumption (iii) and the fact that L,, diverges, we obtain
the desired result. Q.FE.D.
In the following we state Lemma and its proof.

Lemma C.5. Let Assumptions [3.4)(i)(ii), [A-4(iii), [A.8(i)(ii) and either [Boot.] or [Boot.q hold.
Then: for all § > 0, there is a M(6) > 0 such that for all M > M(J),

Pyoo (PVOO 700 (sup %A(B () PP'ACB(a) > M | Z”) > 5) < 0.50

osn

eventually, with 7,71 = (8,)% (Myp0s.n)** Cy, where ACE () = (w1—1)Ap(Z1,Q), ..., (Wn—1)Ap(Zn, @)’
and AP(Z a) = p(Za Oé) - p(Z7 Oé())-

Proof of Lemma Denote
M{,(Z™) = Pyoo|z (Sup l’;AgB ()’ PP'ACB(a) > M | Z”) :
osn n

By the Markov inequality

M}, (Z") < M~ Epy oo stup AP () PP'ACE (a)} .

osn

Hence it is sufficient to bound

1 Tn
Pz (M1,(27) 26) < r=Fre stup nzAC%)’PP’AcB(aﬂ
1 & ’
- s g (G B sma)) |
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where the first inequality follows from the law of iterated expectations and the Markov inequality,
and the second equality is due to the notation f;(z,a) = p;j(z){p(z,a) — p(z,a0)}.

Under assumption {(wi = 1)fj(Zi, )}, are independent, and thus, by proposition
A.1.6 in |Van der Vaart and Wellner| (1996) (VdV-W),

n 2
’IZM5 ZEPVOO ﬁfup ( 1/2Z(wi — 1)fj(Zi,O£)>

osn i=1

1/22 - 1)fi(Zi, )

sup

osn

2
+\/E[max sup |n=12(w; — 1) f;(Z;, )| ]) .

,L<n NOSTL

n =
< Ep o
_nM(sz;( Py

The second term in the RHS is bounded above by

osn osn

\/nn‘lEono [(wi = 1)2 sup | f;(Zi, @)°] < \/EPw[(wv: — 1% Epe [AS/UP 1£5(Zi @)*] = O(Mnbs.0)")

by Assumptions [A.4]iii), [A.5|(ii) and Hence, under assumption we need to control

nM(5 Z (EPVM

Under Assumption ((wi — 1) fj(Z;,0)); are not independent. So we need to take some
additional steps to arrive to an equation of the form of (C.12)). Under Assumption it follows

n i n 2
Tn _
i E Ep, |sup (n ! E (wi — 1)fj(Zi;04)>
J=1

Nosn i=1

1/22 - 1 fJ Zl>a)

sup

osn

2
T,
PR (ML Gsn)? ) .
> +O<nM(5( dsm) ) (C.12)

Tn n n 2
Tn _ _
:mZEP\/oo sup <n lzwifj(ziaa) —n 1ij(Zi,Oé)>
=1 i=1 i=1

osn

n 2
ZEPZOOXPZOO ﬁfup< IZ(ézi_Pn)[fj('va)o )

osn i=1

where the last line follows from the fact that w; are the number of times the variable Z; appear on
the bootstrap sample. Thus, the distribution of w;dz, is the same as that of 6, where (Z;); is the

bootstrap sample, i.e., an i.i.d. sample from P, = n~! > i1 0z, By a slight adaptation of lemma
3.6.6 in VAV-W (allowing for square of the norm), it follows

n 2 n 2
Ep,ooxPyo Sup <n_1 > (65 —PIS( a)]) < Epyec |Epgo. | sup (n_l > Nibzlf5( a)]) ,
i=1

osn osn i=1

where N; = N; — N with N; and N; being iid Poisson variables with parameter 0.5 (Pyo is the
corresponding probability). Note that now, {N; [i(Z;,a)}7, are independent. So by proposition
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A.1.6 in VAV-W,

2

~ 2

+ \/E[max sup 1/2Nz'fj(Zz’,a)‘ ]) )
’L n NOSTL

where () = Pz~ X Pyo. By Cauchy-Schwarz inequality, the second term in the RHS is bounded
above by

\/nn‘lEQ[INP/Svup 115(Z, a)]?] < \/EPN[INIZ]EPZ[SHP 115(Z, @)?] = O((Mn6s.0)")

osn osn

by Assumptions (iii) and (ii) and E[|N|?] < co. Therefore, under Assumption we

need to control

E
nM52< @ ifuP

osn

>2+0<n]\j5((M Som)") ) (C.13)

For both equations, (C.12]) and (C.13]), we can invoke lemma 2.9.1 in VdV-W and bound the
leading term in the equations as follows,

n 2N Nifi(Zi,q)
i=1

nM(SZEpVOO sup 1/22 i — 162,115, )}]

T, In o0
<= VP(jw—1] > t). 1/2 ‘
< 2 {/0 P(lw—1] > t)dt} 112%)%Epzoox}>€oo 810112 I~ ;eléz £, )] ] . (C.14)

and

T Jn n 5

75 2 Braw | Ery |sup n7V2 37 Nidz [, ) ”

nMd = NN g

Jn o0 l

n V —1/2
< > S 1 F(- .
‘nMéj;{/o P(|N] _t)dt}lrglag Epj e xPooo Ls& l ;aézl[f]( La)] ] (C.15)

where (&), is a sequence of Rademacher random variables.

Note that {fooo VP(lw—=1| > t)dt} < oo (under Assumption|[Boot.1)), and also {fooo \/P(IN| > t)dt} <
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2v/2 (see VAV-W p. 351). Hence in both cases we need to bound

n [ l ] 2
Tn -
Y7 (1IE?<X Ep,cxpP.oo |sup |l 1/2261522-[]3(304)] )
j=1

Nosn i=1

n B 1 -
T _ —
SR O ) S AT
=1

osn
> 2

1712 Zezaz [, )]

l
712N " 6iEp, [ f5(Z, )

i=1

+ max F su
1<l<n ono ><P oo p

osn

>2
[ Z €illp,[fi(Z, )]

i=1

Tn  ~—
<2 max Ep, . xpo |su
~ nM§ <1<l< PzoexPe [Np
j=

2
) . (C.16)

Tn
2 Ep, oxPoo
nMé < 1<1<z<X ProoxFe !ﬁ/’up
=

osn

Note that

l
72N " 6iEp,[f5(Z, )]
i=1
1~ I/QZ ]

. 2
< sup |Epy [p;(X)Am(X, a)]| < 1/2 Z ei>

osn =1

Eono X P.oo lsup

osn

= sup |Ep, [[j(Z, ]| Ep,«

osn

Ep, [Ip;(X)[2 sup \/ Ep [|Am(X, 0)[2], | Ep.

osn

= O(\/ Ep,[lp;j(X) 2] My6,) = O(M252),

where Am(X, a) = m(X,a) — m(X, ag) and the inequality follows from Cauchy-Schwarz and the
fact that ¢; are independent, and the last two equal signs are due to Assumptions [3.4(i)(ii) and
A 4)(iii).

Hence, by the “desymmetrization lemma” 2.3.6 in VAV-W (note that f;(Z;,«) are centered),
equation is bounded above (up to a constant) by

sup

osn

2
) + (M”(Sn)2 Tan

l
Y Fi(Zise) e

7_ J’IL
~ max | Ep,e
i=1

nM5 — 1<i<n

Note that max {(M,d,)?, (Mndsn)?*} = (Mpdsn)* (by assumption). and that 7, ! = {T” (My,3s.)*" Ch,
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it suffices to show that

i 2
~1/2 F 2%
1%%{(1” lréllaé1 Ep, ag}\lfin <l g 1 f](ZZ,a)> < const. X (Mpdspn)*"Ch,. (C.17)
1=

By [Van der Vaart and Wellner| (1996) theorem 2.14.2, we have (up to some omitted constant),
for all 7,

sup
aeNosn

l
l_l/z Z fj(Zla Oé)

=1

1
< {(Mnés,n)n/o \/1 + log N[] (w(Mn(ss,n)Kagojm || ’ ||L2(fz))dw}

Ep,

where Eojn = {p;(-)(p(-,a) = p(+, a0)) = Elp; () (p(-, @) = p(+; 0)]) : @ € Nosn}-
Given any w > 0, let ({97, 9"} )m=1,...N(w) be the [|.|[12(s,)-norm brackets of Oy If {p(, @) —
p(-;0)} € Ooy belongs to a bracket {g;", g;'}, then, since |pj(z)| < const < oo by Assumption

A i),
G7(2) < pi(X){Ap(Z, )} < g7(2)

(where {g]", g;'} are the original ones, buy scaled by a constant; we keep the same notation to ease
the notational burden) and from the previous calculations it is easy to see that

{9"(2) = Elg,(2)]} < pj(X)Ap(Z, ) = Elp;(X)Ap(Z, )] < {g,"(2) = Elgi"(2)]}-

So functions of the form ({(g;"(2) — Elg;(2)]), (94" (Z) = Elg/"(Z)]) Dm=1,....N(w) form |[[| 12z, )-
norm brackets on &j,. By construction, Npj(w, Eojn, [|-|[22(1,)) < N(w). Hence (up to some omitted
constants)

l
lil/Q Z f](Zh a)

i=1

1
S(Mnés,n)ﬁj:r{l?xt] {/(; \/1 + log Nﬂ(w(M'ﬂds,n)Ha Oon, H ’ HL2(fZ))dw}

< (Mnfss,n)li V Cn7

where the last inequality follows from assumption ii). Notice that the above RHS does not
depend on [ nor on j, so we obtain (C.17)). The desired result follows. Q.E.D.

Proof of Lemma [A 3} Denote

Ep,. | sup

aeNosn

B I~ (I ) N s oy oy L (X a0) 0\ 1By
Tm_sggng( 0 ) SO0 = 13 (TG ) S0 (e
and

1 "~ dm Xi,Oé * ! — w *
T2, = sup |- 3 ((da”[un]) S(X;) B (X, 0) — {25 + (uh 0 — o)}
osn ,[/:1

It suffices to show that for all 6 > 0, there is N(9) such that for all n > N(9),

Ppoe (Pyoogee (VAT > 6| Z) > 6) <6 (C.18)
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and
We first verify equation (C.18] . Note that

din(Xi, ) .. dm(Xia0). .\ & ~1,B
i< |13 (P - ) S0y 0 0)
L= (dm(Xi,00) 1) a1 —1y B
- ——n (X)) - E(X Xi,
e |50 (TG ) 00 S0 CKe)
=T7a + Toty

By Assumption [4.1](iii) and the Cauchy-Schwarz inequality, it follows that, for some C' € (0, cc),

Pges (Pyecze (VT > 6| Z7) > 6) <
2im1
Pz | Pyoojzee | sup
Nosn

+&mpm4ﬁxn<g.

dm(X;,00) dm(X a)
Sl (A

1zn| >0
n

n

Y Xua)ll 5 @0
> =

The second term in the RHS vanishes eventually, so we focus on the first term. It follows

Hdm Xi.00) )01 _ dTX50) ] 2 L s
z 1 do n
Z Veel|Z ﬁflj}i n n;Hn( Zva)”e—\/,ﬁ‘
1 o || dm(X; dm(X; M
<Py Prsige | sup || 13" | P00y A0 o 4= 00| 27| 2056
osn i:l € n

/ n
+ Py | Pyooigoe | sup | 237 6B (Xi,0)|2 > VM | 27| > 0.56
N, n =

osn

By Lemma (2) the second term on the RHS is less than 0.58 eventually (with (7)”' =
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const.(M,0,)?). Regarding the first term, note that

1 || dm(X;, ag) dm(X;, ) n
Vi nZ; e RV
dm( X , Q) dm(X;, a 2 oy
< sup 0200 ) DX ) |
Nasn _ Q e Tn
1 dm( X , Q) dm(X;, a0) > n
+ sup E - n] - d(; [un] X 7_7/
osn i=1 e n
1 || dm(X;, ag) dm(X;, «) > n
< s |3 | PR g - S| Bpor, 1),
osn i=1 €

by the LS projection property and the definition of m, as well as by the Markov inequality and
Assumption [A.6(i). Next, by the Markov inequality and Assumption [A.7(ii), we have:

1 K || dm(X;, ap) dm(X;, a) > In
Py - _— - fu — >0.56
zee | sy ; T un] T Ll RE e
2 dm (X, ap) dm(X,a) | ?
< 5 Ep,e 81;3 T[un] - T[un] . X E —0

Thus, we established that

Pgoo (Pyoojze0 (\/ﬁTf}a > 6| Z") >6) <d eventually.

By similar arguments, Assumptions (iii) and|A.5(iv), LemmalA.2(2), and that L 3% | H M[u

is bounded in probability, it can be shown that
P (Pyoojze (\/ﬁTf}b > 6| 2Z") >0) <6, eventually.
Therefore, we establish equation ((C .

/!
For equation (C.19), let g(X,u ) (W[un]) Y~ 1(X). Then

nH<sup Zg i U ) (X, o) — (up, a0 — ) | +

OS”’l

1
EZ (Xl7un) B(XEO‘O)_Z%
=1

=lnira + Tng'

Thus to show equation (C.19) it suffices to show that \/nT, 74 = 0p, (1) and that
PZOO (PVoo|Zoo (f nllb = >0 ’ Zn) > 5) <9 eVentuaHy (020)
First we consider the term T,,77,. This part of proof is similar to those in |Ai and Chen| (2003),

Ai and Chen| (2007) and |Chen and Pouzo| (2009) for their regular functional X6 case, and hence we
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shall be brief. By the orthogonality properties of the LS projection and the definition of m(X;, a)
and g(X;,u)), we have:

*129 i) (Xi, o) = n 129 i )m(X;, ).

By Cauchy-Schwarz inequality,

Sup Z{g i W n ( iU n)}{m( ) m(XDO‘O)}

OS'/L

osn

1 n
< Z!Ig i» U,) (qun)llﬁifup =~ _lIm(Xi,a) = m(X;, a0)] |2
i=1

By assumption(iii), \/ﬁsupNom =¥ {Hm Xi,a) — m(X;, a0)||? — Epy[|m(X1, @) — m(Xl,ao)Hg]} =
op(1). Thus, since supy,_ Ep[||[m(X1, a) — m(X1, a0)||?] = O(M262), it follows

1o )
sup — 3 [[m(Xi, ) — (X, 0) 12 = Oy (MaBa)® + 0, (07/%))
osn 221

This, Assumption (ii) and 6, = o(n~1/%) (by assumption iv)) imply that

sup

Z{g i W n ( iU n)}{m(XwO‘) (Xi,()dg)}‘

< OPZOO(\/MIL@Z) X Opyoo (\/(Mn5n)2 + 0(n1/2)> = 0pyus (n=1/2)

Therefore,

\/ﬁTnIIa = \/ﬁ sup

osn

+ 0P, (n_1/2).

%Z (X, ut)m(Xi, @) — (', o — o)
=1

0P, (1). Thus, by Assumption |[A.7(iv), we conclude that \/nTy11q = 0p, (1).
Next we consider the term T I - By the orthogonality properties of the LS projection,

By assumption(iv), \/ﬁsupNﬁ}L Yo 9(Xi uh)m(X;, o) — Epy [9(X1, ul){m(X1, a) — m(Xq, ao)H =

_129 i, U n Xz,OdO 129 i, U n Vz,Oéo)

where pP(Vi, ) = winp(Zi, a0) and {w;n};, is independent of {Z;}];.
Hence, by applying the Markov inequality twice, it follows that

Pgoo (Pyosizee (VT D1, > 6| Z7) > 6)

2
< 5_4Eono (Z{g iy W n ( iU n)}p (W,O&o))
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Regarding the cross-products terms where ¢ # j, note that

Brye [{9(X,3) = 30X, ui) Ho(Xi, u3) = 56 w3)}p” (Vi 00)pP (V5 00)]
=Epye ({90, u5) = 5, up) Ho (X 07) = G003 By o [07 (Vi a0)pP (Vi 0) | X7 |

=Epyee [{9(X;,0) = G0 05) Ho (X 15) = (X3 03) By e e 030011 X7] By e [0(Zis 00)p( 255 00) | X7
=0,

since EPZ°°|X°° [p(Zi,Oéo)p(Zj,Oco) ‘ Xn] = EPZ\X [p(Zi,Oco)Xi] EPZ\X [,O(Zj,a()) ’ Xj] =0 for 4 7é j
Thus, it suffices to study

64 Ep, o

_IZ Xisu n (Xl7un)) (B(Vi>a0))2]
- *ZEPVOO[ (Xiu3) = X5, u3)? By |(@ip(Zin00))” | X7 |

By the original-sample {Z;}!" ; being i.i.d., {win,};_, being independent of {Z;};";, Assumption
3.1(iv) and the fact that 0> < oo, we can majorize the previous expression (up to an omitted
constant) by

64 Bpyee [(9(Xi03) = 50X, u3))*] = o(1),
where the last equality is due to Assumption (ii). Hence we established equation (C.20). The
desired result now follows. Q.FE.D.

Proof of Lemma By the Cauchy-Schwarz inequality and Assumption [4.1(iii), it suffices to
show that

|| 2 (X, a) ? < 2
Pgoo | Pyoojzee | sup n—lz T[u;,uﬁb] sup ,|n—! Z B(X;, )| >61Z" | >4 | <é.
osn =1 € osn F—
By Lemma [A.2{2), it suffices to show that
d*>m(X;, «) 2 1)
Pooo ? * 0% > )
7\ “daz Ml 20z, ) <

Using Markov inequality twice and the LS projection properties, the LHS of the previous equation
can be bounded above by

M2652 (X, ), | 1 m2s2 d>m(X, ) 2
55 Erx Sup oz s un = 55 Erx Sup aor [Uns tn] ) <6

eventually, which is satisfied given Assumption [A.7(iii). The desired result follows. Q.E.D.
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Proof of Lemma For Result (1), we first want to show that

dm(X;, o), 2 dm(X;, o0); o 2
sup {HZ)[un] - H(’())[un] } S Tog+ Togr +Togrr = opye (1)
Noen »-1 »-1
(C.21)
where )
1 — dm(X;, o), dm(X;, « y
T, = sup |13 H’)w e T
osn n i=1 - ¥-1
1 & dm(X;, N dm(X;, « N 2
Toar=|— H (dz O)[ n] R HZO)[Un] R } 5
n i=1 . x- x-t
1< dm(X;, o . dm(X;, a . 2
Torrr=|— H (dl 0)[ " - H(ZO)[%] .
i @ =
Therefore, to prove equation (C.21]), it suffices to show that
T,; = op,(1) for j € {I,1I,1IT}.
Note that for || - [|;2(p,) with P, being the empirical measure, H]aH%Q( HbHL2 (Po) | < la—

W[U:ﬂ and b = M[u

a In order to show
e}

bHQLQ(Pn) + 2[{b,a — b>L2(pn)]. Now, let a =
Tn,1 = 0p,e (1), under Assumption (iii), it suffices to show

nl-

din(X;, a0), ,-|I7 dm(X;, ) dm(X;,a0) . |7
" Z I\ Z T ] = T )| = omy (1)
By the property of LS projection, we have:
dm(X;, ap) ? dm(X;, ap) 2
* ) * =0 (1
| Tl < | TR ] = 0re )
2
due to iid data, Markov inequality, the definition of Ep, [Hdmx&o)[ 1 1] and Assumption
( v). Next, by the property of LS projection, we have:
dm(X;, a) dm(X;, ap) ?
—1 ) * ) *
ﬁili” Zz; T da [up] — T da [un) .
dm(Xs,a), . dm(Xi, o), o |17
< S ] - — e T = 1
< ﬁjg” T Lunl T Lun] ) 0Pze (1)

due to iid data, Markov inequality and Assumption (ii). Thus we established T}, 1 = op,.. (1).
By similar algebra as before, in order to show T}, ;1 = op,.. (1), given Assumption (iii), it
suffices to show

dm(Xi, a0) g dm(Xi, ao) ]

dm(X’La CK()) [ ]
do n do n

do

(7]

€

= 0Py (1).
e
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n)

2
= Op, (1) is due to iid data, Markov inequality, the definition

The term n~ ' >0, H dm( X“O‘O) [u
e

do

0p, (1) is due to iid data, Markov inequality and Assumption ( ). Thus T, 11 = 0p,e (1).

2
H dm(Xi00) [ I” = Op,ee (1) and

2
of Eono |:H dm(XhOCO) [un] o

dm(X;,a dm/(X;,a * 2
1] and Assumption|3. (1v) The termn =1 Y1 | HM[UH] %[UH]

67
€

Finally, T, 111 = 0p, (1) follows from the fact that nil Yoy
Assumption (111) We thus established equation (C.21)). Since

n
n )

=1

dm(Xla Oé(])

~280 )| | = By [ u) B(X)g(X, )] £ C < o0,

Ep,
»-1

we obtain Result (1).
Result (2) immediately follows from equation (C.21)) and Assumption Bl Q.E.D.
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D Supplement: Sieve Score Statistic and Score Bootstrap

In the main text we present the sieve Wald, SQLR statistics and their bootstrap versions. Here
we consider sieve score (or LM) statistic and its bootstrap version. Both the sieve score test and
score bootstrap only require to compute the original-sample restricted PSMD estimator of «g, and
hence are computationally attractive.

Recall that a is the original-sample restricted PSMD estlmator (4.10). Let v*R be computed
in the same way as v in Subsection [4.2 u except that we use alf instead of @,,. And

" _ " dfl\’L(XZ,an e ' ~ AR\ — dm(X’Laaﬁ) ~k
11 o = 3 (P 5 ) Sz alotznaty s (PG g
=1

Denote
. 1 (X, aB) g i -
5, = =3 (TS R ) B (6
1=1
. 1 = [dm(X;,aly . /
Sin = nZ(W[vZR/Hv;:RHn,sdJ) =02 67)
=1
and
~ 1 & (dn(X;,aR) _n P Ry o
58 = =Y (P e ) S (G - X E)
=1
. 1 & (dn(X;,aR) "o _
Sth = ﬁZ(dl " [vnR/anRHn,sd]) = {(win — Do(Zial)).
=1
Then

o2 iy (MO (5 ) S (2, (2, GRS (P )

nl [0

Var (§1Bm | Z”)
n,sd

= 0o

which coincides with that of :9\1,,1 (once adjusted by o2).
Following the results in Subsectionone can compute 7 in closed form, 7% = *(") () D1,

where

ak = - m laag Tk(n / /A m laO‘ n
Fum g, B, =y (PSS ey ) s (SRS gy,
=1

And |[o:F| 2 F' D;Y0,D;'F,, with

nsd_

~ & m Z’,aR - ’ ,/\, A~ N - m lvafr]z% Tk(n)( \/
G = 3 (TS ) £z el S (TS 1)
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Therefore, the bootstrap sieve score statistic S ', can be expressed as
~ 1 o (din( X, @8) _p "o _
St = ﬁZ((d; ")[vnR/uvnRHn,sd1) ! win — Dp(Zi&F)
i=1
o)~ g~ o~ o \TL/2 1 — de,a ' ~
= (FD.1BuD ) 7Dy \fZ< : >[w’“<"<>]> 7 (win = Dp(Z61).

For the case of IID weights, this expression is similar to that proposed in Kline and Santos| (2012)
for parametric models, which suggests the potential higher order refinements of the bootstrap sieve

)\ 2
score test (an> . We leave it to future research for bootstrap refinement.

In the rest of this section, to simplify presentation, we assume that m(z,«) is a series LS
estimator (2.5)) of m(z, ). Then we have:

P (z,af) — m(z,af) = [ D (win — Dp(Z;, ap™(X;) | (P'P) p' ().
j=1

When & = I then we have:

n

5, ;ﬁ > (AP0 557 (222 = B

a 1 " d’l/ﬁ(X, aR) o~k ~k ,
S’f = % Z (d;n[vnR/anRHn,sd] (Wi,n - 1)[)(217 ) Sl ne
i=1
Let {e,}52, and {(,}22 be real valued positive sequences such that €, = o(1) and ¢, = o(1).

Assumption D.1. (i) max{e,,n 4} M,6, = o(n=/?)

2

= Op, (max{n™"2, 2});

n

dm(X;, a) dm(X;, a)

_1 o
do [u] do

sup sup n
Nosn ueV,, : ||u||=1 i=1

[u]

(ii) there is a continuous mapping ¥ : Ry — Ry such that max{Y((,),n~ 4} M,6, = o(n=1/?)
and

dm(X;, o). ||

dm(X;, o), _
o Sup ¥[“n] — g || = Opye (max{n Y2 (0(G)*D);
Nosn V. [Jug,—ul|<Cn @ e
(i) [T — up|] = Opyje (Gn) where Wt =T 1 /|[037 | sa-

Assumption (1) can be obtained by similar conditions to those imposed in |Ai and Chen

(2003). Assumption (ii) can be established by controlling the entropy, as in VdV-W Chapter
2

2.11 and E [Hdm(“ ] — W[U]HE] = 0(1) for all ||u% — ul| < Cu; this result is akin to that

in lemma 1 of |Chen et al.| (2003). However, Assumption (ii) can also be obtained by weaker
conditions, yielding a (Y(¢,))” that is slower than O(n~/?) prov1ded that Y (Cy) Mo, = o(n=1/?).
In the proof we show that ||@%E—u|| = 0p,. (1); faster rates of convergence will relax the conditions
needed to show part (ii).
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Theorem D.1. Let &R be the restricted PSMD estimator 44. Z]), and conditions for Lemma

and Proposition |B. ] E 1| hold. Let Assumptions m - . IE(M) . l and- 1| hold and that

né2 (M, 55 7)) C, = 0(1). Then, under the null hypothesis of ¢(cn) = ¢o,

(1) 8, = /Ny + 0p e (1) = N(0,1).

(2) Further, if conditions for Lemma and Assumptions |Boot.|(ii), |Boot. 1| or |Boot.Z hold,
then:

| Ly (0185 1 27) = £(80)| = op,e(1),  and

SUp | Pyoc | 700 (05188 < #127) — Py (S, < t)( — OBy e (1) wpal(Pye).
teR

Proof of Theorem [D.1} We first note that by Lemmas ?? and Assumptions [3.6{i) and
i) hold. Also, by Proposition we have &ﬁ € Nysn wpal under the null hypothesis of
d(ap) = ¢o. Under the null hypothesis, and Assumption we also have (see Step 1 in the proof
of Theorem [4.3]):
Viluy, @y — ag) = ope (1)

For Result (1), we show that S, is asymptotically standard normal under the null hypothesis
in two steps.

STEP 1. We first show that k|

wR = 52R/||0:B||sq and U is computed in the same way as that in Subsection [4.2 H except that
~R

~*R A~
W_l = 0p,ee (1) and |[uiR

= 0p,o (1), where

instead of ay,.
%& — 1) = 0p,o (1) can be established in the same way as that of Theorem 4 . . Also,
following the proof of Theorem [4.2 - , we obtain:

We use o,

~R * ~R ~*R
Un' — Un o5l (v, — 05" 0)
= 0p,e (1) =0p, (1), sup |;—r——m| = 0P, (1).
vzl S | P U e, vl R ’
Thi d A Iv th i) | d [fendili—vn) | _ llvzllsa
is and Assumption [3.1(iv) imply that ”A*RH 0Py (1) an i TR
0P,o0 (1). Therefore,
Hv;leid _ 1’ < <6ZR7%\ZR_U:L> <U7>;a@\;klR _’U:;> = op (1)
~ — A~ A - oo *
1575134 15551124 153713 ’
and
va,;%HSd _ 1’ — OPZOO (1)
lsa
Thus
%\*R ¥ @*R v¥
0 -l = |~ ] = [ o (1) -
v 1057 sa [[vhllsa o7 ]sa ? V7 ]sa
~*R * ~R
Un  — Up HU ||
= 7= || T 0Pz = 0pyee (1).
| e ) = o 0
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STEP 2. We show that under the null hypothesis,
. 1 & (dm(X;,00) . ) -1
Vn — do
By Step 1, it suffices to show that under the null hypothesis,

_ dm Xz,Oé ) ~xR s—1 i ) &R — Jn op
—fZ< [ar, ]) ST X)X, Gr) = VLn + 0, (1)

Recall that ¢, (z, o) = m(z, ap) + m(z, o). We have:

fg(dm )[a:ﬁ])/% X)) (X:, )

2

dm(X;, al)

n
7o n=t > [A(X, GE) — (X, a1,

€ i=1

SOPZOO (1)\/5 n~t Z

=1

(3]

where the Op,o (1) is due to Assumption [4.1fiii). By Lemma [A.2(1) and the assumption that
n62(Mpds.n)**Cyp, = o(1), we have:

n 1ZHm ) = ba(Xi, @2 = opye (n7?).

= 1 by Step 1. Therefore

e

Also n™ 137 H dim X“a") [ﬁ*R]

o LS8 o s ooy a4
sn—ﬁ;< @) £00) 0G0 + op, (1),

Assumption ( ) implies that

: = Op o (max {n_1/2, Ei})

e

XZ)a A*R] - dm(X’Laarlz%) [a*R]
do "

And n7tY 0, Hﬁn(Xi,&ff)Hi = Opyeo (My6,)?) by Lemma (2) These results, Assumption
D.1]i) and Assumption [4.1fiii) together lead to

= m Zvag ~ /A

_ \}ﬁzﬂ; <W[ﬂ;fﬂ) S(X:) " Un( X, &5 + 0p (1)
- m(X;, al '

= a2 (PR SO0 KAl o 1)

where the second equality is due to ||U;F —u}|| = Op,e. (¢,) (Assumption (iii)) and Assumption

124



[D.1ii).
Since af € N,sn, wpal under the null hypothesis, /n(u}, 3% —ag) = 0p, (1), and by analogous
calculations to those in the proof of Lemma we obtain:

S (dm(Xg a8 L _ .
\};LZ (Cl(fa)[uno S(X) (X0, @) = ViZo + 0py (1),
=1

and hence equation holds. By Assumption [3.6{ii) we have: S, = N(0,1) under the null
hypothesis.

For Result (2), we now show that §f also converges weakly (in the sense of Bootstrap Section
to a standard normal under the null hypothesis. It suffices to show that

58 = =3 (] ) S 00) (i 00) + 0y (1) wpal (P (D2)
=1

Note that EE(X,L, &ff)—ﬁn(Xl aR)) = ’I/?\’LB(X,L', Oéo)—’r/fL(Xi, Oéo), and that n_l Z?:l HT/T\LB (XZ, Oto)—

n
m(X;, ao)||? = OPyco| oo (Jn /1) wpal(Pzo<) (see the proof of Lemma A.2). We have, by calculations
similar to Step 2,

. 1 & (dm(X;,a8) _ . .
sf—ﬁ;( 1)) 20 X0 ) — (X0 )| = 0y (1) wpal (P,

By analogous calculations to those in the proof of Lemma we obtain equation . This
and Result (1) and Assumption (ii) now imply that under the null and conditional on the
data, o, 1§f is also asymptotically standard normally distributed. The last part of Result (2) can
be established in the same way as that of Theorem (1), and is omitted. Q.E.D.
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