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ABSTRACT

In this paper the analysis of the collective risk model assuming Erlang loss,
when the claim frequency follows the discrete generalized Lindley distribu-
tion, is considered. After providing some new results of this discrete model,
analytical expressions for the aggregate claim size distribution in general
insurance in the case that the discrete generalized Lindley distribution is
assumed as the primary distribution while claim size, the secondary distri-
bution, is modeled using an Erlang(r) distribution (r = 1, 2). Comparisons
with the compound Poisson and compound negative binomial are developed
to explain the viability of the new compound model in two examples in au-
tomobile insurance.

Keywords: automobile insurance; collective risk model; Lindley distribu-
tion.
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La distribución compuesta DGL/Erlang
en el modelo de riesgo colectivo

RESUMEN

En este art́ıculo se analiza el modelo de riesgo colectivo asumiendo que la
cantidad individual reclamada sigue una función de densidad Erlang y el
número de reclamaciones es una variable aleatoria cuya función masa de
probabilidad es la generalizada discreta Lindley. En la primera parte de
este trabajo se presentan nuevas propiedades de esta distribución discre-
ta; seguidamente, se calculan expresiones anaĺıticas para la cantidad total
reclamada en seguros generales cuando la distribución primaria es la gene-
ralizada discreta Lindley, asumiendo la densidad Erlang(r) (r = 1, 2) como
distribución secundaria. En la ilustración numérica, el nuevo modelo ex-
puesto en este art́ıculo se compara con los modelos compuestos Poisson y
Binomial Negativa en dos ejemplos, en el contexto de seguros de automóviles,
para mostrar su efectividad.

Palabras clave: seguro de automóviles; modelo de riesgo colectivo; dis-
tribución Lindley.
Clasificación JEL: C13; M20.
MSC2010: 97M10; 97M30.

122



1 Introduction

One of the most significant goals of any insurance risk activity is to achieve a

satisfactory model for the probability distribution of the total claim amount.

The classical collective theory of risk is based on the assumption that the

counting process representing the number of claims (known as primary dis-

tribution) is a Poisson process and the associated cumulative or compound

process representing the total claim amount is thus compound Poisson.

Nevertheless, it has been considered in many instances that the number

of automobile claims process is not necessarily of Poisson type. It is well-

known that collective claim frequencies are characterized by over-dispersion,

i.e., the variance is greater than the mean (see Dionne and Vanasse (1989)

and Meng et al., (1999)). A key restriction of the Poisson distribution is

that the variance equals the mean and, therefore, it seems not suitable for

modeling automobile claim frequencies. Therefore, alternative assumptions

need to be made concerning the primary distribution in the setting of the

collective risk model.

In this paper the discrete generalized Lindley distribution proposed re-

cently by Caldeŕın-Ojeda and Gómez-Déniz (2013) is considered. This model

can be viewed as a generalization of the geometric distribution and, thus,

an alternative to the negative binomial distribution and the Poisson-inverse

Gaussian distribution (see Willmot (1987)). The new distribution is uni-

modal with the possibility of a zero vertex or a mode greater than zero,

depending on the values of the parameters of the distribution. These two

features, zero vertex (high percentage of zero values in the empirical dis-

tribution (Boucher et al. (2007)) and over-dispersion are omnipresent in

automobile insurance portfolios. Therefore, the new distribution can be

considered as a useful alternative for modeling phenomena of this nature in

the context of insurance.

When addressing the aggregate amount of claims for a compound class of

policies, and when the new distribution acts as the primary one, a closed ex-

pression for the probability density function (pdf) of the total claim amount

is obtained assuming that the secondary distribution is Erlang(r, γ). This

family of loss distributions may arise in insurance settings when the indi-

vidual claim amount is the sum of exponentially distributed claims. For

example, in catastrophe insurance the aggregate claim size of a portfolio of

r insured properties in a particular region where each property is prone to

the same risk (e.g. storms, fires) and claim amounts follow an exponential
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distribution with parameter γ, would follow an Erlang distribution with pa-

rameters r and γ. Apart from that, by choosing this family of distributions

more flexibility is achieved when fitting empirical loss data. Additionally,

from the numerical results obtained, it can be considered as alternative to

compound Poisson and compound negative binomial models, traditionally

used in actuarial literature. See Freifelder (1974), Rolski et al. (1999),

Nadarajah and Kotz (2006a and 2006b) and Klugman et al. (2008) among

others, for a comprehensive study of the compound models in the collective

risk theory.

After reviewing some of its properties, we consider the question of para-

meter estimation when both, the moments and maximum likelihood method

are considered. Then, the expected frequencies are calculated in two exam-

ples based on automobile claim frequencies, and the estimated values are

used to plot the right-tail of the probability density function of the aggre-

gate claim size of the compound discrete generalized Lindley distribution

for different values of the parameter γ. Next, the results are compared with

those obtained by using the compound Poisson and compound negative bi-

nomial models.

The rest of the paper is structured as follows. In Section 2, we give some

properties of the discrete generalized Lindley distribution such as moments

and inverse moments, among other characteristics. Then, parameters are

estimated via moments and maximum likelihood methods. In Section 3,

analytical expressions for the compound collective risk model are obtained

by using the discrete generalized Lindley distribution and the Erlang(r, γ)

(with r = 1, 2) distribution as primary and secondary distributions, respec-

tively. Next in Section 4, the performance of the discrete generalized dis-

tribution is evaluated by using two examples in the context of automobile

insurance claiming. Later, the obtained results are used to plot the den-

sity function of the aggregate claim size of the compound model. Finally,

conclusions are given in the last Section.

2 DGL as primary distribution

The discrete generalized Lindley distribution (DGL), introduced not long

ago by Caldeŕın-Ojeda and Gómez-Déniz (2013), is obtained by discretizing

the continuous generalized Lindley distribution proposed in Zakerzadeh and
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Dolati (2009) whose survival function is given by

F̄ (x) =
α(1 + θ x) + θ

α+ θ
exp(−θ x), x > 0, (1)

for θ > 0 and α ≥ 0, which generalizes the continuous Lindley distribution

(Lindley (1958)) when α = 1 and the classical exponential distribution is

obviously obtained when α = 0.

The DGL distribution has been built by discretizing the continuous sur-

vival function (1). This methodology has been used before in reliability and

other fields of science and engineering. For instance, Nakagawa and Osaki

(1975) derived the discrete Weibull distribution; Roy (2004) studied the dis-

crete Rayleigh distribution; Gómez-Déniz (2010) analyzed a generalization

of the geometric distribution using the Marshall and Olkin (1997) scheme;

and Gómez-Déniz and Caldeŕın-Ojeda (2011) deduced the discrete Lindley

distribution. Properties of this distribution can be seen in Caldeŕın-Ojeda

and Gómez-Déniz (2013). The probability mass function (pmf) of the DGL

distribution is given by

Pr(X = x) = λx αλ log λ+ λ̄(α− log λαx+1)

α− log λ
, x = 0, 1, 2, . . . , (2)

for α ≥ 0, 0 < λ < 1, λ̄ = 1 − λ and where the reparameterization λ =

exp(−θ) has been considered. Observe than when α = 0 equation (2) reduces

to the geometric distribution and when α = 1 we obtain the discrete Lindley

distribution in Gómez-Déniz and Caldeŕın-Ojeda (2011).

The cumulative distribution function is given by

Pr(X ≤ x) = 1− α− (1 + α(1 + x)) log λ

α− log λ
λ1+x.

In addition to the results provided by Caldeŕın-Ojeda and Gómez-Déniz

(2013), moments can be easily derived from the probability generating func-

tion, which is given by

GX(z) =
αλ̄(1− zλ)− [1− λ(1 + α+ z(1− α− λ))] log λ

(1− λz)2(α− log λ)
, |z| < 1. (3)

The mean and second factorial moment can be obtained from (3) and

are given by

IE(X) =
λ[αλ̄− (λ̄+ α) log λ]

λ̄2(α− log λ)
, (4)

IE(X(X − 1)) =
2λ2[αλ̄− (λ̄+ 2α) log λ]

λ̄3(α− log λ)
. (5)
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Successive computation of the factorial moments provides the general

expression of the factorial moment of order r > 0

IE(X(X − 1) . . . (X − r + 1)) =
r!λr[αλ̄− (λ̄+ rα) log λ]

λ̄r+1(α− log λ)
,

for r = 1, 2, . . . , which can be proven by induction on r.

Using Equation (4) together with Equation (5) we obtain, after some

computations, the variance of the distribution,

var(X) =
λ

λ̄4(α− log λ)2
[
α2λ̄2 − αλ̄(2 + α− (2− α)λ) log λ

+
(
α+ λ̄2 − α2λ− αλ2

)
log2 λ

]
. (6)

Furthermore, it can be easily seen that the mean increases with α and λ

since

∂IE(X)

∂α
=

λ log2 λ

λ̄2(α− log λ)2
> 0

and

∂IE(X)

∂λ
=

log λ

λ̄3(α− log λ)2
[
(λ̄+ α(1 + λ)) log λ− α(2λ̄+ α(1 + λ))

]
> 0.

Besides, the ratio of successive probabilities is given by

Pr(X = x)

Pr(X = x− 1)
= λ

(
1− αλ̄ log λ

αλ log λ+ λ̄(α− (α(x− 1) + 1) log λ)

)
, (7)

for x = 1, 2, . . . where Pr(X = 0) = 1 +
λ((1 + α) log λ− α)

α− log λ
.

On the other hand, it is straightforward to see that as x increases, (7)

decreases, and hence, the distribution is unimodal. In addition to this, from

(7) it can be shown that the mode is at the origin if M(α, λ) < 0, where

M(α, λ) =
1

log λ
− 1

α
+

1 + λ

λ̄
.

WhenM(α, λ) > 0 the mode is at [M(α, λ)], where [·] denotes the integer
part. If [M(α, λ)] is an integer, then there are joint modes at M(α, λ) − 1

and M(α, λ). Finally, if M(α, λ) < 0 then the mode is at zero.

The ratio between the variance and mean has been calculated for dif-

ferent values of the parameters and they are shown in Table 1. As it can be

observed, the ratio is larger than one for the considered values of α and λ.

Therefore, it seems that the coefficient of variation is always larger than 1.
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Table 1: Ratio between variance and mean of the DGL distribution for

different values of α and λ.

@
@
@λ

α
0.25 0.50 0.75 1.00 2.00 5.00 10.00 25.00

0.10 1.1278 1.1300 1.1270 1.1220 1.0997 1.0579 1.0301 1.0066

0.20 1.2889 1.2922 1.2852 1.2749 1.2349 1.1713 1.1338 1.1045

0.30 1.4975 1.4998 1.4865 1.4698 1.4122 1.3324 1.2897 1.2579

0.40 1.7773 1.7743 1.7516 1.7267 1.6505 1.5575 1.5116 1.4888

0.50 2.1700 2.1540 2.1171 2.0816 1.9850 1.8806 1.8327 1.8000

0.60 2.7553 2.7139 2.6556 2.6063 2.4870 2.3722 2.3231 2.2903

0.70 3.7247 3.6260 3.5356 3.4681 3.3228 3.1986 3.1488 3.1165

0.80 5.6090 5.3982 5.2591 5.1676 4.9925 4.8594 4.8093 4.7777

0.90 10.9914 10.5434 10.3292 10.2056 9.9960 9.8544 9.8042 9.7733

Similarly, in Figure 1, the pmf (2) has been plotted for different values of

λ and α. As it can be observed from the graphs, the distribution has longer

right-tail when the parameter λ is close to 1 and α increases. Furthermore,

the charts confirm that the distribution is always unimodal and the mode

moves to the right when both parameters increase, showing a great versatil-

ity. On the other hand, for smaller values of α, there is a substantial effect

on the probabilities and, of course, on the values of the mean, mode and

variance.
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Figure 1: Probability mass function of DGL distribution for different values

of α and λ

2.1 Parameter estimation

Moment estimators can be easily obtained by using equations (4) and (5).

They are achieved by equating expression (4) to the sample mean x̄1; then,

by isolating α in this equation and plugging its expression into equation (5),

we obtain after some algebra that

2λ

λ̄2
(2x̄1λ̄− λ) = x̄2, (8)

where x̄2 is the sample second factorial moment. Now, by solving the latter

equation for λ we obtain the moment estimator of λ which is given by

λ̂1 =
2x̄1 + x̄2 +

√
4x̄21 − 2x̄2

x̄2 + 4x̄1 + 2
,

λ̂2 =
2x̄1 + x̄2 −

√
4x̄21 − 2x̄2

x̄2 + 4x̄1 + 2
.

As it can be seen, it might not be unique. Finally, by replacing λ by λ̂ in

(8) the moment estimator for α is achieved.

Next, these moment estimators can be used as starting values to calculate

maximum likelihood estimators. For that reason, let us assume that x =
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(x1, x2, . . . , xn) is a random sample of size n from the pmf (2) with sample

mean x̄. The log-likelihood function is

ℓ(α, λ) =

n∑
i=1

xi log λ−n log[α−log λ]+

n∑
i=1

log[αλ log λ+(1−λ)(α−log λαxi+1)].

(9)

The normal equations are obtained by taking first derivative with respect

to both parameters. They are given by

∂ℓ(α, λ)

∂α
= − n

α− log λ

+

n∑
x=1

1 + λ(log λ− 1) + (xi(λ− 1)) log λ

αλ log λ+ (1− λ)(α− (αxi + 1) log λ)
= 0, (10)

∂ℓ(α, λ)

∂λ
=

x̄

λ
+

n

λ(α− log λ)

+
1

λ

n∑
i=1

λ log λ(α(xi + 1) + 1)− (1− λ)(αxi + 1)

αλ log λ+ (1− λ)(α− (αxi + 1) log λ)
= 0. (11)

The solutions of the normal equations (10) and (11) provide the maxi-

mum likelihood estimates of α and λ. These values can be easily obtained

by a numerical method or direct numerical search for the global maximum of

the log-likelihood surface given in (9). The second partial derivatives can be

used to approximate standard errors of these estimates. They are provided

in the Appendix.

3 Distribution of the total claim amount

As mentioned above, one of the primary targets of any insurance risk activity

is to obtain a satisfactory model for the probability distribution of the total

claim amount. The collective theory of risk is based on the assumption that

the counting process representing the number of claims is a Poisson process

and the associated cumulative or compound process representing the total

claim amount is thus compound Poisson.

The classical collective risk model is described as follows. A distribution

for the number of claims in the time interval (0, t] which is denoted as N(t),

t > 0, and it is assumed that N(0) = 0. And the distribution of the total

claim amount in the interval (0, t], denoted by S(t) if t > 0 and S(0) = 0.
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In general, it is assumed that S(t) has only step sample functions (i.e.,

the sample paths of S(t) only change vertically at times of claims). Thus,

{N(t), t ≥ 0} is a counting process, and {S(t), t ≥ 0} the associated cumu-

lative process.

A relaxed simple form for the distribution of the total claim amount may

be obtained if the individual claim size distribution is independent of time.

Let us now denote by Xi the amount of the ith claim for i = 1, 2, . . . It is

also assumed that N and Xi are independent (conditional on distribution

parameters). There is an extensive body of literature on modeling the risk

process. For instance, Freifelder (1974), Rolski et al. (1999), Nadarajah

and Kotz (2006a and 2006b) and Klugman et al. (2008) among others.

Estimation of the annual loss distribution by modeling the frequency and

severity of losses is a well-known actuarial technique. It is also used for

modeling solvency requirements in the insurance industry (Sandström (2006)

and Wüthrich (2006)).

Then, the total claim amount S is the sum of the individual claim sizes,

that is, S =
∑N

i=1Xi for N > 0 while S = 0 for N = 0. Traditionally,

collective risk theory assumes Poisson and exponential distributions as pri-

mary and secondary distributions, respectively. In addition to this, it is

well-known (see Klugman et al. (2008) and Rolski et al. (1999); among

others) that the pdf of the sum S is given by

fS(x) =
∞∑
n=0

Pr(N = n)fn∗
(x), (12)

where Pr(N = n) denotes the probability of n claims (primary distribution)

and fn∗
(x) is the nth fold convolution of f(x), the pdf of the claim amount

(secondary distribution). Recall that the convolution of two densities f and

g on the positive real line is

(f ∗ g)(z) =
∫ z

0
f(τ)g(z − τ) dτ.

Erlang loss distributions may arise in insurance settings when the in-

dividual claim amount is the sum of exponentially distributed claims. For

example, in catastrophe insurance the aggregate claim size of a portfolio of

r insured properties in a particular region where each property is prone to

the same risk (e.g. storms, fires) and claim amounts follows an exponen-

tial distribution with parameter γ, would follow an Erlang distribution with

parameters r and γ.
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Result 1 Let X1, . . . , Xn be n independent and identically distributed ran-

dom variables following an Erlang(r, γ) distribution. Then, the nth fold

convolution of exponential distribution has a closed-form expression and it

is given by

f∗n(x) =
γr n

(r n− 1)!
xr n−1e−γx, n = 1, 2, . . .

Proof. The result follows by summing n independent and identically

distributed random variables with pdf Erlang(r, γ).

In this regard, the compound Poisson model has been traditionally con-

sidered when the size of a single claim is modeled by an exponential distribu-

tion (e.g. Erlang(1, γ) ), chiefly because of the complexity of the collective

risk model under other probability distributions such as Pareto and log-

normal distributions.

In the compound Poisson/exponential case (see Rolski et al. (1999) and

Hernández-Bastida et al. (2009); among others) the density of the random

variable aggregate claim size is given by

fs(x) =

√
γθ

x
e−(θ+γx)I1

(
2
√

θγx
)
, x > 0, (13)

while fS(0) = e−θ. Here, θ > 0 and γ > 0 are the parameters of the Poisson

and exponential distributions, respectively and

Iν(z) =

∞∑
k=0

(z/2)2k+ν

Γ(k + 1)Γ(ν + k + 1)
, z ∈ IR , ν ∈ IR ,

represents the modified Bessel function of the first kind.

Additionally, the negative binomial distribution with parameters r > 0

and 0 < p < 1 could also be assumed as primary distribution. In this case,

the pdf of the random variable total claim amount (see Rolski et al. (1999))

is now given by the expression

fs(x) = γrpr(1− p)e−γx
1F1(1 + r; 2; γ(1− p)x), x > 0, (14)

where 1F1(·; ·; ·) is the confluent hypergeometric function and fS(0) = pr.

Our goal is to develop an alternative to the compound Poisson and nega-

tive binomial models by considering the DGL distribution proposed in this

manuscript.

The next result shows that a closed-form expression is obtained when the

DGL and exponential distributions are assumed as primary and secondary

distributions, respectively.
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Proposition 1 If we assume a DGL distribution with parameters 0 < λ < 1

and α ≥ 0 as primary distribution and an exponential distribution with pa-

rameter γ > 0 as secondary distribution, then the pdf of the random variable

S =
∑N

i=1Xi is given by

fS(x) =
γλ

α− log λ
[αλ̄− (λ̄+ α(1− (2− xγλ̄)λ)) log λ]e−γλ̄x, x > 0, (15)

while fS(0) = 1 + λ((1+α) log λ−α)
α−log λ .

Proof. By assuming that the claim amount follows an exponential distri-

bution with parameter γ > 0, then the nth fold convolution of exponential

distribution is given by (see Klugman et al. (2008) and Rolski et al. (1999))

f∗n(x) =
γn

(n− 1)!
xn−1e−γx, n = 1, 2, . . .

Then, the pdf of the random variable S is given by

fS(x) =
∞∑
n=0

λn αλ log λ+ λ̄(α− log λαn+1)

α− log λ

γn

(n− 1)!
xn−1e−γx

=
e−γ x

α− log λ

[
(αλ log λ)

∞∑
n=0

(λγ)n

(n− 1)!
xn−1

+ λ̄

∞∑
n=0

(α− log λαn+1)
(λγ)n

(n− 1)!
xn−1

]

=
γλe−γλ̄ x

α− log λ

[
αλ log λ+ λ̄(α− (1 + α+ xαγλ) log λ)

]
.

Then, after some algebra, the proposition holds.

Observe that the pdf of the aggregate claim amount has a jump of size

Pr(S = 0) at the origin.

In the compound Poisson/Erlang(2, γ) the density of the random varia-

ble aggregate claim size is given by

fs(x) = x γ2 λ e−λ−γ x
0F2(; 3/2, 2; 1/4x

2 γ2 λ), x > 0, (16)

while fS(0) = e−θ. Here, θ > 0 and γ > 0 are the parameters of the Poisson

and Erlang(2, γ) distributions respectively and 0F2(·; ·; ·) the generalized

hypergeometric function.

Moreover, in the compound negative binomial/Erlang(2, γ) the pdf of

the random variable total claim amount is now given by the expression

fs(x) = γ2rpr(1− p)e−γxx 1F2(1 + r; 3/2, 2; 1/4 γ2(1− p)x2), x > 0, (17)
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where 1F2(·; ·; ·) is the generalized hypergeometric function and fS(0) = pr.

The next result shows that a closed-form expression is obtained when the

DGL and Erlang(2, γ) are assumed as primary and secondary distributions,

respectively.

Proposition 2 If we assume a DGL distribution with parameters 0 < λ < 1

and α ≥ 0 as primary distribution and an Erlang(2, γ) distribution with pa-

rameter γ > 0 as secondary distribution, then the pdf of the random variable

S =
∑N

i=1Xi is given by

fS(x) =
e−x γ

2 (α− log λ)

[
xα γ2 (−1 + λ)λ cosh(x γ

√
λ)

+ γ
√
λ sinh(xγ

√
λ) (−2α(−1 + λ) + (−2− α+ 2λ+ 3αλ) log λ)

]
,

x > 0, (18)

while fS(0) = 1 + λ((1+α) log λ−α)
α−log λ .

Proof. Again, by assuming that the claim amount follows an Erlang(2, γ)

distribution with parameter γ > 0, then its nth fold convolution is given by

f∗n(x) =
γ2 n

(2n− 1)!
x2n−1e−γx, n = 1, 2, . . .

Then, the pdf of the random variable S is given by

fS(x) =
∞∑
n=0

λn αλ log λ+ λ̄(α− log λαn+1)

α− log λ

γ2n

(2n− 1)!
x2n−1e−γx

=
e−γ x

α− log λ

[
(αλ log λ)

∞∑
n=0

(λγ2)n

(2n− 1)!
x2n−1

+ λ̄
∞∑
n=0

(α− log λαn+1)
(λγ2)n

(2n− 1)!
x2n−1

]

=
e−γ x

α− log λ

[
(αλ log λ)γ

√
λ sinh(xγ

√
λ)− λ̄

× γ
√
λ

2
((α+ 2) log λ− 2α) sinh(γ

√
λx) + αγ

√
λx log λ cosh(γ

√
λx)

]

Then, after some algebra, the proposition holds.

Again, note that the pdf of the aggregate claim amount has a jump of

size Pr(S = 0) at the origin.
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4 Numerical applications

In this section, two set of real data based on a portfolio of automobile

insurance claims are considered. These data were taken from a sample of

298 automobile liability policies (Klugman et al., 1998, pp. 244) for the

first example and, from a sample of 7842 automobile liability policies that

appeared in Seal (1982) for the second case. The number of claims for each

policy and the corresponding observed frequency are given in the first two

columns (from left to right) of Table 2 and Table 3, respectively. These

data are over-dispersed and right skewed; besides, the proportion of zeros in

the sample is about one third and two thirds of the total number of claims

for the first and second example respectively. Additionally, the first set

shows a long and thick right-tail. Expected frequencies are also provided for

the Poisson (Po) distribution and the negative binomial (NB) distribution

obtained after estimating parameters by maximum likelihood. As it can be

inferred from the results, the DGL distribution provides a slightly better fit

to data than NB distribution as judged by maximum of the log-likelihood

(ℓmax) function (−528.619 as opposed to −528.769) for the first data set

and similar fit for the second one. As expected, the results obtained for the

Poisson distribution are worse than the previous ones since this model is

unable to capture the over-dispersion phenomenom.
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Table 2: Fit to data for automobile insurance claims. Klugman et al. (2008)

Claim

number
Observed Fitted

Po NB DGL

0 99 54.00 95.85 96.65

1 65 92.24 75.83 74.29

2 57 78.77 50.35 50.23

3 35 44.85 31.29 31.71

4 20 19.15 18.79 19.17

5 10 6.54 11.04 11.26

6 4 1.86 6.39 6.47

7 0 0.45 3.66 3.66

8 3 0.09 2.08 2.04

9 4 0.01 1.17 1.13

10 0 0.00 0.66 0.61

11 1 0.00 0.37 0.33

12 0 0.00 0.20 0.18

Total 298 298 298 298
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Table 3: Fit to data for automobile insurance claims. Seal (1982)

Claim

number
Observed Fitted

Po NB DGL

0 5147 4783.18 5147.94 5149.94

1 1859 2364.75 1859.84 1852.33

2 595 584.55 586.33 591.902

3 167 96.33 175.85 177.28

4 54 11.90 51.39 50.96

5 14 1.17 14.78 14.24

6 5 0.09 4.20 3.90

7 0 0.00 1.18 1.05

8 0 0.00 0.33 0.28

9 0 0.00 0.09 0.07

10 0 0.00 0.02 0.02

11 1 0.00 0.00 0.00

Total 7842 7842 7842 7842

A summary of results for each example is exhibited in Table 4. The

standard errors of the parameters have been approximated from Fisher’s

information matrix.
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Table 4: Summary of results

Table 1 Table 2

Estimators

θ̂ 1.708 0.494

(0.075) (0.007)

(r̂, p̂) (1.473, 0.463) (1.341, 0.730)

(0.259, 0.046) (0.098, 0.015)

(α̂, λ̂) (0.501, 0.695) (0.239, 0.621)

(0.396, 0.031) (0.148, 0.011)

(χ2, d.f., p− value)

Po (151.73, 5, 0.000) (809.59, 5, 0.000)

NB (3.14, 4, 0.533) (0.75, 4, 0.944)

DGL (2.64, 4, 0.618) (0.90, 4, 0.923)

ℓmax

Po –577.002 –7608.77

NB –528.769 –7429.60

DGL –528.619 –7429.85

The estimates displayed in the latter Table have been used to plot the

right tail of the probability density function of equations (16), (17) and (18)

to calculate the right-tail cumulative probabilities for different values of γ.

The graphs are displayed in Figure 2 and 3 for the first and second data set

respectively. From the examples considered and the values of the parameter

γ chosen, the compound DGL model provides higher probabilities in the

right tail of the distribution than the compound NB and compound Poisson

models
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Figure 2: Right tail of the pdf of the aggregate claim size for different values

of γ for Compound Poison (CP), Compound Negative Binomial (CNB) and

Compound DGL (CDGL) models. Dataset 1.

The compound model introduced in this paper seems suitable for mo-

deling extreme data when the severity component follows an Erlang(2, γ)

distribution. This result will surely be improved if the same analysis is

conducted with more heavy-tailed distributions to model the severity com-

ponent. Likewise, distribution (15) seems a feasible model to be used in the

framework of collective risk theory.
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Figure 3: Right tail of the pdf of the aggregate claim size for different values

of γ for Compound Poison (CP), Compound Negative Binomial (CNB) and

Compound DGL (CDGL) models. Dataset 2.

5 Conclusions

In this paper we have shown the applicability of the discrete generalized

Lindley (DGL) distribution as a feasible model to describe the number of

claims in automobile insurance framework. In addition to this, this discrete

model seems appropriate to be used as a primary distribution in collective

risk theory when the Erlang(2, γ) distribution acts as secondary distribu-

tion. The compound model obtained holds no additional complications since

its closed-form expression can be deduced analytically. From the numeri-

cal results obtained, it can be considered as alternative to the compound

Poisson and compound negative binomial models.
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Appendix

Here we show the second partial derivatives of the log-likelihood function.

They are as follows.

∂2ℓ(α, λ)

∂α2
=

n

(α− log λ)2
−

n∑
x=1

[
λ̄+ (λ− λ̄xi) log λ

αλ log λ+ λ̄(α− (αxi + 1) log λ)

]2
,

∂2ℓ(α, λ)

∂λ2
= − x̄

λ2
− n(α− log λ− 1)

λ2(α− log λ)2

− 1

λ2

n∑
i=1

λ log λ(α(xi + 1) + 1)− λ̄(αxi + 1)

αλ log λ+ λ̄(α− (αxi + 1) log λ)

+
1

λ

n∑
i=1

(α(xi + 1) + 1)(1 + log λ) + αxi + 1

αλ log λ+ λ̄(α− (αxi + 1) log λ)

− 1

λ2

n∑
i=1

λ log λ(α(xi + 1) + 1)− λ̄(αxi + 1)

αλ log λ+ λ̄(α− (αxi + 1) log λ)

× α(log λ+ 1)− α+ (αxi + 1) log λ− λ̄(αxi + 1)

αλ log λ+ λ̄(α− (αxi + 1) log λ)
,

∂2ℓ(α, λ)

∂λ∂α
= − n

λ(α− log λ)2
− 1

λ

n∑
i=1

λ log λ− λ̄xi + λxi log λ

αλ log λ+ λ̄(α− (αxi + 1) log λ)

+
1

λ

n∑
i=1

λ̄+ (λ− λ̄xi) log λ

αλ log λ+ λ̄(α− (αxi + 1) log λ)

× (1 + α(xi + 1)) log λ− λ̄(1 + αxi)

αλ log λ+ λ̄(α− (αxi + 1) log λ)
,

from these expressions Fisher’s information matrix can be approximated in

the conventional way.
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