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In regions where old, traditional industries have lost their importance, retail firms play an
important role in job creation and provide local governments with a large part of their tax
revenues. The hypothesis in this paper is that the existence of regional retail networks may not
necessarily be determined by spatial factors and increasing returns in retailing, but can be
explained by the rational behaviour of firms operating in a stochastic environment. It is shown that
demand uncertainty can serve as an independent source of retail trade, and, consequently, the
ability of firms to process information and predict demand (i.e., to decrease demand uncertainty)
may affect the characteristics of retail networks. The results indicate that risk-averse firms always
devote resources to demand forecasting; producers are better off trading with retailers than with
final consumers; and the volume of output supplied through retail networks is greater than it
would be if producers traded directly with consumers (thus benefiting social welfare).
Furthermore, the paper shows that technological progress in data-processing, which allows for
cheaper and better predictions of market demand, increases the size of regional retail networks.
This in turn, increases the number of jobs available in regional job markets (decreases
employment) and increases tax revenues.
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1. Introduction

The rapid development of information and communications technologies is considered

one of the major driving forces in changes in economies and lifestyles. Technological progress in

information and communications techniques alters the spatial character of production, organization

and competition. The characteristics of the new information based economy affect urban

structures and the role and the importance of cities. In particular, new information technologies

have an effect on organizations in the economy world wide, as well as the kinds of jobs available

and their geographical distribution. New information technologies cause the loss of jobs in

established resource-intensive and area-consuming industries, and, consequently, lead to high

unemployment even in industrialized regions. In regions in which old industries have lost their

importance, existing urban infrastructures with developed retail networks remain an important

source of jobs and provide local governments with a large part of their tax revenues. However, as

in other sectors of the economy, the development of information technologies does not leave

regional retail networks unaffected. The hypothesis in this paper is that technological progress in

data processing increases the size of regional retail networks, and, as a result, reduces the negative

effects of advances in information technology on job markets in regional economies dominated by

declining resource-intensive industries.

The existence of regional retail networks and the role of retail firms are traditionally

explained by spatial factors and increasing returns to scale in transportation, storage or in the

acquisition and dissemination of information about the quality, range, and prices of products

available (see, e.g., Heal, 1980 and Wilson, 1975). In many cases, such as retail trade in services

or in goods which cannot be transported or stored, most of these factors are irrelevant. The main

limitation of the earlier literature on regional retail networks is that it attempts to see the retail trade

only from the supply side, and the models used have no explicit reference to demand, especially to

demand uncertainty, which is natural in most markets. This paper shows that retail trade (or at

least part of it) may not be connected with economies of scale and that it can be explained

exclusively by the rational behaviour of firms operating in a stochastic environment. Since retailers

are, by definition, intermediaries between consumers and suppliers, they can serve as a buffer

between suppliers and a market with demand uncertainty, and, in particular, they can bear the risk

associated with demand fluctuations. Thus, to analyze retailing convincingly one needs to

explicitly model the interaction between consumers and suppliers in an uncertain environment.

Only this type of model can credibly explain why there is a need for retailers as middlemen and

what determines the characteristics of the retail networks.

As has been already recognized in the literature, in real life firms are never sure about a

number of variables such as factor prices, the exact shape of the production function or the market
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demand curve. Even if firms are certain of their cost structures, they very rarely (if ever) know

precisely which demand conditions they face. The behaviour of firms operating in markets with

uncertain demand has been analyzed in several studies (see Sandmo, 1971; Leland, 1972; Lim,

1980). However, in most of these papers, the firms' beliefs about demand are summarized in a

subjective probability distribution which cannot be changed by the firms' actions. The fact that the

firm may be able to predict changes in demand, or at least to decrease the range of possible

variations, is usually neglected in the standard studies of economic behavior under uncertainty.

Nevertheless, the ability of the firm to predict demand, although not always perfect, may affect a

number of parameters of economic equilibrium (see, e.g., Nelson, 1960, for an analysis of

uncertainty and prediction in competitive markets). The conjecture in this paper is that market

analysis, information processing and demand forecasting activities not only affect the

characteristics of economic equilibrium when the producer sells goods directly to the final

consumers, but also influence the equilibrium characteristics of retail markets.

In the analysis which follows we assume that the relationship between quantities

demanded and market prices randomly varies from period to period, and that demand analysis is

both costly and time consuming. In particular, we focus on the market where the total demand

originates from a large (but finite) number of sources. The demand curve in each individual

source changes randomly from period to period, but in any time period demand changes are

assumed to be correlated with the changes prior to this period, reflecting a certain inertness in

consumer behavior. Since gathering and processing information requires time, the sum of

individual demands (i.e., the total demand) cannot be instantaneously determined (in particular, we

assume that the results of the market analysis are available only after the end of the period).

Consequently, the firms' output-price decisions have to be made based not on the current demand

but on its prediction. In each period the profit-maximizing firms set their volumes of output, since

it has a high commitment value within a period of time (i.e., the output decisions are irreversible

within the time unit). The price is assumed to be more flexible and can change to some extent due

to real market conditions. However, firms operating in the market are still assumed to be unable to

learn the true demand function during the period of time, and, consequently, have to rely only on

the results of the demand analysis.1 Since demand forecasts are based on past data, a prediction

error appears, and, consequently, firm’s output decisions always deviate from what is optimal.

To focus solely on the role of uncertainty and data processing (to avoid the problem of

inventories, transportation and storage), one can think about a supplier of services, such as a

sightseeing tour operator, operating in the market with demand depending on the weather in a

season. We suppose that the supplier can analyze the market in order to decrease the variance of

demand fluctuations. Moreover, the supplier is assumed to set capacity before the season (i.e.,
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before real demand becomes known) and has two options: to sell services directly to final

consumers during the season (at an uncertain price), or to sell services forward (before the season)

to retail firms (at a fixed price, lower, however, than the expected price to consumers). In such a

set-up, we examine how technological progress in information processing can affect the size of

regional retail networks.

The paper is organized as follows. Market demand is characterized in Section 2. Section 3

shows how forecasts of actual demand can be computed. Section 4 provides an analysis of the

optimal demand-forecasting strategy in the monopolistic supplier and the retail firms. In Section 5

the alternative methods of distribution of the output produced (i.e., with and without retail firms)

are considered. The implication of technological progress in data processing on the size of regional

retail networks is presented in Section 6.  Section 7 concludes.

2. Uncertain Demand

Consider a market where total demand originates from a large number of identical sources

N (one can think of these sources as consumers). Suppose that demand in each individual source i

(i=1,2,...,N) at any period of time t (t is an integer number,  −∞<t<+∞) is linear with an additive

random term ηi,t (for the sake of simplicity, assume that random variables ηi,t are identically

distributed with zero mean and finite variance σi,t
2=σt

2). Total inverse demand at period t is

where Q qt i t
i

N

=
=
∑ ,

1

 is the total quantity demanded at price P t (P t≥0),  a and b are positive constants.

The random variables ηi,t can move up or down in response to changes in the variables

omitted from a correct demand specification, such as, for instance, interest rates, inflation,

personal income, prices of other goods, etc. Much of this movement, however, might be due to

factors which are hard to capture, such as, for example, changes in the weather or in consumer

tastes. Thus, in many cases it may be difficult (or even impossible) to explain fluctuations in

demand through the use of a structural model. Moreover, it might happen that, even if statistically

significant regression equations can be estimated, the result will not be useful for forecasting

purposes (for example, when explanatory variables which are not lagged must themselves be

forecasted). In such situations, an alternative means of obtaining predictions of ηi,t have to be used.

The easiest way is to predict changes in ηi,t based on the analysis of their movements in the past.

P (Q , , ,..., ) =  a  bQ  +  t t 1 t 2 t N t t
i=1

N

i t  ,, , , ,η η η η− ∑          (1)



5

Such forecasts, however, are possible only if the random variables ηi,t are observable and if they

are correlated with their previous values.

3. Demand Forecasting

To simplify the analysis, assume that random deviations ηi,t (i=1,2,...,N) from the

expected values of individual demands are independent2 and described by identical stationary

stochastic processes with a memory (e.g., by autoregressive processes of any order).3 In other

words, assume that for any individual demand, variances and covariances of random variables,

ηi,t, are invariant with respect to displacement in time (note that, by definition, mean values of

random variables ηi,t are equal to zero, E(ηi,t)=0), i.e., , Var(ηi,t)=Var(ηi)=σ2>0, and

Cov(ηi,t,ηi,t+s)≠0, for s=0,1,..., i=1,2,...,N, and integer valued t (−∞<t<+∞).

Since immediate computations are not possible and the firm’s output-price decisions have

to be made prior to the knowledge of the market price, the result computed in period t can be used

only in subsequent periods, i.e., deviations η ηt i t
i

N

=
=

∑ ,
1

 can be estimated based on the results

computed in the past, and, consequently, always with certain error. It has to be stressed, however,

that the variance of the error in the estimation increases with the time elapsed from observations of

individual demands to the moment when decisions are made (see Radner and Van Zandt, 1992,

for a discussion). Therefore, the monopolist faces not only the rather standard problem of finding

appropriate estimations of demand but also the problem of finding the optimal cost of these

estimations, since data processing is inherently costly and the acquisition and analysis of more

pieces of information (and in particular, more recent information) has to be weighed against the

increasing costs of such an endeavor.

In general, the firm may find it advantageous to compute in subsequent periods (say,

t-m, m=1,2,...) deviations from the mean values of random variables ηi,t-m coming from different

subsets of sources (say, St-m, m=1,2,...) and use them for the estimation of the total deviation from

the expected demand in period t (rational strategy requires that sources of demand should be

analyzed cyclically one after the other).4

Denote the result computed in subsequent periods as η ηt m
S

t
St m t

− −
− −,..., 1

1 .  If the subsets

{ ,..., }S St m t− −1  contain nt-m,...,nt-1 (nt-m>0,..., nt-1>0) sources of individual demand, then there

exits integer number K  (N≥K≥1) such that n N nt ii

K

t jj

K

−= −=

+∑ ∑≤ <
1 1

1
. Thus, the estimation of

total deviation ~ηt can be computed as
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~ ~ ~η η ηt t
S

i

K t ii

K

t K
t
St i t K

N n

n
= +

−
− − −

=

−=

− −
∑ ∑

1
1

1

1 , (2)

where mtS
t

−η~  is a forecast (for period t ) of the sum of the deviations from the mean values of

random variables coming from the sources included in the set mtS −  (m=1,2,..,K+1).

Since all the available predictions of partial deviations ( mtS
t

−η~ , m=1,2,..,K+1) can be

represented as linear combinations of the true values of corresponding partial deviations in

past, the expected error in the prediction of total deviation equals zero. Furthermore, its variance

(assuming that deviations from the expected values of individual demands, ηi,t, are independent,

identically distributed, and time invariant) is 

σ σ σt t i t ii

K

t ii 1

K

t Kn (N n )2 2
1

2= + −− −= +∑ ∑, , , (3)

where

[ ]{ }σ η ηt m i t i tE m, , ,
~ ( )2 2

= − , (4)

is the variance of error in the estimation (with lag m, m=1,2,…,K+1) of the deviation of the

random variable ηi t, (i=1,2,…,N) from its mean value, and ~ ( ),ηi t m denotes the estimation with

lag m (m=1,2,…,K+1) of the deviation of the random variableηi t, (i=1,2,…,N) from its mean

value.

The forecast of the inverse demand can be specified as  
~ ~P(Q )= P(Q )+t t t tη ,

where P(Q )=a bQt t t−  denotes the expected demand curve in period t (−∞<t<+∞). The

prediction error t
~η  is given by expression (2) and its variance 2

tσ  by an expression (3).

4. A monopolistic supplier and retail firms

Taking into account that the variability of demand decreases the quality of output-price

decisions (i.e., price-output decisions deviate from the optimal decision that would be made if the

variance were equal to zero) and that the results of demand analysis can be used only after the end

of the period in which they were computed, the smallest variance of the prediction error

corresponds to the case when all sources of demand are analyzed in the preceding period. The

analysis of the total demand in each period, however, requires a number of economic resources to

be devoted to data-processing in the firm, i.e., it induces significant costs that cannot always be

offset by the expected benefit from the output-price decision with a lower risk of error. Thus,

instead of examining the demand coming from all sources in each period, the firm can

sequentially analyze the demand coming from certain subsets of sources. In this case, however,
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the firm has to determine the optimal number of sources of demand that should be analyzed in

subsequent periods.

Suppose now that there are two types of firms operating in the market: a monopolistic

supplier (s) of a single type of service and perfectly competitive retail firms (r) that can resell

services and freely enter or exit the market. Suppose that firms (the supplier and retailers) are

managed according to the wishes of their owners who are typical asset holders, and the decisions

in each firm are made by a group of decision-makers with sufficiently similar preferences to

guarantee the existence of a group-preference function, representable by a von Neuman-

Morgenstern utility function. Given these conditions we assume risk aversion, so that  the utility

functions of the supplier (Us) and retail firms (Ur) are concave and differentiable functions of

profits. The objective of both the supplier and the retail firms is to maximize the expected utility

from profit (we assume that the firms set the volume of output supplied).

Assume that the firms are able to analyze market data and predict demand. Taking into

account that the life of the firm is unlimited, the optimization task of firm x (x∈{s,r}) can be

represented as the following infinite-horizon, discounted, dynamic programming problem:

x tQ , n x t
max   E{ U [ (Q , , ) ] } ,t

x x t x t x t x t
t, ,

, , , ,β σ ηΠ
=

∞
∑

0
(5)

where σx,t+1 = f(σx,t,nx,t), with σx,0=σ0=(N )ϖ 2 1 2/ ,

E is an expectation operator,

Ux(⋅ ) denotes the utility function of the firm (x∈{s,r}),

Πx,t(⋅ ) is the profit of the firm in the period t, t=0,1,..., (x∈{s,r})

Qx,t is a quantity supplied by the firm x (x∈{s,r}) in the period t, t=0,1,...,

nx,t denotes the number of individual sources of demand analyzed in firm x (x∈{s,r}) in

 the period t, t=0,1,...

σx,t is the standard deviation of the error in the prediction of the total deviation of the 

random variables ηi,t (i=1,2,...,N) in firm x (x∈{s,r}) in the period t, t=0,1,...,

N is the total number of sources of demand,

ϖ 2 is the variance of the stochastic process underlying each individual demand around its

mean,

β  is the discount factor, β∈(0,1).

The cost of gathering and processing information in a given period and the benefits from

this activity in future periods (i.e., smaller variance of the prediction error) specify the link which
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connects the present with the future. In other words, in the model considered, there is an

intertemporal trade off between higher costs of data processing today and future benefits in the

form of a higher expected utility. Thus, along the optimal path the disutility from the analysis of

one additional source of demand in a period j (j=0,1,...) has to be equalized with the sum of the

discounted marginal benefits in all future periods. If V(nx,j) denotes the cost of data processing in

firm x (x∈{s,r}) in period j when nx,j sources of demand are analyzed, then, along the optimal

path5

∂ σ
∂

β
∂ σ

∂σ
∂σ
∂

E{U [ (Q n )]}

n

E{U [ (Q n )]}

n
 x x j x j x j x j

x j

t

t j

x x t x t x t x t

x t

x t

x t

Π Π, , , ,

,

, , , ,

,

,

,

, , , ,
.=

= +

∞

∑
1

(6)

Assuming that all the parameters of the model are stationary over time, the optimal solution to an

infinite-horizon, discounted, dynamic programming problem is time-invariant (see, e.g., Sargent,

1987). Thus, in the problem considered, the optimal output and demand-predicting strategy is

stationary, i.e., Qx,0
*=Qx,1

*=Qx,2
*=...=Qx

* and nx,0
*=nx,1

*=nx,2
*=...=nx

*  (x∈{s,r}). This implies that

the optimal value of the standard deviation (σx
*) of the error in the prediction of the total deviation

of the random variables ηi,t (i=1,2,...,N) from their means is stationary and depends only on the

number of individual demands analyzed in every period, σx
*=σx(nx

*). It follows that the unique

one-period cost of data-processing can be related to each value of the standard deviation σx(nx
*),

i.e., the costs of data processing in each period can be represented as a function of the standard

deviation in the steady state, g[σx(nx
*)] ≡ V(nx

*) . Since the stationary standard deviation, σx(nx
*),

decreases if the number of individual demands analyzed in each period increases, the cost of data

processing is a decreasing function of the steady state standard deviation (differentiating the cost of

data processing V(nx
*) with respect to nx

* gives

dV(nx
*)/dnx

* = ∂g/∂σx
 dσx/dnx

*>0, since dV(nx
*)/dnx

*>0 and dσx/dnx
*<0, it follows that ∂g/∂σx<0).

Moreover, the shape of the function V(nx
*) (dV(nx

*)/dnx
*>0, d2V(nx

*)/dnx
*2>0 (see Cukrowski,

1996), implies that g is a convex function of σ, i.e., ∂2g[σx(nx
*)]/∂σ x

2 >0.

Assume, for simplicity, that a standard deviation is the following function of the cost of

data processing σx =σ0 e
−λg, where g denotes the cost of data processing, and λ (λ>0) is a

parameter describing the current state of information processing technology. Consequently, the

cost of data processing is specified as g(σx)=-(lnσ x -lnσ 0)/λ.

The consideration above shows that the optimization problem of the firm x (x∈{s,r}) can

be solved in two steps. First, the optimal quantity Qx
* and the optimal value of standard deviation
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σx
* can be determined, and, second, knowing σx

*, the optimal size of the cohorts of data

summarized in each period can be found.

Thus, in the first stage the firm x (x∈{s,r}) chooses the steady-state quantity of output Qx

and the value of the standard deviation σx  which maximize the following objective function

Q ,x σ
σ

x

max E{U [ (Q )]} x x x xΠ , . (7)

To simplify the analysis, assume that the steady-state error in prediction of the total

demand is a normally distributed random variable with zero mean and variance σx
2 (this

corresponds to the case when random deviations follow stochastic processes with normally

distributed random terms such as, for example, the autoregressive process of any order).6 Since

the distribution of the total random deviation from the mean value of demand is normal, the total

deviation can take positive and negative values, each having probability _ (the expected value of

positive deviation equals σ /( )x 2π 1 2/ and the expected value of negative deviation equals

−σ /( )x 2π 1 2/ .7 Consequently, the total inverse random demand in any period t  

(-∞<t<+∞) can be approximated as
~

,P(Q , ) a bQ ( )x x x xσ ϑ σ= − + whereϑ σ( )x  is  a random

factor (not known exante) which with probability _  equals  γ(σx) and with probability _ equals −

γ(σx),  where γ(σx)=σ /( )x 2π 1 2/ . Consequently, with probability _ market demand is

P(Q ) a bQ ( )x x x x,σ γ σ= − − , and with probability _ is P(Q ) a bQ ( )x x x x,σ γ σ= − + . The

expected market demand curve is determined as P Q ) a bQx x( .= −

Using this approximation, the optimization problem of firm x (x∈{s,r}) can be

represented as

Q ,x σ
σ σ

x

max  {
1
2

U [ (Q )]+
1
2

U [ (Q )]} ,x x x x x x x xΠ Π, , (8)

where Πx x x x x x x x x(Q ) Q P(Q ) F (Q ) ,, , ,σ σ σ≡ −  and Π x x x x x x x x x(Q ) Q P(Q ) F (Q ) ,, , ,σ σ σ≡ −

F (Q ) x x x,σ denotes a cost function of the firm x.

5. Distribution of output

First consider the case when a monopolistic supplier trades directly with final consumers.

Assume that the supplier’s cost function is Fs(Qs,σ s)=cQs+g(σs)+B, where Qs denotes the

volume of output produced, g(σs) denotes the cost of data processing, c is the marginal cost, and
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B is the fixed cost. To simplify the analysis assume that the exact shape of the utility function Us

is specified as follows:

U ( )
u if

u (u u ) ifs s
s s s

0

s s s s
0Π

Π Π Π
Π Π Π Π

=
<

+ − ≥




1

2 1 2
0

, ,

, ,
 (9)

where u1> u2>0  and Π Π Πs s
0

s< < .8

The interior solution to this optimization problem (8) exists if

λ ≥
−
8b

(a c)2          (10)

(see Appendix for details).

Assuming that the primitives of the model: a,b,c,λ satisfy the condition above, the

optimal steady state values of the volume of output supplied Qs
* and the standard deviation of

the demand σs
* are determined as

 Q
a c
4b

a c
4b

1
2 bs

2
* ,=

−
+

−



 −

λ
           (11)

σ
λ

π
s

2

s

a c
2

a c
2

2b 2
k

* ,=
−

−
−



 −











         (12)

where ks=(u1-u2)/(u1+u2), ks ∈(0,1) for the risk averse firm9 (see Appendix for the proof).

Assume now that the monopolist can sell the output not to final consumers but to

perfectly competitive retail firms which can freely enter and exit the market. Each individual retail

firm operates in the market only if its expected utility from profit is at least equal to the utility of

some benchmark activity ϕ (ϕ≥0). Since for a risk averse retail firm earning random profit (Πr)

the following is true Ur[E(Πr)]>E[Ur(Πr)]≥ϕ≥0 , where Ur denotes utility function of the retail

firm and E is an expectation operator, the expected value of profit of a single retailer operating in

the market is positive. This implies that the retail market can be established only if the expected

value of the profit of the retail sector as a whole is positive, i.e., if the supplier sells services to

retail firms at a lower price than the expected price to final consumers. 

    PROPOSITION               1    . Rational behaviour of the risk averse monopolistic supplier under

uncertainty of  demand implies that the supplier is always willing to sell services to retail

firms at a lower price than the expected price to consumers.
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    Proof.    Under demand uncertainty the risk averse monopolistic supplier trading directly

with consumers earns random profit with the expected value E[Πs(Qs
*,σs

*)], such that

E[Πs(Qs
*,σs

*)]<E[Πs(Q0
*,0)], where Q0

* is the optimal monopolistic output without uncertainty

(i.e., if σ=0). Taking into account that the optimal volume of output supplied to consumers by

retail firms, and, consequently, demanded from the supplier, is deterministic (see Appendix), and

that a risk averse firm always prefers deterministic profit to random profit with the same (or even

slightly higher) expected value, the deterministic price P0(Q) at which the supplier would be

willing to sell the volume of output Q to retail firms should satisfy the following condition:

Since, E{U [P (Q)Q cQ B]} U {E[P (Q)Q cQ B]}s s0 0− − = − − and for a risk averse firm

Us{E[Π(Qs
*,σs

*)]}≥E{Us[Π(Qs
*,σs

*)]}, inequality (13) is satisfied for any P0(Q), such that10

P (Q)Q cQ B E[ (Q )] s
*

s0 − − ≥ Π , .*σ

(14)

Expression (14) states that the deterministic profit of the supplier (when he trades with retail

firms) should be at least equal to the expected value of profit that the supplier would earn if he sold

services directly to final demanders. Note that for any σs
*, E[Πs(Q,σs

*)] is a continuous, strictly

concave, function of Q, positive for Q∈(0,QC), where QC is the optimal competitive output

without uncertainty, achieving its maximum for Q=Q0
*. Since E[Π(Qs

*,σs
*)]<E[Π(Q0

*,σs
*],

there exists an interval (say, (QA,QB), where QA=Qs
* and Q0

*<QB<QC), in which

E[Π(Qs
*,σs

*]<E[Π(Q,σs
*)]. Plugging E[Π(Qs

*,σs
*)]=P0(Q)Q−cQ−B and E[Π(Q,

σs
*)]=P(Q)Q−cQ−B, where P(Q) is an expected price if quantity Q is supplied to consumers,

into the above inequality and rearranging, we get that P0(Q)<P(Q), for any Q∈(QA,QB).      QED.  

Suppose now that the supplier trades with retail firms, but it cannot (or it is not legally

allowed to) impose any vertical restraints, i.e., assume that the supplier is willing to sell any given

volume of output QR at price P0(QR) to perfectly competitive retail firms. Assume also that there

exists an interval, say (Qα,Qβ), where QA<Qα<Qβ<QB, such that, for any volume of output

supplied to retail market Qr in this interval, retail market is organized (i.e., the number of retail

firms operating in the market n is greater or equal to 1), and for any Q∉(Qα,Qβ) the retail market

cannot be organized (n<1).

E{U [P (Q)Q cQ B]} E{U [ (Q )]}.s s s
*

s0 − − ≥ Π , *σ           (13)
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If the supplier trades with retail firms the cost function of a single retail firm is

Fr(Qr)=QrP0(QR)+g(σr), where Qr is the volume of output supplied to final demanders by a

single retail firm, P0(QR) is the price to retail firms if the volume of output QR is supplied to the

retail market (to focus directly on the problem no additional cost is assumed), and g(σr) is the

steady state cost of data processing, which corresponds to the standard deviation σr.

Consequently, the optimization problem of each individual retail firm can be represented as11

Q , Q ,r rσ σ
σ σ σ

r r

max maxE{U [ (Q )]}  {
1
2

U [ (Q )]+
1
2

U [ (Q )]} ,r r r r r r r r r r r rΠ Π Π, , ,≡           (15)

where Πr r r r r r r r(Q ) Q [P(nQ ) P (nQ )] g( ) , ,σ σ σ≡ − −0 , P(Q ) a bnQ ( )r r r r,σ γ σ= − − ,

Π r r r r r r r r(Q ) Q [ P(nQ ) P (nQ )] g( ) , ,σ σ σ≡ − −0 , P(Q ) a bnQ ( )r r r r,σ γ σ= − − ,

γ(σr) =σ πr 2 , σr denotes steady state standard deviation of total demand and Qr denotes the

output supplied to final demanders by a single retail firm (n is the number of retail firms operating

in the market).12

To simplify the analysis assume that the exact shape of the utility function Ur  is specified

as follows:

U ( )
y if

y (y y ) ifr r
r r r

0

r r r r
0Π

Π Π Π
Π Π Π Π

=
<

+ − ≥




1

2 1 2
0

, ,

, ,
             (16)

where y1> y2>0  and Π Π Πr r
0

r< < .13

Thus each individual retail firm considers maximization problem (8). The interior solution

to this optimization problem exists if

λ ≥
−
8bn

(a c)2          (17)

(see Appendix). Assuming that the primitives of the model satisfy inequality (17), the optimal

steady state values of the volume of output supplied to final consumers by each individual retail

firm Qr
*and steady state value of the standard deviation  of demand σr

* are determined as

Q
a c
4bn

a c
4bn

1
2 bnr

* =
−

+
−



 −

2

λ
,           (18)

σ
λ

π
r

r

a c
2

a c
2

2bn 2
k

* =
−

−
−



 −













2

,           (19)

where kr=(y1-y2)/(y1+y2), kr∈(0,1) for risk averse firm14  (see Appendix for the proof).
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Since the expected value of profit of each retail firm operating in the market is positive

(greater or equal to ϕ>0) and the maximum expected value of profit of the retail sector equals

E[Πs(Q0
*,0)]−E[Πs(Qs

*,σs
*)], where Q0

* is the optimal monopolistic output without

uncertainty (i.e., if σ0=0), in equilibrium only a finite number of perfectly competitive retail

firms can operate in the market. Assuming that the number of firms n is a continuous number

instead of an integer, in market equilibrium the expected utility of profit of a single retail firm is

 E{U {Q [P(nQ ) P(nQ )]}}r r
*

r
*

0 r
*− = >ϕ 0.        (20)

Since, for the risk averse firm U {E[ (Q )]} E{U [ (Q )]}r r r r r r r rΠ Π* * * *, ,σ σ≥ the inequality above is

satisfied only if U {E[ (Q )]}r r r rΠ * *,σ > 0 , i.e., if E[ (Q )]r r rΠ * *,σ > 0 . Taking into account that

E[P(nQ )] P(nQ )r r r
* * *,σ − >0 0  if nQ (Q Q )r A B

* ,∈ , where QA=Qs
* and Q0

*<QB<QC (QC is a

perfectly competitive output), the condition (20) is satisfied only if Q nQ Qs r C
* *< < , i.e., if the

quantity of output supplied through the retail network is greater than it would be if the supplier

traded directly with final consumers.

An important implication of the result above is that retail trade under uncertainty of

demand changes the distribution of welfare in the economy. In particular, it decreases the

expected value of the deadweight loss (i.e., the volume of output is higher than it would be

without the retail market) and increases the expected value of consumer surplus (consumers

consume more and at a lower price). The monopolistic supplier is also better off since the

supplier changes random profit to deterministic profit with the same expected value.

6.  Progress in information processing technology and the size of retail networks

Since the optimal volumes of output supplied to final consumers by both the monopolistic

supplier and the retail firms (see expressions (11) and (18), respectively), as well as the steady

state value of the standard deviations of the demand (expressions (12) and (19) ) depend on the

parameter describing the current state of information processing technology λ, technological

progress in data processing, which makes predictions cheaper (increases λ), changes the

characteristics of market equilibrium. The optimal output of the monopolistic supplier shifts closer

to the optimal monopolistic output without uncertainty of demand, and consequently, the offer

curve to retail firms (P0(Q)) shifts upward. This decreases the difference between the expected

price to consumers and the price to retail firms. The expected profit of the retail sector as a whole

and the expected profit of each particular retail firm both decrease, and consequently, the number

of retail firms operating in the market tends to decrease. At the same time retail firms are also able
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to make better predictions (i.e., decrease the variance of demand), and, as a result, are able to

increase the expected value of profit for any particular volume of output supplied. Therefore, other

things being constant, more retail firms can operate in the market. The total effect of technological

change on the number of firms in market equilibrium is characterized by the proposition below.

    PROPOSITION                2    . Technological progress in information processing increases the

number of retail firms operating in the market.

    Proof.    Note that for any fixed λ both qr
* and Ûr

* can be considered as functions of n.

Assume for the time being that the number of retail firms n is continuous (rather than integer

valued) and consider function 

G( (n) q (n)) ( (n) q (n)) r r r rσ ϕ σ* * * *, ,≡ − +Ψ ,            (21)

where ϕ≥0. Taking into account that in market equilibrium the expected utility from profit of each

individual retailer operating in the market must be at least equal to ϕ (ϕ≥0), in market

equilibriumG( (n) Q (n)) 0r rσ * *, ≡ . Rearranging the latest expression we get

     Q (n)[a bnQ (n) c]
E[ (Q )] B

n
ln ln (n)

 r r
s s r* *

* *

− − −
+

−
−Π σ σ
λ

0 ≡
+

+ −
2

y y
k (n)

2
2k  r r

r r
0ϕ σ

π1 2

*

Π .     (22)

The left hand side of the expression (22) can be represented as

n Q (n)[a bnQ (n) c]
ln ln (n)

B E[ (Q )]

n
 

r r
r

s
* *

*
*− − −

−





 − −

σ σ
λ

0 Π
.             (23)

The numerator in the expression above describes the total profit of the retail sector. Therefore, the

expression (23) describes the profit of a single retail firm, which in equilibrium has to be equal to

ϕ. Consequently, in market equilibrium

ϕ
ϕ σ

π
≡

+
+ −

2
y y

k (n)
2

2k  r r
r r

0

1 2

*

Π .             (24)

Taking into account expression (19) and rearranging an equilibrium condition can be represented

as

ϕ
λ

2
y y

1
a c

2
a c

2
2bn

2k  0r r
0

1 2

2

+
−







 +

−
−

−



 − − ≡Π .            (25)

Assume now that λ  is not constant but can fluctuate. Define a function
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H n
2

y y
1

a c
2

a c
2

2bn
2k  0r r

0( , )λ ϕ
λ

≡
+

−






 +

−
−

−



 − − ≡

1 2

2

Π .             (26)

Since H(λ,n) is a continuously differentiable function of λ and n, according to the implicit function

theorem, the first derivative of n with respect to λ is 
dn
d

H
H nλ

∂ ∂λ
∂ ∂

=−
/
/

. ∂H/∂n is always positive,

and ∂H/∂λ is negative. Therefore, ∂n/∂λ>0, i.e., the number of retail firms operating in the market

increases with λ  (i.e., with technological progress in data processing).      QED.

The most important implication of the proposition above is that in the period of transition

from an industrial to an information society, accompanied by rapid progress in information

processing technologies, workers who will undoubtedly lose their jobs in old resource-intensive

industries will have a chance to find positions in growing regional retail networks.

7. Conclusion

Today, at the beginning of the period of transition from an industrial to an information

society, the problem of growing unemployment in regions dominated by old area-intensive and

resource-intensive industries seems to be especially important. Economists agree that very soon

traditional “old-industries” (e.g., mining, metallurgy, heavy industry, machine building industries)

will lose their importance. This process will be accompanied by the development of new

information-intensive industries. Unfortunately, it is also expected that in many industralized

regions declining industries will not be replaced by new ones.  This will create problems in

regional job markets. The analysis presented in this paper shows that the decline of some

industries due to the progress in information processing technologies might be accompanied by

the growth of regional retail networks, which could create a number of  jobs in new retail firms.

Using a simple model, we have tried to explain the possible impact of the progress in

information processing technology on the size of regional retail networks. The analysis focused on

a single commodity market with uncertain demand. It has been shown that demand uncertainty

can be considered an independent source of retail trade, and, consequently, the ability of firms to

process information and predict demand may affect the characteristics of retail networks. The

results derived show that risk-averse firms always devote resources to demand forecasting,

producers are better off trading with retailers than with final consumers, and the volume of output

supplied through the retail network is always greater than it would be if producers traded directly

with consumers (i.e., it increases welfare). Finally, we proved that technological progress in data

processing (which improves predictions and/or makes them cheaper, decreases uncertainty about
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demand in retail firms much more than in the supplier’s firm)  increases the size of retail

networks. Growing retail networks (a source of new jobs) can, to some extent, reduce

unemployment and increase tax revenues in regions dominated by declining industries.

The results above have been derived based on a set of simplifying assumptions

concerning demand structure and data information in demand forecasting problems. However,

similar results could be obtained from more complicated and sophisticated models. Such models

make the analysis more difficult, but the general result concerning the pattern of changes in the

size of regional retail networks in response to changes in information processing technology

remains the same.

Appendix.

    The         maximization        problem        of       the       supplier        

The objective function of the monopolistic supplier trading with final demanders can be

approximated as

Q
s

s

Q
,

( , )
σ

σ
σ

π
σ
λ

σ
λ

s

max  
1
2

u [Q (a bQ
2

) cQ B (
ln ln

)] s s s s
s

s
0 sΨ ≡ − − − − − −1        (A.1)

         + − + − − − − + −
1
2

{u [Q (a bQ
2

) cQ B (
ln ln

)] (u u )  },s s
s

s
0 s

s
0

2 1 2

σ
π

σ
λ

σ
λ

Π

where Qs denotes the volume of output supplied, and σs is the steady state standard deviation of

demand. The first order conditions to the above optimization problem can be represented as

∂Ψ σ
∂

σ
π

σ
π

s s s

s
s

s
s

s(Q )
Q

1
2

u (a 2bQ
2

c)
1
2

u (a 2bQ
2

c) 0
,

= − − − + − + − =1 2 ,        (A.2)

∂Ψ σ
∂σ π λσ π λσ

s s s

s

s

s

s

s

(Q ) 1
2

u (
Q
2

1
)

1
2

u (
Q
2

1
) 0

,
= − + + + =1 2 .                 (A.3)

The second order conditions to this maximization problem require the Hessian of the objective

function

∂ σ
∂

∂ σ
∂ ∂σ

∂ σ
∂ ∂σ

∂ σ
∂σ

2

2

2

2 2

2

Ψ Ψ

Ψ Ψ

s s s

s

s s s

s s

s s s

s s

s s s

s

(Q )
Q

(Q )
Q

(Q )
Q

(Q )

, ,

, ,



















      (A.4)

to be negative definite (it guarantees that the objective function is strictly concave). This Hessian is

negative-definite (the objective function is strictly concave) iff
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∂ σ
∂

2

2 0
Ψ s s s

s

(Q )
Q

,
<  and 

∂ σ
∂

∂ σ
∂σ

∂ σ
∂ ∂σ

2

2

2

2

2 2

0
Ψ Ψ Ψs s s

s

s s s

s

s s s

s s

(Q )
Q

(Q ) (Q )
Q

, , ,
−







 > .           (A.5)

Taking derivatives and rearranging, we conclude that the second order conditions are satisfied iff

 ( )λ σ π<b k 8s s/
2
.                   (A.6)

Rearranging the first order conditions, we obtain two possible values of output which

maximize the objective function considered

Q
a c
4b

a c
4b

1
2 bs,1

2

=
−

+
−



 −

λ
,                          (A.7)

Q
a c
4b

a c
4b

1
2 bs,2

2

=
−

−
−



 −

λ
,                   (A.8)

assuming that [(a c) 4b] 1 (2 b) 02− − ≥λ , i.e.,

λ ≥ −8b (a c)2 .   (A.9)

If the cost of data processing goes to zero (λ goes to infinity), the firm knows demand almost

perfectly, and the optimal volume of output goes to optimal volume of output without uncertainty

(a-c)/2b. Consequently, the optimal quantity of output supplied Qs
* is determined by the first

expression i.e., Qs
*= Qs,1.

Similarly, rearranging the first order conditions, we get two possible values of steady state

standard deviation which maximize the objective function considered15

σ
λ

π
s

s

a c
2

a c
2

2b 2
k,1

2

=
−

−
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
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 , (A.10)
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2b 2
k,2

2

=
−

+
−





−










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Here again, if the cost of data processing goes to zero (λ goes to infinity), the firm knows demand

almost perfectly (σs goes to zero). Consequently, the optimal value of the standard deviation σs
* is

determined by the expression (A.10), i.e., σs
*=σs,1. Taking into account condition (A.9), plugging

(A.10) into inequality (A.6) and rearranging we get the following condition

2b

a c
2

2
2b

a c
2

a c
2

2b
2−





≤ <
−

−
−



 −













λ

λ

2
2 , (A.12)
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which is always satisfied if λ ≥ −8b (a c)2 (i.e., Qs
* and σs

* corresponds to the maximum of the

objective function).

    The         maximization        problem        of       the       retail       firm

The objective function of the retail firm can be approximated as

σ
σ

σ
π

σ
λ

σ
λ

r rQ
r r r r r

r s
*

r
r

rmax  ( Q )
1
2

y [Q (a bnQ
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where Qr denotes the volume of output supplied, and σr is the steady state standard deviation of

demand. The first order conditions to the above optimization problem can be represented as
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∂

σ
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σ
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r r r
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The second order conditions to this maximization problem require the Hessian of the objective

function
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to be negative definite (it guarantees that the objective function is strictly concave). This Hessian is

negative-definite (the objective function is strictly concave) iff

∂ σ
∂
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Taking derivatives and rearranging we get that the second order conditions are satisfied iff

( )λ σ π< nb k 8r r/
2
.       (A.18)

Rearranging the first order conditions we get two possible values of output which

maximize the objective function considered

Q
a c
4bn

a c
4bn

1
2 bnr,1

2

=
−

+
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
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λ
, (A.19)
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Q
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 −

λ
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assuming that [(a c) 4bn] 1 (2 bn) 02− − ≥λ , i.e.,

λ ≥ −8bn (a c)2 . (A.21)

If cost of data processing goes to zero (λ goes to infinity) the firm knows demand almost

perfectly, and the optimal volume of output goes to the optimal volume of output without

uncertainty (a-c)/2bn. Consequently, the optimal quantity of output supplied Qr
* is determined by

the first expression i.e., Qr
*= Qr,1.

Similarly, by  rearranging the first order conditions, we get two possible values of steady

state standard deviation which maximize the objective function considered16
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If cost of data processing goes to zero (λ goes to infinity) the firm knows demand almost

perfectly (σr goes to zero). Consequently, the optimal value of the standard deviation σr
* is

determined by the expression (A.22), i.e., σr
*=σr,1. Taking into account condition (A.21),

plugging (A.22) into inequality (A.18) and rearranging we get the following condition
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which is always satisfied if λ ≥ −8bn (a c)2 (i.e., Qr
* and σr

* corresponds to the maximum of the

objective function).

Endnotes

    1 Note that by allowing for a small price adjustment, we avoid the problem of inventories and any
potential losses connected with them (see Zabel, 1970, for an analysis of the behavior of the firm in a
multiperiod model with inventories).

2 In general, specifications of stochastic processes describing individual demands should also include
a “common noise” which could reflect aggregate demand shocks (i.e., which could equally affect all sources of
demand), but to simplify the exposition we will disregard this common component.
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3 
A similar structure of demand was assumed by Radner and Van Zandt (1992).

4   See Cukrowski (1996) for details.

5 It has been shown that V can be considered as a twice differentiable, strictly increasing and
convex function of nx,j (see Cukrowski, 1996).

6 It should be stressed that, although the assumption of the normal distribution of the random
deviations from the expected demand corresponds to the wide class of stochastic processes that would
govern stochastic demand, it is chosen solely for simplicity and clarity, and no attempt is made at
generality. We believe, however, that many of the qualitative results would hold also in more general,
and, consequently, more complicated models.

7 Expected values of positive and negative deviations are computed as 

~
~

~
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πσ
η

η

σ

2
e d

x
2
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2

2
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∞ −

∫  and

~
~

~

η
πσ

η
η

σ

2
e d

x
2

0
2

2

x
2

−∞

−

∫ ,  respectively.

8 Note that a function defined is concave and twice differentiable if Πs∈(-∞,∞)\Πs
0.

9 Coefficient ks characterizes the attitude towards risk and increases with risk aversion.

10  Note that Q is deterministic variable, and, consequently, P Q)Q cQ B0 ( − − is deterministic as

well.

11  Note that if the optimal value supplied by each individual retail firm (Qr
*) exists, it is not a

random but a deterministic variable.

13  Recall that under uncertainty of demand the number of firms operating in perfectly competitive
market is finite (see Ghosal 1996, for empirical evidence)

14  Note that a function defined is concave and twice differentiable if Πr∈(-∞,∞)\Πr
0.

15  Coefficient kr characterizes the attitude towards risk and increases with risk aversion.

16  The square root in the expressions (A.10) and (A.11) is non negative if λ ≥ −8b (a c)2 .

17  The square root in the expressions (A.22) and (A.23) is non negative if λ ≥ −8bn (a c)2 .
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