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Vienna Institute of Demography/Austrian Academy of Sciences
2Vienna University of Technology

3Paris School of Economics - University Paris 1

February 15, 2015

Abstract

This paper presents an analysis of the differential role of mortality
for the optimal schooling and retirement age when the accumulation of
human capital follows the so-called “Ben-Porath mechanism”. We set
up a life-cycle model of consumption and labor supply at the extensive
margin that allows for endogenous human capital formation based on
Card (2001). This paper makes two important contributions. First, we
provide the conditions under which a decrease in mortality leads to a
longer education period and an earlier retirement age. Second, those
conditions are decompose into a Ben-Porath mechanism and a lifetime-
human wealth effect vs. the years-to-consume effect. Finally, using
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Swedish data for cohorts born between 1865 and 2000, we show that
our model can match the empirical evidence.

JEL-classification: J10 J24 J26.

1 Introduction

In many countries, development has been accompanied with significant in-
creases in life expectancy and reductions in labor supply. Since the nineteenth
century life expectancy has increased by 40 years at a rate of 3 months per year
(Oeppen and Vaupel (2002) and Lee (2003)), while labor supply has decreased
at two extensive margins: later entrance in the labor market and earlier re-
tirement. Prior to industrialization, male literacy rates started to increase in
the most advanced countries (Cippola (1969), Cervellati and Sunde (2005),
and Boucekkine et al. (2007)). This process continued with an expansion of
primary education enrollment rates at the end of the nineteenth century and
first half of the twentieth century (Benavot and Riddle (1988)). By 1950, the
average length of schooling for males was around six years in the most ad-
vanced countries and has increased up to twelve years in 2010 (Barro and Lee
(2013)). Simultaneously, labor force participation rates for old workers started
to fall until recently, even before the introduction of pension systems (Costa
(1998) and Schieber and Shoven (1999)). In 1970, the average retirement age
was 68 in OECD countries and has declined up to age 63 in 2010 (see OECD
(2009)).

Existing theoretical models that analyze the effect of mortality on educa-
tion and retirement, however, find results that contradict the historical em-
pirical evidence. In particular, these models assume a causal positive relation
between human capital investments, retirement age, and life expectancy (see
(Boucekkine et al., 2002), Echevarria (2004), Echevarria and Iza (2006), Fer-
reira and Pessoa (2007), and Zhang and Zhang (2009), among others). The
positive link between human capital investment and life expectancy, through
the well-known Ben-Porath (1967)’s mechanism, is undisputed (de la Croix
and Licandro (1999), Kalemli-Ozcan et al. (2000), Zhang et. al. (2001), Zhang
et. al. (2003), Cervellati and Sunde (2005), Soares (2005), Zhang and Zhang
(2005), Jayachandran and Lleras-Muney (2009), and Oster et al. (2013)), ex-
cept for Hazan and Zoabi (2006). However, studies about the effect of mortal-
ity improvements on the decline in retirement age are scarce and offer several
complementary explanations. For instance, Kalemli-Ozcan and Weil (2010)
suggest that the decline in retirement age might be explained by reductions
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in the risk of dying before retirement, named “uncertainty effect”. More re-
cently, Bloom et al. (2014) point out that positive income effects along the
twentieth century might have offset the gains in healthy life after retirement,
or “compression of morbidity” effect (see Bloom et al. (2007)).

In the last two decades, improvements in the understanding of the Ben-
Porath mechanism and the link between mortality and retirement have come
from two different sources. On the one hand, empirical investigations of the
mortality decline over the last two centuries show that mortality does not im-
prove uniformly across age groups (Lee (1994), Wilmoth and Horiuchi (1999),
and Cutler et al. (2006)). Early stages of the mortality transition are mainly
characterized by reductions of mortality in infants and children, while recent
mortality declines occur at older ages. Motivated by this demographic feature,
several authors have recently shown that the link between life expectancy and
labor supply depends on the age pattern of mortality improvements. In par-
ticular, mortality declines during adulthood may cause early retirement, while
reductions in mortality at older ages delay retirement (d’Albis et al. (2012) and
Strulik and Werner (2012)). Also, it was shown that improvements in survival
during prime-working ages increase human capital investment (Cervellati and
Sunde (2013)). On the other, recent literature on the returns to education
show that, despite the rising returns to high education in the US, on average
individuals underinvest in human capital due to high psychic costs of school,
risk and uncertainty, or unobserved differences in skills (Carneiro et al. (2003),
Cunha et al. (2005), and Heckman et al. (2006)). In other words, individuals
do not choose the optimal number of years of education that maximize their
lifetime earnings (see Becker (1967) and Willis (1986)). To cope with this
problem, Card (2001) proposes a model in which individuals have different
aptitudes or tastes for schooling relative to work.

In our paper, we explain the differential role of mortality for optimal school-
ing and retirement age. We set up a life-cycle model of consumption and labor
supply at the extensive margin that allows for endogenous human capital for-
mation based on Card (2001). Since the decline in mortality does not occur
uniformly across age-groups, following d’Albis et al. (2012) we model the age-
specific mortality rates non-parametrically. Thus, using the derivative of a
functional (see Ryder and Heal (1973) and d’Albis et al. (2012)) we study the
impact of a mortality decline at any arbitrary age on human capital investment
and retirement.

Under this setup, we first derive analytically conditions under which a
decrease in mortality may induce higher education and lower labor supply,
thereby reconciling the empirical evidence shown by Hazan (2009) with eco-
nomic theory. We provide the economic intuition of our results by decomposing
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the differential effect of mortality on schooling and retirement into the “lifetime
human wealth” and “years-to-consume” effects. “Lifetime human wealth” ef-
fect stands for the positive impact that a mortality decline has on consumption
because it raises the likelihood of receiving a future labor income stream. On
the contrary, the “years-to-consume” effect, which is always negative, reflects
the overall reduction in consumption due to a longer lifespan. Second, we em-
pirically analyze our model using Swedish schooling, retirement, and mortality
data for cohorts born between 1865 and 2000. Our results show two important
facts. First, when the life expectancy rises, our model is capable of produc-
ing an optimal decline in retirement age and an increase in years of schooling
(Hazan, 2009). Second, since in the earlier stage of mortality transition, a
decline in mortality belongs mainly to younger people, whereas in the later
stage, a decline in mortality has mainly occurred at older ages, we show that
the optimal retirement age bottomed out for cohorts born in the 1920s and it
is expected to increase from now on.

The rest of the paper is organized as follows: Section 2 introduces the
model setup and presents the first-order conditions for optimal consumption,
length of schooling, and retirement. Furthermore, the relationship between the
optimal length of schooling and retirement is explained. In Section 3, we study
–using the Volterra derivative of a functional– the differential role of mortality
on the optimal length of schooling and retirement. For a better understanding
on the role of mortality on each variable, we distinguish between the direct
and indirect impact of mortality on education and retirement, separately. In
Section 4, we solve the model numerically and demonstrate, using a simple
quantitative exercise, how the mortality transition may increase the length of
schooling and reduce the retirement age. Concluding remarks are made in
Section 5.

2 The model

We setup a consumer’s problem that consists in choosing the optimal num-
ber of years of schooling (S), optimal retirement age (R), and the optimal
consumption path (c(x)) in order to maximize the expected lifetime utility
(V (S,R, c)). We assume time is continuous. Agents face lifetime uncertainty,
which is represented by the survival function

p(x) = e−
∫ x
0 µ(q)dq, (1)

where p(x) is the (unconditional) probability of surviving to age x, p(0) = 1,
p(ω) = 0, being ω ∈ (0,∞) the maximum age, and µ(q) ≥ 0 is the mortality
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hazard rate at age q.
Schooling and labor supply are indivisible and the transitions from school-

ing to working and from working to retirement are irreversible, as in Boucekkine
et al. (2002), Echevarria (2004), Echevarria and Iza (2006), and Cai and Lau
(2012). We also assume that agents do not save with a bequest motive in
mind and there exists a perfect annuity market, which grants that agents bor-
row and lend freely at a fixed interest rate. Thereby, consumers optimally
choose to purchase annuities (see Yaari (1965)). The instantaneous expected
utility depends positively on current consumption and negatively on current
non-leisure time. The utility of consumption U(c) is an increasing and concave
function (i.e. Uc(·) > 0, Ucc(·) < 0).1 Let φ̃(S, x) denote the disutility of non-
leisure time at age x of an individual who has completed S years of schooling.
Assume φ̃(S, x) is a positive and increasing function with respect to age (i.e.
φ̃(S, x) > 0, φ̃x(S, x) > 0), which reflects the fact that the disutility of not
enjoying leisure is increasing with age (see Hazan (2009), Kalemli-Ozcan and
Weil (2010), d’Albis et al. (2012), and Cai and Lau (2012), among others).
After retirement, φ̃(S, x) equals zero. Then, assuming that agents discount fu-
ture utility flows at a subjective discount rate ρ, the expected lifetime utility,
conditional on the years of schooling (S), retirement (R), and consumption
path (c) is

V (S,R, c) =

∫ ω

0

e−ρxp(x)U
(
c(x)

)
dx−

∫ R

0

e−ρxp(x)φ̃(S, x)dx. (2)

Following Card (2001), we generalize most existing theoretical papers by as-
suming that agents may have different tastes for schooling relative to work

φ̃(S, x) =

{
φ(x) + ψ(x) if x ≤ S,

φ(x) if x > S,
(3)

where φ(x) > 0 (with φx(x) ≥ 0) is the underlying disutility of non-leisure
time and ψ(x) is the relative disutility of school versus work. Factor ψ(x) is
positive when the agent prefers work to schooling or negative when schooling is
preferred to work. We assume that if ψ(x) is positive, the relative disutility of
schooling increases with age (i.e. ψx(x) ≥ 0), whereas if ψ(x) is negative, our
agent has a decreasing preference for schooling, or ψx(x) ≤ 0. As a particular
case, notice ψ(x) = 0 for all x ∈ (0, ω) is also included in Card (2001), which
is implicitly assumed in Hazan (2009), Kalemli-Ozcan and Weil (2010), Cai
and Lau (2012), among many others.

1We use subscripts to denote the derivative with respect to the variable in the subscript,
and apply the same notation for partial derivatives.
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Labor income, denoted by y, is assumed to be proportional to years of
schooling (S) and years of post-schooling experience (E), which is equal to
x − S (see Mincer (1974)). Thus, we write labor income at age x = S + E
conditional on S years of schooling as y(S, S + E) = w(E)h(S + E), where
w(E) > 0 represents the wage rate per unit of human capital with E = x− S
years of post-schooling experience and h(S +E) is the stock of human capital
of an individual at age x with S years of schooling. We assume there exists
an Ē ∈ [0, R− S], for R > S, such that

{
wE(E) ≥ 0 if E ≤ Ē,

wE(E) ≤ 0 if E ≥ Ē,
(4)

which represents the usual hump-shape pattern of the labor income found in
empirical data (see Heckman et al. (2006)).2 Assume the law of motion of
human capital of an individual at age x with S years of schooling accumulates
according to a Ben-Porath (1967) technology

hx(x) =

{
q(h(x))− δh(x) if x ≤ S

−δh(x) otherwise,
(5)

where q(·) is the human capital production function (with qh(·) > 0 and
qhh(·) < 0), and δ > 0 is the human capital depreciation rate, which is as-
sumed constant across age.3 As a result, the law of motion of financial wealth
at age x (a(x)) is

ax(x) =

{
[r + µ(x)]a(x) + y(S, x)− c(x) if S < x < R,

[r + µ(x)]a(x)− c(x) otherwise,
(6)

with boundary conditions a(0) = 0 and a(ω) = 0, where r is the real interest
rate. Integrating (6) with respect to age, subject to the boundary conditions,
we obtain the standard lifecycle budget constraint faced by our individual:

∫ ω

0

e−rxp(x)c(x)dx =

∫ R

S

e−rxp(x)y(S, x)dx ≡ W (S,R), (7)

where W (S,R) is the lifecycle earnings (measured at age 0) conditional on
S years of schooling and retirement age R. For the sake of comparison with

2Using data from the US Decennial Censuses, the estimated coefficients from Mincer log
earnings regressions for white males during the period 1940-90 report an average Ē value of
30.1 years (Heckman et al., 2006, Table 2, p. 326).

3The functional form h(S) = eθ(S), used by Hazan (2009), p. 1834, can be obtained
assuming either that δ = 0 or that q(h(x)) is equal to (θx(x) + δ)h(x).
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the literature on the impact of mortality on retirement and education, notice
that we implicitly assume that the only cost of schooling is foregone labor
income (see Kalemli-Ozcan et al. (2000), Hazan (2009), Cai and Lau (2012),
and Cervellati and Sunde (2013)). Tuition costs, earnings while in school, and
taxes are also modeled in the returns to education literature (see Willis (1986),
Card (2001), Heckman et al. (2006)).

2.1 Optimal consumption, length of schooling, and re-
tirement age

Following d’Albis and Augeraud-Véron (2008), Heijdra and Romp (2009), and
d’Albis et al. (2012) we obtain our agent’s optimal consumption path, length
of schooling, and retirement in two steps. First, we derive the optimal con-
sumption path. We define the optimal consumption at age x, conditional on
the length of schooling (S) and retirement age (R), as c(x, S,R). Second,
based on the conditional consumption path derived in the first step, we obtain
the optimal length of schooling and retirement age. Let us define V̂ (S,R) as
the expected lifetime utility conditional on the optimal consumption path.

In Proposition 1, we characterize the optimal consumption path, the opti-
mal length of schooling, and the optimal retirement age. The proof is given in
Appendix A.

Proposition 1 For the life-cycle model given by (1)-(6), the optimal con-
sumption path, conditional on a length of schooling S and a retirement age R,
is characterized by

Uc
(
c(x, S,R)

)
= e(ρ−r)xUc

(
c(0, S, R)

)
. (8)

Moreover, an interior optimal length of schooling (S∗) satisfies

∫ R

S∗
e−r(x−S

∗) p(x)

p(S∗)
yS(S∗, x)dx = y(S∗, S∗) +

e(r−ρ)S∗
ψ(S∗)

Uc
(
c(0, S∗, R)

) , (9)

and an interior optimal retirement age (R∗) is given by

Uc
(
c(0, S, R∗)

)
e−rR

∗
y(S,R∗) = e−ρR

∗
φ(R∗). (10)

Eq. (8) is the standard Euler condition characterizing the consumption
path. The left-hand side of Eq. (9) is the marginal benefit of the S∗-th year
of schooling, whereas the right-hand side represents the marginal cost of the
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S∗-th year of schooling. Let us define f(S,R) as the marginal effect of an
additional unit of schooling (measured at age S) on lifecycle earnings:

f(S,R) ≡ WS(S,R)

e−rSp(S)
=

∫ R

S

e−r(x−S) p(x)

p(S)
yS(S, x)dx− y(S, S), (11)

or, equivalently, the marginal benefit of the S-th year of schooling minus the
foregone labor income at age S (measured at age S). Provided the labor
income is separable in education and experience, from (5) Eq. (11) can be
rewritten, after rearranging, as

f(S,R) =
W (S,R)

e−rSp(S)

(
q
(
h(S)

)

h(S)
− δ

−r −
∫ R
S
e−(r+δ)xµ(x)p(x)w(x− S)dx
∫ R
S
e−(r+δ)xp(x)w(x− S)dx

− e−rRp(R)y(S,R)

W (S,R)

)
, (12)

where q(h(S))/h(S)− δ is the rate of return to education at the S-th unit of
schooling (henceforth rh(S)). The third and fourth terms inside the parenthe-
sis represent the average return lost in the capital market from postponing the
entrance in the labor market. Specifically, the fourth term is the average risk
premium lost from the S-th unit of schooling, which hereinafter we denote by
µ̄[S,R]. The last term is the income lost at retirement relative to the lifetime
wealth. For notational convenience, let denote the sum of the negative terms
in (12) as r̄(S,R); that is

r̄(S,R) = r + µ̄[S,R] +
e−rRp(R)y(S,R)

W (S,R)
. (13)

Eq. (13) represents the annuitized marginal cost of the S-th unit of schooling,
expressed in terms of foregone earnings, conditional on the retirement age R.
Assuming there is no mortality risk and considering that R tends to infinity,
Eq. (13) reduces to the real interest rate. Thus, if ψ(S∗) is zero, we obtain
the result that individuals invest in schooling until the marginal return to
education equals the return to capital, see Willis (1986).

Substituting (11)-(13) in (9), and rearranging, gives

rh(S∗)− r̄(S∗, R) =
e−ρS

∗
p(S∗)ψ(S∗)

W (S∗, R)Uc(c(0, S∗, R))
, (14)

or the difference between the return to education at the S-th unit of schooling
and the marginal cost of the S∗-th unit of schooling expressed in terms of
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foregone earnings. Eq. (14) implies that when working is preferred to schooling
(ψ(S∗) > 0), individuals underinvest in education since rh(S∗)− r̄(S∗, R) > 0.
In contrast, when schooling is preferred to work (ψ(S∗) < 0), individuals over-
investment in education since rh(S∗) − r̄(S∗, R) < 0. As a consequence, if
education were considered a pure investment good (ψ(S∗) = 0), rh(S∗) =
r̄(S∗, R∗).

Empirically, the econometric estimations of returns to education report
values of rh(S∗) exceeding those of r̄(S∗, R∗). For example, Card (1999) finds
a wide range of rates of returns to education in the US centered around 8%
per year, while Heckman et al. (2008) estimate also for the US that the returns
to education range between 10 to 15% per year. In contrast, when education
is considered a pure investment good, the rate of return to education for an
individual with 10 years of education does not exceed 3% per year for a wide
range of feasible retirement ages.4 Several explanations are suggested in the
literature for the positive difference between rh(S∗) and r̄(S∗, R∗). The most
common ones are high “psychic cost” of school, uncertainty, and heterogene-
ity among individuals (see Carneiro et al. (2003), Cunha et al. (2005), and
Heckman et al. (2006)), while credit constraints might be important for go-
ing to college decisions (Belley and Lochner, 2007), but not for most students
(Carneiro and Heckman, 2002; Heckman et al., 2006). Henceforth, following
the literature on returns to education, we assume hereinafter that ψ(x) > 0
for all x ∈ (0, S). As a consequence, rh(S∗)− r̄(S∗, R) > 0.

Eq. (10) is the optimal retirement age condition. Eq. (10) implies that
the marginal benefit of continued working at age R∗, which is equivalent to
the additional labor income at age R∗ measured in utility terms, equals the
marginal cost of working at age R∗, or the disutility of continued working at
age R∗. This optimal retirement age condition was first derived by Sheshinski
(1978).

The first important results one can obtain from Proposition 1 are the effects
of an increase in the optimal length of schooling and retirement age on the
optimal consumption path. Differentiating (7) and (8) with respect to S,
substituting, and using (11) gives

cS(0, S∗, R)

c(0, S∗, R)
=

e−rS
∗
p(S∗)σ(c(0, S∗, R))f(S∗, R)∫ ω

0
e−rxp(x)σ(c(x, S∗, R))c(x, S∗, R)dx

. (15)

4A value of 3% has been calculated based on the wage rate per unit of human capital
logw(x−S) = logw(0) + 0.094(x−S)− 0.0013(x−S)2 withdrawn from Table 2 (Heckman
et al., 2006, p. 326), US death rates of males from the cohort born in year 1900 (Bell et al.,
1992), an interest rate of 3%, and no human capital depreciation rate.
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where

σ(c) = − Uc(c)

c · Ucc(c)
> 0, (16)

is the intertemporal elasticity of substitution (IES) for consumption c. Using
(7) and (12)-(14), Eq. (15) becomes5

cS(0, S∗, R)

c(0, S∗, R)
=
σ(c(0, S∗, R))

σ(c(x̄, S∗, R))
(rh(S∗)− r̄(S∗, R)), (18)

Assuming a constant IES, Eq. (18) implies that the relative increase in the
initial consumption due to an additional unit of schooling is equal to the
difference between the return to education and the marginal cost of the S∗-th
unit of schooling expressed in terms of foregone earnings. As a consequence,
an additional investment in schooling is efficient when rh(S∗)− r̄(S∗, R) > 0,
and inefficient when rh(S∗)− r̄(S∗, R) < 0.

To analyze the impact of retirement on the optimal consumption path we
differentiate (7) and (8) with respect to R. Substituting and using (10), we
have

cR(0, S, R∗)

c(0, S, R∗)
=

e−rR
∗
p(R∗)σ(c(0, S, R∗))y(S,R∗)∫ ω

0
e−rxp(x)σ(c(x, S,R∗))c(x, S,R∗)dx

, (19)

which is equivalent to

cR(0, S, R∗)

c(0, S, R∗)
=
σ(c(0, S, R∗))

σ(c(x̄, S, R∗))

e−rR
∗
p(R∗)y(S,R∗)

W (S,R∗)
. (20)

For a constant IES, Eq. (20) states that the relative impact of delaying re-
tirement on the initial consumption is equal to the weight of labor income at
age R∗ in lifecycle earnings. Thereby, contrary to an increase in the length
of schooling, an increase in the retirement age always raises the optimal con-
sumption path because the agent receives an additional labor income at age
R∗.

5Applying the mean value theorem for integration, there exists an x̄ ∈ (0, ω) such that

∫ ω

0

e−rxp(x)σ(c(x, S∗, R))c(x, S∗, R)dx

= σ(c(x̄, S∗, R))

∫ ω

0

e−rxp(x)c(x, S∗, R)dx = σ(c(x̄, S∗, R))W (S∗, R). (17)
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2.2 Relationship between years of schooling and retire-
ment

In the previous subsection we have shown the first-order conditions for an
optimum of S∗ and R∗, separately, and how they impact on the optimal con-
sumption path. In this subsection, we turn to a detailed study about the
relationship between the optimal years of schooling and the optimal retire-
ment age.

Let us denote c(0, S∗, R∗) as c∗ and c(x̄, S∗, R∗) as c̄. Applying the implicit-
function theorem to the first order condition for S∗ around the point (S∗, R∗),
we can examine the impact on the optimal length of schooling of a change in
the retirement age. Totally differentiating (9) with respect to R and S, taking
ψ(S∗) as common factor, and rearranging, we obtain

dS∗

dR

∣∣∣∣
R=R∗

=

fR(S∗,R∗)
f(S∗,R∗)

− 1
σ(c∗)

c∗R
c∗

ψS(S∗)
ψ(S∗)

+ 1
σ(c∗)

c∗S
c∗
− fS(S∗,R∗)

f(S∗,R∗)

. (21)

Similarly, applying the implicit-function theorem, we totally differentiate (10)
with respect to S and R to examine the impact on the optimal retirement age
of a change in the length of schooling

dR∗

dS

∣∣∣∣
S=S∗

=
− 1
σ(c∗)

c∗S
c∗

+ rh(S∗) + δ − wR−S(R∗−S∗)

w(R∗−S∗)

1
σ(c∗)

c∗R
c∗
− wR−S(R∗−S∗)

w(R∗−S∗)
+ δ + φR(R∗)

φ(R∗)

. (22)

Provided (S∗, R∗) is an interior solution of our problem, substituting (11) and
(20) in (21)-(22), and using (13), we have

sign

[
dS∗

dR∗

]
= sign



r̄(S∗, R∗) + σ(c̄)

[
δ − wR−S(R∗−S∗)

w(R∗−S∗)

]

1− σ(c̄)
− rh(S∗)


 , (23)

Eq. (23) implies that the length of schooling S∗ and the retirement age R∗ may
be either positively or negatively related. On the one hand, looking at Eq. (22),
we have that an additional year of schooling after age S∗ increases the labor
income at age R∗ by rh(S∗) + δ − wR−S(R∗−S∗)

w(R∗−S∗)
, which increases the marginal

benefit of working. As a consequence, our individual optimally postpones the
retirement age in order to reap the benefits of schooling. On the other hand,
the increase in education may also change the marginal utility of consumption,
and hence the marginal benefit of working, by− 1

σ(c∗)

c∗S
c∗

.6 Thus, the net effect of

6Differentiating (8) with respect to S, we have

1

σ(c∗)

c∗S
c∗

=
1

σ(c(x, S∗, R∗))

cS(x, S∗, R∗)

c(x, S∗, R∗)
for all x ∈ [0, ω).
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a change in education on retirement depends upon the strength of the income
effect, reflected by the IES (see Imrohoroglu and Kitao (2009) and Keane
(2011)), and the difference between rh(S∗) and r̄(S∗, R∗). At the extreme
cases, when σ(c̄) tends to one or r̄(S∗, R∗) = rh(S∗), we have that the sign of
dS∗

dR

∣∣
R=R∗ and dR∗

dS

∣∣
S=S∗ depend on that of r̄(S∗, R∗) + δ − wR−S(R∗−S∗)

w(R∗−S∗)
, which

is always positive whenever R∗ − S∗ ≥ Ē.

Return to
education,
rh(S∗)

r̄(S∗,R∗)

IES, σ(c̄)0 1

dS∗
dR∗ < 0

dS∗
dR∗ > 0

r̄(S∗,R∗)+σ(c̄)
[
δ−wR−S(R

∗−S∗)
w(R∗−S∗)

]

1−σ(c̄)

f (S∗,R∗)> 0

f (S∗,R∗)< 0

Figure 1: Relationship between S∗ and R∗ by return to education and in-
tertemporal elasticity of substitution

Figure 1 summarizes the result obtained in Eq. (23). For any given wage
rate per unit of human capital, Figure 1 is broken into two shaded areas. A
dark gray area that contains the combination of (rh(S∗), σ(c̄)) values for which
S∗ and R∗ are positively related, and a light gray area with the combination
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of (rh(S∗), σ(c̄)) values for which S∗ and R∗ are negatively related. It is clear
looking at Figure 1 that S∗ and R∗ are positively related whenever the return
to education is equal to, or lower than, r̄(S∗, R∗) (dark gray area below the
horizontal dotted line in Figure 1). In this region, an increase in the retirement
age leads to an increase in the optimal length of schooling (Ben-Porath, 1967),
as well as an increase in schooling yields an increase in the retirement age
(see Boucekkine et al. (2002) and Echevarria and Iza (2006)). However, when
the return to education is higher than r̄(S∗, R∗), S∗ and R∗ can either be
positively or negatively related. The black dashed line in Figure 1 delimits the
combination of (rh(S∗), σ(c̄)) values at which there isn’t a relationship between
S∗ and R∗; i.e. dS∗

dR∗ = 0. The light gray area, located at the upper-left corner, is
characterized by low IES and high return to education. In this area, the income
effect dominates. Thus, for a sufficiently high return to education and low
IES, when a positive income shock increases the optimal years of schooling, the
optimal retirement age decreases, since individuals purchase more leisure time,
and the positive effect on years of schooling gets reinforced. The same effect
would take place if the positive income shock initially reduces the retirement
age. Notice, however, the negative relation between S∗ and R∗ vanishes as the
return to education approaches to the dashed line, which eventually occurs
when the length of schooling is sufficiently large. On the contrary, in the
dark gray area, where the strength of the income effect diminishes –when a
positive income shock raises the retirement age– the optimal years of schooling
increases and the rise in the retirement age gets also reinforced.

3 Differential impact of mortality decline on

optimal schooling years and retirement age

In this Section, we study the impact of a mortality decline at an arbitrary age
(x0) on the optimal length of schooling (S∗) and the optimal retirement age
(R∗). For exposition clarity, we make explicit the dependence of the optimal
schooling and retirement age on each other and on the underlying mortality
schedule; i.e. S∗ ≡ S∗(R∗;µ) and R∗ ≡ R∗(S∗;µ).7

Eqs. (24a)-(24b) below show how the effect of a mortality decline at an
arbitrary age x0 is characterized by the sum of a direct and an indirect effect:

7Let the continuous function µ : [0, ω) → R≥0, x0 7→ µ(x0) represents the mortality
hazard rate at any age x0 ∈ [0, ω).
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sign

[ −dS∗
dµ(x0)

]
= − sign

[
S∗µ(x0)(R

∗;µ) +
dS∗

dR∗
R∗µ(x0)(S

∗;µ)

]
, (24a)

sign

[ −dR∗
dµ(x0)

]
= − sign

[
R∗µ(x0)(S

∗;µ) +
dR∗

dS∗
S∗µ(x0)(R

∗;µ)

]
. (24b)

See the proof in Appendix D. The direct effect is the impact of a mortal-
ity decline at x0 on S∗ and R∗ –respectively– holding all other variables un-
changed, while the indirect effect is the impact of retirement (resp. schooling)
on schooling (resp. retirement) that is mediated by a change in mortality.
Thus, as shown in (24a) and (24b), the effect of mortality on S∗ and R∗ are
intertwined.

For exposition clarity, in Section 3.1 we first focus on the analysis of the
direct effects and, in Section 3.2, we study the total impact of a mortality
decline on both variables.

3.1 Direct effect

Following the same order as the derivation of the first-order conditions, we
first study the direct impact that a mortality decline has on the optimal con-
sumption path and, second, we continue with the analysis of the direct effects
of a mortality decline on the optimal length of schooling and retirement age.

To study the effect of mortality on our variables of interest, we make use
of the derivative of a functional (Ryder and Heal (1973) and d’Albis et al.
(2012)) to obtain, through (1), that

− ∂p(x)

∂µ(x0)
=

{
p(x) if x0 ≤ x,

0 if x0 > x.
(25)

Eq. (25) means that a mortality decline at age x0 has no effect on the survival
probability before age x0, but it increases the survival probability at ages above
or equal to x0. From (25) we derive the impact that a mortality decline at an
arbitrary age x0 has on the optimal consumption path and, in particular, on
the initial optimal consumption (c∗). Differentiating (7) and (8) with respect
to −µ(x0), substituting, and rearranging gives

1

c∗
−∂c∗
∂µ(x0)

= −σ(c∗)

σ(c̄)

e−rx0p(x0)a(x0)

W (S∗, R∗)
. (26)

Notice in Eq. (26) that if the IES is constant across the lifecycle, the relative
impact of a mortality decline at age x0 on the initial consumption is minus the
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ratio between the financial wealth position at age x0 and lifecycle earnings.
Thereby, the sign of the impact of a decline in mortality at age x0 on the
optimal consumption path is equal to minus the sign of the financial wealth at
age x0. Moreover, according to Eq. (26) a decline in mortality at two different
ages does not necessarily have the same impact on consumption.8

Eq. (26) is the extension of Eq. (B.5) in d’Albis et al. (2012) to a model
with endogenous human capital investment. Like d’Albis et al. (2012) we show
that the optimal consumption path increases with a decline in mortality at age
x0 when a(x0) < 0, while the optimal consumption declines when a(x0) > 0,
for all x0 ∈ [0, ω). The intuition is simple. On the one hand, a decline in
mortality increases the number of years the agent is expected to live. As a
consequence, agents compensate a longer lifespan with an overall reduction in
consumption. This effect, which is always negative, is named the “years-to-
consume” effect. On the other hand, a mortality decline during the working
period raises the likelihood of receiving a future labor income stream, which
leads to an overall increase in the consumption path. This other effect, which
is always positive, is named the “lifetime human wealth” effect. For a better
understanding, Proposition 2 gives the net result of these two opposite effects
using a CIES utility function. The proof is given in Appendix B.

Proposition 2 For the life-cycle model given by (1)-(6), if Uc(c) is a power
function, the overall result of 1

c∗
−∂c∗
∂µ(x0)

is the same as that of

g(x0) =

∫ R∗

S∗ e
−rx
[
−∂p(x)
∂µ(x0)

]
y(S∗, x)dx

∫ R∗

S∗ e−rxp(x)y(S∗, x)dx
−
∫ ω
x0
e−[(1−σ)r+σρ]xp(x)dx∫ ω

0
e−[(1−σ)r+σρ]xp(x)dx

, (28)

where σ ∈ [0, 1] is the intertemporal elasticity of substitution. Moreover, there
exists a critical point xc within the open interval (S∗, R∗) such that





g(x0) > 0 for all x0 < xc,

g(x0) = 0 for all x0 = xc,

g(x0) < 0 for all x0 > xc.

(29)

The first component of (28) is the “lifetime human wealth” effect, while the
second component represents the “years-to-consume” effect. An illustration of

8The direct impact of a mortality decline at all ages on the initial consumption is

1

c∗
−∂c∗
∂µ

=

∫ ω

0

1

c∗
−∂c∗
∂µ(x)

dµ(x) = −σ(c∗)

σ(c̄)

∫ ω
0
e−rxp(x)a(x)dµ(x)

W (S∗, R∗)
. (27)

15



the shape of both effects across the life-cycle is given in Figure 2. Notice
the lifetime human wealth effect dominates the years-to-consume effect up to
age xc ∈ (S∗, R∗), the year at which the financial wealth is zero, a(xc) =
0. Therefore, a mortality decline early in life leads to an overall increase in
consumption. In contrast, a decline in mortality at ages above xc leads to an
overall decline in consumption because the years-to-consume effect dominates
the lifetime human wealth effect. Though for simplicity we have not modeled
any retirement pension system, our results are robust to the introduction of a
more general and realistic framework. Indeed, realize that the introduction of
an income during the retirement period will extend the lifetime human wealth
effect up to age ω, shifting the age xc toward older ages.

The direct impact of a decline in mortality on the length of schooling and
retirement age is given in Proposition 3. The proof is given in Appendix C.

Proposition 3 For the life-cycle model given by (1)-(6),

(a) the sign of −S∗µ(x0) is the same as that of

rh(S∗)− r̄(S∗, R∗)
σ(c̄)

a(x0), (30)

when x0 ≤ S∗ and x0 ≥ R∗, and

rh(S∗)− r̄(S∗, R∗)
σ(c̄)

a(x0) +

∫ R∗

x0

e−r(x−x0) p(x)

p(x0)
yS(S∗, x)dx, (31)

when x0 ∈ (S∗, R∗), and

(b) the sign of −R∗µ(x0) is the same as that of a(x0).

In Proposition 3(b) we obtain the same “consumption-leisure” relationship
as in d’Albis et al. (2012). That is, given that consumption and leisure are
normal goods, Proposition 3(b) implies that if a mortality decline yields an in-
crease in consumption because the lifetime human wealth effect dominates the
years-to-consume effect, agents anticipate their optimal retirement age in or-
der to enjoy more leisure time. Similarly, when the decline in mortality implies
that the years-to-consume effect dominates the lifetime human wealth effect,
agents diminish their consumption and postpone their optimal retirement age.

Proposition 3(a) extends the years-to-consume effect and lifetime human
wealth effect reasoning to the accumulation of human capital. In this regard,
we obtain unambiguous results concerning the sign on the optimal length of
schooling of a mortality decline at ages before the entrance into the labor
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Figure 2: The lifetime human wealth and years-to-consume effect
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market, S∗, and after the optimal retirement age, R∗. Specifically, Proposi-
tion 3(a) implies that when rh(S∗) > r̄(S∗, R∗), if a mortality decline yields an
increase in consumption because the lifetime human wealth effect dominates
the years-to-consume effect, agents reduce their investment in education. Re-
call that this happens during the schooling period as Figure 2 shows. In
contrast, a decline in mortality after the optimal retirement age leads to more
years of schooling. Instead, if rh(S∗) = r̄(S∗, R∗) –as frequently assumed in
the literature– a decline in mortality during the schooling period or during
retirement period does not have an impact on the optimal length of schooling.

During the working period, Proposition 3(a) shows that a decline in mor-
tality positively affects education through the second term in Eq. (31), which
reflects the effect of a mortality decline at age x0 on the marginal benefit of
schooling (measured at age x0), also known as the Ben-Porath mechanism.
Actually, this is the only component driving the effect of mortality on the
length of schooling when rh(S∗) = r̄(S∗, R∗), but it is not the case whenever
rh(S∗) 6= r̄(S∗, R∗).

Next we use the results obtained in Proposition 3 to derive the total effects.

3.2 Total effects

In this section we complete the analysis studying the total impact of a mortal-
ity decline at an arbitrary age on the optimal length of schooling and retirement
age. To do so, we combine the direct effects, presented in Section 3.1, with
the indirect effects.

Proposition 4 gives under the strict concavity of the expected lifetime util-
ity, V̂ (S,R) at (S∗, R∗), the sign of a decline in mortality at an arbitrary age
x0 on the optimal length of schooling and retirement age. See Appendix D for
the proof.

Proposition 4 Assuming the strict concavity of V̂ (S,R) at (S∗, R∗), for the
life-cycle model given by (1)-(6),

(a) the sign of −dS
∗

dµ(x0)
is the same as that of

{
a(x0) 1

σ(c∗)
1
c∗

dc∗

dS∗ +
∫ R∗

x0
e−r(x−x0) p(x)

p(x0)
yS(S∗, x)dx if S∗ < x0 < R∗,

a(x0) 1
σ(c∗)

1
c∗

dc∗

dS∗ otherwise,

(32)
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(b) and the sign of −dR
∗

dµ(x0)
is the same as that of

{
a(x0) 1

σ(c∗)
1
c∗

dc∗

dR∗ + dS∗

dR∗

∫ R∗

x0
e−r(x−x0) p(x)

p(x0)
yS(S∗, x)dx if S∗ < x0 < R∗,

a(x0) 1
σ(c∗)

1
c∗

dc∗

dR∗ otherwise.

(33)

Eqs. (32) and (33) show that the total impact of a decline in mortality at
an arbitrary age x0 on the optimal length of schooling and retirement age
is given by three factors: (i) the “lifetime human wealth” effect versus the
“years-to-consume” effect, which is reflected by the financial wealth at age x0,
i.e. a(x0); (ii) the total impact of years of schooling and retirement on the
initial consumption; and (iii) the effect of mortality on the marginal benefit of
schooling. Factors (i) and (ii) only have an impact when rh(S∗) 6= r̄(S∗, R∗).
The first thing to notice is that the increase in the marginal benefit of schooling
due to a decline in mortality, or Ben-Porath mechanism, always has a positive
impact on education, but it is not necessarily true on the optimal retirement
age since it depends on the relationship between education and retirement. If
S∗ and R∗ are negatively related, agents anticipate their retirement age and
enjoy more leisure time when a decline in mortality causes an increase in the
marginal benefit of schooling. In contrast, if S∗ and R∗ are positively related,
agents postpone their retirement age in order to reap the benefits of schooling.
This is because in the former alternative the income effect dominates over the
substitution effect, whereas in the latter the substitution effect dominates over
the income effect.

During the schooling period and the retirement period, the effect of mortal-
ity on the marginal benefit of schooling is null. Thereby, in these two periods,
the sign of the total impact of a decline in mortality on the optimal length of
schooling and retirement age solely depend on the lifetime human wealth effect
versus the years-to-consume effect and the total impact of years of schooling
and retirement on the initial consumption:

sign

[ −dS∗
dµ(x0)

]
= sign

[
a(x0)

1

σ(c∗)

1

c∗
dc∗

dS∗

]
,

sign

[ −dR∗
dµ(x0)

]
= sign

[
a(x0)

1

σ(c∗)

1

c∗
dc∗

dR∗

]
,

for all x0 ∈ [0, S∗]∩ [R∗, ω]. On the one side, from (6) we know that a(x0) < 0
during the schooling period, while a(x0) > 0 during the retirement period. On
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the other side, combining (18), (20)-(22) we have

1

σ(c∗)

1

c∗
dc∗

dS∗
= (1−λR)

rh(S∗)− r̄(S∗, R∗)
σ(c̄)

+λR
(
rh(S∗) + δ − wR−S(R∗ − S∗)

w(R∗ − S∗)

)
,

(34)
where

λR =
1

σ(c∗)

c∗R
c∗

/(
1

σ(c∗)

c∗R
c∗
− wR−S(R∗ − S∗)

w(R∗ − S∗) + δ +
φR(R∗)

φ(R∗)

)
. (35)

Since λR takes values between zero and one, assuming rh(S∗)− r̄(S∗, R∗) > 0
and R∗ − S∗ > Ē, it is straightforward to show that (34) is always positive.
Therefore, like Cai and Lau (2012) a decline in mortality during the schooling
period has a negative impact on education, while a decline in mortality during
the retirement period has a positive impact on education. On the contrary, the
total impact on the initial consumption of an increase in the optimal retirement
age is a priori ambiguous. In particular, it can be shown

1

σ(c∗)

1

c∗
dc∗

dR∗

{
≥ 0⇔ dS∗

dR∗ ≥ − c∗R
c∗S
,

≤ 0⇔ dS∗

dR∗ ≤ − c∗R
c∗S
.

(36)

Consequently, according to (23), the total impact of a decline in mortality
–during the schooling and retirement periods– on the optimal retirement age
coincides with that on the length of schooling if, and only if, the relation-
ship between the optimal years of education and retirement age is positive;
otherwise, when dS∗

dR∗ < 0, both alternatives are possible.
The direct consequence of this ambiguity is that the impact of a reduction

of µ(x0) on R∗ − S∗ is in general ambiguous. As a consequence, in the next
section we use real data in order to calibrate the model.

4 Application to Swedish data

In this Section we study numerically the impact of the epidemiological transi-
tion on the optimal years of schooling and retirement age when both variables
are endogenous. Our analysis delivers two important results. First, when the
life expectancy rises, our model is capable of producing an optimal decline in
retirement age and an increase in years of schooling (Hazan, 2009). Second,
since in the earlier stage of mortality transition, a decline in mortality belongs
mainly to younger people, whereas in the later stage, a decline in mortality
decline has mainly occurred at older ages (see Figure 4), we show that the
optimal retirement age stops declining after the cohort born in year 1920 and
increases thereafter.
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4.1 Data

We are interested in analyzing the marginal effect of the decline in mortality on
the length of schooling and retirement age for cohorts born in the 19th and 20th
centuries. We implement our analysis to Sweden because there exist reliable
economic and demographic information dating back to the 19th century. In
particular, we collect information on retirement, schooling, and mortality data
for cohorts born between 1865 and 2000.

4.1.1 Retirement data

Effective retirement age for men born between years 1865 and 1920 has been
calculated using employment rates, based on census data, for the period 1910-
1985 and labor force participation rates, taken from labor force surveys, for
the period 1975-2004 published by Statistics Sweden.9

Figure 3(a) shows that participation rates have fallen at all older ages.
For cohort 1865, 85 percent of all sixty-year-olds were in the labor force, for
cohort 1900, the participation rates fell to 81 percent, and for cohort 1920 the
figures fell to 77 percent, respectively. The decline at older ages has fallen
even more sharply. For cohort 1865, 75 percent of all sixty-five-year-olds and
50 percent of all seventy-years-olds were in the labor force, but, for cohort
1920, the participation rates had fallen to 45 and 10 percent, respectively. As
a result, the effective retirement age declined from age sixty nine, for cohort
1865, to less than sixty four for the cohort born in year 1920 (see Figure 3(b)).
Also, it is worth noticing in Figure 3(b) how the declining trend in retirement
age accelerates for cohorts 1875-1895 and decelerates for cohorts born after
year 1900.

4.1.2 Schooling data

Information about years of schooling by birth cohort is calculated based on the
number of students by educational attainment reported by de la Croix et al.
(2008).10 Their estimates can be decomposed into three groups: (i) primary

9Employed and working age population in Sweden during the period 1910-1985 is avail-
able at http://www.scb.se/tidsseriehafteforvarvsarbetandefob1910-1985. Before
the 1980s, unemployment rates above age 45 were roughly constant and lower than 2 percent
(see Ljungqvist and Sargent (1995) and Holmlund (2009)). Therefore, we do not expect a
significant error by combining both datasets.

10Information on number of students and enrollment rates by educa-
tional attainment in Sweden from year 1768 to 2002 are withdrawn from
http://perso.uclouvain.de/david.delacroix/data/swedish-educ-data.pdf.
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Figure 3: Labor force participation rate by age and effective retirement age
across cohorts: Sweden, 1865-1920. Labor force participation rates by single
year of age are calculated using interpolation techniques.
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and lower secondary, (ii) integrated upper secondary, and (iii) tertiary. The
average length of schooling has been calculated multiplying the enrollment
rate by the expected-years lived in each educational group. To obtain both the
enrollment rate and the expected-years lived we make use of the information
contained in the Human Mortality Database (2013).

4.1.3 Mortality data

We produce survival probabilities for cohorts born between 1865 and 2000
using Swedish death rates by single-years of age from year 1800 to 2011, taken
from the Human Mortality Database (2013). Deaths rates for cohorts born
after year 1911 are constructed applying the Lee-Carter model (Lee and Carter,
1992).11

Figure 4(a) shows the evolution of the conditional survival probabilities
from age 6 for cohorts born in 1865, 1900, 1920, 1950, and 2000, whereas Fig-
ure 4(b) depicts the corresponding absolute decline in the mortality hazard
by age across cohorts. It can be seen in Figure 4(b) how the mortality im-
provements for cohorts born before 1920 have mainly occurred at young and
working ages. The peak for cohorts born between 1865 and 1900 shows the
influence of the Spanish flu. However, although mortality improvements for
cohorts born after 1920 mainly occur at older ages – in relative terms–, there
are still gains in years lived at young ages.

4.1.4 Expected length of work in Sweden

Table 1 summarizes the relevant labor supply statistics for our model based on
the information collected for cohorts born between 1865 and 1920. Columns
two and three report years of schooling and retirement ages across cohorts.
Column four shows the significant increase of almost 9 years in the life ex-
pectancy (LE) at the age of leaving school, while column five report the cor-
responding increase of 7.6 years in the life expectancy from retirement. Like
Lee (2001), we obtain that the expected length of work (in years) has been

11Future age-specific death rates from year 2011 are projected applying the Lee-Carter
method to actual Swedish period-death rates from year 1945 up to 2011. Thus, it is assumed
that the log of the death rate is explained by the following multiplicative process:

logmt,x = ax + ktbx + εt,x,where εt,x is i.i.d.(0, σε),

where mt,x is the death rate at age x in year t, ax, bx are age-specific constants, and kt is a
time-varying index obtained through the singular-value decomposition of a matrix of death
rates.
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Figure 4: Conditional survival probability at age 6 and changes in the mortality
hazard rate across cohorts by age: Sweden, 1865-2000.

roughly constant and equal to fifty, whereas the last column in Table 1 shows a
significant reduction of almost 6 years in the average number of years worked.12

4.2 Calibration

To solve the model, we follow Cervellati and Sunde (2013) and consider a
constant intertemporal elasticity of substitution (CIES) utility function,

U(c) =
c1− 1

σ − 1

1− 1
σ

, with σ ∈ (0, 1]. (37)

The underlying disutility of non-leisure time is assumed constant φ(x) = φ.
For simplicity, we assume a constant relative disutility of school versus work,
ψ(x) = ψ, for all x ∈ (0, S). Since our individual devotes her full time to
education while she is in school, we use the following simplified version of the
Ben-Porath human capital production function

q
(
h(S, x)

)
= ξ · h(S, x)γ, with ξ > 0 and γ ∈ (0, 1), (38)

12Recent estimations applied to cohorts born between 1850 to 1990 of US men workers
obtain that the expected number of years worked from age 20 has been roughly stable
between forty one and forty two years (Lee, 2001).
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Table 1: Estimates of the expected length of work, Sweden, Cohorts: 1865-1920

Birth Years of Retirement LE from LE from Expected Number of
cohort schooling age schooling retirement length of years worked

(S) (R) LE(6 + S) LE(R) work (R)-(6+S)
II III IV V VI VII

1865 6.0 69.3 53.4 6.2 50.2 57.3
1875 6.5 68.5 54.1 7.1 50.2 56.0
1875 6.3 66.6 55.0 8.6 49.7 54.3
1895 6.6 65.2 55.9 10.0 49.2 52.6
1900 6.6 64.9 57.1 10.7 49.6 52.3
1905 6.5 64.6 58.6 11.4 50.3 52.1
1915 6.3 63.9 61.2 13.1 51.1 51.6
1920 6.4 63.9 62.1 13.8 51.4 51.5

Source: Own calculations. Note: LE stands for life expectancy.

where ξ is a scaling factor and γ is the returns to scale in human capital
investment. Similar to Hazan (2009) and Cervellati and Sunde (2013) the
wage rate is assumed to be constant.

To shed light on the effects of mortality on S∗ and R∗, we introduce the
next simplifying assumptions. We assume zero discounting, r = δ = ρ = 0, so
that the inverse of r̄(S∗, R∗) coincides with the expected length of work (Lee,
2001)13

r̄(S∗, R∗) =

[∫ R∗

S∗

p(x)

p(S∗)
dx

]−1

. (40)

Integrating (5) and using (38) the return to education at age S becomes

rh(S∗) = ξ/ (h(0) + (1− γ)ξS∗) . (41)

We set γ = 0.65 as in Cervellati and Sunde (2013). In order to show the
importance on the results of the relationship between S∗ and R∗, we run six
alternative simulations combining three different returns to education function

13Under the assumptions zero discounting and constant wage rate, the annuitized marginal
cost of the S-th unit of schooling becomes

r̄(S∗, R∗) =

∫ R∗

S∗ µ(x)p(x)dx
∫ R∗

S∗ p(x)dx
+

p(R∗)
∫ R∗

S∗ p(x)dx
. (39)

Since it follows from (1) that −dp(x) = µ(x)p(x)dx, substituting it in (39), and rearranging,
gives Eq. (40).
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and two different IES. We fix h(0) = 1 and set ξ to 1, .25, and 0.075 so as
to have a return to education after 13 years in school around 18%, 11.5%
(Heckman et al., 2008), and 5.5%.14 To avoid any spurious result driven by an
income effect, in all simulations the labor income faced by the cohort born in
1865 is unitary regardless the return to education function. Thereby, the wage
rate per unit of human capital w is set at 1/h(S∗1865, S

∗
1865). To see the role of

the IES on our results, we consider two alternative CIES σ = {0.50, 0.75}.15

Finally, the values of φ and ψ are calculated in each simulation so as to have
an optimal length of schooling of 6 years and an optimal retirement age of 69.3
years for the cohort born in 1865.

4.3 Results

In each of the six simulations we compute the optimal length of schooling (S∗)
and optimal retirement age (R∗) for each cohort born between 1865 and 2000.
Thereby under this controlled experiment any variation in S∗ and R∗ across
cohorts is solely due to changes in mortality. In addition, to understand the
impact of S∗ on R∗ and of R∗ on S∗ we also compare the results from the
full model to a partial model in which one of the variables is fixed. Hence,
differences in S∗, or in R∗, across cohorts between the full model and the
partial model are explained by the introduction of an additional endogenous
variable.

A summary of the impact of the mortality transition on S∗ and R∗ is given
in Table 2. Specifically, Table 2 reports for the full model and the partial mod-
els the absolute change in S∗ and R∗ for male cohorts born in Sweden between
year 1865 and 2000. Looking at Table 2 we obtain the following results. First,
in a model with fixed length of schooling, the effect of a decline in mortality on
retirement is always positive and constant regardless the return to education
function and the IES (see column I). Second, in a model with fixed retirement
age, the length of schooling increases in all simulations. Nevertheless, smaller
differences between returns to education (i.e. rh(S∗) − r̄(S∗, R∗) ↑ 0) and
higher IES boost the positive effect of mortality on the length of schooling.
Third, in a model with endogenous schooling and retirement decisions, the
impact of mortality on the optimal retirement age changes depending upon
the return to education and the IES (see column III in Table 2). Fourth, the

14Notice that when h(0) = 1, ξ is equal to the initial return to education rh(0).
15The importance of the IES value on retirement and human capital investment decisions

is frequently stressed in the literature. See Imrohoroglu and Kitao (2009) and Rogerson and
Wallenius (2009) for an empirical study and Keane (2011) and Keane and Rogerson (2012)
for a survey.
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Table 2: Absolute change in years of schooling and retirement age for Swedish male
cohorts born between 1865 and 2000

Partial model Full model
Endogenous R∗ Endogenous S∗ Endogenous S∗ and R∗

Fixed S∗1865 Fixed R∗1865

R∗2000 −R∗1865 S∗2000 − S∗1865 R∗2000 −R∗1865 S∗2000 − S∗1865 L∗2000 − L∗1865

I II III IV V=III-IV

CIES (σ = 0.50)

ξ = 1.000 9.1 1.0 -2.7 1.4 -4.1
ξ = 0.250 9.1 2.3 -1.2 2.7 -3.9
ξ = 0.075 9.1 7.0 3.4 6.7 -3.3

CIES (σ = 0.75)

ξ = 1.000 9.1 2.1 1.5 2.0 -0.5
ξ = 0.250 9.1 4.1 3.7 3.9 -0.2
ξ = 0.075 9.1 8.9 10.5 9.7 0.8

Note: ‘S∗t ’ is the optimal length of schooling for cohort born in year t, ‘R∗t ’ is the optimal retirement age
for cohort born in year t, and L∗t stands for the number of years worked conditional upon survival by an
individual who belongs to cohort t, i.e. R∗t − (S∗t + 6). After thirteen years of education, the return to
education is 18, 11.5, and 5.5 percent for ξ values 1.000, 0.250, and 0.075, respectively.

results on optimal length of schooling do not significantly change between a
model with and without endogenous retirement decisions (c.f. columns II and
IV). Fifth, in a full model with endogenous education and retirement decisions,
the impact of a decline in mortality on the number of years worked becomes
negative whenever the difference between returns to education are high and
the IES is low, and vice versa (see column V).

Finally, we conclude the empirical analysis by plotting in Figure 5 the con-
tribution of mortality improvements at different stages of life on the optimal
years of schooling and optimal retirement age. In this simulation, we divide
the lifespan in three periods: childhood (ages 6-15), adulthood (ages 16-65),
and retirement (ages 66+); and calculate the optimal schooling and retirement
considering exclusively the gains in survival during either childhood, or adult-
hood, or retirement across cohorts ceteris paribus the survival probability in
the other stages of life.

The figures on the left-hand side show how mortality improvements during
both the working period (light gray area) and the retirement period (dark gray
area) raise the optimal years of schooling, as it is pointed out by the upward
arrows. According to Proposition 4, in the first case, a decline in mortality
during the working period raises the marginal benefit of schooling because
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1880 1900 1920 1940 1960 1980 2000
60

62

64

66

68

70

72

Birth cohort

R
et

ire
m

en
t a

ge

Mortality
improvements

during
working period

Mortality
improvements

during
retirement

Optimal
retirement age

(d) Retirement age, ξ = 0.250

1880 1900 1920 1940 1960 1980 2000
4

6

8

10

12

14

Borth cohort

Y
ea

rs
 o

f s
ch

oo
lin

g

Mortality
improvements

during
working period

Mortality
improvements

during
retirement

Optimal length
of schooling

(e) Years of schooling, ξ = 0.075
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Figure 5: Contribution of mortality decline by stage of life on the optimal years
of schooling and retirement age across cohorts by average return to education,
Swedish males cohorts born in 1865-2000
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the likelihood of receiving a future labor earning increases –also known as the
Ben-Porath’s mechanism–, while, in the second case, a decline in mortality
during retirement leads agents to continue studying in order to finance the
consumption after retirement through an increase in lifetime earnings –that is,
the years-to-consume effect dominates over the lifetime human wealth effect–.
The sum of these two positive effects of mortality on the optimal length of
schooling is represented by the black solid line.16

The figures on the right-hand side show how mortality improvements during
childhood, working period (light gray area), and the retirement period (dark
gray area) affect the optimal retirement age. On the one hand, since the
parameter values assumed imply that the income effect dominates over the
substitution effect (i.e. dS∗

dR∗ < 0), a decline in mortality during the working
period leads to early retirement (see the second term in Eq. 33). Individuals
use the additional income to increase consumption and enjoy more leisure
time. The extent to which mortality improvements during the working period
reduce the optimal retirement age for each cohort is indicated by the downward
arrow in Figures 5(b), 5(d), and 5(f). Note that the length of this arrow
decreases with lower returns to education. This is because the negative relation
between education and retirement vanishes when rh(S∗) tends to r̄(S∗, R∗)
(see Figure 1). Consequently, if the relation between S∗ and R∗ were positive,
a decline in mortality during the working period would lead to a delay in
the retirement age. On the other hand, mortality declines late in life delay
the optimal retirement age because individuals need more earnings to finance
the additional consumption due to a longer retirement period. This positive
effect on retirement is indicated by the upward arrow, while the strength is
represented by the dark gray area. The net effect of mortality improvements at
different stages of life on the optimal retirement age is represented by the black
solid line. Notice that in all cases we observe a turning point in the evolution of
the optimal retirement age after the cohorts born in the 1920s. This is because
mortality improvements for cohorts born before the 1920s mainly occurred at
young and working ages, whereas the improvements in mortality for more
recent cohorts mainly occur at older ages. Therefore, this finding suggests
that the recent increase in retirement in some developed countries might be
partially explained by the decline in mortality at older ages as well as by the
negative relation between education and retirement.

16The contribution of mortality improvements during childhood on the optimal length of
schooling is almost negligible. For this reason, we opted for not representing the effect.
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5 Conclusion

Existing theoretical models derive a causal positive relation between increasing
life expectancy and human capital investments and retirement age. However,
one salient feature of the economic development during the last two centuries
is the negative relation between life expectancy and labor supply (Hazan,
2009). To reconcile the empirical evidence with economic theory, we develop
a lifecycle model with endogenous human capital investment and labor supply
in which mortality declines may cause higher schooling and early retirement.

This article makes two important contributions. First, we derive the dif-
ferential impact of the mortality decline at any arbitrary age on education and
retirement. Thereby, our results extend the findings of d’Albis et al. (2012)
and Cervellati and Sunde (2013) in a unified framework. We show that a mor-
tality decline at older ages always result in higher human capital investment
and may or may not result in early retirement, whereas a mortality decline at
young ages leads to lower investments in human capital and may cause late
retirement.

Provided data on the Swedish mortality transition for cohorts born between
year 1865 and 2000, the second important contribution is to show that the
decline in labor supply along with an increasing life expectancy stems from
the negative relation between schooling and retirement. The intuition is as
follows. Higher human capital investment cause two opposite effects. First, an
increase in earnings at all ages which raises the marginal benefit of working.
Second, an increase in consumption and hence a decline in the marginal utility
of consumption that reduces the marginal benefit of working. The net effect
on the optimal retirement age depends upon the strength of the income effect
and may, or may not, result in early retirement.

Although our model abstracts from realistic features like the existence of
a pension system, the intervention of governments in the access to all levels
of education, the introduction of mandatory years of schooling and retirement
ages, among many others, our results offer an explanation to the empirical
evidence, collected during the last centuries in Sweden, on the evolution of ed-
ucation and retirement. In addition, our model is robust to the introduction
of such features. For instance, if education and retirement are negatively re-
lated, positive spillovers from education and publicly provided education will
increase the marginal benefit of schooling and will reduce even further the
retirement age. Similarly, the existence of pension incentives for early retire-
ment and the overall increase in the labor-augmenting technological progress
during the last century would have induced earlier retirement ages and higher
increases in the marginal benefit of schooling. Therefore, our results suggest
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some interesting directions for future research. In particular, first, a logical
extension of our framework is the consideration of realistic pension systems.
Second, the implementation of the model in a computable general equilibrium
setting in order to analyze the effect of changes in wages and interest rates.
The implementation of these issues can provide researchers and policy-makers
a better understanding of the effect of changes in the population on modern
economic growth.

A Proof of Proposition 1

We first derive the optimal length of schooling condition (S∗) and optimal
retirement age (R∗) introduced in Eqs. (9)-(10). Second, we study the con-
ditions for a maximum in S∗ and R∗. Substituting the conditional optimal
consumption, c(x, S,R), into (2) and differentiating it with respect to S, we
obtain

VS(S,R) =

∫ ω

0

e−ρxp(x)Uc
(
c(x, S,R)

)
cS(x, S,R)dx− e−ρSp(S)ψ(S). (42)

Substituting (8) in (42), and rearranging, gives

VS(S,R) = Uc
(
c(0, S, R)

) ∫ ω

0

e−rxp(x)cS(x, S,R)dx− e−ρSp(S)ψ(S). (43)

Differentiating (7) with respect to S, and simplifying, we have

∫ ω

0

e−rxp(x)cS(x, S,R)dx

= e−rSp(S)

(∫ R

S

e−r(x−S) p(x)

p(S)
yS(S, x)dx− y(S, S)

)
. (44)

Substituting (44) in (43), and taking Uc
(
c(0, S, R)

)
e−rSp(S) as common factor,

we obtain

VS(S,R) = Uc
(
c(0, S, R)

)
e−rSp(S)×(∫ R

S

e−r(x−S) p(x)

p(S)
yS(S, x)dx− y(S, S)− e(r−ρ)Sψ(S)

Uc
(
c(0, S, R)

)
)
. (45)

Setting VS(S,R) to zero and simplifying, the first-order condition for an opti-
mal length of schooling is given by (9).
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Applying a similar approach, the derivative of (2) with respect to R be-
comes

VR(S,R) = p(R)
(
Uc
(
c(0, S, R)

)
e−rRy(S,R)− e−ρRφ(R)

)
. (46)

Then, setting VR(S,R) to zero and simplifying, the first-order condition for an
optimal retirement age is given by (10).

Let V̂ (S,R) be the expected lifetime utility conditional on the optimal
consumption path. Also, let c∗ be optimal initial consumption condition on
S = S∗ and R = R∗. In order for V̂ to be strictly concave at S = S∗ and
R = R∗ it needs to satisfy

V̂SS < 0, V̂RR < 0,

∣∣∣∣
V̂SS V̂SR
V̂RS V̂RR

∣∣∣∣ > 0. (47a)

Substituting (11) in (45), differentiating with respect to S around (S∗, R∗),
using (16), and simplifying gives

V̂SS(S∗, R∗) = Uc
(
c∗
)
e−rS

∗
p(S∗)

×
(
fS(S∗, R∗)− f(S∗, R∗)

(
ψS(S∗)

ψ(S∗)
+

1

σ(c∗)

c∗S
c∗

))
. (48)

Since the sign
[
ψS(S∗)
ψ(S∗)

]
and sign [c∗S] is the same as the sign of f(S∗, R∗), a

necessary and sufficient condition for S∗ < R∗ to be a maximum of V̂ (S,R∗)
is

fS(S∗, R∗) < f(S∗, R∗)

(
ψS(S∗)

ψ(S∗)
+

1

σ(c∗)

c∗S
c∗

)
. (49)

For f(S∗, R∗) > 0 notice that fS(S∗,R∗)
f(S∗,R∗)

− ψS∗ (S∗)
ψ(S∗)

< 1
σ(c∗)

c∗S
c∗

. It is also worth

noticing that for f(S∗, R∗) = 0, fS(S∗, R∗) < 0.
Differentiating (46) with respect to R, at S = S∗ and R = R∗, gives

V̂RR(S∗, R∗) = Uc
(
c∗
)
e−rR

∗
p(R∗)y(S∗, R∗)

×
(
− 1

σ(c∗)

c∗R
c∗

+
yR(S∗, R∗)

y(S∗, R∗)
− φR(R∗)

φ(R∗)

)
. (50)

Provided yR(S∗, R∗) = wR−S(S∗−R∗)

w(R∗−S∗)
− δ ≤ 0 for all R∗ − S∗ ≥ Ē and since

φx(x) ≥ 0, we conclude that V̂RR(S∗, R∗) < 0 is strictly negative. Finally, the
second-order conditions of the maximum in S = S∗ and R = R∗ is satisfied, if
(49) holds, yR(S∗, R∗) ≤ 0, and

V̂SR(S∗, R∗)

−V̂SS(S∗, R∗)
× V̂RS(S∗, R∗)

−V̂RR(S∗, R∗)
< 1. (51)

32



Since dS∗

dR

∣∣
R=R∗ = V̂SR(S∗,R∗)

−V̂SS(S∗,R∗)
and dR∗

dS

∣∣
S=S∗ = V̂RS(S∗,R∗)

−V̂RR(S∗,R∗)
, it follows from (51)

that the impact of a change in S∗ on R∗ differs from the impact of a change
in R∗ on S∗; i.e. dS∗

dR

∣∣
R=R∗ × dR∗

dS

∣∣
S=S∗ < 1.

B Proof of Proposition 2

If Ux(x) = x−
1
σ , where σ is the intertemporal elasticity of substitution, from

(8) we have c(x, S,R) = c(0, S, R)eσ(r−ρ)x, for all x ∈ (0, ω), substituting it in
(7), and simplifying, we obtain

c(0, S, R) =

∫ R
S
e−rxp(x)y(S, x)dx∫ ω

0
e−[(1−σ)r+σρ]xp(x)dx

. (52)

Taking logarithms at both sides of (52) and differentiating with respect to
−µ(x0) gives

1

c(0, S, R)

−∂c(0, S, R)

∂µ(x0)

=

∫ R
S
e−rx

[
−∂p(x)
∂µ(x0)

]
y(S, x)dx

∫ R
S
e−rxp(x)y(S, x)dx

−
∫ ω
x0
e−[(1−σ)r+σρ]xp(x)dx∫ ω

0
e−[(1−σ)r+σρ]xp(x)dx

, (53)

Note that the right-hand side of (53) at S = S∗ and R = R∗ is (28). Now,
from (28), we obtain g(S∗) > 0, g(R∗) < 0,

g′(x0) = − e−rx0p(x0)y(S∗, x0)∫ R∗

S∗ e−rxp(x)y(S∗, x)dx
+

e−[(1−σ)r+σρ]x0p(x0)∫ ω
0
e−[(1−σ)r+σρ]xp(x)dx

, (54)

and

g′′(x0) =

[
r + µ(x0)− yx0 (S∗,x0)

y(S∗,x0)

]
e−rx0p(x0)y(S∗, x0)

∫ R∗

S∗ e−rxp(x)y(S∗, x)dx

− [(1− σ)r + σρ+ µ(x0)] e−[(1−σ)r+σρ]x0p(x0)∫ ω
0
e−[(1−σ)r+σρ]xp(x)dx

, (55)

for any x0 within the interval (S∗, R∗). Since g(·) is a continuous function in
(S∗, R∗), g(S∗) > 0, and g(R∗) < 0 imply that there exists at least a critical
age xc within the interval (S∗, R∗) such that g(xc) = 0.
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In order to prove that xc is unique, we show that there exists only one local
optimum in the interval (S∗, R∗). At a local optimum (denoted by x̃0, with
g′(x̃0) = 0), from (54) and (55) we obtain

g′′(x̃0) =

[
σ (r − ρ)− yx0 (S∗,x0)

y(S∗,x0)

]
e−rx̃0p(x̃0)y(S∗, x̃0)

∫ R∗

S∗ e−rxp(x)y(S∗, x)dx
. (56)

Let x̃i0 and x̃ii0 be two possible candidates, which satisfy that g′(x̃i0) = 0 and
g′(x̃ii0 ) = 0 with x̃i0 < x̃ii0 . Provided that y(S∗, x) is strictly concave within the

interval (S∗, R∗), x̃0 is unique (x̃i0 = x̃ii0 ) either because σ (r − ρ)− yx0 (S∗,x0)

y(S∗,x0)
< 0

or σ (r − ρ)− yx0 (S∗,x0)

y(S∗,x0)
> 0 for all x̃0 ∈ (S∗, R∗), or x̃i0 is a local maximum and

x̃ii0 a local minimum, which proves that xc is unique.

C Proof of Proposition 3

Given the implicit-function theorem holds, there is one unique function Γ(R;µ)
that equals S∗ for any (R;µ) around (R∗;µ(x0)). Provided the optimal length
of schooling condition (9)

V̂S(Γ(R;µ), R;µ) = V̂S(S∗, R∗;µ(x0)) = 0, (57)

and assuming V̂ (S,R;µ) is strictly concave around the point (S∗, R∗;µ(x0)).
Then, we differentiate (57) with respect to a mortality decline at an arbitrary
age x0, −µ(x0), to obtain the marginal impact of a mortality decline on the
optimal length of schooling. Applying the Chain rule in (57) we obtain

−S∗µ(x0) =

−∂f(S∗,R∗)
∂µ(x0)

− f(S∗,R∗)
σ(c∗)

1
c∗
−∂c∗
∂µ(x0)

f(S∗, R∗)
(
ψS(S∗)
ψ(S∗)

+ 1
σ(c∗)

c∗S
c∗

)
− fS(S∗, R∗)

. (58)

Thus, from (49) we have

sign
[
−S∗µ(x0)

]
= sign

[−∂f(S∗, R∗)

∂µ(x0)
− f(S∗, R∗)

σ(c∗)

1

c∗
−∂c∗
∂µ(x0)

]
. (59)

Note from (25) that the first term on the right-hand side of (59) is zero when-
ever x0 ≤ S∗ or x0 ≥ R∗. Substituting (12)-(13) and (26) in (59), and taking

e−r(x0−S
∗) p(x0)
p(S∗)

as common factor gives

sign
[
−S∗µ(x0)

]
= sign

[
rh(S∗)− r̄(S∗, R∗)

σ(c̄)
a(x0)

]
. (60)
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when x0 ≤ S∗ and x0 ≥ R∗, and

sign
[
−S∗µ(x0)

]
= sign

[
rh(S∗)− r̄(S∗, R∗)

σ(c̄)
a(x0) +

∫ R∗

x0

e−r(x−x0) p(x)

p(x0)
yS(S∗, x)dx

]
.

(61)
when x0 ∈ (S∗, R∗). This proves Proposition 3(a).

Similarly, given that the implicit-function theorem holds, there is one
unique function Υ(S;µ) that equals R∗ for any (S;µ) around (S∗;µ(x0)). Pro-
vided the optimal retirement age condition (10)

V̂R(S,Υ(S;µ);µ) = V̂R(S∗, R∗;µ(x0)) = 0. (62)

Assuming V̂ (S,R;µ) is strictly concave around the point (S∗, R∗;µ(x0)). We
obtain after differentiating (62) with respect to −µ(x0), and applying the
Chain rule,

−R∗µ(x0) =
− 1
σ(c∗)

1
c∗
−∂c∗
∂µ(x0)

1
σ(c∗)

c∗R
c∗
− wR−S(R∗−S∗)

w(R∗−S∗)
+ δ + φR(R∗)

φ(R∗)

. (63)

From (50), we have

sign
[
−R∗µ(x0)

]
= −sign

[ −∂c∗
∂µ(x0)

]
. (64)

Now, in order to prove Proposition (3)(b) we show that the sign of −R∗µ(x0) is

that of a(x0).
Differentiating (7) at S = S∗ and R = R∗ with respect to −µ(x0), and

rearranging, gives

∫ ω

x0

e−rxp(x)c(x, S∗, R∗)dx+

∫ ω

0

e−rxp(x)
−∂c(x, S∗, R∗)

∂µ(x0)
dx

=

∫ R∗

S∗
e−rx
−∂p(x)

∂µ(x0)
w(x− S∗)h(S∗, x)dx. (65)

The intertemporal budget constraint at age x0 can be expressed as

e−rx0p(x0)a(x0)

=

{∫ ω
x0
e−rxp(x)c(x, S∗, R∗)dx−

∫ R∗

x0
e−rxp(x)w(x− S∗)h(S∗, x)dx if S∗ < x0 < R∗,∫ ω

x0
e−rxp(x)c(x, S∗, R∗)dx otherwise.

(66)
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Substituting (66) into (65), we obtain
∫ ω

0

e−rxp(x)
−∂c(x, S∗, R∗)

∂µ(x0)
dx = −e−rx0p(x0)a(x0). (67)

Differentiating (8) at S = S∗ and R = R∗ with respect to −µ(x0), and simpli-
fying, gives

1

c(x, S∗, R∗)

−∂c(x, S∗, R∗)
∂µ(x0)

=
σ(c(x, S∗, R∗))

σ(c∗)

1

c∗
−∂c∗
∂µ(x0)

. (68)

Substituting (68) into (67), and rearranging, we get (26). Finally, substituting
(26) in (64), we have

sign
[
−R∗µ(x0)

]
= −sign

[ −∂c∗
∂µ(x0)

]
= sign [a(x0)] , (69)

which proves Proposition 3(b).

D Proof of Proposition 4

Given the implicit-function theorem holds, there are two unique functions
Γ(R;µ) and Υ(S;µ) that are equal to S∗ and R∗, respectively, for any (S,R;µ)
around (S∗, R∗;µ(x0)). Provided the optimal length of schooling and retire-
ment age conditions, we have:

V̂S(Γ(R;µ),Υ(S;µ);µ) = V̂S(S∗, R∗;µ(x0)) = 0, (70a)

V̂R(Γ(R;µ),Υ(S;µ);µ) = V̂R(S∗, R∗;µ(x0)) = 0. (70b)

For notational simplicity, hereinafter we skip the arguments. Writing the sys-
tem of equations (70) in differential form we have

V̂SΓdΓ + V̂SΥdΥ + V̂Sµdµ = 0, (71a)

V̂RΓdΓ + V̂RΥdΥ + V̂Rµdµ = 0. (71b)

If V̂S(·) and V̂R(·) are continuously differentiable with respect to (S,R;µ),
(S∗, R∗) is a solution of the system at the mortality value µ(x0), and the
Jacobian matrix of the system (70) evaluated at (S∗, R∗;µ(x0)) is not singular,
or |J | 6= 0, then the system can be locally solved at (S∗, R∗;µ(x0)).

The solution of (71), by Cramer’s rule, is



dS∗

dµ(x0)

dR∗

dµ(x0)


 =

1

|J |



−V̂RRV̂Sµ(x0) + V̂RSV̂Rµ(x0)

V̂SRV̂Sµ(x0) − V̂SSV̂Rµ(x0)


 . (72)
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Taking V̂RRV̂SS as common factor in the right-hand side of (72) gives




dS∗

dµ(x0)

dR∗

dµ(x0)


 =

V̂RRV̂SS
|J |




V̂Sµ(x0)

−V̂SS
+ V̂RS
−V̂SS

V̂Rµ(x0)

−V̂RR

V̂Rµ(x0)

−V̂RR
+ V̂SR
−V̂RR

V̂Sµ(x0)

−V̂SS


 . (73)

Provided the strict concavity of V̂ (S,R;µ) at (S∗, R∗;µ(x0)) and multiplying
both sides of (73) by −1, since we are interested in the effect of a decline in
mortality rather than an increase in mortality, we obtain

sign

[ −dS∗
dµ(x0)

]
= − sign

[
S∗µ(x0)(R

∗;µ) +
dS∗

dR∗
R∗µ(x0)(S

∗;µ)

]
, (74)

sign

[ −dR∗
dµ(x0)

]
= − sign

[
R∗µ(x0)(S

∗;µ) +
dR∗

dS∗
S∗µ(x0)(R

∗;µ)

]
. (75)

This completes the proof of Eqs. (24a) and (24b).
We now differentiate (45) and (46) with respect to −µ(x0) at (S∗, R∗),

respectively,

−V̂Sµ(x0) = Uc
(
c∗
)
e−rS

∗
p(S∗)

(−∂f(S∗, R∗)

∂µ(x0)
− f(S∗, R∗)

σ(c∗)

1

c∗
−∂c∗
∂µ(x0)

)
, (76)

−V̂Rµ(x0) = Uc
(
c∗
)
e−rR

∗
p(R∗)y(S∗, R∗)

(
− 1

σ(c∗)

1

c∗
−∂c∗
∂µ(x0)

)
. (77)

Substituting (76)-(77) in (74), taking Uc(c∗)e−rS
∗
p(S∗)

−V̂SS(S∗,R∗)
as common factor, and

using (12), (18) and (20), we get

sign

[ −dS∗
dµ(x0)

]
= sign

[−∂f(S∗, R∗)

∂µ(x0)
− f(S∗, R∗)

σ(c∗)

1

c∗
−∂c∗
∂µ(x0)

(
1 +

dR∗

dS∗
c∗R
c∗S

)]
.

(78)

Using (11), (18), and (26) we obtain, after rearranging,

sign

[ −dS∗
dµ(x0)

]
= sign

[∫ R∗

S∗
e−r(x−S

∗) −∂
∂µ(x0)

[
p(x)

p(S∗)

]
yS(S∗, x)dx

−e−r(x0−S∗) p(x)

p(S∗)
a(x0)

1

σ(c∗)c∗

(
c∗S + c∗R

dR∗

dS∗

)]
. (79)

Finally, taking e−r(x0−S
∗) p(x)
p(S∗)

as common factor and using the fact that dc∗

dS∗ =

c∗S + c∗R
dR∗

dS∗ we obtain Proposition 4(a), or Eq. (32).

37



Using the same steps for the sign of −dR
∗

dµ(x0)
but now taking −V̂RR as common

factor, it can be shown that

sign

[ −dR∗
dµ(x0)

]
= sign

[
dS∗

dR∗

∫ R∗

S∗
e−r(x−S

∗) −∂
∂µ(x0)

[
p(x)

p(S∗)

]
yS(S∗, x)dx

−e−r(x0−S∗) p(x)

p(S∗)
a(x0)

1

σ(c∗)c∗

(
c∗R + c∗S

dS∗

dR∗

)]
. (80)

Similarly, taking e−r(x0−S
∗) p(x)
p(S∗)

as common factor and using the fact that
dc∗

dR∗ = c∗R + c∗S
dS∗

dR∗ we obtain Proposition 4(b), or Eq. (33).
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