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Abstract

This paper brings together analyses of two-way flow Strict Nash networks under
exclusive player heterogeneity assumption and exclusive partner heterogeneity as-
sumption. This is achieved through examining how the interactions between these
two assumptions influence important properties of Strict Nash networks. Built upon
the findings of Billand et al (2011) and Galleotti et al (2006), which assume exclu-
sive partner heterogeneity and exclusive player heterogeneity respectively, I provide
a proposition that generalizes the results of these two models by stating that: (i)
Strict Nash network consists of multiple non-empty components as in Galleotti et al
(2006), and (ii) each non-empty component is a branching or B; network as in Billand
et al (2011). This proposition requires that a certain restriction on link formation cost
(called Uniform Partner Ranking), which encloses exclusive partner heterogeneity and
exclusive player heterogeneity as a specific case, is satisfied. In addition, this paper
shows that value heterogeneity plays a relatively less important role in changing the
shapes of Strict Nash networks.

JEL Classification : C72, D85
Keywords : Network Formation, Strict Nash Network, Two-way Flow Network, Branch-
ing Network, Agent Heterogeneity

1 Introduction

The seminal work of Bala and Goyal (2000), BG henceforth, predicts that in Strict Nash
equilibrium center-sponsored star is a unique equilibrium network, given that the net-
work is assumed to be two-way flow with no information decay. Such simple form of

*First draft : December 2014.



network emerges as a unique Strict Nash network because several simple assumptions
are adopted, including agent homogeneity. Naturally, this simplicity has spawned a vast
literature that studies properties of Strict Nash networks under the assumption of agent
heterogeneity. A strand of this literature assumes that heterogeneity resides in the di-
versity of link formation cost that each agent possesses. This strand of literature can be
further divided into two sub-categories. One assumes that the diversity of link formation
cost depends exclusively on the identity of link receiver (called exclusive partner hetero-
geneity onwards). The other one assumes that such diversity depends exclusively on the
identity of link sender (called exclusive player heterogeneity onwards). These two sub-
categories can thus be considered as one-way heterogeneity, in the sense that it depends
either on the player or the sender but not both. However, little is known when such
one-way heterogeneity assumption is relaxed. This paper aims to fill in this space in the
literature by (i) relaxing the one-way heterogeneity assumption and, (ii) generalizing the
results on properties of Strict Nash networks found in these two sub-categories of existing
literature.

I briefly give an overview of the literature here. For exclusive player heterogeneity, ex-
istence of Nash network and equilibrium characterization of Strict Nash networks (SNNs
henceforth) are extensively studied by Galleotti et al (2006) and Kamphorst and Laan
(2007). For exclusive partner heterogeneity, full equilibrium characterization and the ex-
istence of SNNs are extensively studied by Billand et al (2011) and Billand et al (2012).
However, when two heterogeneities are allowed to interact (called two-way heterogeneity
henceforth) to my knowledge little is known. We know from Galleotti et al (2006) that
SNN under two-way heterogeneity is minimal, and from Haller et al (2007) that it does
not always exist. Regarding the shapes of SNN, the only work that put an attempt is the
insider-outsider model of Galleotti et al (2006). It assumes thatthat each agent can choose
to pay a lower or higher link formation cost depending on whether he and his partner
belong to the same insider group. Moreover, all agents in the same insider group share
identical choices of link formation cost. This model thus can be considered as an exten-
sion of exclusive player heterogeneity model. The model of this paper thus differs from
the insider-outsider model in this aspect, since it generalizes both the results of exclusive
player heterogeneity model and exclusive partner heterogeneity model.

By having the goal of bridging the two sub-categories of literature in mind, this paper
provides a proposition that generalizes the Proposition 3.1 of Galleotti et al (2006) and
Proposition 1 of Billand et al (2011). In addition, it shows that the main properties of SNNs
found in the models that assume one-way heterogeneity can be preserved even when two-way
heterogeneity is assumed. I elaborate on these main properties as follows:

1. SNN is a center-sponsored star. This property is found in the original model of BG.

2. SNN is a disconnected network, consisting of many center-sponsored star. This
property is found in the exclusive player heterogeneity model of Galleotti et al
(2006).

3. SNN has a unique component that is a branching or B;, where iy is the lowest



cost agent. This property is found in the exclusive partner heterogeneity model of
Billand et al (2011).

Consequently, the literature confirms that (1) exclusive player heterogeneity cannot
alter the shape of SNN, yet it splits the connected SNN in BG into many components, and
(2) conversely, exclusive partner heterogeneity cannot increase the quantity of components
in SNN, yet it can alter the shape and increase the set of SNNs. This raises the question of
whether these properties remain to hold even when the two heterogeneities are allowed
to interact. The result of Proposition 1 in this paper confirms that this is indeed the case,
so long as link formation cost satisfies a certain restriction called Uniform Partner Ranking.

To further elaborate on this result, I remark that Uniform Partner Ranking, UPR
henceforth, is a sufficient but not necessary condition to predict that every non-empty
component of SNN is a branching or B; network. Indeed, what warrants a non-empty
component of SNN being a branching or B; is the existence of a common best partner, an
agent that generates a lowest link formation cost to every other agent in the component
if chosen as a partner. This fact is formally stated as Lemma 4, which becomes the most
important building block of the two propositions in this paper. In Proposition 1, UPR is
simply a restriction on link formation cost that guarantees that a common best partner
exists in every component of SNN. This in turn guarantees that every component of SNN
is a branching or B; network. I remark that this result is striking, since it shows that
the shape of a component in SNN can be predicted by having a condition (existence of
Common Best Partner in this case) that is much weaker than most of the conditions in
the existing literature such as exclusive partner heterogeneity and exclusive player het-
erogeneity.

Following these findings, this paper seeks to establish Proposition 2 in order to further
eliminate a major difference between Proposition 1 mentioned above and Proposition 1
in Billand et al (2011). This difference is the fact that Uniform Partner Ranking predicts
that non-empty components of SNN are multiple while exclusive partner heterogeneity
predicts that the non-empty component of SNN is unique. To eliminate this difference this
paper proposes a stronger restriction on the structure of link formation cost called Single
Community condition. Using this condition, I establish Proposition 2, which states that
under Single Community condition and the assumption that the value of information
depends exclusively on the partner SNN contains at most one non-empty component
that is a branching or B; network where i is iy, the agent that gives rise to the lowest link
formation cost. I remark further that exclusive partner heterogeneity does satisfy Single
Community condition so that Proposition 2 is also generalization Proposition 1 in Billand
et al (2011).

The paper proceeds as follows. The model and relevant notations are described in
Section 2. In Section 3 I introduce a lemma that shows that if a common best partner
exists then a component of SNN is a branching or B; network. In Section 4 these lemmas
are put in use to establish Proposition 1 and 2, which are the main results of this paper.
Finally, Section 5 concludes.



2 The Model

Let N = {1,...,n} be a set of agents and let i and j be typical members of this set. Each
agent possesses a nonrival distinct piece of information that is valuable both to himself
and anyone who has an entry to it. There are two ways to which a pair of agents can have
an entry to each other’s information: there is a pairwise link between i and j or there is
a series of links where the two ends are i and j. I remark that the notations below are
mainly borrowed from Billand et al (2011).

Link establishment and individual’s strategy. Link establishment is costly and one-
sided. A strategy of i is g; = {gij:j € N,j #i}, where g;; = 1if i establishes a link with j
and g;; = 0 otherwise. If g; ; = 1, I say that i accesses j or j receives the link from i. Since all
links form the network, I write ¢ = {g; : i € N} to represent both a strategy profile and a
network.

Network representation. In this paper a node depicts an agent, and an arrow from j
to i represents that j receives a link from i. If all arrows are removed, the network merely
represents how information flows among agents. This structure of information flow is
denoted by g = {g;;:4,j € N,i #j}, where §;; =1if g;; =1 or gj; = 1 or both, and g;; = 0
otherwise.

Information flow. Information of j flows to i directly through a link between i and j,
regardless to who sponsors it. Alternatively, Information of j can also flow to i through a
chain. Formally, a chain between i and j (i # ) is a sequence jo, ..., jm such that g; ; =1
for1 =0,..,m—1and jo =iand j, = j. In this case, I say that i observes j and vice versa.

Costs and benefits If i accesses j, then i pays ¢;;. If i observes j, he finds that the
information of j has the value equal to V;; !.

Cost heterogeneity Let C = {c;; : i,j € N,i # j} be a cost structure, C is said to
assume cost homogeneity if ¢;; = c for all ¢;; € C, and cost heterogeneity if it holds
true that ¢;; # c; for some c;j,cx; € C. Cost heterogeneity can be further classified as
follows. If ¢; j = ¢; for all i (¢; j = ¢; for all j), C is said to assume exclusive player (partner)
heterogeneity. Finally, if ¢;; # ¢; for some i and c;; # ¢; for some j, C is said to assume
two-way heterogeneity.

The payoffs. Let 7 : R? — R be such that 7 (x,y) is strictly increasing in x and
strictly decreasing in y. The payoff of player i is given by:

mi(g) =7 Yo Vi )Y gijciy (1a)
jeNi(g)\{i} jeNi(g)\{i}

where N; (g) \{i} is the set of all agents that i observes.
Network-related Notations. Recall from the above that a chain from i to j is a se-
quence of distinct players jo, ..., ju such that g i  =1forl =0,..,m —1and jo = i and

1In the model of BG, Vii= Vi,]- = K, where K is a constant. However, in this paper Vi,j is left undefined since
our concern is on the appearance of SNN and not on who receives a higher payoff than who. Consequently I
do not include V; ; in the payoff function. I remark that my reasoning here is in line with that of Billand et al

(2011).



jm = j, a path is defined similarly except that link sponsorship matters. A path from j to
i is a sequence jo, ...,jm such that g; i =1forl =0,.,m—1and jo =iand j, = j. A
cycle is defined in the same fashion as a chain, except that jo =7 and j,, = i and all other
players in the sequence are distinct. I use these notations to define the following terms.
A network is connected if there is a chain for every distinct i,j € N. A subnetwork of ¢
is a network ¢’ such that ¢’ C g. A component of g is a maximal connected subgraph of
g. A component is denoted by D (g). A component is said to be minimal if it contains no
cycle. In a minimal component, every distinct pair of agents is connected by a chain so
that a removal of a link g; ; splits the component into two components - one containing i
and the other one containing j. I denote these two modified components by D' ( gi;) and
DJ (g;,) respectively.

Consider an agent i, I; (¢) and O; (g) are defined as the set of all links of i that are not
sponsored by i and the set of all links that i establishes respectively 2. If I; (¢) = O; (g) = 0,
then i is said to be an isolated agent. If every agent in a network is isolated, then the
network is an empty network. If either I; (¢) =1 or O; (g) = 1 (but not both), then i is said
to be a terminal agent.

Some important patterns of networks. There are some patterns of networks that are
often referred to, since they emerge as Strict Nash Equilibria. I define them here®. For a
generic set X C N, let Qx = X U {]j| there exists a path from j to i for every i € X}. I say
that X is a contrabasis of a network g if it is a minimal set with respect to the property
that Qx = N. X is said to be an i-point contrabasis if every j € X accesses i. Furthermore,
if i is a point contrabasis of g and |I;|> 2 but |[;|< 2 for all j #i and j € N, then g is said
to be a B; network. Observe that in B; network i is the only agent that receives more than
one link 4. Conversely, if in a network there is no agent that receives more than one link
and there is a unique agent i that receives no link, then the network is called branching
network rooted at i.

Strict Nash Equilibrium. Let ¢_; denote a strategy profile of all agents except i, ie.,
giUg_i = . A best response of an agent i is g; such that 71; (§; Ug_;) > 7; (¢/Ug_;) for
every g/ that is a strategy of i. A strategy profile or a network g is Nash if every agent
plays his best response. A Nash network is a Strict Nash network if the best response of
every agent is unique.

2.1 Cost Structure - Single Community and Uniform Partner Ranking

In the main results section, two propositions that fully characterize the shapes of SNN are
proven, given that SNN satisfies certain restrictions. Here I introduce these restrictions -
uniform partner ranking and single community. Recall that the cost structure C is defined as

C = {cij} i,jEN, i

Definition 1 (Better Partner). Consider a set X C N and agents j, k € X, j is at least as good

2] for incoming and O for outgoing

3The definitions of B; network and branching network are borrowed from Billand et al (2011)

Intuitively, B; is a network such that every agent in the network can be reached through a path to an
agent that accesses i.



a partner as k with respect to the set X if c;; < c¢;x for any i € X,i # j # k. Moreover, if the
inequality is strict then j is said to be a better partner than k with respect to the set X.

Intuitively, this definition states that if we choose a set X C N and i € X, then i
can ‘rank’ all agents in this set except himself according to link formation cost that he
potentially has to bear, and such ranking is universal regardless to the identity of agent
i € X. The definition Uniform Partner Ranking below simply adds that the set X = N

Definition 2 (Uniform Partner Ranking). A cost structure C is said to satisfy Uniform Partner
Ranking property if for any distinct pair j,k € N it holds true that j is at least as good a partner
as k or k is at least as a good a partner as j with respect to the set N.

Remarks 1. In what follows, this paper lets the set N be permuted such that the permuted set
I(N) = {io, i1, ..., iy—1} is such that iy is at least as good a partner as iy with respect to the set
I(N) for x < y.

The example below shows that exclusive partner heterogeneity as in Billand et al
(2011)) also satisfies the Uniform Partner Ranking.

Example 1. Let c;j = c; (ie., we assume exclusive partner heterogeneity as in Billand et al (2011)).
Specifically, let N = {1,..,5} and C = {c1 =5, c2 =4, ¢3 =3, ¢4 = 2, ¢5 = 1, then clearly C
satisfies Uniform Partner Ranking Property.

It is important to note that if C satisfies the Uniform Partner Ranking Condition, then
the agent ip can be considered as a common best partner among the set of agents N in the
sense that every agent (except ip) agrees that iy is the partner that incurs the lowest link
formation cost. In more formal terms,

Definition 3. Let X C N be a set of agents, then i* € X is said to be a Common Best Partner
among all agents in X if c;j- < cjj foralli,j €Xand i # ] #i*.

In the same manner as the term “better partner” and “at least as good a partner” are
defined, I define the term “better player” as follows.

Definition 4 (Better Player). Consider a set X C N and agents i,j € X, i is at least as good
a player as j with respect to the set X if ¢;x < cjx for any k € X,i # j # k. Moreover, if the
inequality is strict then i is said to be a better player than j with respect to the set X.

Having defined all these terms, I define a restriction that is stronger than Uniform
Partner Ranking as follows.

Definition 5 (Single Community Condition). A cost structure C is said to satisfy Single
Community Condition if the set N can be permuted into the set I(N) = {io, i1, ..., i,—1} such that
iy is at least as good a partner as i, if and only if iy is at least as good a player as i, with respect
to the set I(N) for any x < y.

Example 2. Let ¢;; = ¢; (ie., we assume exclusive player heterogeneity as in Galleotti et al (2006)).
Specifically, let N = {1,..,5} and C = {c1 =5, c2 =4, ¢c3 =3, ¢4 = 2, c5 = 1}, then we have that
C satisfies Single Community Condition.



I note how Single Community Condition (SCC onwards) may illustrate a realism.
Intuitively, SCC states that if an agent i happens to pay a lower link formation cost than
j regardless to the identity of the agent who behaves as a partner, then every other agent
also prefers to form a link with i than with j in the sense that i incurs a lower information
cost than j. If we think of link formation cost as the physical efforts of an agent in
communicating, and we assume further that this effort depends on language skills, then
if i has better language skills than j, it is natural to assume that i spends less effort
contacting other agents than j, and other agents also are also likely to prefer contacting i
than j because they know that communication with i is likely to be smoother.

3 Useful Lemmas

In this section I build up several lemmas that are used to prove the main results. The
primary goal is to prove that if a common best partner exists in a component of SNN,
then this component is a branching or B;:, where i* is a common best partner. This fact is
further used to prove Proposition 1 and 2 in the next section.

The first lemma guarantees that SNN is minimal, a result that is prevalent in the
literature.

Lemma 1 (SNN is minimal). A component in an SNN is minimal.

Proof of Lemma 1. Suppose not. Consider a cycle in a non-minimal component. Observe
that all agents in it have at least two chains through which they observe one another. In
this cycle, consider an agent who establishes at least one link. If he removes the link, the
component remains unbroken so that he still observes all other agents in the component.
Thus, he is better off removing the link in order to reduce his link formation cost, a
contradiction. O

Next, Lemma 2 and 3 show that in a component of SNN a common best partner is
unique, if it exists. Recall that D/ (g; ;) is defined as a split component that contains j if
the link g; ; is removed.

Lemma 2 (The existence of individual’s best partner). In an SNN, if i accesses j, then Cij <
cix for any agent k that is contained in D/ (g; ;) and k # .

The proof is trivial and is omitted. Intuitively, if i decides to access an agent in D/ (g; ;),
then he chooses an agent that incurs the lowest link formation cost. The fact that our
equilibrium prediction criterion is SNN further necessitates that this agent is unique and
the above inequality is strict. In the proof of the lemma below, the agent j in D/ ( gij) is
called unique best partner of i.

Lemma 3 (Existence of Unique Common Best Partner). In a non-empty component of SNN,
if a common best partner among all agents in the component exists, then this component contains
at most one agent that receives more than one link. Moreover, this agent is a unique common best
partner among all agents in the component.



Proof. Let k be an agent that receives more than one link. Let j; be an agent that accesses
k. By Lemma 2 we know that k is the best partner of j; in DF <gj1,k)~ Let j» be another
agent that accesses k. By Lemma 2 we know that k is also the best partner of j; in
D* <gj2,k). Observe that the union of DF <g]'2,k) and D* <gj1,k) contains all agents in the

non-empty component. Thus, k is a common best partner among the set of all agents in
the component.

I now prove that k is a unique common best partner among all agents in the com-
ponent. Suppose not, let k' be another common best partner. Without loss of generality

let us assume that k' is contained in D* (gjz,k)' Consequently j; is indifferent between

accessing k and k' so that this network is not SNN, a contradiction.

Finally, I prove that k is the only agent that receives more than one link. Suppose not,
let kK’ be another agent that receives more than one link. Then from the proof above we
know that this agent is a common best partner. However, we have proved earlier that k is
a unique common best partner, a contradiction. O

Finally, in what follows I introduce the main lemma of this paper. It characterizes the
shape of a non-empty component in SNN given that a common best partner exists.

Lemma 4 (The Prediction that SNN component is either B;« or branching, through the
existence of Common Best Partner). A non-empty component in SNN is a branching or B,
given that a common best partner (denoted by i*) among all agents in this component exists.

Proof. By Lemma 3, we know that a component of SNN has at most one agent that receives
more than one link. Consequently to complete the prove it suffices to show that 1) if a
component contains no agent that receives more than one link then this component is
branching and, 2) if a component contains exactly one agent that receives more than one
link then this component is a B;» network.

I prove the first part by contradiction. Suppose that the component is not a branching.
Recall that branching is defined as a network such that there is exactly one agent that
receives no link and all other agents receive exactly one link. Consequently if the network
is not a branching there are two cases: (1) the network is such that every agent receives
exactly one link and, (2) the network has more than one agent who receive no link and
every other agent receives exactly one link.

For the first case, consider a terminal agent i. By our presupposition he receives a link
from an agent. Let this agent be j + 1. Observe that j + 1 is not a terminal agent, because
he also receives a link from another agent. Let this agent be j+2. Again, he is not a
terminal agent for the same reason. Thus, this algorithmic procedure continues infinitely.
It follows that this network has infinite amount of agents, a contradiction.

For the second case, consider agents x and y who receive no link. Since x and y are in
the same component there is a chain between x and y. Let the sequence of agents in this
chain be x, ji, j2, 3, j4, .-, Jx, Y respectively. Since x is assumed to receive no links, it is the
case that that x accesses j;. Since it is assumed from the beginning the that every agent
receives at most one link, it is the case that j; accesses jp, jo» accesses j3 and so on. This
follows that jx accesses y, a contradiction to the assumption that y receives no link.

8



I now prove the second subsections - if a non-empty component of SNN contains an
agent that receives more than one link then it is a B~ network. By Lemma 3, we know
that in such a component there is only one agent that receives more than one link, and
this agent is i*, a common best partner. Therefore what remains to prove is that i* is a
point contrabasis of this component. This in turn requires that I prove that: (i) for each
agent / in this component there exists a path from [ to j for some j € [;+(g) and, (ii) if
j € Ii+(g) accesses k # i* then there is no path from k to j' € I;+(g) such that j # j so that
I;\{j} is not a contrabasis.

To prove that for each [ in this component there exists a path from / to j for some
j € Ii(g), Iintroduce the following notations. j is such that j € O;.. k is such that gy x = 1
or gjx = 1. In what follows I consider the following 4 cases depending on the identity of
(@)l #i*and ] € Dk(gj,k), (b)l #i*and ] € Dk(gj/,k), ()l #i*and | ¢ Dk(gj,k), Dk(gj/,k)
and, (d) I = i*.

For case (a), observe that without g;, the split component Dk(g]-,k) is a branching
rooted at k since k receives no link and every other agent receives exactly one link. Con-
sequently for any agent [ € Dk(gj,k) for some j € I;- such that g = 1 there is path from /
to j (via kif I #k).

Next, I consider case (b). Similar to case (a), observe that without g;  the split com-
ponent Dk(g]-/,k) is a branching rooted at k since k receives no link and every other agent
receives exactly one link. Consequently for any such agent / there is a path from / to i*
(via j'). This in turn guarantees that there is a path from ! to any j € I;+ (via j' and i*).

For case (c), observe that since | #i*,1 #jand I ¢ Dk(g]-lk), Dk(g]-/,k) it is the case that
I = for some j' € O;+. This in turn guarantees that there exists a path from [ to j (via i*).

For case (d), since | = i* the path from i* to an agent j is the link from i* to j.

Finally, I prove that if j € I;+(g) accesses k # i* then there is no path from k to j” € I;-(g)
for j” # j so that I;+\{j} is not a contrabasis. Suppose by contradiction that there is path
from k to j”. Then k receives more than one link so that k = i*, a contradiction. O

4 Main Results - Equilibrium Characterization

In Lemma 4, the existence of a common best partner in a component of SNN guarantees
that the component is a branching or B;-. Proposition 1 below makes use of this lemma
in the following way. It imposes UPR to guarantee that every non-empty component
contains a common best partner. This in turn guarantees that every component of SNN
is a branching or B;

Proposition 1. Let C satisfy Uniform Partner Ranking Condition and V; ; flow freely, then every
non-empty component in SNN is a branching or Bj-.

Proof. Since UPR is satisfied, we know that all agents can be permuted {io, 71, ..., iy—1} SO
that i, is at least as good a partner as i, with respect to the set N for x < y. Consequently
in a non-empty component of SNN there exists i* such that x* < y for any iy that is in the
same component. Naturally i* is i*, a Common Best Partner in the component. This fact,



which guarantees that every non-empty component of SNN has a Common Best Partner,
together with Lemma 4 guarantee that every non-empty component is a branching or
B;-. O

I remark that Proposition 1 in this paper can be considered as a generalization of
Proposition 1 in Billand et al (2011) and Proposition 3.1 in Galleotti et al (2006). This is
because both exclusive player heterogeneity and exclusive partner heterogeneity in link
formation cost satisfy Uniform Partner Ranking condition. A comparison with Proposi-
tion 1 of Billand et al (2011) is noteworthy. Specifically, a major similarity between the
two propositions is that a non-empty component is a branching or B; network, and a
major difference is that Proposition 1 in Billand et al (2011) predicts that a non-empty
component is unique, while the Proposition 1 in this paper predicts that SNN can contain
multiple non-empty components. Proposition 2 below aims at eliminating this difference
by imposing a stronger restriction on the cost structure and assuming that V;; = V;. 1
remark that despite the fact that the restriction is stronger, Proposition 2 remains a gen-
eralization of Proposition 1 in Billand et al (2011).

Proposition 2 (SNN with value homogeneity, a single community). Let C satisfy Single
Community Condition and V; ; = V;. Then a non-empty Strict Nash network is a minimal network
that has a unique non-empty component that is a B;, or a branching.

Proof. Since if C satisfies SCC it also satisfies UPR, it holds true that every non-empty
component is a B;- or branching. Consequently what remains to be proven is that the
non-empty component is unique, and that i* = i

To prove that a non-empty component is unique, I suppose not. Let i4 and j4 be in
a component, and ip and jp in another component. Assume further that i4 accesses js
and ip accesses jp and, without loss of generality, that i4 is at least as friendly as ig. This
entails that i is at least as good a player as ip so that ¢;, j, < ¢;, i,. Since Vj; = V}, the value
of information that i4 receives if he accesses jp is at least equal to the value of information
that ip receives from accessing jz. This fact, together with the fact that ¢;, ;; < ¢;, ;,, leads
to the conclusion that i4 has strictly positive deviation by accessing jp if the network is
SNN, a contradiction.

To prove that i* = iy, I first prove that iy is not in a non-empty component. To do so
suppose by contradiction that iy is in an empty component. Suppose further that i and j
are agents in the non-empty component and that i accesses j. Since ¢;,; < ¢;; for any i, j
in the network, it follows that iy has a positive deviation by accessing j, a contradiction.

Finally, since iy is in the non-empty component it follows by Lemma 3 that iy = i*. O

5 Concluding Remarks

In this paper, I provide two propositions that aim to understand the interaction between
player heterogeneity and partner heterogeneity, and how such interaction influences the
properties of SNN. The main conclusions are:
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1. Evenif ¢;; # ¢; and ¢;; # c; so that two-way heterogeneity is assumed, a non-empty
component of SNN is a branching or B; so long as all agents in a component of
SNN agree on who the link receiver is that incurs the lowest link formation cost.
Consequently in this paper the prediction of the shape of a non-empty component
in SNN is similar to that of Billand et al (2011), which assumes exclusive partner
heterogeneity. This conclusion is formally stated as Lemma 4.

2. As a result of the conclusion above, if all agents in the network agree on which
agent is at least as good a partner (as measured by a lower link formation cost) than
which then it can be concluded that every non-empty component in this SNN is a
branching or B; network. This restriction is called Uniform Partner Ranking, and
the prediction of SNN is formally stated as Proposition 1 in this paper.

3. Finally, it can be said that value heterogeneity does not predict the shape of each
component in SNN. Indeed, when an agent i decides whether to form a link in order
to access a component, he weights the benefits of accessing this component against
his link formation cost with the lowest-cost partner in this component. Therefore it
can be concluded that value heterogeneity does not alter his choice of partner.

Naturally, a question that remains is how we can predict the shape and properties
of SNN in the absence of Uniform Partner Ranking. This becomes a potential research
question to explore.
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