
Dascher, Kristof

Conference Paper

Function Follows Form

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2015: Ökonomische Entwicklung -
Theorie und Politik - Session: Urban Economics II, No. B15-V2

Provided in Cooperation with:
Verein für Socialpolitik / German Economic Association

Suggested Citation: Dascher, Kristof (2015) : Function Follows Form, Beiträge zur Jahrestagung des
Vereins für Socialpolitik 2015: Ökonomische Entwicklung - Theorie und Politik - Session: Urban
Economics II, No. B15-V2, ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-
Informationszentrum Wirtschaft

This Version is available at:
https://hdl.handle.net/10419/112924

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/112924
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


1 Introduction

There can be no doubt that urban policy molds city shape. Oddly, when commenting on
Paris’ urban development in the magazine The New Yorker, Alexandre Gady, a historian
of Paris, appears to suggest the reverse:

“Paris – it’s beautiful. But it’s a doll’s house! And that’s one reason the
Parisian élite is so conservative. They live in the doll’s house. . . . The blindness
of the élites is to reproduce a model of returning to the center, always back to
the center . . . ” (as quoted by Gopnik (2014))

Gady argues that city form or shape molds urban policy. This paper’s interest is in the
urban political economy of precisely this shape-to-policy connection. We will replace the
example of Paris with a monocentric city model, the notion of “doll’s house” with the
city’s shape, and the claim of “élites’ blindness” with an unbiased analysis of landlords’
conscious pursuit of their interests. Then we will credit the above quote with containing
more than just a grain of truth.

A city’s physical shape places many constraints on urban political equilibrium. These
constraints, not all of them obvious, can be brought to light by literally taking snapshots
of suitable sections of the city’s shape. These constraints can even be shown to vary with
a simple index of the city’s physical form, i.e. the city shape’s skew. A city’s skew puts
bounds around resident interests. For example, if city skew is strong (weak) enough then
a majority willing to hold on to (to shed) the traditional center is inevitable. In that sense
city shape shapes urban policy. Putting fundamental urban policy decisions down to city
shape, rather than tracing city shape back to urban policies, is this paper’s theme – even
as ultimately we must reckon with a circular relationship between city shape and urban
policy.

Incidentally, the idea of reading restrictions on a city’s various political interests off its
shape complements a view prominent in architectural theory, originally put forward by
Louis Sullivan. According to Sullivan (1896), “. . . it is the pervading law of all things
organic and inorganic, . . . that the life is recognizable in its expression”. Among architec-
tural theorists, Sullivan’s theme is known as the “form ever follows function”-view. Our
observing the built environment impact on the polity’s decisions instead provides an expla-
nation of how: function follows form. I.e., if city shape drives the location of employment
and retail, then city form (buildings’ shapes) indeed impacts on city functions (buildings’
retail, office, or residential uses).

In the urban economics literature, analyzing the causality from city policy to city shape
has always been a prime concern (e.g. Brueckner (2005), Bento/Franco/Kaffine (2006),
Baum-Snow (2006), de Lara et al. (2013) or Ushchev/Thisse/Sloev (2015) more recently).
A general analysis of the causality from shape to policy appears to have attracted much
less attention – even as specific aspects such as the role of compactness for the viability
of urban public transport have been of interest (e.g. Bertaud (2003)). In part this is for
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Figure 1: Munich in a 1761 painting by Canaletto

good reason. A young city’s policy is unlikely to be informed by its shape. But for any
mature city this seems more difficult to justify. Surely policy adapts much quicker to its
surrounding physical structures than these structures do to policy? Once the city has
developed its shape – subject not just to early policy but also to numerous other forces
of history (e.g. hinterland safety, political institutions, past zoning) and geography (e.g.
topography and soil texture) – policy should (also) be expected to follow shape.

Briefly consider the construction of a ring road, and ignore the expense of road construc-
tion, the likely staggered development of ring road sites and the remaining cost of travelling
that road. On the one hand, such a road must be a strong rival to the traditional Central
Business District (CBD). Locations along the ring road connect almost as well to one
another as locations in the traditional core do. Ring road locations, moreover, and much
unlike those CBD locations, also serve land out of reach prior to the ring road’s construc-
tion. Urban policy can clearly remake city shape. On the other hand, city shape surely
also feeds into the city’s decision on the ring road. A city characterized by substantial
sprawl already, say, is more likely to build that road.

There are many opportunities for applying the paper’s theory. We briefly sketch one
of these. The 18th century painter Canaletto was known for his many detailed, even
realistic cityscapes of Dresden, Warsaw and London, among others, or for his “vedutas”
by art historians’ terminology (e.g. Links (1999), Roeck (2004)). Figure 1, for example,
shows Canaletto’s 1761 veduta of Munich. The city silhouette, clearly recognizable in
the painting’s background, could carefully be transformed into a historical “commuting
distribution”, exploiting the fact that the silhouette is related to how population per unit
of land varies with distance to the CBD. When entered into this paper’s theory, this
distribution generates policy predictions that could be backtested against the observable
policies subsequently taken.

In short, to “see” (an image of) a city may even mean to “understand” that city. While city
silhouettes represent an interesting field by itself (e.g. Baranow (1980)), city morphology
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may have uses that go beyond the descriptive.

The paper comes in five sections. Section 2 identifies bounds on resident landlord interests
with respect to a ring road proposal. This section connects the city’s “physical sphere”
with its “political sphere”. Section 3 further “bounds these bounds” by introducing a
simple indicator of city shape skew. Section 3 ties the city’s “political sphere” down to its
“visual appearance”, and thus details the paper’s central result: Function follows form.
Section 4 points to three implications of this paper’s results, addressing the emergence of
onion-type sprawl, the potential importance of city shape for climate policy and traffic
tolls, and the close relationship between a city’s silhouette and its commuting distribution.
Conclusions are found in section 5.

2 The Physical and the Political

The paper’s primitives are few. A circular monocentric city extending r̃ miles out from
its center is split into n rings (n even). Rings are spaced equally far apart from each
other. Apartments in these rings are inherited from the past, and owned by resident
landlords. (Arguably landlords cannot both be influential and absentee.) Each landlord
owns (no housing or land other than) two apartments located in any two rings. One of
these apartments he occupies himself, the other he rents out to his tenant. In ring i there
are li landlords, mi tenants, and si apartments.

Reflecting (i) a deficit of information, (ii) the desire to start with a city model that is as
general as possible and (iii) the assumption of residents being perfectly mobile within the
city, we impose no restriction on the specific rings that landlords and tenants inhabit other
than that landlord and tenant numbers in each ring add up, si = li +mi. Every resident
commutes to the city center (CBD) to work and shop. Round trip commuting costs for
someone living in ring i are tri, with ri the distance from the CBD to the midpoint between
ring i’s outer and inner annulus. Within-ring travel is costless, an assumption redeemed
by shrinking ring width soon.

We equate the city’s shape with its commuting distribution (Arnott/Stiglitz (1981)). So it
is true that city shape thus defined is not exactly the same as the city shape or silhouette
perceived by a distant observer (e.g. as in Fig. 1). But the relationship is close enough to
justify thinking of this silhouette when we speak of the spatial distribution of residents.1

Reflecting this paper’s interest in the (immediate) effect of shape on policy, we ignore the
(delayed) effect of policy on shape that is the dominant concern of the policy-drives-shape
literature. For example, there will be no apartment construction. The city is closed, and
there is no agricultural hinterland.

If r̃ denotes the city boundary then Ricardian rent at any location rj ≤ r̃, denoted q(rj),
equals the commuting cost savings that that location makes possible vis-à-vis living at
the boundary. So q(rj) = t(r̃ − rj). Imagine a landlord who resides in ring i himself yet

1We return to this issue in section 4.
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rents out his extra, second property in ring j. This landlord’s property portfolio implies
a sum of commuting costs and rental income equal to −tri + q(rj). Let ω subsume any
other benefit common to all landlords, such as the wage or some local public good that
does not distance-decay. Then landlord utility is ω + t(r̃ − ri − rj). Landlord utility is
independent of whether the landlord resides in i and his tenant in j, or vice versa, and so
we always will conveniently put the landlord into that one of his two properties that suits
our exposition best.2

A ring road is proposed to the citizenry that would shift the city’s center of attraction
from its traditional location (the CBD) out to the urban boundary r̃ (the ring road), in
a single instant and with t unchanged.3 Instead of travelling to the center of the city in
order to work and shop, every resident now commutes to the city’s periphery to work and
shop, in those office parks and shopping malls strewn along the ring road that permits
its users to circle the city on it at no cost. Vienna is one early and prominent example
of a ring road development, with its ring road actually even referred to as the “Ring”. In
Vienna, “. . . characteristics of the different parts of the old, inner city were projected into
the Ring” (Girouard (1989)).4

Tenants will be indifferent to this proposal. Their cost of living, or tr + q(r), remains tr̃.
And so it is only landlords who will vote.5 Landlord-voters are divided over which decision
to take, depending on their specific portfolio location (unknown to us). Generally, instead
of commuting ri all residents living at that distance from the CBD now commute r̃ − ri.
Landlord utility becomes ω − t(r̃ − rj − ri) now instead of ω + t(r̃ − rj − ri) before. The
change in utility is 2t(ri + rj − r̃).6 This expression is strictly negative if ri + rj < r̃ or

j < n + 1 − i. (1)

Landlords whose property location indices satisfy inequality (1) will oppose the CBD’s
displacement (landlord opponents); all the other landlords can be counted on to support
it (landlord proponents) as soon as indifferent landlords become negligible (which they do
soon).7

2If – within-city-mobile – tenants are indifferent across locations, so are – within-city-mobile – landlords.
Neither do landlords benefit from exchanging their apartment with that of their respective tenant, nor do
they benefit from renting an apartment themselves in order to receive rental incomes from both their
properties.

3Shifting jobs from the CBD to the city periphery could also take place in a staggered fashion. Rauch
(1993) points to the importance of business park developers in coordinating such successive job shifts,
while the shopping center industry attests to the importance of retail space developers in coordinating
movements in retail (e.g. Brueckner (1993)).

4According to Girourard, important city functions (i.e. substantial employment) subsequently moved
to the Ring. That’s where now one could find “. . . the new exchange, . . . , the university, . . . a civic and
national government section around the new town hall and parliament house, . . . a museums section, . . . the
opera house”, etc.

5An alternative (somewhat less convincing, less broadly applicable) motivation for counting landlord
votes only comes from pointing to historical cities which let only those cast their vote who paid enough
tax. One example is the census vote governing Prussian elections up to 1918.

6We have assumed that t always remains the same. If t rose as a by-product of the ring road this would
actually further magnify landlords’ implied utility changes. It would, however, not affect the threshold
dividing landlord proponents and opponents. (Of course, tenants would no longer be indifferent because
their cost-of-living tr̃ would rise.)

7The city is the only one (or at least expects to be the only one) to build its ring road. Then it becomes
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Replacing the CBD with a string of shopping districts and office parks along the ring road
is one specific, and one radical, urban transport policy scenario. Nonetheless it is meant to
speak up for a wider array of urban policies. We could also, for example, have considered
a marginal increase in the commuting cost parameter t as brought about by a tax on
commuting (possibly even representing a carbon tax), or simply a neglect of radial roads.
Suppose that tax revenues are wasted and that tenant interests could be disregarded.
Taking the first derivative of the landlord utility introduced above with respect to t gives
r̃− ri− rj . Thus a landlord votes for the tax on commuting precisely if i+ j < n+ 1. But
this just repeats the familiar condition (1).

Much as we would like to add up those landlords who oppose, or support, the policy
proposal, computing their totals requires prior knowledge of landlord-tenant matches.
As emphasized, we do not want to count on having this information. And yet, easily
accessible data on ring apartment totals si may be used to define lower bounds on, and
hence confidence in, landlord opposition to, or support of, the policy (Proposition 1 later).
It may be useful to emphasize that the lower bounds constructed below are never meant
to be greatest lower bounds. Paying close attention to the details of a – specific – city
shape will often permit to compute lower bounds that go further than ours. Even so our
lower bounds will turn out to be useful instruments of analysis. This is especially true
given that our bounds hold for any – no specific – city shape.

While we cannot derive landlord opposition to the ring road for the given yet unknown
landlord portfolios nesting into the city’s shape (“shape-driven portfolios, endogenous op-
position”), we can derive those landlord portfolios consistent with the exogenous city shape
that generate minimum landlord opposition to the ring road (“shape-driven opposition,
endogenous portfolios”). Here we first identify those portfolios that give rise to the weak-
est conceivable opposition for each suitable “snapshot” of the city’s shape. Next we select
the very “snapshot” that reveals the largest of all these minimum opposition figures. Then
we study the effect changing an index of city shape (i.e. the city’s skewness) has for this
largest minimum resistance. And ultimately we look for shapes that are robust enough to
withstand (alternatively, incapable of resisting) the ring road proposal’s temptation.

So consider apartments in the first ring, s1, first. All of these are tied up in matches that
point to landlords who suffer from the ring road – with the exception of those matches
involving a tenant in ring n. Put differently, matches involving apartments both in rings
i = 1 and j = n fail necessary condition (1). Thus s1 is a good first lower bound on
landlord opponents were it not for the fact that every resident in ring n could be tenant
to a landlord in ring 1, rather than to a landlord in any of the remaining rings. Making
allowance for this observation, really only (s1−sn) apartments may safely be traced back to
landlord opponents. Further, these latter (s1−sn) units might ever only involve landlords
and tenants from the first ring. So ultimately we can only be certain of a mere (s1−sn)/2

open, instead of remaining closed (Brueckner (1987)), attracting immigrants to the new urban quarters
developed the ring road. In this model, selling apartments in these newly developed quarters will however
not benefit our resident landlords’ incomes because (as we have assumed above) these resident landlords
are not the owners of the city’s hinterland.
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landlords to oppose the ring road.8

Of course, if the city shape is such that s1 < sn, then (s1 − sn)/2 is negative. In this
specific case (s1 − sn)/2 is not a very good lower bound. A lower bound of zero landlord
opponents is a better, and obvious, alternative choice. Yet this need not bother us too
much in view of the fact that there are many other lower bounds on offer. Apartments
in the first two rings, (s1 + s2), give another conservative estimate of landlord opponents
if we allow for (i) (sn−1 + sn) tenants being matched up with some landlord in the first
two rings and (ii) all remaining apartments in the first two rings to be matched up with
one another. Making these two adjustments points to ((s1 + s2) − (sn−1 + sn))/2 as yet
another lower bound.9 So already we have identified two “snapshots” of suitable sections
of the commuting distribution that both offer some minimum opposition to the ring road
consistent with the city’s shape.

This idea can be generalized. Any partial sum lo(j) =
∑j

i=1(si − sn+1−i)/2, with j =
1, . . . , n/2, is a lower bound on the number of landlord opponents. To translate our
concepts into the context of arbitrarily small ring width, let F (r) denote the cumulative
number of apartments on offer in all rings from the CBD out to r, and let f(r) = F ′(r)
approximate the number of apartments in ring r. Since everyone commutes from his
home, the city’s F in fact represents the distribution of commuting distance. Finally, let
D(r) = (f(r) − f(r̃ − r)) capture the ring difference at r, and set s equal to 1. As city
ring width approaches zero, the partial sum including all ring differences up to b tends to

lo(b) =
[∫ b

0
D(r) dr

/
2
]

where b ∈ [0, r̃/2] (2)

with the first, as well as last, b rings included. Most of all we are interested in the largest of
all these lower bounds. It is that bound that is most successful at extracting information
from the given city shape. To identify it, it remains to maximize the integral above with
respect to b.10

Similar reasoning applies towards bounding from below the number of those landlords who
are certain to benefit from, and hence support, the project. To see this note that all sn units
are tied up in matches that make their owners support the ring road – with the exception
of those involving a resident from ring 1. Put differently, reversing the inequality in (1)
and setting i = n implies j > 1. So to assess minimum conceivable support, suppose that
every resident in ring 1 is linked to someone in ring n. In this conservative scenario only
(sn−s1) apartments really point to landlords who would benefit from the policy proposal.
Further, suppose that all of these (sn−s1) apartments join landlords and tenants from ring
n only. Thus (sn − s1)/2 is our first lower bound on the number of landlord proponents.

8It is possible that (s1 − sn)/2, or some other of the local lower bounds below, exceeds the landlord
total, s/2. We rule this out by assuming n to be sufficiently large.

9Note that by taking away (sn + sn−1) from (s1 + s2) we almost certainly overstate the number of
landlord proponents and hence understate the number of landlord opponents. Not every match between
a landlord in the first two rings and a tenant in the last two rings points to an apartment pair owned by
a landlord opponent. Obviously if there are tenants in the second last ring who owe rent to a landlord in
the first ring, then corresponding matches do not identify landlord opponents.

10Obviously our lower bound defined in (2) is zero at least.
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Figure 2: Lower Bounds

Here, too, there are many more lower bounds. For example, another lower bound derives
from consulting both the two last and first rings, and comes to ((sn + sn−1)− (s1 + s2))/2.
Generally, if the last, as well as first, j rings are included, the lower bound on landlord
proponents can be written as lp(j) =

∑j
i=1 (sn+1−i− si)/2, where j = 1, . . . , n/2. Casting

the partial sum of landlord proponents extracted from the first b ring differences in terms
of arbitrarily small ring width gives

lp(b) =
[∫ b

0

(
− D(r)

)
dr
/

2
]

with b ∈ [0, r̃/2], (3)

or −lo(b). The largest of all these latter lower bounds is found by maximizing the integral.
Equivalently we may minimize this integral’s negative, i.e. lo(b), and proceed with the
negative of the minimum value obtained.11

Fig. (2) illustrates the two central concepts introduced. In any of the Figure’s panels the
horizontal axis gives commuting distance r from the CBD, while the vertical axis gives
commuting density f(r). (Axes are not scaled identically across panels.) The vertical line
at each panel’s center rises up above “midtown” r̃/2, across which the graph of f(r) is
reflected (or “folded over”) in order to obtain, and illustrate, ring differences D(r) at all
distances between 0 and r̃/2. Note how the commuting density is increasing over at least
some subset of the support in most panels. In a circular city this easily arises whenever
the increase in built-up area from adding yet another ring outweighs the diminishing
population per unit of built-up area that is typical of many (though not all) cities.

11Obviously again, our lower bound on landlord proponents defined in (3) can never fall short of zero.
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We turn to the stylized city shapes (a) through (c) first. Panel (a) shows what we might
dub a “classical city”. With its true distribution documented by de Lara et al. (2013, cf.
Fig. 3), Paris quite closely (though not perfectly) resembles this “classical city”. Panel
(b) depicts a “hat city” that reflects the fact that the CBD needs land, too. Panel (c)
illustrates an “edge city”, across which most commuters travel long distances. – Lower
bounds can be inferred from consulting corresponding shaded areas. In panels (a) and
(b), the lower bound on opponents amounts to half the shaded area below the density’s
graph (blue on screen); whereas in panel (c) the lower bound on proponents amounts to
half the shaded area above the density’s graph (in red). Note that in panels (a) through
(c), only ever one of the two lower bounds is active.

Panel (d) adds an “inverted-U city” to our little city morphology. Moscow, for example,
appears to exhibit just this shape (Bertaud/Renault (1997), cf. Fig. (1b)). The “inverted-
U” city is different from the three preceding stylized city shapes. Neither is one of the
two lower bounds zero, nor are lower bounds just as easily read off the shaded areas.
In panel (d), and following the principles outlined above, the lower bound on opponents
is equivalent to half the area obtained by subtracting the smaller, and doubly, shaded
(orange) area from the larger, singly shaded, (blue) one. While early ring differences are
negative, later ring differences are overwhelmingly positive. Including those later, and
positive, differences in our lower bound (i.e. a cumulative sum) is preferable even if that
comes at the cost of also including those earlier, and negative, differences.

Panel (d)’s “inverted-U city” even illustrates the principles underlying our best lower
bound on landlord proponents. Here this latter lower bound occurs where D vanishes, or
where f and its reflection f(r̃− r) intersect in the Figure.12 The resulting lower bound is
half the cumulative sum of all ring differences from the city center up to the intersection,
or half the panel’s doubly shaded (or orange) area above the density’s graph. Generally,
we suspect city shapes to be the more informative the more asymmetric they are. A city
of symmetric shape, i.e. in which ring differences are zero always, reveals next to nothing
of its politics to the observer. (The following section will revisit this idea, replacing
asymmetry with skew.)

Proposition 1: (Lower Bounds)

(i) (Lower Bounds): Lower bounds on the number of landlord opponents, lo, and on the
number of landlord proponents, lp, are identified by

lo = max
b∈[0, r̃/2]

[ ∫ b

0
D(r) dr

/
2
]

and lp = − min
b∈[0, r̃/2]

[ ∫ b

0
D(r) dr

/
2
]
.

(ii) (Upper Bounds): Opponents’ number lo is bounded as in lo ≤ lo ≤ 1/2 − lp; while
proponents’ number, lp, is bounded via lp ≤ lp ≤ 1/2 − lo.
(iii) (Sufficient Lower Bounds): Whatever the underlying portfolio structure, if lo > 1/4
(alternatively if lp > 1/4) then the ring road project gets shelved (built).

12Minimizing
∫ b

0 D(r)dr/2 requires an interior solution, denoted b∗∗, to satisfy f(b∗∗) = f(r̃ − b∗∗).
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Proposition 1’s Part (i) summarizes our discussion. This proposition emphasizes the im-
pact of the city’s “physical sphere” (differences between housing stocks in juxtaposed
rings) on its “political sphere” (lower bounds on landlord opposition or landlord consent)
– an impact that appears as secretive and silent as it is fundamental. Part (ii) adds that
the lower bound on landlord proponents of the ring road can also be converted into an
upper bound on landlord opponents, and vice versa. Intuitively, if at least 30 out of 100
landlords support the ring road, say, then of course at most 70 landlords can be against it.
So not only does lp bound the number of proponents lp from below, also 1/2− lp bounds
the number of opponents lo from above.13

Most importantly, the ring road proposal is rejected once lo exceeds one fourth of the
housing stock, irrespective of the city’s specific apartment portfolio assignment (Part (iii)).
Figure 2’s panel (a) meets this condition, for example. This panel’s “classical city” pictures
a shaded area well in excess of half the area below the commuting density. Here the
city cannot help but turn down the ring road proposal. Not a single constellation of
landlord portfolios exists that could make collapse the anti-ring-road majority that is the
inescapable consequence of that city’s shape.14 Quite apparently the same cannot be said
for the “hat city” in Figure 2’s panel (b). Alternatively, of course, if lp exceeds 1/4 then
it is the landlord proponents of the ring road who will prevail. Figure 2 provides one
example of this, too, with the “edge city” in panel (c).

3 The Political and the Visual

Very different distributions may display similarly sized bounds. It may not so much be the
entire distribution that matters to urban majorities but one particular aspect of it. This
aspect may even have an intuitive interpretation. This section pursues these two ideas. It
suggests that the commuting distribution’s skewness is one property that (i) itself bounds
lower bounds and (ii) even is visually appealing at that. And so really it is skewness
(form) that drives decisions on the ring road proposal (function). Function follows form
(Proposition 2 later).

To start us on this idea we first define city skewness σ as

σ =
∫ r̃/2

0
D(r)

(
r̃/2− r

)
dr, (4)

i.e. as a weighted sum of ring differences D(r), with a given ring difference’s (positive)
weight equal to the two underlying rings’ common distance to “midtown”.15

13Since the interval [lo, 1/2− lp] contains the true lo, this interval’s size effectively indicates the precision
of our lower bound lo. (A similar point applies to lp.) For city shapes for which this interval is small our
lower bound supplies a more precise estimate than for city shapes for which this interval is large.

14In that sense we now really see why we do expect to find the interests of a majority of Parisians (or
Parisian landlords at least) to always go “back to the center”, as suggested by the introductory quote.

15In its reliance on r̃, the length of the commuting distribution’s support, σ differs from the various
definitions of skewness found in the literature. It is possible to rewrite σ as

∫ r̃

0 (r̃/2 − r) dr, or r̃/2 − ρ,
with ρ the expected commuting distance. Thus σ also is midtown distance minus average distance, which
is clearly not the same as, say, the traditional non-parametric definition of skewness.
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Offering σ we justify by pointing to its visual appeal. In formula (4), early ring differences
(associated with distances close to 0) receive large weights while late ring differences
(associated with distances close to r̃/2) only benefit from small weights. That an indicator
of skewness should reward early ring differences makes sense intuitively. A positive early
ring difference, say, is nothing but the “first ring” offering more apartments than the “last”.
Yet how the very distant first and last ring compare to each other frames our perception of
the commuting density’s (i.e. city shape’s) skewness by more than how the two adjacent
rings on either side of midtown r̃/2 compare to each other – hence the difference in weights.

Generally, for a city shape to exhibit strong positive skew, two properties contribute. First,
ring differences should more often than not be positive (true for our stylized “classical
city”, “hat city” and “inverted-U-city” (Figure 2 again), but not true in the case of our
“edge city”). And second, these positive ring differences should occur early (close to the
CBD), rather than late (close to the city’s boundary). The “inverted-U city” displays
visibly smaller skew than our “hat city” precisely because it lacks those early positive ring
differences.16 To summarize, all of this points to σ’s visual merit.

At the same time, and as the paper’s key proposition, σ also allows us to bound city
politics. City skewness connects the visual with the political, by exploiting both concepts’
connection with the physical. A compact statement of this idea runs through the following
short sequence of inequalities:

σ =
∫ r̃/2

0
D(r)

(
r̃/2− r

)
dr ≤ max

b∈[0, r̃/2]

[ ∫ b

0
D(r)

(
r̃/2− r

)
dr

]
(5)

≤ max
b∈[0, r̃/2]

[ ∫ b

0
D(r)

(
r̃/2

)
dr

]
(6)

= r̃ max
b∈[0, r̃/2]

[ ∫ b

0
D(r) dr

/
2
]

= r̃ lo, (7)

Inequality (5) exploits the fact that the integral over weighted ring differences is greatest
if the integral’s upper limit is chosen freely, rather than being invariably fixed at r̃/2. And
equation (7) makes use of the fact that a monotonic transform of the maximand does not
affect the maximization procedure’s solution. This leaves us with inequality (6). Note that
any further information absent, ring differences D(r) cannot be signed. A ring difference
may be anything: positive, zero, or even negative. So replacing (r̃/2 − r) by r̃/2, as we
do when going from the r.h.s. of (5) to the r.h.s. of (6), not necesssarily increases the
integral.

And yet increase is precisely what that integral does. As the proof of Proposition 2 in
the Appendix shows, inequality (6) is true indeed. Its proof really relies on one single
important insight. By definition, the upper limit of the integral b is chosen to render the

16Additional shapes could be drawn to illustrate how σ conforms with our intuition on skewness. Sym-
metric distributions, for instance, are characterized by skewness being equal to zero (as they should be).
For symmetric distributions, ring differences are all zero and hence so is skewness.
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expression in square brackets on the r.h.s. of (5) as large as possible. Let r∗ denote this
maximizer. In the resulting integral, or in∫ r∗

0
D(r)

(
r̃/2 − r

)
dr, (8)

ring differences may well alternate in sign, but late ring differences at distances just short
of r∗ must be positive. Why else would they be included in the integral (8)? Yet these
late, and positive, ring differences close to r∗ are also those where replacing (r̃/2− r) with
r̃ has the greatest impact. After all the change in weight applied when going from the
r.h.s. of (5) to the r.h.s. of (6) is r, and hence is largest if r is close to r∗.

Intuitively then, positive ring differences come to enjoy a greater extra in weight than
negative ring differences do. On balance replacing weights serves to increase the overall
sum. The formal proof in the Appendix then generalizes this intuitive idea to city shapes
for which ring differences’ sign alternates more often than just once (i.e. finitely many
times). To summarize, replacing (r̃/2 − r) by r̃/2 does contribute to raising the r.h.s. of
(5), and inequality (6) is true.

We summarize the overall inequality implied by the succession of inequalities (5) through
(7), and combine it with lo ≤ lo (Proposition 1), in Proposition 2’s first part. Landlord
support for the ring road proposal is bound from below by skew adjusted for city size,
σ/r̃. Part (i)’s second inequality gives an independent, if related, result. The negative
of adjusted city skew bounds landlord proponents from below. The more skewed the city
is the more confident we are of the ring road proposal meeting landlord resistance. In
sufficiently positively skewed cities (Figure 2’s panel (a), (b) and (d))), part (i)’s first
inequality may be useful. In sufficiently negatively skewed cities (Figure 2’s panel (c)) we
exploit the second inequality instead.

Proving Proposition 2’s second inequality relies on a sequence of inequalities akin to that
in (5) through (7). Compactly stated,

σ =
∫ r̃/2

0
D(r)

(
r̃/2− r

)
dr ≥ min

b∈[0, r̃/2]

[ ∫ b

0
D(r)

(
r̃/2− r

)
dr

]
(9)

≥ min
b∈[0, r̃/2]

[ ∫ b

0
D(r)

(
r̃/2

)
dr

]
(10)

= − r̃ max
b∈[0, r̃/2]

[ ∫ b

0

(
−D(r)

)
dr
/

2
]

= − r̃ lp. (11)

Here steps (9) and (11) are obvious again. It is inequality (10) that plays the crucial, and
not-so-intuitive, part. Much as above, moving from the r.h.s. of (9) to the r.h.s. of (10)
is not trivial because D(r) again cannot be signed. It is possible to prove that inequality
(10) holds nonetheless. To summarize then, σ ≥ −r̃ lp. Rearranging this inequality and
combining it with lp ≤ lp (Proposition 1, Part (i)) yields the −σ/r̃ ≤ lp also stated in
the Proposition’s Part (i). The formal proof we skip, it is similar to that given for the
corresponding inequality for landlord opponents.
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Proposition 2’s Part (ii), in setting out the relationship between city shape (city form) and
buildings’ uses (city function), contains the paper’s comparative statics. On the one hand,
if σ/r̃ exceeds 1/4 then this is not just true for lo (Proposition 2, Part (i)) but a fortiori
also for lo. On the other hand, if −σ/r̃ exceeds 1/4 then so does lp (Proposition 1, Part
(i)). Buildings in the city traditionally house retail and office uses. If city skew is strong
enough then traditional uses are preserved, while if city skew is sufficiently negative then
uses are reversed, i.e. city center buildings become residential and it becomes peripheral
buildings’ turn to take over the retail and office function. Of course, for “amorph cities”,
with σ/r̃ in the open interval (−1/4, 1/4), equilibrium policy cannot be assessed further
information absent. And so the relationship between σ and the electorate’s policy decision
cannot really be said to be monotonic.

Proposition 2: (Function Follows Form)
(i) (Physical and Visual): City Skew σ bounds landlord opponents and proponents via

σ/r̃ ≤ lo and − σ/r̃ ≤ lp.

(ii) (Function Follows Form): If σ/r̃ > 1/4 (or −σ/r̃ > 1/4 alternatively) the center
retains its retail and employment function (the periphery takes over jobs and shops), irre-
spective of the city’s apartment ownership structure.

From that perspective, the impact of city shape on city functions presented here reverses
– or, less dogmatically, complements – Sullivan (1896)’s “form follows function”. To em-
phasize, all of this is always true in full ignorance of the city’s actual apartment portfolio
assignment.17

4 Discussion

Sprawl: As indicated in the introduction, ultimately urban policy will feed back into city
shape. Not just should the city’s shape be expected to impact on urban policy (this
paper’s overall proposition); also the city’s shape naturally responds to urban policy (a
well-established fact). Cities that are sufficiently skewed stick to their traditional center.
Inasmuch as the existing distribution of apartments across the city already reflects the
center’s past attraction, nothing ever changes. A city with sufficiently positive skew is in
perfect equilibrium. Both the city shape and its electorate’s rejection of any ring road
proposal constantly reaffirm each other, and hence persist into the future.

In great contrast, cities that are sufficiently skewed towards the center are obviously not
in any equilibrium. As argued above, a city with strong negative skew first sheds its

17An obvious and important follow-up question is how our results change if apartment ownership is
relaxed. This question is left to an extension of this paper’s model. Nonetheless even now we surmise that
if the city is heavily skewed, relaxing apartment assignments will not overturn the result that city skewness
predicts the ring road proposal’s fate. This is fairly obvious if we think about two extreme alternatives,
where either all landlords jointly act as a landlord class or where all residents are owner-occupiers. In both
of these scenarios city skewness again can help predict equilibrium policy.
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traditional center. From a dynamic perspective, and after adding a city shape response
at long last, the implied decentralization of employment and shopping opens up a host of
new property developments beyond the ring road, on land that was out of reach previously
(the city’s “suburb”). This land must appear attractive also to the mobile of other cities’
residents. Apartment construction beyond the ring road will make the settlement area
expand far beyond its initial boundary (the city’s “core”).

The city’s ultimate path of growth depends on a number of decisions also addressed by
a large and growing literature, e.g.: Will the suburbs be incorporated into the core, to
the extent of creating an agglomeration containing both suburbs and core? Will owners
of suburb land be residents of that agglomeration? How do the other cities in the ur-
ban system respond, will they also shed their traditional CBD? Briefly, how the shape
of the agglomeration evolves depends on the answers to all of these questions. The ag-
glomeration’s shape may be much more skewed than the city’s shape ever was. Then the
agglomeration settles into an equilibrium.

Just as conceivably, adding all this suburb population joint with shedding city core popu-
lation may actually reinforce the initial city’s negative skew. The evolving agglomeration
may exhibit sufficiently negative skew, too, much like the old city core did earlier. Then
the agglomeration cannot help but build its own, and hence yet another, ring road. Much
like the layers of an onion, the evolving agglomeration keeps adding ring roads and sub-
urbs, while at the same time hollowing out further in the center. This may stop when
ring road travel starts becoming expensive. We delegate a fuller analysis of such a mutual
interaction between shape and policy, joint with its response to exogenous shocks, to a
later paper.

Vedutas: We have followed Arnott/Stiglitz (1981) in equating city shape with the city’s
commuting distribution. Arguably this city shape is not what a distant observer – of Mu-
nich in 1761 (Fig. 1), say – actually sees. In any case there is a tight relationship between
shape and silhouette (Brueckner (1987)). Let h(r) denote floor space per unit of land,
and let y(r) denote a household’s housing consumption. Then h(r)/y(r) gives population
per unit of land built on. Further, if a(r) captures the built up area then the apartment
supply – and the commuter total – at that distance is h(r)a(r)/y(r) approximately. So

f(r) = h(r) a(r)
/
y(r)

provides a “foundation” for the paper’s commuting density. Becoming informed of, or
making reasonable assumptions on, a(r) and y(r) allows one to go back and forth between
silhouette h(r) and shape f(r).

To revisit the introduction’s veduta example (Fig. 1), suppose Munich’s silhouette h(r)
were fitted a straight line h(r) = d(r̃ − r), with r̃ and d known scalars derived from the
painting. (Canaletto is known for both his realism as well as his employing the at the
time novel, and more precise, “camera obscura” technique, painting a projection of the
cityscape onto a wall rather than the cityscape itself.) If y(r) could safely be assumed to
equal some constant c, and if a(r) just equalled 2πr then Munich’s commuting density
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would be f(r) = 2πr(d/c)(r̃−r). For each city painting we may compute adjusted skewness
σ/r̃, to then compare it with threshold 1/4 and subsequent city history.

Carbon Tax or Congestion Toll: We have pointed to the analogy between the electorate’s
decision on the ring road proposal and its decision on whether to introduce a tax on com-
muting (motivated by aiming to reduce congestion or carbon dioxide emissions), raising t
marginally. If the attendant tax revenue can be ignored (e.g. because it is wasted) and if
tenants’ political influence can be neglected (even as tenants’ costs-of-living tr̃ rise) then
a city that is against the ring road also is a city that is for implementing a city toll or
a carbon tax. This attributes societies composed of cities of sufficient skew the political
majority in favor of the carbon tax. abatement

5 Conclusions

Urban policy molds city shape. This paper argues that city shape also molds urban pol-
icy. The more skewed a city’s shape (i.e. commuting distribution), the less conceivable
a majority of resident landlords that prefer replacing the traditional center at the CBD
by a succession of office parks and shopping malls strewn along a city ring road. This
idea connects to two long-standing themes in both architectural theory and economics. It
connects to architectural theory because it provides one specific instance of where “func-
tion follows form”, rather than where “form follows function” (Sullivan (1896)). As one
particular architect subsequently notes himself,

“Form follows function – that has been misunderstood. . . . Form and function
should be one, joined in a spiritual union.” (Frank Lloyd Wright quoted in
Saarinen (1954)

And this idea of city shape molding urban policy also connects to economics because
it gives one specific instance of when drawing conclusions from an aggregate (the city
form) to its component members (the city residents) is legitimate. Economics as a field
has traditionally been weary of generalizing an aggregate’s properties on towards the
aggregate’s component members lest it commit a “fallacy of division”. By linking the
built environment – a society aggregate – to the preferences of (at least a majority) of
its inhabitants – a majority of individuals – we also provide an example at least of where
inferring dominant residents’ properties does seem justified. Whenever the city’s shape
“leans towards” the city center (a majority of) resident landlords also are inclined to
maintain, and hence “lean towards”, the city center. Conversely, if the city “leans towards”
the periphery (a majority of) resident landlords are inclined to develop, and hence “lean
towards”, the periphery. For once no fallacy is involved.
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7 Appendix

Proof of Proposition 1:
Part (i) (Lower Bounds): Consider a landlord who resides in ring i yet rents out the extra
property in ring j. This is a “match” {i, j}. Let matrix B collect the frequencies with
which matches {i, j} occur. For example, b1,3 is the number of times a landlord owning,
and living in, an apartment in the first ring also owns an apartment in ring 3. Note that,
with this definition, the sum of all entries in row i plus the sum of all entries in column i
just yield the apartment total in ring i.

B =


b1,1 b1,2 b1,3 . . . b1,n−2 b1,n−1 b1,n

b2,1 b2,2 b2,3 . . . b2,n−2 b2,n−1 b2,n
...

...
...

...
...

...
bn−1,1 bn−1,2 bn−1,3 . . . bn−1,n−2 bn−1,n−1 bn−1,n

bn,1 bn,2 bn,3 . . . bn,n−2 bn,n−1 bn,n

 . (12)

In view of condition (1), B’s counter diagonal (comprising all the elements on the diagonal
stretching from the bottom left corner to the top right hand corner) collects all those
matches that leave landlords indifferent to the ring road. In contrast, entries above (below)
B’s counterdiagonal collect all those matches that involve landlord opponents (landlord
proponents).

Since (s1 − s2)/2 is an obvious first lower bound, let us make precise the second lower
bound discussed in the main text instead, or (s1 + s2 − (sn−1 + sn))/2. In (12), s1 and s2
are the sums of all entries given in the first row and column and second row and column,
respectively. It is clear that this sum overstates the number of landlord opponents; some
of its elements are found on, or below, our counterdiagonal. The implied error amounts to(

bn,1 + bn−1,2 + bn,2
)

+
(
b1,n + b2,n−1 + b2,n

)
. (13)

This error collects a subset of all the matches linking apartments in the last two rings to
apartments in the first two rings, indicating landlords that do not oppose the ring road
at all. We take care of these by subtracting all apartments in the last two rings from
(s1 + s2). Similar reasoning applies to subsequent lower bounds on landlord opponents, or
to any lower bound on landlord proponents. �

Proof of Proposition 2:
Part (i) (Physical and Visual/First Inequality): It remains to show that the following
inequality is true:

max
b∈[0, r̃/2]

[ ∫ b

0
D(r)

(
r̃/2− r

)
dr

]
≤ max

b∈[0, r̃/2]

[ ∫ b

0
D(r)

(
r̃/2

)
dr

]
(14)

The proof proceeds in three steps.

Step 1: Let r∗ denote the maximizer to the program on the l.h.s. of (20). If ring
differences are positive always then there is nothing to prove. Thus suppose that the signs
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of ring differences D(r) alternate on [0, r∗]. By definition of r∗, the last interval must be
one on which D(r) > 0 because if this were not true then r∗ would not be a maximizer:
An upper limit of integration short of r∗ would perform better.

Consider all those intervals on which D(r) retains its sign. We pair off these intervals into
groups of two each. That is, we divide [0, r∗] into n consecutive intervals [0, r∗1], [r∗1, r∗2], . . . ,
[r∗n−1, r

∗] such that the i-th such interval decomposes into one subset on which D(r) < 0,
ranging from [r∗i−1, r̂i], and another on which D(r) > 0, written [r̂i, r

∗
i ]. We also set r∗0 = 0

and r∗n = r∗.

By the second mean value theorem of integration, there must be numbers c′i and c′′i ,
satisfying r̃/2 ≥ c′i ≥ c′′i > 0 as well as c′′i ≥ c′i+1 for all i, such that

max
b∈[0, r̃/2]

[ ∫ b

0
D(r)

(
r̃/2− r

)
dr

]
=

n∑
i=1

[ ∫ r̂i

r∗
i−1

D(r)
(
r̃/2− r

)
dr +

∫ r∗
i

r̂i

D(r)
(
r̃/2− r

)
dr

]

=
n∑

i=1

[
c′i

∫ r̂i

r∗
i−1

D(r) dr + c′′i

∫ r∗
i

r̂i

D(r) dr
]

≤
n∑

i=1

[
c′i

∫ r̂i

r∗
i−1

D(r) dr + c′i

∫ r∗
i

r̂i

D(r) dr
]

=
n∑

i=1
c′i

∫ r∗
i

r∗
i−1

D(r) dr. (15)

Step 2: This intermediate step proves that for all j = 1, . . . , n, we have∫ r∗

r∗
n−j

D(r) dr ≥ 0. (16)

Note first that the last, n-th, integral in the sum on the right hand side of (15) must be
non-negative because if it were not then r∗ could never be a solution to the program on
the l.h.s. of (20): Picking a smaller upper limit than r∗, and hence omitting that last
term, would be a better choice. So by necessity

∫ r∗

r∗
n−1

D(r)dr ≥ 0.

Now, when added up the last two terms in the sum on the r.h.s. of (15) must be non-
negative, too, because, again, otherwise r∗ could not be optimal. But then, since c′n ≤ c′n−1
and in view of the previous paragraph’s inequality, we even have

0 ≤ c′n−1

∫ r∗
n−1

r∗
n−2

D(r) dr + c′n

∫ r∗

r∗
n−1

D(r) dr

≤ c′n−1

∫ r∗
n−1

r∗
n−2

D(r) dr + c′n−1

∫ r∗

r∗
n−1

D(r) dr

= c′n−1

∫ r∗

r∗
n−2

D(r) dr (17)

Since c′n−1 is positive the integral on the r.h.s. of (17) is non-negative. Repeating this
type of argument shows that any sum of the last j integrals in the grand sum on the r.h.s.
of (15) is non-negative. This proves (16). (The informal argument presented in this step
can be transformed into a proper proof of induction. To avoid introducing extra notation
this is not done here.)
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Step 3: Result (16) permits us to take the sum in (15) further. We continue with the
expression on the r.h.s. of (15) as follows:

n∑
i=1

c′i

∫ r∗
i

r∗
i−1

D(r) dr =
n−1∑
i=1

c′i

∫ r∗
i

r∗
i−1

D(r) dr + c′n

∫ r∗

r∗
n−1

D(r) dr

≤
n−1∑
i=1

c′i

∫ r∗
i

r∗
i−1

D(r) dr + c′n−1

∫ r∗

r∗
n−1

D(r) dr

=
n−2∑
i=1

c′i

∫ r∗
i

r∗
i−1

D(r) dr + c′n−1

n∑
i=n−1

∫ r∗
i

r∗
i−1

D(r) dr

≤
n−3∑
i=1

c′i

∫ r∗
i

r∗
i−1

D(r) dr + c′n−2

n∑
i=n−2

∫ r∗
i

r∗
i−1

D(r) dr

≤ . . .

≤
n∑

i=1
c1

∫ r∗
i

r∗
i−1

D(r) dr (18)

Note how successive inequalities repeatedly exploit (16), for increasingly larger values of
j. We only need to add that

n∑
i=1

c1

∫ r∗
i

r∗
i−1

D(r) dr ≤
n∑

i=1
(r̃/2)

∫ r∗
i

r∗
i−1

D(r) dr

=
∫ r∗

0
D(r)(r̃/2) dr

≤ max
b∈[0, r̃/2]

[ ∫ b

0
D(r)

(
r̃/2

)
dr

]
(19)

Putting inequalities (15), (18) and (19) together completes the proof. �

Part (i) (Physical and Visual/Second Inequality): It remains to show that the following
inequality is also true:

min
b∈[0, r̃/2]

[ ∫ b

0
D(r)

(
r̃/2− r

)
dr

]
≥ min

b∈[0, r̃/2]

[ ∫ b

0
D(r)

(
r̃/2

)
dr

]
. (20)

The proof is similar to that given for Part (i)’s first inequality. �
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