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Abstract

Auctions are the allocation-mechanisms of choice whenever goods and in-
formation in markets are scarce. Therefore, understanding how information
affects welfare and revenues in these markets is of fundamental interest. We
introduce new statistical concepts, k- and k-m-dispersion, for understanding
the impact of information release. With these tools, we study the comparative
statics of welfare versus revenues for auctions with one or more objects and
varying numbers of bidders. Depending on which parts of a distribution of
valuations are most affected by information release, welfare may react more

strongly than revenues, or vice versa.
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1 Introduction

Auctions improve allocations in markets in which information is scarce. They are
not only applied in highly capitalized spectrum and timber markets, but also in
selling various items from used cars to fine arts. Auctions also serve as models of
competition for prizes such as college admissions, winning districts in elections, or
finishing among the first in R&D races. As they are known to allocate scarce goods
well despite a fundamental lack of information about the bidders’ costs or valuations,
it is surprising how little we know about the interaction of information, welfare and

revenues in these contexts. This is the starting point of our paper.

Generating information is typically a costly endeavor. For a welfare maximizer, the
incentives to provide information on the goods for sale may be very different from
the incentives a revenue-maximizing seller faces. The reason behind is that a wel-
fare maximizer incorporates bidders’ aggregated rents into his calculation, while a
revenue-maximizing seller focuses on the selling price. A priori, releasing informa-
tion could increase competition at the top such that bidders’ rents become smaller.
This may affect selling prices a lot, but increase overall efficiency of allocation and
thus welfare only marginally. Yet information release could also lead to a further dif-
ferentiation of the bidders with the highest valuations, thus affecting and increasing

bidders’ rents and welfare more strongly than the seller’s revenue.

Understanding how welfare and revenue incentives relate to each other requires a
thorough understanding of the behavior of order statistics. In case of a one-object
auction, the first and second order statistics, i.e. the highest and the second highest
valuations, and the difference between the two, are crucial. In multi-object auctions,
more of the highest order statistics are relevant. If several prizes, like grants or
promotions, are “auctioned off” to applicants in order to reward those who exert
the highest efforts (bids), efforts of several applicants scratching the top matter. For
example, Harvard University selected 2,000 students out of 34,000 applicants for its
class of 2018.

The related literature so far focuses on one-object auctions and has mostly imposed
conditions on the effects of information release which guarantee that welfare reacts

more sensitively towards information than revenue (compare Ganuza and Penalva,

See https://college.harvard.edu/admissions/admissions-statistics.



2010). Yet the opposite conclusion can hold true as well. Bidders’ rents may de-
crease in response to information release due to fiercer competition at the top. This
implies that a revenue maximizer has stronger incentives to release information than
a welfare maximizer. For instance, this is the case when information release affects
bidders with intermediate valuations more strongly than bidders with high valua-

tions.

This paper provides criteria that determine whether information release strength-
ens or weakens competition in multi-object auctions. The previous literature has
typically modeled information release as an increase in the variability of valuations
in the sense of the dispersive order (Ganuza and Penalva, 2010).> Under the dis-
persive order, additional information always weakens competition as it increases the

differences between all order statistics.

We introduce two new classes of stochastic orders that allow for a more flexible
and directed control of the behavior of order statistics, the k- and k-m-dispersion
orders. Increased variability in the sense of k-dispersion implies that the k highest
order statistics move further apart through information release. Increased variability
in the sense of k-m-dispersion implies the same conclusion when the overall number
of bidders n is sufficiently large, n > k + m. Both orders are weaker than the
dispersive order. In particular, information release can either increase or decrease
the variability of valuations in k-m-dispersion, implying either a strengthening or
a softening of competition. Consequently, a welfare maximizer may have either
stronger or weaker incentives to release information than a revenue maximizing

seller. k-m-dispersion provides a criterion to decide which of the two is the case.

We apply our theory to auctions in which information release is modeled in terms
of information partitions. Bidders do not know their true valuations, yet they know
which interval of a distribution contains their valuation. Information release renders
these intervals finer. This is a prominent model of information release in economic
theory (see Bergemann and Pesendorfer, 2007) that is not tractable with the disper-

sive order. k-m-dispersion enables us to draw clear conclusions about multi-object

2A related literature studies the problem of information acquisition in auctions from the bid-
der’s perspective, e.g., Persico (2000). In there, a bidder compares how different signals affect
his valuation estimate. We study the seller’s problem in which information release transforms a
distribution of unknown valuation estimates into another. Formally, information acquisition is
thus a rather different problem that requires different statistical tools such as Blackwell’s (1951)
sufficiency or Lehmann’s (1988) efficiency of signals.



auctions with sufficiently many bidders. Information release decreases bidders’ rents

if and only if information affects the bidders with the highest valuations.

In a second classical model of information release due to Lewis and Sappington
(1994), each bidder’s signal equals his valuation with some probability while it is
pure noise otherwise. This model has been applied to auctions, e.g., by Ganuza and
Penalva (2010) and Shi (2012). k-m-dispersion allows to determine the comparative
statics of information release even if signal quality differs for bidders with higher
versus lower valuations. While information release often relaxes competition between
bidders in this setting, the opposite can happen as well. Specifically, further increases

in high signal qualities may foster competition at the top.

Our results directly translate to the problem of understanding the impact of tar-
geted advertising on revenues in auctions, see Hummel and McAfee (2015).3 Beyond
auctions, our techniques also contribute to other fields such as reliability theory and
risk management where worst realizations of distributions matter. Differences be-
tween order statistics are also crucial in matching markets. Analyzing expected
matches between firms and workers, or men and women, requires to control dis-
tances between order statistics not only at the top, but also on lower levels of a
distribution. Another field of application — beyond the scope of this paper — may be
the measurement of inequality, where distances from the poorest (or the richest) to
the middle income quantiles of a population may be of specific interest. For exam-
ple, recent developments in Western countries such as the US suggest that a focus
on the distances between the richest 400 families and the middle class could help

defining educational goals for the next decades.*

Related Literature

This paper is related to several contributions in the literatures on auctions and on
stochastic orders.> Our auction-theoretic applications generalize results of Ganuza
and Penalva (2010) and thus contribute to the literature on information in auctions
and mechanism design.® Jia, Harstad and Rothkopf (2010) study information release
in auctions when bidders know parts of their valuations and the other additive parts

can be disclosed. They illustrate that the comparative statistics of bidders’ revenues

3For a broader picture of the online advertising market, see Athey, Calvano and Gans (2014).
4See “America’s elite. An hereditary meritocracy”, The Economist, 01/24/2015.

SFor introductions to these two fields, see Krishna (2002) and Shaked and Shanthikumar (2007).
SFor a survey, see Bergemann and Vilimiki (2006).

4



are intricate and conclude that “no illuminating necessary condition seems possible”.
This is the problem we address. Stochastic orders, especially the dispersive order,
have also been applied to study other questions concerning auctions and related
contexts, see, for instance, Johnson and Myatt (2006), Mares and Swinkels (2014),
Kirkegaard (2014), and the references therein.

In the literature on stochastic orders, parts of our analysis build on a result of Li
and Shaked (2004) who prove one of the main properties of the k-dispersion order
without explicitly introducing this order.” We provide new insights on k-dispersion
and introduce the generalized k-m-dispersion orders. As the k-dispersion order
coincides with the excess wealth order in the case k = 1, our results are also related
to two contributions from the operations research literature which apply the excess
wealth order to auctions, Li (2005) and Xu and Li (2008). Analyzing the case k > 1
allows us to address many questions which are not tractable under the excess wealth
order. Paul and Gutierrez (2004) provide several results related to ours based on
the star order. Yet their results stating that differences of order statistics can be

controlled in terms of the star order are incorrect as is shown in Xu and Li (2008).8

Outline

Section 2 introduces our model and discusses the scope and limitations of modeling
information release in terms of the dispersive order. Section 3 introduces our new
stochastic orders, their key properties and some practical sufficient conditions for
applications. Section 4 presents our main results on information release in multi-
object auctions, first in the general case and then in the applications of information
partitions and heterogeneous signal quality. Section 5 sketches further economic ap-
plications of our methods and presents additional properties of k-dispersion. Section

6 concludes. All proofs are in the appendix.

2 The Setting

2.1 Auction Model with Information Release

We study a symmetric independent private values auction model with information

release. Our techniques will allow us to handle one object as well as multi-object

"Compare Proposition 2.
8This incorrect result is also cited in Shaked and Shanthikumar (2007) as Theorem 4.B.19.



auctions. We therefore introduce the broader setting straight away.

A risk-neutral seller auctions off a quantity of ¢ identical objects in a (g + 1) price
auction. The n > ¢ bidders are all risk-neutral. Those who submit the ¢ highest
bids receive an object and each of them pays the (¢ + 1) highest bid. Ties are

broken with uniform randomness.

Initially, bidders do not know their valuations exactly. Before the auction takes
place, the seller decides whether he wants to release information to the bidders. If
he opts against information release, the bidders stick to their initial private estimates
Y; of their valuations. The Y; are nonnegative and independently distributed accord-
ing to a commonly known cumulative distribution function G with finite mean. If
the seller opts for information release, each bidder receives an independent signal
that reveals more about his valuation for winning an object. We denote by X; the
updated estimates of valuations. The random variables X, are again nonnegative,
independent and identically distributed with finite mean and we denote their cu-
mulative distribution function by F. F~! and G~! denote the generalized inverse

(quantile) functions of F' and G.

Throughout we assume that all bidders follow their weakly dominant strategy of
bidding their best estimate of their valuation in the auction. Thus, bidder 7 bids
X, if information is released and Y; otherwise. We denote by X;., the i order
statistic, i.e., the i**-largest out of X1, ..., X,,, and define Y;.,, analogously.® Lemma

1 summarizes the main properties of the bidding equilibrium.

Lemma 1 Set Z = X if information is released and Z =Y if no information is
released. The expected selling price in the auction is given by E[Z,1.,]. The seller’s

expected payoff is given by q E|Zy41.,]. Bidders™ aggregate rents are given by

q
Z E[ern - Zq+1:n]
j=1

and total welfare amounts to

9In particular, we follow the usual notation in auction theory where Xi., denotes the largest
order statistic and not the usual statistics notation where it would denote the smallest.



In the following, we call the seller a welfare maximizer if he is interested in maximiz-
ing total welfare, and we call him a revenue maximizer if he maximizes his expected

payoff.

An alternative interpretation of the model is that F' denotes a finer information
structure compared to G, and the seller decides whether to release a signal imple-
menting G or F'. In the context of information release with Bayesian updating, it
is plausible to assume that F' and G share the same mean. Our analysis, however,
does not rely on this assumption, thus incorporating the possibility of non-Bayesian
updating by the bidders. As a final interpretation, the seller could decide between
running the auction with bidders from two different populations with respective

distributions F' versus G.

We do not impose that F' and G are continuous. This allows us to provide results
for models of information release such as information partitions that would violate
a continuity requirement. The additional structures introduced in Ganuza and Pe-
nalva (2010) in the one object case — a prior distribution of valuations, a continuous
family of signals with associated costs of information provision, and a continuous
family of (posterior) distributions of valuations — directly translate to our setting. In
particular, while we do not explicitly specify costs of information release, the com-
parison between I’ and G should be thought of as one side of a cost-benefit trade-off.
While we focus on (¢ + 1) price auctions, the results can be transferred to more
general mechanisms by the revenue equivalence theorem for multi-unit auctions in

Engelbrecht-Wiggans (1988) in the case of continuous distributions.

2.2 Information Release and the Dispersive Order

This section illustrates how measures of dispersion allow to study the effects of
information release in auctions. We provide an overview of existing results and

point out their limitations by an example.

Intuitively, providing more information to bidders should increase the variability
in their estimated valuations. The posterior distribution F' should thus be more
variable (or “dispersed”) than the prior G. In their analysis of information release,
Ganuza and Penalva (2010) study two notions of dispersion, an ordering between

F and G in the convex order, and an ordering of F' and G in the dispersive order.



These are defined as follows.!?

Definition 1
(i) F is more variable than G in the convexr order, F' = on, G,'' if E[X;] = E[Y}]

and
El(Xy1—t)"] > E[(Y1 —t)"] forallt € R

where (1)t denotes the positive part.

(i1) F is more variable than G in the dispersive order, F' =g, G, if
Flp)—F Yq)>G ' (p) =G q) forall 0<qg<p<]l. (1)

An ordering in the convex order is a weak requirement closely related to second-order
stochastic dominance. It is satisfied in many models of information release. Under
the assumption that F' >=.,,, GG, Ganuza and Penalva show that releasing informa-
tion increases expected welfare and, with sufficiently many bidders, the expected
revenue in the auction.'? Both results follow from the intuition that increasing the

variability of valuations tends to increase the highest valuations.

In order to control differences between overall welfare and seller’s revenues, stronger
orderings need to be imposed. Ganuza and Penalva rely on the dispersive order. F'
dominates GG in the dispersive order if all pairs of quantiles lie further apart under
F than under G. As we will see below, this is a rather rigid requirement which is
violated in many models of information release. The next lemma summarizes their

results on information release in auctions under the assumption that F' =g, G.**

Lemma 2 Assume F >4, G and g = 1.

(1) Bidders™ aggregate rents increase when information is released,

E[Xlzn - X2:n] 2 E[Yln - }/2n]

0For background on these two orders, see Chapters 3.A and 3.B of Shaked and Shanthikumar
(2007). Our definitions follow their Theorem 3.A.1 and Formula 3.B.1.

HFor our purposes, it proves to be more convenient to formulate stochastic orders on the level
of distribution functions and not on the level of random variables as is done, e.g., in Shaked and
Shanthikumar (2007).

12These results are their Theorems 3 and 5. For a generalization to the g object case, see Roesler
(2015).

13The four parts of Lemma 2 correspond to Proposition 6, Theorem 7, Theorem 4 and Theorem
6 of Ganuza and Penalva (2010).



(11) A welfare mazimizing seller has a stronger incentive to release information than

a revenue maximizing seller,
E[Xlsn - le:n] 2 E[XQ:n - YVQn]

(111) The expected welfare generated by the auction increases more strongly when the
number of bidders increases under information release than when no information is
released,

E[X1m — Xim—1] > E[Y1 — Y]

(iv) The seller’s expected payoff increases more strongly when the number of bidders

increases under information release than when no information is released,
E[XZ:n - X2:n—1] Z ED/Zn - }/2:71—1]'

All four results rely on comparisons of differences of order statistics, so-called spac-

ings. Technically, they stem from the following fact about the dispersive order.!4

Lemma 3 Let F' =45, G. Then for alli <n
E[X'Ln - XiJrl:n] 2 E[Y:Ln - Y;Jrlzn]

and

E[in - Xi:n—l] 2 E[}/zn - }/;:n—l]-

In the remainder of this section, we illustrate a setting which does not fall under

Lemma 2 and which leads to the opposite economic implications.

Example 1

Assume that bidders’ true valuations are distributed uniformly on [0, 1]. Bidders do
not know their true valuations. They only know whether their valuation is below 2/3
or not. By releasing information, the seller can furnish bidders with the additional
information whether their valuations lie below or above 1/3. Consequently, the a
priori distribution G puts a mass of 2/3 on the value 1/3 and the remaining mass on
5/6.15 The a posteriori distribution F is a uniform distribution on 1/6, 1/2 and 5/6.

14 The first claim of Lemma 3 follows from Theorem 3.B.31 of Shaked and Shanthikumar (2007).
The second claim follows from the first and formula (8) below.
15For a more detailed introduction of this model, see Section 4.2.



Notice first that F' and G are not comparable in the dispersive order. When moving
from G to F the lowest third of probability mass moves downwards from 1/3 to 1/6
while the middle third moves upwards from 1/3 to 1/2. The upper quantiles do not
react to the information release. Therefore, the lower two-thirds of probability mass
are indeed more dispersed under F' than under G. Yet the upper two-thirds lie more
closely together. When working with information partitions, information release will
always lead to such ambiguous effects and thus preclude a direct application of the

dispersive order.

As Lemma 2 is not applicable in our example, we compare welfare and seller’s rev-

enues by a direct calculation,

1 9 n—1 1 n—2 1 2 n—1

For n = 2, we obtain results similar to parts (i) and (ii) of Lemma 2. For n = 3,
welfare and seller’s revenues react equally strongly. With four or more bidders, the
results are reversed. Bidders’ aggregate rents decrease when information is released.
Thus a revenue mazimizing seller has a stronger incentive to release information

than a welfare mazimizing one.'®

In our example, information affects bidders with intermediate valuations more strongly
than bidders with high valuations. This renders the auction more competitive. In
particular, information release does not increase the differences between high order
statistics. If we look at restrictions of F' and G to sufficiently high quantiles, we see

that, in a sense, information release reduces dispersion.

Definition 2 For p € (0,1) define the restriction of F' to its quantiles higher than

p as the cumulative distribution function
Fop(z) = o B

and define Gs,(x) analogously.'”

16 As we will see in greater generality in Section 4.2, parts (iii) and (iv) of the lemma are also
reversed with sufficiently many bidders.

"Notice that the definition is such that if F' has an atom on F~1(p), i.e., F(F~1(p)) =s > p
then F.,(z) has an atom of size (s — p)/(1 —p) on F~!(p).

10



Consider the distributions F.;/3 and Gsy/3. F.y/3 is the uniform distribution on
{1/2,5/6} while G135 is the uniform distribution on {1/3,5/6}. Unlike F' and G
themselves, these restrictions can be compared in the dispersive order. Yet it is the
distribution without information release which is more dispersed, G 1 =disp IS 1.
Since higher quantiles dominate the behavior of high order statistics with sufficiently
many bidders, this observation explains the reversal of Lemma 2. Indeed, we will
see in Proposition 6 and Theorem 1 that a dispersive ordering between F' and G
above some quantile is essentially a sufficient condition for whether Lemma 2 holds

or whether it is reversed.

3 Dispersion Criteria for Order Statistics

As seen in Lemma 3, the dispersive order implies a control over all spacings of
order statistics while the outcomes of auctions depend only on the highest few. This
motivates the k-dispersion order, which is specifically designed to control spacings
of the k highest order statistics. This family of stochastic orders focuses on the
properties of a distribution that are crucial for an auction’s outcome, and avoids

imposing more restrictions than needed.

Even in situations in which a clear monotonicity behavior of high spacings does
not exist in general, it may emerge as soon as sufficiently many bidders take part
in an auction. This is demonstrated in Example 1, and motivates us to introduce
the family of k-m-dispersion order. These stochastic orders allow to control the
k highest order statistics in auctions with more than k£ + m bidders. Finally, we
provide sufficient conditions for k- and k-m-dispersion that are easy to verify in

applications.

3.1 k-Dispersion

This section introduces the family of k-dispersion orders, compares them with other

stochastic orders, and develops their implications.

Definition 3 (k-Dispersion) For an integer k > 1, F is more dispersed than G
in the k-dispersion order, F' =, G, if

/ (1—w)*dF~(u) > / (1 —u)*dG™(u) (2)

11



for all p € (0,1).

While our proofs are based on (2), the following alternative formulations of this

condition may be easier to interpret. We can write (2) as'®

h — F(x))*dz h — G(x))*dx,
/ I /| 10w
and as

E[( Xy — FHp)*] 2 E[(Yer, — G (0) 1] (3)

From (3), we see that F' is more k-dispersed than G if upwards deviations of the
smallest out of £ draws are greater in expectation under F' than under G. Compared
to the definition of the convex order in (1), there are two differences. First, the
reference levels for deviations are the p-quantiles of the two distributions rather
than the same fixed reference level on both sides of the inequality. Intuitively, since
order statistics are connected to quantiles, this is the reason why k-dispersion allows
to draw stronger conclusions about spacings of order statistics than the convex order.
The probability that Xj., lies above the p-quantile is the same for all distributions.
This makes quantiles a good starting point for comparing order statistics. Second,
for k > 1, we directly impose a condition on Xy.; rather than on X;.;. The parameter
k thus allows us to gradually adjust the strength of the dispersion criterion to the
level that is needed. In Propositions 2 and 3 below, we show that k-dispersion
allows to control spacings of the k highest order statistics for all n. In Section 5, we
demonstrate its applicability to order statistics that lie further apart as well as to

normalized spacings.

Throughout the paper, we mostly apply k-dispersion by relying on variations of the

following argument. Condition (2) implies that for any increasing function h

/0 h(u)(1 —u)*dF~*(u) > /0 h(uw)(1 —u)* dG~*(u). (4)

For non-negative random variables, spacings of order statistics can be written as'

B[ X — Xy 1] = (Z) /0 R — AP ), (5)

BThese equivalences are implicit in the proof of Proposition 3.4 of Li and Shaked (2004), see also
Section 2 of Broniatowski and Decurninge (2015) for the relevant integral substitution formulas.
We only work with formulation (2) in the following and thus omit the calculations here.

YFor a derivation, see, e.g., Kadane (1971).

12



where k < n. Thus, choosing h(u) = u" " in (4) shows that k-dispersion implies a

ranking of spacings.

Main Characteristics of k-Dispersion

We next explore the main characteristics of k-dispersion and compare it to the
stochastic orders typically applied in economics, the dispersive order and the con-
vex order. = is a stochastic (partial) order in that it is transitive:*® For three
distribution functions F', G, and H, F' >, G and G =, H imply F >, H. While
the 1-dispersion order coincides with the excess wealth order,?' the k-dispersion or-
ders for k > 1 appear to be novel.?? Like the excess wealth order, all k-dispersion
orders are location independent, i.e., F' >=; G remains fulfilled if either of the two

distributions is shifted by a constant.

Proposition 1

(i) For allk > 1, if F =gisp G then F = G.

(i1) For allk > 1, if F =11 G then F =, G.

(iii) For allk > 1, if E[X1] = E[Y1] and F =y G then F = o, G.

Thus, the dispersive order is stronger (and less broadly applicable) than all k-
dispersion orders. For instance, it is a necessary condition for the dispersive order
that F~! and G~' cross only once. k-dispersion does not rely on such a single-

crossing condition.

Within the family of k-dispersion orders, (k 4 1)-dispersion implies k-dispersion.
The convex order can generally not be compared to k-dispersion and the dispersive
order as it is not location independent: F' >, G can only hold if F' and G have
the same mean. Under the assumption that F' and G share the same mean, the
convex order is implied by each of the other orderings. Yet the convex order itself

is not strong enough to control spacings of order statistics.

20This separates k-dispersion from some single-crossing criteria for dispersion such as the rotation
criterion of Johnson and Myatt (2006).

21See Shaked and Shanthikumar (2007) for background on the excess wealth order.

22The definition is motivated by an observation of Li and Shaked (2004), see Proposition 2 below.

13



k-Dispersion and Order Statistics

Proposition 2 demonstrates the suitability of k-dispersion for controlling spacings of
high order statistics. The result combines Proposition 1 (ii) with Proposition 3.4 of
Li and Shaked (2004).

Proposition 2 If F' =, G for some k < n then for alli < k
E[in - Xi+1:n] Z E[Y;n - }/;+1:n]-

Next, we extend this result to the other class of spacings of order statistics where we
vary n while keeping ¢ fixed. The key observation is that the two types of spacings

differ only by a combinatorial factor which is not distribution-dependent.

Proposition 3 If F = G for some k < n then for all i <k
E[in - Xi:n—l] Z E[Y;n - Y;:n—1]~

In the context of auctions, Proposition 3 enables us to study how welfare and revenue

react to changes in the number of bidders.

Finally, a word is in order on comparisons of expected order statistics. k-dispersion
is designed to be location independent to facilitate comparisons of differences. In
order to obtain results comparing E[Xy.,| and E[Y}.,], the two distributions need to
be anchored in fixed locations. For instance, when F' and G share the same mean,
comparison results of this type can be derived from the fact that k-dispersion implies

the convex order.

3.2 k-m-Dispersion

In Example 1, monotonicity of spacings sets in only with sufficiently many bidders.
While k-dispersion is weaker than the dispersive order, it cannot apply in such a
situation. Building on k-dispersion, we therefore introduce the weaker concept of
k-m-dispersion. This implies that Propositions 2 and 3 hold in richer settings if the

number of bidders is sufficiently large, namely n > k + m.

Definition 4 (k-m-Dispersion) For integers k > 1 and m > 0, F is more dis-
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persed than G in the k-m-dispersion order, F' =, G, if

/ u™(1 — uw)*dF~(u) > / u™(1 —u)*dG (u) (6)

for allp € (0,1).

All k-m-dispersion orders are location-independent and transitive. k-O-dispersion
coincides with k-dispersion. In general, compared to k-dispersion, the increasing
function u™ in the integrand shifts attention into the right tail of the distribution.
With many bidders, the behavior at this tail is crucial for an auction’s outcomes.
Therefore, k-m-dispersion should hold when the right tail of F' is more spread out
than the right tail of G. This is the case even when a global comparison of the
dispersion of the two distributions is not instructive, as in Example 1. Proposition
4 summarizes the central properties of k-m-dispersion regarding spacings of order

statistics. The proposition generalizes Propositions 2 and 3.

Proposition 4

(i) If F =j.m G for some k and m with k+m < n then for all i <k
EXin — Xit1n] 2 ElYin — Yig1n].

(it) If F >j.m G for some k and m with k+m < n then for all i <k
EXin — Xin-1] 2 ElYin — Yin-1].

To put the k-m-dispersion orders into context we add the following result in the
spirit of Proposition 1.

Proposition 5

(i) For all k> 1 and for allm >0, if F =, G then F' = 11 G.

(it) For all k > 1 and for allm >0, if F =jy1.m G then F =, G.

(1i1) If k,m > 1 and E[X ] = E[Y1] then F =y G & F =ony G and F = cony G 7
F>pmG.

Accordingly, increasing m renders the k-m-dispersion order less rigid. All k-m-
dispersion orders are weaker than the k-dispersion order and, consequently, the dis-

persive order. Unlike k-dispersion, k-m-dispersion is not comparable to the convex
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order if F' and G share the same mean. Indeed, in the application to information
partitions in Section 4.2, we find that F' >=.,,, G is always satisfied while either
F >pm Gor G =, F holds. In an auction setting, this implies that welfare always
increases while bidders’ revenues either increase or decrease through information
release. The dispersive order is not applicable in these examples since it cannot

handle information partitions.

3.3 k-m-Dispersion at Work: Sufficient Conditions

We now introduce some more explicit conditions for k-m-dispersion that allow to
derive quantitative results without actually computing the integrals in (6). The
starting point is a dispersive ordering between restrictions of F' and G to high

quantiles as introduced in Definition 2.

Proposition 6 Suppose there exists p € (0,1) such that F-, =4 G, and there
exist q1,q2 € (p,1), @2 > q1, such that the constant

di = (F(g2) = F (@) — (G (q) — G (@)

is positive. Define also d_ = G™'(p™) — G71(07). Then, for any k and m > (k)

given by
k - log <%> + log <§—;)

log(q1) — log(p)

m(k) =

we have F =y, G. Here, [-] denotes rounding to the next non-negative largest

integer.

In the proposition, the condition d; > 0 ensures that the comparison in the dis-
persive order holds, in a sense, strictly. d, serves as a quantitative measure of the
additional dispersion of F' versus G above the p-quantile. d is compared to the con-
stant d_ which quantifies how spread out GG can maximally be outside this region.
d_ is the difference between the lower ends of the supports of G and G-,.?* The
thresholds (k) grow linearly in &, and so do the implied thresholds n(k) = k+m(k)
on n. The intuition for this linear relationship is that the typical location of Xj.,

among the quantiles of F' is linked to the ratio k/n.

23The values 01 and p* in the definition of d_ are needed to properly define the lower ends of
the supports. For any distribution function F on R, F~1(07) = inf{z|F(z) > 0} is the lower end of
the support (which is non-negative by our assumptions) while F~1(0) = inf{z|F(z) > 0} = —c0.
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|k [1]2]3]4]5]10]15[20]
a(k) [4]7]10[13]16[31[46[61
(k) [3]5] 7 [9]11[21[31]41

Table 1: Estimated thresholds n and true minimal thresholds n* for n to ensure
EYin — Yiiin] > E[Xpn — Xka1) in Example 1 for different k.

When applying the proposition, in order to obtain a small threshold m, ¢; and ¢
should be chosen at some distance from each other and away from the boundaries
of the interval (p,1). This ensures that d, is sufficiently large, and that the region
between the ¢;- and ge-quantiles becomes more important than the region below.?*

Finally, notice that when m(k) is zero, Proposition 6 implies k-dispersion.

Example 1: Explicit Thresholds

In Example 1, we wish to conclude G =y, F' from G173 Zaisp F1/3. We thus need
to apply Proposition 6 with the roles of F' and G exchanged. We choose p = 1/3,
@ = 2/3 and qo = 3/4 which gives F1(q) = G7Yq) = 5/6, F~ 1 (q1) = 1/2,
G Yq) = 1/3 and thus dy = 1/6. F~1(0%) = 1/6 and F~'(p*) = 1/2 imply
d_ =1/3. It follows that G =, F, provided that

m>mk) =2 k+1.

Table 1 compares the estimated thresholds n(k) = k + m(k) to the true thresholds
n*(k).? The inequality E[Yim — Yitim) > E[Xgm — Xpi1m holds if and only if
n > n*(k). Proposition 6 proves the inequality for n > n(k). The true thresholds n*
all satisfy n*(k) = 2-k+ 1. The estimated thresholds n(k) reflect this linear growth

behavior. We further see that the estimated slope of 3 has a reasonable magnitude.

Counting downwards from the upper bound 7(k), one can determine the optimum
n*(k) by direct calculation. Without an upper bound, finding n*(k) would not
be possible. Counting upwards from k& would be problematic as the ordering of
E[Yin — Yiy1a] and E[Xy.,, — Xjpy1.,) might change arbitrarily often.

For discrete distributions, the condition F%, >4, G, can be verified by comparing

24In particular, go < 1 guarantees a uniform control over the contribution of the q;-gp-region,
because the very highest quantiles contribute little to intermediate order statistics.
25n* was computed numerically.
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the upper tails of the distributions. The final result of this section provides a similar
criterion for continuous distributions on bounded supports. F >, G holds for
sufficiently large m if the density of F' is smaller than the density of G near the

upper ends of the respective supports.

Corollary 1 Suppose F' and G are continuous with bounded supports [ar,br| and
lag, bg| and possess continuous density functions f and g. If there exists § > 0 such
that 0 < f(z) < g(y) for all x € [bp —0,bp| and y € [bg — 9, bg] then for any k there
exists m such that F >y, G.

Thus it is the thickness of the density in the upper tail, not its location, that
ultimately dictates the behavior of spacings of high order statistics. In contrast, the
ordering of E[X}.,| and E[Y}.,] for large n depends on the location of the upper tail,

i.e., on a comparison of the upper boundaries of the supports F~(1) and G~'(1).

4 Information Release in Multi-Object Auctions

4.1 The General Case

This section applies k- and k-m-dispersion to information release in auctions in
which ¢ identical objects are for sale. Each bidder is in need of one of these objects,

as e.g. in contests for promotions or admission to a university.

Theorem 1 generalizes Lemma 2. It provides conditions for welfare reacting more
strongly to information than seller’s revenues, as well as conditions for the opposite
situation. Furthermore, it covers the cases in which sufficiently many bidders need

to take part in order to arrive at clear-cut results.

Theorem 1

(i) If F =y m G and n > g+ m, then bidders” aggregate rents increase when infor-

mation s released.

(it) If F =ym G and n > q + m, then a welfare mazimizing seller has a stronger

incentive to release information than a revenue mazximizing seller.

(111) If F' >=4.m G and n > g+ m, then the welfare generated by the auction increases
more strongly when the number of bidders increases under information release than

when no information is released.
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(w) If F =g1m G and n > g+ 1 + m, then the expected selling price and the
seller’s payoff increase more strongly when the number of bidders increases under

information release than when no information is released.

(v) The conclusions of (i-iii) are reversed if G =4, F andn > q+m. The conclusion

of (i) is reversed if G =g1.m F and n > q+ 1+ m.

Thus, in the setting ¢ = 1 and m = 0 of Ganuza and Penalva, the excess wealth
order is sufficient for (i) to (iii) while the stronger 2-dispersion order is needed for
(iv). We need to require stronger dispersion orders when the number of objects, ¢,
increases. An immediate consequence of (ii) is that if information release is costly
then for intermediate cost levels a welfare maximizer releases information while a

revenue maximizer does not.

4.2 Information Partitions

When information release takes the form of increasingly finer information partitions,
Theorem 1 yields a complete characterization of information release with sufficiently
many bidders. If information release increases the highest valuation estimate, the
requirements of claims (i) to (iv) of the theorem are fulfilled. If the highest valuation

estimate is unaffected by information release, the four claims are reversed.

Assume that bidders’ true valuations are distributed according to a continuous dis-
tribution function H with a strictly positive density h on an interval [a, b] with a > 0
and a < b < co. Denote by (5;); an strictly increasing subsequence of (a,b) with
B > 0 elements. Thus, 5; and Sp are the lowest and highest values in the sequence.
Without information release, bidders only know for each of the values 3; whether
their valuations lie above or below. Accordingly, the distribution G of valuation

estimates assigns probability
Bi
zh(x)dx

H(B;) — H(Bi—1) to the estimate H(%i)l— HBr1)

(7)
with the obvious modifications for £; and Sg.

Information release is modeled such that the seller increases the number of values for
which bidders know whether their valuation lies above or below. The sequence (5;);

is thus replaced by another strictly increasing sequence («;); with A > B elements.

19



(6;); is a subsequence of («;);. The distribution F' of posterior valuation estimates

is derived from («;); analogously to (7).

Proposition 7 shows that for any k&, F' and G are always comparable in the k-m-

dispersion order for sufficiently large m.

Proposition 7
(i) If an = P, then for any k there exists an m such that G =y, F.

(it) If s > B, then for any k there exists an m such that F =y, G.

Whether F' or GG is more dispersed thus depends on whether information release
affects the highest valuation estimates or not. If ay = (g, the bidders with the
highest valuation estimates are not affected by information release. The auction thus
becomes more competitive such that the reverses of claims (i-iv) of Theorem 1 hold
with sufficiently many bidders. If a4 > g, information release further differentiates
the valuation estimates of the highest valuation bidders. Consequently, the auction
becomes less competitive and the four claims of Theorem 1 hold with sufficiently

many bidders.

4.3 Heterogeneous Signal Quality

The quality of a signal may depend on the bidder’s type. In this section, we provide
a model that allows to study such a heterogeneity in signal quality in a multi-object
auction context. We start with the following classical set-up. Bidders receive a
noisy signal which is identical to their valuation with some probability and pure
noise otherwise. With homogeneous signal quality, this is the truth-or-noise model
introduced in Lewis and Sappington (1994) and applied, e.g., by Johnson and Myatt
(2006), Ganuza and Penalva (2010), and Shi (2012). We study a variation of this
model which captures heterogeneity in signal qualities. The probability of the signal
being correct is different for bidders with high versus low valuations. Possible in-
terpretations include information which is more vital to bidders with low valuations
than to bidders with high ones (or vice versa), or, more generally, information which

is more precise in some respects than in others.

Bidders’ true valuations Z; are independent and uniformly distributed on [0, 1]. Each
agent receives an independent signal S; which is either equal to Z; or equal to Uj;

where U; is independent of Z; and also uniformly distributed on [0, 1]. There are
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numbers 6, pr, py € (0,1) such that the probability of S; = Z; is py, for Z; < 6 and
py for Z; > 6. Signal quality thus depends on whether the true valuation is above
or below 0. We denote by GG the distribution of valuation estimates which follows

from this specification of 6, p;, and py.

In this model, releasing more information corresponds to improvements in the quality
of the signals. It can thus take three basic forms, an increase in pg, an increase in py,
or a shift of # such that more agents have the higher signal quality. In the following,
we refer to these three possibilities as an H-increase in information, an L-increase
in information, and a T-increase in information.?® We denote by F the distribution
of valuation estimates which arises from either of these increases in the amount, or
quality, of information. In particular, we say that F' differs from G, e.g., through
an H-increase in information if the two distributions are based on the same values

of pr, and # but if F' has a higher value of py than G.

In order to study the impact of information release, we need to establish what the
distributions G and F' look like. The probability ¢, of observing a signal below 6 is
given by

qr = P(S,- < Q) = 0pr +92(1 —PL) +‘9(1 - 9)(1 —pH) =:p1 + D2+ p3,

where the three summands p; correspond to the cases where S; = Z; < 0, where
Si, Z; < 0 but S; # Z;, and where S; < 0 but Z; > 6. Analogously, we have

qn = P(S; >0)=(1—0)py+ (1 —0)*(1 —py) +0(1 —0)(1 —pr) =: ps + ps + ps.

The valuation estimate (and bid) of a bidder who received the signal realization

s < 6 is thus given by

1 0 1+86
eL(S):q—L 3P1+§p2+ 7 P3

where the pre-factors of py and ps are the means of uniform distributions on [0, 6]

26For the case of a T-increase, more information is released if py > pr and @ decreases, or if
pr < pr and 0 increases. When pyg = pr, changes in 6 have no effect. We thus implicitly assume
pr # pg when speaking of a T-increase in information.
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and (0,1]. Similarly, an agent who received s > 6 has the estimate

1 1+6 0
€H<5):q_H Sps+ 5 p5+§p6 .

Denote by U(-|1) the density of a uniform distribution on the interval I. Since
signals remain uniformly distributed conditional on lying above or below 6, the
distribution of valuation estimates G is a mixture of two uniform distributions and

its density ¢ is given by ¢g(y) = qr U(y | 1) + qu U(y | I ) where
IL = [BL(O),GL(Q)] and IH = (GH(9>,€H(1)]

In this model, an increase in the amount of information does not necessarily imply
a higher dispersion in the sense of the dispersive order.2” Moreover, higher values
of the signal realization do not necessarily imply higher valuation estimates. Such
a lack of monotonicity can occur if @ is sufficiently large so that Z; < 6 can still
correspond to a rather high valuation, and if signal realizations below 6 are more
reliable than those above, p;, > py. For the auction, we need to determine whether
the overall highest bids come from bidders with the highest possible signals (near
1), or from bidders with signals near 6. This motivates the following definition of

monotonicity at the top (MT).
Definition 5 The tuple (pr, pu, 0) satisfies monotonicity at the top (MT) ifey (1) >
er(0). The tuple (pr,pm,0) violates (MT) if ey (1) < er(6).

The next lemma provides an explicit equivalent condition and some illustrations of
(MT). (MT) holds if high signals are more reliable than low ones, or if the overall
reliability of signals is sufficiently high while the threshold € is low. (MT) is violated
if high signals are sufficiently unreliable, and if the threshold 6 is sufficiently high.

Lemma 4

(1) (MT) is equivalent to

0 < S(pr,pu,0) = pr + pu + prpu + 0°p7 — (1 — 0)*p3; — 20pL, — 20pLpy.

2TFor instance, for p;, = @ = 0.25 and py = 0.1, there is a gap between the two parts of the
support Iy, and Iy. Improving signal quality by increasing py to 0.25 closes this gap, e () =
er (), so that some quantiles lie more closely together than before, thus ruling out an ordering in
the dispersive order.
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(i1) (MT) is satisfied if py > pyr.
(111) (MT) is satisfied if (1 —0)(pL +pm) > 1.
(iv) For any py € (0,1), (MT) is violated if py is sufficiently small and 6 is suffi-

ciently large.

The next two propositions characterize the effects of the three types of information
release, first for the case where (MT) holds and then for the case where it is violated.
We indicate whether F' > ,,, G or vice versa for sufficiently high m. The results on

auctions then follow directly from Theorem 1.

Proposition 8 Suppose (pr,pu,0) satisfy (MT).

(1) If F differs from G through a sufficiently small L-increase or T-increase in in-

formation, then for any k there exists m such that F' =, G.

(11) If F differs from G through a sufficiently small H-increase in information and if
pa < 071 —pr, then for any k there exists m such that F =y, G.

(i11) If F differs from G through a sufficiently small H-increase in information and
if pg > 0" — pr, then for any k there exists m such that G =, F.

In the proposition, “a sufficiently small increase” means that the increase leaves
condition (MT) intact and, in cases (ii) and (iii), also the additional restriction on
pr- Increasing the amount of information through changes in p;, or 6 thus relaxes
competition among sufficiently many bidders, i.e., assertions (i)-(iv) of Theorem 1
apply. In contrast, if 8, p; and py are sufficiently high,?® a further increase in py
induces a fiercer competition at the top and implies the reversals of assertions (i)-
(iv). In the latter case a further increase in py leads to more bidders learning about
their very high valuations. If the overall signal quality is already high, this effect
dominates the welfare enhancing effects of information release such as a further
differentiation of beliefs at the top.?? Finally, we investigate the situation where
(MT) is violated so that the highest bids come from bidders with signals slightly
below 6.

28Notice that py > 6! — pp can only hold if the right hand side is smaller than 1, i.e., if
(14 pr)8 > 1. To see that cases (ii) and (iii) of the proposition are both compatible with (MT),
consider p = p, = py > 1. Then (MT) holds by Lemma 4 and whether we are in case (i) or (iii)
depends on whether § < (2p)~! € (0,1) or not.

29Tn particular, the effect which leads to a reversal of Theorem 1 in this model is distinct from
the one we observed in the case of information partitions. There, the increased competition at the
top was due to a further differentiation of intermediate valuation estimates.
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Proposition 9 Suppose (pr,pg,0) violate (MT). If F differs from G through a
sufficiently small H-increase, L-increase or T-increase in information, then for any
k there exists m such that F' =, G.

Thus, if (MT) is violated and there are sufficiently many bidders, assertions (i)-(iv)
of Theorem 1 hold for all three types of information release. Small amounts of

information always soften competition at the top.

Our analysis describes which kind of information release appeals more to welfare-
maximizing versus revenue-maximizing sellers. Another question is whether infor-
mation release actually enhances welfare and the seller’s revenue or not. In the
information partitions model of Section 4.2, welfare and seller’s revenue always in-
crease in response to information release when there are sufficiently many bidders.
In the model of this section, effects can be more intricate. With sufficiently many
bidders, the question is equivalent to the question whether the upper end of the
support u = max(er(0),eg (1)) increases in response to information release. When
(MT) is satisfied, H- and L-increases in information always lead to an increase in
u = ey (1) and thus to higher welfare and seller’s revenue with sufficiently many
bidders.

5 Further Applications

This section sketches extensions of our analysis to other economic contexts, like
matching markets, and the control of differences in low realizations which is impor-
tant for risk management and reliability theory. Via k-dispersion, we can compare
increments of expected order statistics E[Xj.,| that are next to each other with
regard to k£ or n. In this section, we show that k-dispersion serves as a tool for
controlling differences of order statistics that lie further apart as well, and describe

where this control can be applied.

Proposition 10 If F =, G for some k < n then for allt < k and alll > 1

E[in - Xl:n] Z E[an - an]

30For T-increases and for the case where (MT) is violated, the behavior of u is more complex
and a detailed discussion is beyond the scope of this paper. The results of Theorem 1 remain valid
when u decreases in response to information release but one might want to reinterpret (ii), e.g., in
terms of incentives to prevent leakage of information.
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Proposition 10 characterizes which degree of k-dispersion is needed in order to com-
pare specific differences of order statistics. For example, the 1-dispersion order allows
to contrast differences between first and third order statistics across distributions.
A similar comparison of the second and third order statistics requires the stronger
2-dispersion order. The proposition generalizes the main result of Kochar, Li and
Xu (2007)3! which treats the case k = 1.

A direct consequence of Proposition 10 is that it allows to compare sums of spacings

of order statistics: F' >, G implies that
-1 -1
Z E[X]n - Xj—l—lzn] Z Z E[an - Y;'—&—l:n]
j=i =i

for all 7 < k and all n > [ > i. Proposition 11 provides similar results for normalized

spacings of order statistics.

Proposition 11 If F' =, G for some k < n then for allt < k and all | > i
! 1
> JEXjm = Xjsiml = > GE[Yjn — Yiera).
j=i j=i

The case k = 1 generalizes a result of Barlow and Proschan (1966) which is a key
ingredient of Hoppe, Moldovanu and Sela (2009)’s analysis of matching markets.
In the latter paper, women and men can invest into costly presents in order to
improve their matching outcomes (and thus, e.g., match with a partner that is
ranked better than the partner they would obtain otherwise). The inequality of
Proposition 11 allows to study the comparative statics of signaling costs and welfare
in this marriage market. Barlow and Proschan (1966) rely on the convex transform
order which is stronger than the excess wealth order when F' and G have the same
mean.?? Proposition 11 shows that the results of Hoppe, Moldovanu, and Sela hold

under weaker requirements on the distributions.

31Kochar, Li and Xu apply their result to the study of one object ¢* price auctions. This part of
their analysis is problematic from the viewpoint of game-theoretic auction theory since it relies on
the assumption that bidders truthfully bid their valuations independently of the auction format.

32Shaked and Shanthikumar (2007), formula (4.B.3), shows that the convex transform order
implies the star order. Li (2005), Remark 2.7, shows that the star order implies the excess wealth
order if F' and G share the same mean.
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Regarding the spacings of the k lowest order statistics, one can define the family of

k-m-dispersion orders given by
P p
FriG & / uF (1 —w)"dF 1 (u) > / uF (1 —u)™dG(u) ¥p € (0,1).
0 0

For example, expected differences in quality for the worst, second to worst, third
to worst, etc. product out of a production series can be compared through these
orders. All arguments for this family of orders are parallel to those we obtained for
the k-m- dispersion orders. Like the 1-O-dispersion order, the 1-0-dispersion order
coincides with a familiar stochastic order, namely, with the location independent
risk order of Jewitt (1989).

6 Conclusion

This paper has introduced new techniques for analyzing the impact of information
release on revenues and welfare in independent private values auctions. From here,
there are several avenues for further research. As sketched in the previous section,
the results may inform various economic contexts such as matching markets or the
study of economic inequality in which order statistics need to be handled. As the
statistics and reliability theory literature inspired some of our techniques, our results
may also prove useful in this domain. Finally, one can think of various challeng-
ing extensions to more general auction models. A generalization from independent
private values to models with correlated valuations comes to mind. Further, one
may want to think about models in which the auctioneer can send different sig-
nals to different bidders. This last point is particularly interesting since Bergemann
and Pesendorfer (2007) have shown that — unless institutional requirements enforce
symmetry — revenue-optimal information release consists of asymmetric information

partitions.

A  Proofs

Proof of Proposition 1
To see (i), notice that F >4, G implies that the measure v given by dv(u) =
d(F~'(u) — G'(u)) is non-negative, so that integrals of non-negative functions

against v are non-negative. Thus (2) holds for all p. (ii) is shown as follows: Lemma
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7.1 of Chapter 4 of Barlow and Proschan (1981) states that for any signed measure

v on R* and any non-decreasing, non-negative function h

/OO dv(u) >0 Vp>0= /OO h(uw)dv(u) > 0.

Applying this result with dv(u) = (1—u)*™d(F~!(u)—G~(u)) shows that F =, G

implies
/0 hu)(1 — W) 1P (u) > /0 h(u)(1 — w5+ dG ()

for any non-decreasing, non-negative h. Applying this inequality to all members of
the family of non-decreasing functions (hg)qe(0,1) defined by hy(u) = (1 —u) s
yields

/1(1 —w)*dF~ (u) > /1(1 —w)*dG (u) Vg€ (0,1)

and thus F' =, G. (iii) follows from the fact that F' >, G implies F' =; G by (ii),
and from the fact that > is the excess wealth order so that we can apply Formula

3.C.8 of Shaked and Shanthikumar (2007). O

Proof of Proposition 2
By Assertion (ii) of Proposition 1, it is sufficient to consider the case k =i. By (5),

it is sufficient to show that
1 1
/ u" (1 — w)*dE (u) > / u" R (1 — u)"dG (u).
0 0

This inequality follows from the definition (2) of the k-dispersion order by applying —
like in the proof of Proposition 1 — Lemma 7.1 of Chapter 4 of Barlow and Proschan
(1981) to the signed measure v given by dv(u) = (1 — u)*d(F~*(u) — G~1(u)) and

to the non-decreasing function h(u) = u"=*. O

Proof of Proposition 3
Again, by Assertion (ii) of Proposition 1, it is sufficient to consider the case k = 1.

Rewriting Relation 1 from David (1970, p. 45) into our notation yields

BlXen] = ElXin ] = + (B Xen] = ElXi 1)) ®
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Thus we can apply Proposition 2 and conclude that F' > G implies

E[Xk:n] - E[Xk:n—l] = (E[an] - E[Xk+1:n])

Vv
S>3

(E[Yk:n] - E[Yk’-i-l:n]) = E[Yk:n] - E[Yk:n—l]-

Proof?? of Proposition 4

By Proposition 5 (ii) we can focus on the case i = k. The proof of (i) is entirely par-
allel to the one of Proposition 2 except that we choose dv(u) = u™(1—u)*d(F~*(u)—
G~ Y(u)) and h(u) = u"*™. (ii) follows from (i) and (8). O

Proof of Proposition 5

The proof of (i) is entirely parallel to the one of Proposition 1 (ii) except that we
choose dv(u) = u™(1 — u)** 1 d(F~1(u) — G7*(u)). The same is true for the proof of
(ii) where we choose dv(u) = u™(1 — w)*d(F~'(u) — G~ (u)) and hy(u) = ulgysq.
For (iii), notice that Proposition 7 provides a class of examples where E[X;| = E[Y}],
F = cony G is satisfied together with either F' =, G or G =, F' for some m. [

Proof of Proposition 6
Choose the measure v as dv(u) = (1 — u)*d(F~(u) — G~1(u)). We have to show

that there exists m such that

L(r) = / 1 wdy(u)

is non-negative for all r € (0,1). By assumption, the measure v is nonnegative over

(p,1]. This proves the claim for r > p. For r < p consider the decomposition3

L(r) = /

The second and fourth integrals are non-negative by assumption. Since F~! and

pT aQ

W) + / W) + / () + / ().

pt q1 q2

33The logical contingencies between Propositions 4 - 7 are as follows: Proposition 6 = Proposi-
tion 7 = Proposition 5 = Proposition 4.

34To make the choice of pt in the integral boundaries rigorous, one can read the integrals as
integrals with respect to the Borel-measure induced by F~! —G~1, see Remark 2.2 in Broniatowski
and Decurninge (2015).
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G~1 are non-decreasing, we obtain the lower bound

pt a2
L(r) > —/ u™(1 — u)*dG ™ (u) +/ u™dv(u).
0+ q1
Since both integrals are with respect to a nonnegative measure, we can further bound
them by

+

P q2

4G (u) + g™ (1 — o) / dF~ () — G (u)).

q1

L(r) > —p™ /

o0+

The right hand side equals —p™d_ + ¢/*(1 — ¢2)*d,. which is non-negative for suffi-
ciently large m since (1 — ¢2)*d, > 0 and ¢; > p. To conclude the proof, it suffices
to solve —p™d_ + ¢7"(1 — g2)*d; > 0 for m. O

Proof of Corollary 1

The fact that f is strictly smaller than g at the top of the support implies that there
exists a threshold p such that all pairs of quantiles greater than the p-quantile lie
strictly further apart under F' than under G. This implies F%, =45, G, and the

claim follows from Proposition 6. U

Proof of Theorem 1

Observe that we can write bidders’ aggregate rents after information release as
q q
Z E[inn B Xq+1:n] = Z]E[Xjn - Xj+1:n]'
j=1 j=1
To the expression on the right hand side we can apply Proposition 4 and conclude

q
Z E[Xjn - Xqul:n] 2 Z E[Y}n - Y;]Jrlzn]
- =1

Jj=1

which is (i). Rearranging this inequality yields
q
Z E[inn - }/JTL] Z E[qu+1:n - qY<]+1:n]
j=1

which proves (ii). The welfare gains from adding an additional bidder when releasing
information are given by »3%_, E[Xj., — Xj.,—1]. This is greater than the correspond-
ing quantity with Y in place of X by Proposition 4. This shows (iii). The claim
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about the expected selling price in (iv) follows from observing that Proposition 4
yields
E[Xq+1:n - Xqul:nfl] 2 E[Y;]+1:n - Y;ﬂrl:nfl]

provided that F' >,.;,, G. The statement about the seller’s payoff follows by
multiplying this inequality with ¢. (v) follows by exchanging the roles of F' and G.[J

Proof of Proposition 7

Denote by a* the largest element of («;); which is not included in (3;); and set
p = H(a*). We prove (i) by showing that G-, >=4s, F~, and then invoking Propo-
sition 6. Denote by 87 > 3 the upper and lower neighbors of a* in the sequence
(Bi)i- Observe that the distributions F., and G-, are both discrete distributions
concentrated on a finite number of values. In particular, since the two partitions are
identical from B} € («;); on, the two distributions are identical except for the lowest
value. For F.,, the lowest possible realization {r is the conditional mean of H over
the set [o*, 5], while for G-, this lowest realization is the conditional mean I over
(6%, B%]. Both occur with the same positive probability (H(5%) — H(a*))/(1 — p).
Clearly, we have lp > lg. Since this difference between the lowest realizations is
the only difference of F., and G,, it follows directly that G, >gs, F%p. Since
all probabilities are strictly positive, we can also guarantee existence of ¢; and ¢, as

required by Proposition 6.

The proof of (ii) proceeds similarly by showing that F., >4, Gs,. We set p =
H(Bg). Then G-, is a degenerate distribution which takes as its only value the
conditional mean of H over [fp,b]. F., takes at least two values with positive
probability, since the sequence (a;) contains at least one element which is greater
than 8. We thus have F., =45, G, O

Proof of Lemma 4

A direct calculation reveals that

S(pr,pu,0)
21+ (pr —pa)(1 = 0))(1 + (pur — pr)0)

€H<1) — 6L(9) =

Since |py — pr| < 1, the denominator is always positive and (i) follows. For (ii),

note that S is concave in py so it suffices to verify S(pr,pr,0) = 2pr(1—0) > 0 and

S(pr,1,0) = 2pr + 20 — 4prd — 6*(1 — p2) > 0.
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The last claim follows from the facts that S(pr,1,6) is concave in 6 and that
S(pr,1,1) = (1 —pr)? > 0 as well as S(pg,1,0) = 2p; > 0. For (iii), notice

that S can be written as
S(pr,pu,0) = pr(1 = 0)(1 + py) + pu + 0°p; — (1 — 0)*p}; — Opr — OpLpn.

Applying in the first summand the assumed inequality p,(1 —0) > 1 — py(1 —0),

and rearranging, shows that S is bounded from below by the function
M(pr,pr,0) = —p5 (2 = 0)(1 = 0) + pu(1+ 0 — pr8) + 1 — pro(1 — p0).

Since M is concave in py, M > 0 follows from the positivity of M (pg,0,0) =
1—pr0(1—prh) and M(pr,1,0) = 6(4—2py — 0+ p20). For (iv), it suffices to notice
that S is continuous and S(pr,0,1) = —pr(1 —pr) < 0. O

Proof of Proposition 8
Since G is a mixture of uniform distributions, it suffices to study how the value of
the density at the highest valuation estimates reacts to changes in the parameters
and then to apply Corollary 1. Since (MT) holds, the value of the density at the
top is given by

qH (1+0(pu — pr))”

T(pL,pH,H) B €H(1) - BH(e) N PH

The relevant derivatives of T are given by

oT 201+ (pr —pr)0) 0T _ 2(pm — po)(1 + (pr — pr)f)

opr pH e PH

nd oT (1= (o + )01+ (on — p)f)

Opu p%{

Since |py —pr|0 < 1, 5977; is always negative, implying that F' > ,,, G for sufficiently
large m by Corollary 1. %—g is negative when p; > py and positive when pyg > py,
implying that F' >, G follows if 0 is shifted into the direction of the smaller
probability. The sign of a%; depends on the sign of 1 — (pg + pr)@ as indicated in

the proposition. O

Proof of Proposition 9

We only point out the differences to the proof of Proposition 8. Since (MT) is
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violated, the density at the top is now given by

qL (14 (1= 0)(pz — pu))?
Hpepn 0= )~ @ m '

The derivatives with respect to 6, py and py, are given by

or _ 2(1-0)1+(pr—pu)1-0)) 0T _ 2(pw —pr)(1+ (pr —pu)(1 —0))

OpH pbL ’ % B bL

and

o _ (1= (pu +p)(1=0)(+ (pr —pu)(1—90))
Ipr P '

The signs of the derivatives follow like in Proposition 8 except that we do not

distinguish cases because a violation of (MT) implies (pg + pr)(1 — 0) < 1 by

Lemma 4. O

Proof of Propositions 10 and 11
It is convenient to give a combined proof of the two propositions. By Assertion (ii)

of Proposition 1, it is sufficient to consider the case k = i. From (5) we obtain that

11-1
EXin — Xim) = / (n) u" (1 —u)?dF~(u)
— J
and
l 1=t n . .
ZjE[Xj:n_Xj-l—l:n] = / Z](])un_J(l—u)]dF_l(u)
j=k 0 j=k

Obviously, the right hand sides coincide up to the factor j in the second sum. In
the following, we denote this factor by ¢(j) and consider the choices ¢(j) = 1 and
©(j) = 7. Now we claim the following:

Claim: For both, ¢(j) = 1 and ¢(j) = j, there exists a non-decreasing function h

such that we can write

-1

>t ()0 ) = h(a)(1 -

J=k

Provided that this claim is true, the desired inequality follows from the definition (2)
of the k-dispersion order by applying — like in the proof of Proposition 1 — Lemma
7.1 of Chapter 4 of Barlow and Proschan (1981) to the signed measure v given by
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dv(u) = (1 —u)*d(F~'(u) — G~*(u)) and to the non-decreasing function h identified

in the claim: We obtain )
/ h(u)dv(u) > 0.
0

and thus

£ [ e o

Thus it remains to prove the claim. Since we can write
-1 n -1 n
e (1) = -0 ) (M)ur -
=k J =¥ J
this amounts to proving that

- o) ()it = ap

J

is increasing in u for our two choices of ¢(j). The key idea is to rewrite h in terms

of a Binomial(n — k,1 — u) distribution. We can write

= 3 ottty = S o) (MY

J

i n-...-(n—=k
‘1’(]) (k+ )(( ; >)1{J<l k} = 90(k+j) (j+/€) _(.__.(jill))l{jd—k}‘

For our two choices of ¢ which yield, respectively ¢(k+7) =1 and o(k+7j) = j+k,
WU(j) is clearly a non-negative, non-increasing function. Now denote by Z,_j1_, a
random variable distributed according to the Binomial(n — k,1 — u) distribution.

From writing h as

h(u) = E[\D(Zn—k,l—u)]

we can see that h is non-decreasing in u since ¥ is non-increasing. U
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