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Abstract

This paper provides a comprehensive Monte Carlo comparison of different finite-sample bias-
correction methods for autoregressive processes. We consider situations where the process
is either mildly explosive or has a unit root. The case of highly persistent stationary is also
studied. We compare the empirical performance of the plain OLS estimator with an OLS and
a Cauchy estimator based on recursive demeaning, as well as an estimator based on second
differencing. In addition, we consider three different approaches for bias-correction for the
OLS estimator: (i) bootstrap, (ii) jackknife and (iii) indirect inference. The estimators are
evaluated in terms of bias and root mean squared errors (RMSE) in a variety of practically
relevant settings. Our findings suggest that the indirect inference method clearly performs
best in terms of RMSE for all considered orders of integration. If bias-correction abilities are
solely considered, the jackknife works best for stationary and unit root processes. For the
explosive case, the bootstrap and the indirect inference can be recommended. As an empirical
application, we study Asian stock market overvaluation during bubbles and emphasize the
importance of bias-correction for explosive series.
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1 Introduction

Measuring and estimating the persistence of macroeconomic and financial time series is a long
standing issue in econometrics. The most common framework for assessing the persistence is
the autoregressive model. But, a major practical problem is the inherent bias of the conven-
tional OLS estimator. Its bias increases amongst two dimensions: a small sample size and a
true autoregressive parameter in the vicinity of unity are disadvantageous. Given a relatively
small sample size, it is a complicated task to estimate the persistence if the process is (i) either
stationary, but highly persistent, (ii) exhibits a unit root or (iii) is mildly explosive. As we argue,
these situations are likely to occur in practice.

In finance and economics, it is a well established fact that most time series are characterized
by high persistence or even stochastic trends, see e.g. Nelson and Plosser (1982) and Schotman
and van Dijk (1991). Another important empirical issue is the instability of parameters, which
is often observed and documented (see e.g. Stock and Watson, 1996). During the past decade,
a literature on structural changes in persistence emerged, see e.g. Chong (2001), Kim (2000),
Harvey et al. (2006) and Leybourne et al. (2007) amongst many others. In order to cope with po-
tential time-variation in the parameters, users often apply the popular rolling window technique.
Under these empirically relevant circumstances, the issue of unbiased and efficient estimation of
persistence becomes particularly important: Typically, a relatively small window size is chosen
in order to capture time-variation.1 If a bubble or a crisis occurs in this particular window, some
financial and economic time series are likely to exhibit explosive behaviour. Leading examples
for time series with at least local explosive roots are stock prices (as caused by bubbles, see
Diba and Grossman, 1988), price-dividend and price-earnings ratios (as caused by a dominant
regime of chartist traders, see Lof, 2012), house and oil prices (due to speculation, see Homm
and Breitung, 2012, Clark and Coggin, 2011 and Shi and Arora, 2012), hyperinflation (due to a
collapse of a country’s monetary system, see Casella, 1989), exchange rates (due to speculation
van Norden, 1996 and Pavlidis et al., 2012) and the US Debt/GDP ratio (due to unsustainable
fiscal policies, see Yoon, 2011) amongst others.

The complicated estimation of autoregressive processes in finite-samples sparked a fruitful area
of research. Kendall (1954), Shaman and Stine (1988), Tjøstheim and Paulsen (1983), Tanaka
(1984) and Abadir (1993) provide analytic derivations of asymptotic expansions which can be
used for bias-correction, see also Abadir (1995) for the context of unit root testing. Approx-
imately median-unbiased estimation is proposed in e.g. Andrews (1993), Andrews and Chen
(1994) and Roy and Fuller (2001). Restricted maximum likelihood estimation is considered in
Cheang and Reinsel (2000). Bootstrap-based bias-correction procedures have been suggested by
e.g. Kilian (1998), Hansen (1999) and Kim (2003). Indirect inference has been put forward in
MacKinnon and Smith (1998) and Gouriéroux et al. (2000). Jackknifing based on Efron (1979) is
recently studied in Chambers (2013). Importantly, we note that the main body of the literature

1Small samples may also arise from a low frequency of recorded data or newly released indexes. In another
situation the researcher might want to split the sample into several parts (due to possible structural breaks) in
order to compare pre- and post break periods.
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focusses on stationary autoregressive models and on the unit root case while the case of (mildly)
explosive behaviour has received less attention.

This work compares the OLS estimator with several approaches to tackle the bias problem. A
very simple way of mitigating the bias is to use recursive demeaning see So and Shin (1999b).
Standard demeaning leads to a correlation between the regressors (lags of the series) and the
error term. Moreover, one can also use the Cauchy estimator (see So and Shin (1999a)) which
is also builds upon a recursive mean adjustment. It is approximately median-unbiased even for
unit root and explosive processes. This property makes it more attractive in comparison to the
analytic median-bias correction proposed in Roy and Fuller (2001) which rules out explosiveness
by construction. We also consider a recently proposed estimator based on second differencing by
Chen and Kuo (2013). Moreover, we study three different principles of bias-correction applied
to the OLS estimator. Amongst these are the bootstrap technique by Kim (2003), the jackknife
approach by Chambers (2013) and the indirect inference method by Phillips et al. (2011), who
propose a technique for autoregressive processes, based on the work of MacKinnon and Smith
(1998) and Gouriéroux et al. (2000). Indirect inference estimators to correct the small sample
bias have a long tradition, e.g. see Gouriéroux et al. (1993) and Smith (1993). In a recent
contribution, Gouriéroux et al. (2010) extend this principle to dynamic panel data models. The
indirect inference estimator allows for explosiveness in addition to highly persistent and unit root
behavior, see also Phillips (2012) for a recent contribution on its limit theory. The finite-sample
properties of recently suggested techniques are not fully explored and a comprehensive compar-
ison has not been conducted yet.

In our Monte Carlo study, we consider small sample sizes, normal and fat-tailed innovations,
ARCH disturbances and misspecification of the autoregressive lag structure. Furthermore, we
also study the case where a linear deterministic trend is included in the autoregressive model.
We evaluate the performance of the estimators by means of bias and root mean squared errors
(RMSE). Our results allow several practical recommendations. For instance, we find that the
indirect inference estimator performs very well in terms of RMSE, irrespective of whether the
series is generated by a stationary process, has a unit root or follows an explosive path. The
recommendations for bias-correction (without considering the variance of estimators) are more
diverse. We distinguish situations where the practitioner (i) can either rule out stationarity or
explosiveness a priori or (ii) aims at using a robust method with balanced performance across
the levels of persistence. Regarding (i), the jackknife is highly recommendable in absence of
explosiveness, while the bootstrap and indirect inference perform very well for explosive series.
Interestingly, these two methods rank second and third for stationary and unit root series which
makes their use advisable in case (ii). Thus, if explosiveness can not be ruled out a priori, boot-
strap and indirect inference are the best robust choices in terms of bias-reduction (given our set
of possible estimators). It is worthwhile to emphasize that the indirect inference estimator has
less computational cost than the bootstrap and that it is the clear winner in terms of RMSE.

We provide an empirical application to Asian stock markets during short periods of explosiveness
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due to the possible presence of bubbles. The results highlight the importance of bias-correction.
We discuss the implications of different estimates for the growth rate of the bubble in terms of
implied overvaluation of the stock markets.

The paper is organized as follows. Section 2 describes the different estimators and bias-correction
techniques. Our simulation results are presented in Section 3. The empirical application is
located in Section 4. Conclusions are drawn in Section 5. Further simulation results and all
codes are available from the authors upon request.

2 Finite-sample bias corrections

2.1 Bias of the OLS estimator

Point of departure is the inherent bias of the OLS estimator in autoregressive models. In order
to illustrate the problem, we simulate the empirical performance of the OLS estimator. We focus
on finite samples and the possibility of mild explosiveness in a simple autoregressive framework:

yt = µ+ ρyt−1 + εt , (1)

where εt is assumed to be a martingale difference sequence. We consider the cases of stationarity
and unit roots, i.e. |ρ| < 1 and ρ = 1, and the case where ρ satisfies ρ = 1 + c/kT , with c > 0

and kT being a sequence tending to infinity such that kT = o(T ) as T →∞. In the latter case,
the autoregressive parameter is local-to-unity in the sense that ρ → 1 as T → ∞. For finite T
(as considered in this work), ρ deviates moderately from unity. Asymptotic theory for this case
is developed in Phillips and Magdalinos (2007).

Figure 1 shows the AR(1) case as in equation (1) for two different sample sizes of T = 25 and
T = 50. The true autoregressive parameter ρ (on the x-axis) ranges from 0.6 to 1.2 which mea-
sures the persistence of the process. For simplicity, we set µ = 0, y0 = 0 and εt

iid∼ N(0, 1). The
bias B(ρ̂, ρ) = ρ̂ − ρ is given on the y-axis, while the true parameter ρ takes values from 0.6
to 1.2 on the x-axis. The bias of the plain OLS estimator is given as a solid line, while other
estimators (OLS estimator with recursive demeaning, Cauchy estimator and an OLS estimator
based on second differencing of yt) are discussed below.

— FIGURE 1 ABOUT HERE —

The results confirms earlier theoretical findings that the OLS bias depends on the true value
of the autoregressive parameter. The smaller the sample size, the more severe is the downward
bias. The vicinity of unity is the region where the bias is strongest. Furthermore, it can be seen
that the bias reduces for explosive processes and approaches zero at some point, but that the
estimation of mildly explosive processes is still heavily biased.2 For other estimators, we observe

2It shall be noted that the problem still persists for higher-order autoregressive models. Further simulation
results are available upon request.
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a much better performance for stationary and unit root models. For instance, the estimator
based on second differencing reduces the bias by a considerable amount. Moreover, the Cauchy
estimator also performs well and notably better than the recursive OLS estimator. For the ex-
plosive case, we have already some interesting preliminary findings: The bias function B(ρ̂, ρ) is
asymmetric with respect to ρ around unity: the OLS bias vanishes faster for explosive models.
After a certain threshold value of ρ, the OLS bias disappears. Clearly, this threshold value de-
pends on the sample size T . Alternative estimators (recursive OLS and Cauchy) are reducing
the bias for moderate deviations from unity and are thus preferable to the plain OLS estimator.
But, for stronger deviations, the choice becomes less clear as the bias function switches its sign
for alternative estimators yielding to an upward bias. For values of ρ, for which B(ρ̂, ρ) ≈ 0,
the OLS estimator is preferable in terms of bias. It shall be noted that the second differencing
estimator appears to be quite risky in the sense that it may lead to a dramatic upward bias once
the time series reaches a certain level of persistence.

Our extensive simulation study in Section 3 takes several important dimensions of bias reduc-
tion into account. Beside a broad comparison of estimators and bias-correction techniques (as
discussed in the following subsections), we consider the uncertainty of not knowing whether the
series is in fact stationary, unit root non-stationary or explosive. In the latter case, it obviously
plays an important role how explosive the series is. As this is ultimately unknown, it is desirable
to use some robust estimator in practice unless one can rule out certain cases by assumption.3

Moreover, we shall take the price of bias reduction in terms of possibly inflated variances into
account by additionally comparing root mean squared errors. We proceed by presenting three
alternative estimators (as shown in Figure 1). Thereafter, we turn our attention to three bias-
correction techniques for the plain OLS estimator. First, a bootstrap method by Kim (2003) is
discussed, followed by a simple Jackknife approach advocated by Chambers and Kyriacou (2013)
and finally, we describe the indirect inference approach used in Phillips et al. (2011).

2.2 Alternative estimators

2.2.1 Recursive mean adjustment

An alternative way to handle the deterministic component µ is to consider recursive mean adjust-
ment, see So and Shin (1999b). OLS estimation of the autoregressive parameters is then applied
to the series ȳt = t−1

∑t
s=1 yt. The ordinary mean adjustment scheme leads to a correlation of

the regressors with the error term which is a source of the bias. By applying a recursive mean
adjustment, this problem is mitigated. Simulation results in So and Shin (1999b) suggest that
the bias and the mean squared error can be improved substantially.4 The resulting estimator is

3One example would be stock prices, where stationarity in the I(0) sense would be very unlikely. For such
series, one may focus on the subset ρ ≥ 1. Of course, there are many time series for which such pre-exclusion of
stationarity is less easily achieved.

4Recursive mean adjustment has also been considered in the field of cointegration, see for instance Born and
Demetrescu (2014).
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labeled as ρ̂R:

ρ̂R =

∑T
t=2(yt − ȳt−1)(yt−1 − ȳt−1)∑T

t=2(yt−1 − ȳt−1)2
. (2)

The plain OLS estimator ρ̂ only differs from ρ̂R by the fact that the OLS estimator uses ȳT
instead of ȳt−1.

2.2.2 Cauchy estimator

The Cauchy estimator, see So and Shin (1999a), build upon ρ̂R as it uses recursive mean adjust-
ment as well. The estimator for an AR(1) process is given by

ρ̂C =

∑T
t=2(yt − ȳt−1)sign(yt−1 − ȳt−1)∑T

t=2 |yt−1 − ȳt−1|
(3)

where sign(xt) = 1 if xt ≥ 0 and sign(xt) = −1 if xt < 0. This estimator can be interpreted as an
instrumental variable estimator where sign(yt−1−ȳt−1) serves as the instrument. Moreover, it can
also be seen as a weighted LS estimator with weights wt = |yt−1 − ȳt−1|−1. This interpretation
is based on the fact that var(yt|yt−1, ...) = σw−1

t . The Cauchy estimator ρ̂C exhibits some nice
properties. It is approximately median-unbiased for all values of ρ whereas the OLS estimator
is median-biased.5 Another important feature is that the estimator is applicable for explosive
autoregressive processes, where ρ > 1. This is in contrast to the approximately median-unbiased
Roy and Fuller (2001) estimator, for example.

2.2.3 Second difference-based estimator

In a recent contribution, Chen and Kuo (2013), suggest an estimator for the autoregressive
parameter in AR(1) processes which is based on the second difference of yt. Their OLS estimator
is based on the following transformed regression model

2∆2yt = ρ∆2yt−1 + ζt,

where ∆2 = (1 − L2) with L denoting the lag operator. The error term ζt is given as ζt =

2∆2yt − ρ∆2yt−1. Importantly, the regressor ∆2yt−1 is uncorrelated with the error ζt. The
estimator for ρ is obtained by applying OLS to the transformed regression model. The resulting
estimator reads

ρ̂SD =
2
∑T

t=2 ∆2yt−1∆2yt∑T
t=2 ∆2y2

t−1

.

The second difference-based estimator ρ̂SD exhibits the asymptotic property that
√
T (ρ̂SD−ρ) is

distributed as a Normal random variable with zero mean and a variance of two for−1 < ρ ≤ 1. As
the authors argue, the estimator is inconsistent for explosive processes as ∆2yt is non-stationary,
but it maintains its properties for mildly explosive processes for which ρ2T /

√
T → 0 holds. In

fact, this only allows for very mild deviations in the direction of explosiveness. Interestingly, the
5An estimator ρ̃ for ρ is said to be median-unbiased if P (ρ̃ ≥ ρ) ≥ 1/2 and P (ρ̃ ≤ ρ) ≥ 1/2.
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simulation results in Chen and Kuo (2013) exclude the mildly explosive case. We note that mean
adjustment does not play a role for this estimator as the constant deterministic term already
vanishes after taking the first difference.

2.3 Bias-correction techniques

2.3.1 Bootstrap bias-corrected estimator

The first bias-correction technique we consider is the bootstrap. Kim (2003) proposes the use
of the bootstrap for a correction of the OLS bias which is analogous to the procedure by Kilian
(1998). This method involves the generation of a large number of pseudo-data sets using the
estimated coefficients and re-sampled residuals. Pseudo-data sets shall resemble the dependence
structure that is present in the original data set. The bias of the OLS estimator can be estimated
as follows: Estimate the model via OLS and obtain the estimates θ̂ = (µ̂, ρ̂)′. Generate a pseudo-
data set {ybt}Tt=1 based on these estimates according to

ybt = µ̂+ ρ̂ybt−1 + ubt ,

where ubt is a random draw with replacement from the OLS residuals {ût}Tt=1. B sets of pseudo-
data are generated. Each pseudo-data set gives a bootstrap parameter estimate θ̂b = (µ̂b, ρ̂b)′ by
estimating the model ybt = µ+ ρybt−1 + vt, b = 1, . . . , B. We obtain the sequence {θ̂b}Bb=1 and the
average bias of θ̂b is estimated as θ̃ − θ̂, where θ̃ is the sample average of {θ̂b}Bi=1, i.e.

θ̃ ≡ 1

B

B∑
b=1

θ̂b .

Using this bootstrap-based estimator for the bias, a bias-correction for θ̂ can be directly obtained
via

θ̂B = θ̂ −
(
θ̃ − θ̂

)
= 2θ̂ − θ̃ .

This estimator computes the OLS estimation bias for a process with parameter values θ̂ and uses
this bias as approximation for the true bias of θ̂. For further details regarding this estimator,
the interested reader is referred to Kim (2003). The validity of the bootstrap procedure for the
explosive case (with finite error variance) is given in Basawa et al. (1989). Datta (1995) shows that
the bootstrap also works for heavy-tailed innovations. The unit root case is treated in Basawa
et al. (1991), Datta (1996) and extended in Inoue and Kilian (2002) to general deterministic
terms and higher-order autoregressive models.6

2.3.2 Jackknife bias-corrected estimators

In general, Bao and Ullah (2007) show that the expected value of the OLS estimator θ̂ = (µ̂, ρ̂)

has the form

E
(
θ̂
)

= θ +
a

T
+O

(
T−2

)
.

6See also Berkowitz and Kilian (2000) for a survey on bootstrap techniques for time series.
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Shaman and Stine (1988) show that a = −(1 + 3ρ) for ρ̂. If the full sample Y is divided into m
sub-samples Yj of same length l, j = 1, . . . ,m, and θ̂j is the OLS estimate for θ in sub-sample
Yj , then the jackknife statistic

θ̂J =

(
T

T − l

)
θ̂ −

(
l

T − l

)
θ̃

where θ̃ = 1
m

∑m
j=1 θ̂

j satisfies E(θ̂J) = θ+O(T−2) and is thus able to reduce the bias. Chambers
(2013) proposes and compares various jackknife techniques to reduce the small sample bias. In
this work we focus on one of the methods in the comparison of Chambers (2013): the non-
overlapping sub-samples jackknife. This estimator has good bias-correction properties without
the considerable increase of the RMSE of higher-order jackknife estimators. The time series is
splitted in m non-overlapping sub-samples,

Yj = (y[(j−1)T/m+1], . . . , y[jT/m])
′, j = 1, . . . ,m.

In the following, we work with m = 2 sub-samples, because the procedure with this particular
choice of m has the best bias-correction properties according to Chambers (2013) (Table 1). This
simplifies the jackknife statistic to

θ̂J = 2θ̂ − θ̃ .

The intuition behind this approach is almost the same as in the bootstrap approach of Kim
(2003). The average bias in the sub-samples is higher because of the smaller sample size and
therefore a bias-reduction is induced. The difference to the bootstrap procedure is that the
average bias is calculated on sub-samples of the true process and not on pseudo-data.7 It should
be noted that the introduced jackknife procedure is only valid as long as the process is stationary,
see Chambers (2013). The unit root case is tackled in Chambers and Kyriacou (2013). To our
best knowledge, the (mildly) explosive case has not been under consideration so far.

2.3.3 Indirect inference bias-corrected estimator

We now turn to a simulation-based estimator relying on the concept of indirect inference. The
following exposition draws heavily from Phillips et al. (2011). The basic idea of this simulation-
based estimator is to consider initially the OLS estimator labeled as ρ̂. Consider a set of simulated
series with AR(1) coefficient equal to some ρ, i.e. {yht (ρ)}Hh=1, h = 1, 2, . . . ,H. H denotes the
total number of available simulation paths.8 For each single h ∈ 1, 2, ...,H, we obtain an OLS
estimate denoted as ρ̂h(ρ). The indirect inference estimator (which belongs to the class of

7We have also experimented with a higher-order non-overlapping sub-samples jackknife estimator, i.e. J(2,3)
in the notation of Chambers (2013). Our results show that a further bias-reduction (in comparison to the simple
jackknife estimator) can be achieved, but that the increase in variance is substantial. Moreover, the simple
jackknife already delivers superb bias-correction. For this reason, we focus on the simple version in the following.

8In order to generate {yht (ρ)}Hh=1, we assume normal errors in the following. Unreported simulation results
suggest that this assumption is not crucial. The performance is nearly unaffected even under skewed and fat-tailed
distributions. Results are available upon request from the authors.
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extremum estimators) is given by

ρ̂IIH = arg min
ρ∈Θ

∥∥∥∥∥ ρ̂− 1

H

H∑
h=1

ρ̂h(ρ)

∥∥∥∥∥ ,
where Θ is a compact parameter space and ‖ · ‖ is a distance metric. For H →∞ one obtains

ρ̂II = arg min
ρ∈Θ

‖ ρ̂− q(ρ) ‖ ,

where q(ρ) = E
(
ρ̂h(ρ)

)
is the so-called binding function. Given invertibility of q, the indirect

inference estimator results as
ρ̂II = q−1(ρ̂) .

So the idea of this estimator is to have a grid of possible true values for ρ and the corresponding
average OLS estimates H−1

∑H
h=1 ρ̂

h(ρ). The estimate ρ̂ is compared to the average OLS esti-
mates. ρ̂II is now the value which leads to the average OLS estimate with the minimal distance
to ρ̂. The finite-sample bias-correction stems from the simulation of q(ρ). Precision is naturally
expected to be increased with rising H, although it can be computationally costly. Nonetheless,
the binding function has to be simulated only once and can thus be applied afterwards with-
out any further simulation or re-sampling. This is a fundamental difference to the bootstrap
approach. Furthermore, the indirect inference estimator is applicable even for mildly explosive
processes, see PWY.

3 Finite-sample properties

3.1 Monte Carlo setup

In this section we investigate the properties of various bias-correction methods via Monte Carlo
simulation. The foci of this analysis are the bias-reduction and the RMSE of these estimators.
The simulation setup is as follows: We consider autoregressive models of the structure

yt = µ+ ρyt−1 + β∆yt−1 + εt

with εt ∼ N(0, σ2).9 The autoregressive parameter ρ measures the persistence of yt and takes
values ρ = {0.85, 0.9, 0.95, 0.99, 1, 1.01, 1.02, 1.03, 1.04, 1.05}. The considered samples sizes are
T = {25, 50}. The degree of explosiveness is mild in our design and corresponds to typical
values in financial applications. The intercept µ is set equal to zero for simplicity.10 Regarding
the initial condition we consider y0 = ε0/

√
1− ρ2 for stationary AR models, i.e. when ρ < 1;

9Additional results for stable distributed errors with fat tails and heteroscedastic errors (via a GARCH(1,1)
structure) are available upon request. In order to save space, these results are not reported. The main insight
from the results for these settings is that the performance of estimators is typically unaffected.

10We have also studied the case where a linear deterministic time trend enters the estimation equation, i.e.

yt = µ+ δt+ ρyt−1 + εt .

The additional estimation uncertainty arising from the inclusion of a linear time trend manifests itself in a rising
bias of the OLS estimator. All procedures are found to perform worse compared to the case where the linear
trend is omitted.
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otherwise we set y0 =
√
Tσα. For simplicity, we set σ2 = 1 and α = 1, yielding y0 =

√
T . For

ease of exposition and comparison, we set β = 0 and focus on first-order models.11

The number of Monte Carlo repetitions is set to 20, 000 for each single experiment. The number
of bootstrap repetitions is set equal to 499. The binding function for the indirect inference
estimator is simulated with ρ = {0.60, 0.61, . . . , 1.20} and β = {−0.90,−0.89, . . . , 0.90}. The
number of simulation paths H equals 20, 000 in the AR(1) case and H = 1, 000 for AR(2)
models. In an unreported comparison between different values for H, we find that there are
only marginal changes in the results as long as H ≥ 100. This means that the indirect inference
procedure can be applied at low computational costs with negligible loss of precision.

3.2 Bias

We present simulation results for the bias multiplied with 100 (for increased visibility) in Figures
2 for T = 25 and in Figure 3 for T = 50, respectively.

— FIGURES 2–3 ABOUT HERE —

We start by discussing the results for the smaller sample size and comment on differences to the
case of T = 50 later on. The downward bias of the OLS estimator is strong for all considered
values of ρ. The worst performance is obtained for values of ρ in the vicinity of unity. For ex-
plosive processes, the bias is less severe, but still of major relevance. Even for ρ = 1.05, the bias
is of such a magnitude that the OLS estimator does not exceed unity on average. This means
that even the process is explosive, the OLS estimator has an average bias of approximately −0.1

and will thus yield average point estimates around 0.95. The performance of the OLS estimator
with recursive demeaning is more promising over whole range of ρ, but it is worthwhile to use
the Cauchy estimator instead. This estimator is still downward biased. But, it indicates explo-
siveness at least for ρ = 1.05 where the simulated bias equals −0.039. The bootstrap approach
performs substantially better than the Cauchy estimator. For rather explosive series, the bias
function switches its sign leading to a small upward bias for ρ ≥ 1.04. For stationary series
(ρ < 1), the bootstrap estimator performs similar to the second differencing estimator. The
latter has some additional advantages for very persistent stationary and for unit root processes.
For explosive series, it shows a somewhat risky behaviour: after a certain threshold (here: 1.02),
the estimator turns to be severely upward distorted. This is not entirely surprising given the re-
strictive condition ρ2T /

√
T → 0. We conclude that the second difference estimator is performing

reasonably well for stationary and unit root processes, and also for very mildly explosive cases.
But, for typical values of ρ in financial and economic applications, it seems that the estimator
can not be recommended. Somewhat similar, the jackknife approach performs extremely well
for stationary and unit root cases. In fact, it offers superb bias-correction abilities at nearly no

11In unreported simulations, we also compared the estimators for the case where β 6= 0. In case of correct
specification, the exact order of the autoregressive model does alter our main findings. Over-fitting of the autore-
gressive model is not harmful, while under-fitting turns out to be an important issue. Therefore, the lag length
shall be carried out on the basis of liberal selection procedures like the AIC.
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extra computational cost. For explosive series, however, results are less favorable. Finally, the
indirect inference estimator appears to offer a well balanced performance over the whole range
of ρ.12 In many cases, the indirect inference estimator ranks second or third with a small bias.

For T = 50, all estimators perform better as more information is available. Again, the jackknife
approach leads to the best performance among all approaches for values ρ ≤ 1. It has some
problems for ρ > 1. The indirect inference estimator and the bootstrap approach work also very
well, especially for explosive series. It is interesting to note that for ρ = 1.05, the bias of the
plain OLS estimator is very close to zero. In this case other estimators are less effective (except
of the bootstrap): they typically lead to some minor upward distortion.

3.3 Root mean squared error

Another useful measure for evaluating the small-sample performance of competing estimators is
the root mean squared error (RMSE). Both components, bias and variance, contribute to this
measure. By considering the RMSE, we are able to judge the price in terms of an increased
variance for reducing the bias in relative terms. The results for the root mean squared errors
(multiplied with T ) are shown in Figures 4 for T = 25 and in Figure 5 for T = 50, respectively.

— FIGURES 4–5 ABOUT HERE —

Again, we start by interpreting the results for T = 25. Some clear cut results can be obtained.
The best performing method (with clear advantages over its competitors) is indirect inference.
Our second recommendation would be the bootstrap, while the second difference estimator is
dominated by all others even for stationary and unit root processes. The reason being its rel-
atively large variance. The plain OLS estimator also performs better than the jackknife for all
values of ρ. It is interesting to note that the recursively demeaned OLS estimator outperforms
the Cauchy estimator, especially for less persistent series. Both techniques are on equal footing
for explosive series. The bootstrap has advantages over the recursively demeaned OLS estimator
for a broad range of values around unity. In cases of more extreme persistence (either stationary
or explosive), it is as good as the former estimator. The indirect inference estimator is the clear
winner in this competition as it offers reasonable bias-correction together with a relatively low
variance. We have seen that bias correction can be improved, but only at high costs. Taking
both issues simultaneously into account, we recommend to use ρ̂II in practice for small sample
sizes of T = 25.

Regarding the results for T = 50, we first note that the indirect inference estimator is still our
recommended procedure. However, the differences to its competitors are less visible for rather
explosive series with ρ ≥ 1.03. For stationary autoregressive series with moderate persistence the

12In additional unreported simulations, we have extended the range of values for ρ in order to check whether
the bias function for the jackknife, the bootstrap and the indirect inference principles lead to increasing upward
biases as ρ increases as well. The results indicate that this is not the case. For larger values of ρ, the bias functions
tend to zero.
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bootstrap performs similarly well. The recursively demeaned OLS estimator has still advantages
over the Cauchy estimator. For large values of ρ, we find that the OLS estimator performing
much better than for less persistent series. The main reason being that the bias vanishes and
that its variance is relatively low as well. The second difference estimator is excluded from Figure
5 due to its bad performance.

4 Empirical application

As an illustration of the different procedures, we study two Asian stock indices. We consider the
Shanghai 50 and the Hang Seng 45 indexes during periods of accumulated growth and thus pos-
sible explosiveness. For this reason, we decide to exclude the second difference-based estimator.
The data is kindly provided by the authors of the study by Homm and Breitung (2012). The
sample periods were chosen according to their breakpoint estimation results for the start-date
of the explosive regimes. The end-dates are estimated similarly as suggested in Breitung and
Kruse (2013). The resulting samples sizes are T = 24 and T = 56, respectively. These sample
sizes match well with our simulation setup for T = 25 and T = 50. In the following, we apply
the estimators to (i) the levels and (ii) the logs of the price series. In practical applications as
the one by PWY, authors often use both ways for comparison.13

— FIGURE 6 ABOUT HERE —

To begin with, we do not observe substantial differences between the results for the levels and
logs of prices. We therefore focus on the results for the logged series. Table 1 presents the
estimation results and contains sample information like size and time span. In all cases, the
OLS estimator produces the smallest point estimates indicating a downward bias. Results for
the bias-corrected estimators may differ remarkably.

For the shorter series of the Shanghai 50 index, we find estimates in the range of [1.010− 1.193].
The minimal value is attached to the plain OLS estimator, while the maximal value belongs to
the bootstrap estimator. The recommendable procedures for the explosive case are the indirect
inference estimator ρ̂II and the bootstrap-based estimator ρ̂B. While the former one suggest a
growth rate of 10.5% per month, the latter leads to a substantially larger estimate of 19.3%. For
the longer series there we find much less discrepancy between the outcomes of the two methods.
For the Hang Seng 45 index we find less variation in the estimation results (excluding the second
difference estimator).

These two series exemplify the use of (and need for) bias-correction techniques. As there is a
strong discrepancy between bias-corrected and plain estimates, the need for an adjustment is
clear. Following the discussion in PWY (p.217-218), we would like to judge the importance of
bias-correction also from an economic viewpoint. Let us make a couple of standard assumptions

13The lag length for the autoregressive specification is selected via AIC with a maximal number of lags equal
to [4(T/100)1/4]. For both series, a first-order model is selected.
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Estimator Shanghai 50 Hang Seng 45
ρ̂ 1.010 1.013
ρ̂R 1.061 1.066
ρ̂C 1.098 1.062
ρ̂B 1.193 1.048
ρ̂J 1.137 1.026
ρ̂II 1.105 1.056

T 24 56
Start Dec 2005 Mar 2003
End Nov 2007 Oct 2007

Table 1: Empirical estimation results for log stock price indices.

and suppose that the no-arbitrage condition

Pt =
1

1 +R
Et(Pt+1 +Dt+1)

holds. Pt is the real stock price, Dt is the real dividend and R is a positive and constant discount
rate. A log-linear approximation leads the solution pt = pft + bt, where the log of the stock
price pt is composed of a fundamental price pft and a bubble component bt. The fundamen-
tal value pft is determined by expected future dividends only. The bubble is a submartingale
given by bt = (1 + g)bt−1 + εt with εt being a martingale difference sequence. Obtaining an
estimate for ρ larger than one implies that the log stock price grows at a rate of (ρ̂ − 1)% per
month. Assuming that the log dividends are non-explosive, bt is also explosive and grows with
rate ĝ ≥ (ρ̂−1)%. Now, the importance of estimating ρ precisely stems from the following facts.
Given an initial overvaluation of the stock market of a0 > 1, i.e. P0 = a0P

f
0 , the bubble starts

at b0 = log(P0/P
f
0 ) = log(a0) > 0. After t periods, the expected level of the bubble component

is bt = ρ̂ t · log(a0). This leads to an estimate of overvaluation in the level of the stock market
index Pt given by ât ≡ exp(bt) = exp(ρ̂ t · log(a0)).

A calculation where the initial overvaluation is mild and equals five percent (a0 = 1.05), yields
estimated overvaluations of (based on the indirect inference estimator) of âIIT = (70.9%, 180.6%)′

for the Shanghai 50 and the Hang Seng 45, respectively. Using the plain OLS estimator leads
to âT = (6.4%, 10.6%)′ instead. Obviously, these differences are economically significant. The
Shanghai 50 index peaked at 6092 on October 16, 2007 and stabilized around 3000 basis points
during 2009 and 2010. By considering such a value as being close to the unobserved fundamental
value, this would imply a rough estimate of overvaluation equal to approximately 103% which is
in line with the previous calculations. Similarly, the Hang Seng 45 index reached its peak at the
value of 31638 on October 30, 2007 and stabilized around 13500 basis points during December
2008 – March 2009. The implied overvaluation equals approximately 134%. We conclude that
the estimates of the growth rates seem to be reasonable.
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5 Conclusions

This paper compares different bias-correction techniques for autoregressive processes. Among
these are the a bootstrap-based estimator, an indirect inference estimator and a jackknife es-
timator. In addition, we study the finite-sample performance of an estimator based on second
differencing, a recursively demeaned OLS estimator and the related Cauchy estimator. We thus
compare established techniques to newly proposed procedures in a comprehensive way. In partic-
ular, we focus on situations where the sample size is relatively small and data is highly persistent,
exhibits a unit root or is even mildly explosive. When the popular rolling window framework
is applied for assessing the possibly time-varying persistence of a time series, sample sizes are
typically small. Moreover, it is reasonable to expect that time series undergo changes in persis-
tence during different regimes and episodes. These changes can be either driven by episodes of
speculation (leading to temporary bubbles) or policy induced (typically leading to a reduction
in persistence). Therefore, we study an empirically relevant situation and provide practical rec-
ommendations for future applications.

A large-scale simulation study of bias and root mean squared errors of estimators reveals the
following results: The substantial bias of the OLS estimator can be remarkably reduced across
the whole range of considered autoregressive parameter values. The most promising approaches
are the indirect inference estimator, the bootstrap approach and the jackknife estimator. The in-
direct inference estimator provides excellent bias-correction in various settings (i.e. heavy-tailed
errors, GARCH errors, linear trend and misspecified autoregression) together with a reasonably
low variance, while the jackknife estimator performs often best in terms of bias-correction, but
has a clearly larger variance rendering this estimator less recommendable in terms of RMSE. The
bootstrap approach often performs as a second best choice.

As an empirical application, we consider two Asian stock markets indexes during boom periods.
Our results highlight the need for bias-correction and we discuss the results in light of implied
stock market over-valuations. It turns out that the lower bound for bubble growth rates can be
estimated reasonably by applying the indirect inference principle.

References

Abadir, K. M. (1993): “OLS bias in a nonstationary autoregression,” Econometric Theory, 9, 81–93.
——— (1995): “Unbiased estimation as a solution to testing for random walks,” Economics Letters, 47, 263 – 268.
Andrews, D. W. K. (1993): “Exactly median-unbiased estimation of first order autoregressive/unit root models,”

Econometrica, 61, 139–165.
Andrews, D. W. K. and H. Y. Chen (1994): “Approximately median-unbiased estimation of autoregressive

models,” Journal of Business and Economic Statistics, 12, 187–204.
Bao, Y. and A. Ullah (2007): “The second-order bias and mean squared error of estimators in time-series

models,” Journal of Econometrics, 140, 650–669.
Basawa, I. V., A. K. Mallik, W. P. McCormick, J. Reeves, and R. L. Taylor (1991): “Bootstrapping

Unstable First-Order Autoregressive Processes,” The Annals of Statistics, 19.
Basawa, I. V., A. K. Mallik, W. P. McCormick, and R. L. Taylor (1989): “Bootstrapping Explosive

Autoregressive Processes,” The Annals of Statistics, 17.

14



Berkowitz, J. and L. Kilian (2000): “Recent developments in bootstrapping time series,” Econometric Reviews,
19.

Born, B. and M. Demetrescu (2014): “Recursive Adjustment for General Deterministic Components and
Improved Cointegration Rank Tests,” Journal of Time Series Econometrics, forthcoming.

Breitung, J. and R. Kruse (2013): “When bubbles burst: econometric tests based on structural breaks,”
Statistical Papers, 54, 911–930.

Casella, A. (1989): “Testing for rational bubbles with exogenous or endogenous fundamentals: the German
hyperinflation once more,” Journal of Monetary Economics, 24, 109–122.

Chambers, M. J. (2013): “Jackknife estimation of stationary autoregressive models,” Journal of Econometrics,
172, 142–157.

Chambers, M. J. and M. Kyriacou (2013): “Jackknife estimation with a unit root,” Statistics & Probability
Letters, 83, 1677–1682.

Cheang, W. K. and G. C. Reinsel (2000): “Bias reduction of autoregressive estimates in time series regression
model through restricted maximum likelihood,” Journal of the American Statistical Association, 95, 1173–1184.

Chen, J. G. and B. S. Kuo (2013): “Gaussian inference in general AR(1) models based on difference,” Journal
of Time Series Analysis, 34, 447–453.

Chong, T. T.-L. (2001): “Structural change in AR(1) models,” Econometric Theory, 17, 87–155.
Clark, S. P. and T. D. Coggin (2011): “Was there a U.S. house price bubble? An econometric analysis using

national and regional panel data,” Quarterly Review of Economics and Finance, 51, 189–200.
Datta, S. (1995): “Limit Theory and Bootstrap for Explosive and Partially Explosive Autoregression,” Stochastic

Processes and their Applications, 57.
——— (1996): “On asymptotic properties of bootstrap for AR(1) processes,” Journal of Statistical Planning and

Inference, 53.
Diba, B. T. and H. I. Grossman (1988): “Explosive rational bubbles in stock prices?” American Economic

Review, 78, 520–530.
Efron, B. (1979): “Bootstrap methods: Another look at the jacknife,” Annals of Statistics, 7, 1–26.
Gouriéroux, C., A. Monfort, and E. Renault (1993): “Indirect Inference,” Journal of Applied Econometrics,

8, 85–118.
Gouriéroux, C., P. C. B. Phillips, and J. Yu (2010): “Indirect inference for dynamic panel models,” Journal

of Econometrics, 157, 68–77.
Gouriéroux, C., E. Renault, and N. Touzi (2000): “Calibration by simulation for small sample bias correc-

tion,” in Simulation-Based Inference in Econometrics: Methods and Applications, ed. by R. Mariano, T. Schuer-
mann, and M. Weeks, Cambridge University Press, 328–358.

Hansen, B. E. (1999): “The grid bootstrap and the autoregressive model,” Review of Economics and Statistics,
81, 594–607.

Harvey, D. I., S. J. Leybourne, and A. M. Taylor (2006): “Modified tests for a change in persistence,”
Journal of Econometrics, 134, 441–469.

Homm, U. and J. Breitung (2012): “Testing for speculative bubbles in stock markets: a comparison of alter-
native methods,” Journal of Financial Econometrics, 10, 198–231.

Inoue, A. and L. Kilian (2002): “Bootstrapping autoregressive processes with possible unit roots,” Economet-
rica, 70.

Kendall, M. G. (1954): “Notes on bias in the estimation of autocorrelation,” Biometrika, 41, 403–404.
Kilian, L. (1998): “Small sample confidence intervals for impulse response functions,” The Review of Economics

and Statistics, 80.
Kim, J. H. (2003): “Forecasting autoregressive time series with bias-corrected parameter estimators,” Interna-

tional Journal of Forecasting, 19, 493–502.
Kim, J.-Y. (2000): “Detection of change in persistence of a linear time series,” Journal of Econometrics, 95,

97–116.
Leybourne, S., R. Taylor, and T.-H. Kim (2007): “CUSUM of Squares-Based Tests for a Change in Persis-

tence,” Journal of Time Series Analysis, 28, 408–433.
Lof, M. (2012): “Heterogeneity in stock prices: A STAR model with multivariate transition function,” Journal

of Economic Dynamics and Control, 36, 1845–1854.
MacKinnon, J. G. and A. A. Smith (1998): “Approximate bias correction in econometrics,” Journal of Econo-

15



metrics, 85, 205–230.
Nelson, C. R. and C. R. Plosser (1982): “Trends and random walks in macroeconmic time series: some

evidence and implications,” Journal of monetary economics, 10, 139–162.
Pavlidis, E. G., I. Paya, and D. A. Peel (2012): “A New Test for Rational Speculative Bubbles using Forward

Exchange Rates: The Case of the Interwar German Hyperinflation,” Lancaster University Management School,
Department of Economics, Working Paper.

Phillips, P. C. B. (2012): “Folklore theorems, implicit maps, and indirect inference,” Econometrica, 80, 425–454.
Phillips, P. C. B. and T. Magdalinos (2007): “Limit theory for moderate deviations from a unit root,”

Journal of Econometrics, 136, 115–130.
Phillips, P. C. B., Y. Wu, and J. Yu (2011): “Explosive behavior in the 1990s NASDAQ:When did exuberance

escalate asset values?” International Economic Review, 52, 201–226.
Roy, A. and W. A. Fuller (2001): “Estimation for autoregressive time series with a root near 1,” Journal of

Business and Economic Statistics, 19, 482–493.
Schotman, P. and H. K. van Dijk (1991): “A Bayesian analysis of the unit root in real exchange rates,”

Journal of Econometrics, 49, 195–238.
Shaman, P. and R. A. Stine (1988): “The bias of autoregressive coefficient estimators,” Journal of the American

Statistical Association, 83, 842–848.
Shi, S. and V. Arora (2012): “An application of models of speculative behaviour to oil prices,” Economics

Letters, 115, 469–472.
Smith, A. A. (1993): “Estimating nonlinear time-series models using simulated vector autoregressions,” Journal

of Applied Econometrics, 8, 63–84.
So, B. S. and D. W. Shin (1999a): “Cauchy Estimators for Autoregressive Processes with Applications to Unit

Root Tests and Confidence Intervals,” Econometric Theory, 15, 165 – 176.
——— (1999b): “Recursive mean adjustment in time-series inferences,” Statistics & Probability Letters, 43, 65 –

73.
Stock, J. H. and M. W. Watson (1996): “Evidence on structural instability in macroeconomic time series

relations,” Journal of Business and Economic Statistics, 14, 11–30.
Tanaka, K. (1984): “An asymptotic expansion associated with the maximum likelihood estimators in ARMA

models,” Journal of the Royal Statistical Society, Series B (Methodological), 46, 58–67.
Tjøstheim, D. and J. Paulsen (1983): “Bias of some commonly-used time series estimates,” Biometrika, 70,

389–399.
van Norden, S. (1996): “Regime switching as a test for exchange rate bubbles,” Journal of Applied Econometrics,

11, 219–251.
Yoon, G. (2011): “War and peace: Explosive US public debt, 1791–2009,” Economics Letters, 115, 1–3.

16



0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

−0.20−0.15−0.10−0.050.00

ρ

Bias

n 
=

 2
5

O
LS

R
ec

ur
si

ve
 O

LS
C

au
ch

y
S

ec
on

d 
di

ffe
re

nc
e

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

−0.20−0.15−0.10−0.050.00
ρ

Bias

n 
=

 5
0

O
LS

R
ec

ur
si

ve
 O

LS
C

au
ch

y
S

ec
on

d 
di

ffe
re

nc
e

F
ig
ur
e
1:

E
st
im

at
io
n
bi
as

fo
r
di
ffe

re
nt

es
ti
m
at
or
s
fo
r
di
ffe

re
nt

va
lu
es

of
ρ
in

A
R
(1
)
pr
oc
es
se
s.

17



●

●
●

●

●
●

●

●

●

●

●

R
H

O

100 x BIAS

0.
80

0.
85

0.
90

0.
95

0.
99

1.
00

1.
01

1.
02

1.
03

1.
04

1.
05

−20−15−10−50510

●
O

LS
O

LS
 R

E
C

C
A

U
C

H
Y

S
E

C
 D

IF
F

B
O

O
T

JA
C

K
IN

D
I

F
ig
ur
e
2:

10
0
×
B
ia
s
fo
r
T

=
25

fo
r
es
ti
m
at
or
s:
ρ̂
(O

LS
),
ρ̂
R
(O

LS
R
E
C
),
ρ̂
C
(C

A
U
C
H
Y
),
ρ̂
S
D

(S
E
C

D
IF

F
),
ρ̂
B
(B

O
O
T
),
ρ̂
J
(J
A
C
K
)
an

d
ρ̂
I
I
(I
N
D
I)
.

18



●
●

●

●

●
●

●

●

●

●

●

R
H

O

100 x BIAS

0.
80

0.
85

0.
90

0.
95

0.
99

1.
00

1.
01

1.
02

1.
03

1.
04

1.
05

−10−50510

●
O

LS
O

LS
 R

E
C

C
A

U
C

H
Y

S
E

C
 D

IF
F

B
O

O
T

JA
C

K
IN

D
I

F
ig
ur
e
3:

10
0
×
B
ia
s
fo
r
T

=
50

fo
r
es
ti
m
at
or
s:
ρ̂
(O

LS
),
ρ̂
R
(O

LS
R
E
C
),
ρ̂
C
(C

A
U
C
H
Y
),
ρ̂
S
D

(S
E
C

D
IF

F
),
ρ̂
B
(B

O
O
T
),
ρ̂
J
(J
A
C
K
)
an

d
ρ̂
I
I
(I
N
D
I)
.

19



●
●

●

●

●
●

●

●

●

●

●

R
H

O

T x RMSE

0.
80

0.
85

0.
90

0.
95

0.
99

1.
00

1.
01

1.
02

1.
03

1.
04

1.
05

3456789

●
O

LS
O

LS
 R

E
C

C
A

U
C

H
Y

S
E

C
 D

IF
F

B
O

O
T

JA
C

K
IN

D
I

F
ig
ur
e
4:
T
×
R
M
SE

fo
r
T

=
25

fo
r
es
ti
m
at
or
s:
ρ̂
(O

LS
),
ρ̂
R
(O

LS
R
E
C
),
ρ̂
C
(C

A
U
C
H
Y
),
ρ̂
S
D

(S
E
C

D
IF

F
),
ρ̂
B
(B

O
O
T
),
ρ̂
J
(J
A
C
K
)
an

d
ρ̂
I
I
(I
N
D
I)
.

20



●
●

●
●

●
●

●

●

●

●

●

R
H

O

T x RMSE

0.
80

0.
85

0.
90

0.
95

0.
99

1.
00

1.
01

1.
02

1.
03

1.
04

1.
05

234567

●
O

LS
O

LS
 R

E
C

C
A

U
C

H
Y

B
O

O
T

JA
C

K
IN

D
I

F
ig
ur
e
5:
T
×
R
M
SE

fo
r
T

=
50

fo
r
es
ti
m
at
or
s:
ρ̂
(O

LS
),
ρ̂
R
(O

LS
R
E
C
),
ρ̂
C
(C

A
U
C
H
Y
),
ρ̂
B
(B

O
O
T
),
ρ̂
J
(J
A
C
K
)
an

d
ρ̂
I
I
(I
N
D
I)
.T

he
ρ̂
S
D
es
ti
m
at
or

(S
E
C

D
IF

F
)
is

ex
cl
ud

ed
.

21



S
ha

ng
ha

i 5
0 

in
de

x

20
04

20
05

20
06

20
07

20
08

20
09

20
10

10002000300040005000

H
an

g 
S

en
g 

45
 in

de
x

20
02

20
04

20
06

20
08

20
10

300040005000600070008000

F
ig
ur
e
6:

T
w
o
A
si
an

st
oc
k
in
de

xe
s
in

re
al

le
ve

ls
.
So

lid
lin

es
hi
gh

lig
ht

th
e
sa
m
pl
e
us
ed

fo
r
es
ti
m
at
io
n.

22


