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Abstract.

A spatial generalization of the (from times-series special case well known) Autoregressively
Distributed lag model is defined. Equivalent forms - a Spatial Error Correction model, a Spatial
Bewley model and a Spatial Baardsen model - are considered. As none of these may be
consitently estimated by Ordinary Least Squares, an Instrument Variable estimation procedure
is investigated.



1. Introduction.

Spatial regression has been discussed widely in books dedicated to developments in spatial
econometrics, notably by Anselin (1988) and Anselin and Florax (1995). The consequenses for
estimation and inference of the presence of stable spatial processes has been widely studied
(Haining 1990, Anselin 1988, Bivand 1980, Richardson 1990, Richardson and Hèmon 1981,
Clifford and  Richardson 1985, Clifford, Richardson and Hèmon 1989). A recent study (Fingleton
1999) takes the first steps into analyses of implications of spatial unit roots, spatial cointegration
and spatial Error Correction models.

The present paper contributes to the further development of these topics by introduction of a
general Spatial Autoregressively Distributed Lag (SADL) model and different variants of this.
As none of these models may be consistently estimated by Ordinary Least Squares (OLS), a
consistent Instrument variable (IV) estimation procedure is investigated. The performance of this
estimator is evaluated using Monte Carlo simulations while adressing the impacts of sample size
and controlling for proximity structure.

2. Models for spatial dynamics.

The Spatial Autoregressive (SAR) model was initially studied by Whittle (1954) and has been
used extensively in works by Ord (1975), Cliff and Ord (1981), Ripley (1981), Upton and
Fingleton (1985), Anselin (1988), Griffith (1992), and Haining (1990). The SAR is defined by

y = 'Wy + X�� + �� , ���N(0 , )2I ) ,

in which y is an n×1 vector, X an n×K matrix of exogenous covariates, ' the autoregression
parameter, I the n×n identity matrix, �� an n×1 vector of white noises distributed with variances
)2, and W an n×n proximity matrix defined by Wij = 1 if observation j is assumed to impact
observation i. W may be noncircular, which is the case for the times series variant where Wij =
1 if j = i-1. For the general spatial case, W is generally circular. For example if the sample
consists of a cross-section of n regions W is usually defined by Wij = Wji = 1 if region i and j are
neighbours. As shown by Anselin (1988), circularity of W renders OLS estimation of the
parametres inconsistent. This is in contrast to the times-series special case (and any other non-
circular cases) where OLS provides consistent (although inefficient) estimation.

A Spatial Autoregressively Distributed Lag (SADL) model is defined by respecifying the SAR
as

(1) y = �0 + �1Wy + �0x + �1Wx + ��

where x and y are n×1 vectors, and �0 , �1 , �0 , and  �1 are parametres. We may be more detailed
and specify a SADL(p,q,k) defined by adding spatial lags for y and x up to order p and q, and k
explanatory x variables. In this respect, (1) represents a SADL(1,1,1) model. However, for case
of simplicity, wi will concentrate on the SADL(1,1,1) and shortly denote this SADL, as the
generalization to higher order models is almost obvious: Define L  as the spatial lag operator, i.e.
L (x) = Wx, L2(x) = L (L (x)) = W(Wx) = W2x, and Lq(x) = L ( Lq-1(x))= Wqx.

The SADL specifies how the expectation of yi is formed, in terms of xi and xj ‘s and yj ‘s in



contiguous units. In other words, SADL is a level-to-level local specifikation. A global
specification is given by unconditional expectations on the form E(yi) = y* in (1). Using E(�i) =
0, we have

y* = �0 + �1 y*  + �0 x*  + �1 x*  

hence

y*  = [�0/(1-�1)] + [(�0 +  �1)/(1-�1)] x*  = k0 + k1 x*

where k1 is the global multiplier for y with respect to x, which is defined in the case of �1 being
less than 1, i.e. spatial stationarity (See Fingleton (1999) for a formal treatment of spatial (non-
)stationarity).

Some easy manipulations of (1) provides the equivalent representation 

(2) ��y = �0 + (�1-1)Wy + �0��x + (�0+�1)Wx + ��

where �� = ( I -W ). Further manipulations provide

(3) ��y = �0 + (�1-1)( Wy - Wx) + �0��x + (�0+�1+�1-1)Wx + �� .

Alternative manipulations provide

(4) y = �0/(1-�1) + (�1/(1-�1))��y + �0��x + ((�0+�1)/(1-�1))x - (�1/(1-�1))��x + (1/(1-�1))��
.

The forms (2)-(3)-(4) are algebraically equivalent to (1) but provide different interpretations. (2)
is a spatial generalization of the times-series Baardsen specification, which we will denote the
SBA model. (3) generalizes the Error Correction (EC) model and will be denoted the SEC model.
Finally, (4) is a generalization of the Bewley transfom which we will call the SBE model.

Opposed to the SADL the SBA and the SEC describe the formings of expected local differences
in y as depending on local differences in x and locally lagged values in x. They are distinctive in
that the SBA introduces locally lagged levels in y whereas the SEC introduces the locally lagged
discrepancy between y and x.

3. IV estimation of spatial dynamics models.

None of the specifications (1)-(4) can be estimated using OLS. This is due to the presence of
contemporaneous y values in the variable Wy emerging in some form or another as an
explanatory variable, implying correlation between Wy and ��. For the case of the SAR this is
proved in details in Anselin (1988), whereas Fingleton (1999) provides the proof for the
SEC.Their arguments are directly carried over to the SADL SBA and SBE models. Due to the
aforementioned correlation asymptotically justified methodologies must be applied. Basically,
two estimation methods are provided: The ML-GLS and the IV estimation.

Briefly ML-GLS consists of two steps: First the log likelihood function for y is concentrated to
be a non-analytical function of �1 only. Using some iterative method, the estimate of �1



maximizing the log likelihood function is found. Second, the maximizing estimates for �0, �0 and
�1 are provided using one-step GLS estimators. Any sort of inference is carried out using the
Fisher Information matrix. See Anselin (1988) for details and further references.

IV estimation is base on the idea of finding a variable z which is uncorrelated with �� but
correlated with Wy (or whatever form in y appearing on the right-hand side of (1)-(4) ) and using
this as an instrument variable in a one-step least square estimation. Formally, if we want to
estimate the SADL in (1), we define X = [i Wy x Wx] and Z = [i z x Wx], where i is an n×1
vector of 1's. Defining ��SADL = (�0 �1 �0 �1)’ , the IV estimator is

gSADL = (X’PZX)-1X’PZy

where Pz = Z(Z’Z )-1Z’ . The covariance matrix is provided by

VSADL = )2(X’PzX)-1

with )2 estimated consistently by

s2 = ( y-XgSADL  )’( y-XgSADL )/n .

As a choice for z, Anselin (1988) suggests the lagged value of the prediction of y from an OLS
regression on those variables in X not correlated with ��, i.e. x and Wx. Denoting the predicted
y by y^ , the instrument variable is defined as Wy^ , and the IV estimator is obtained by setting
Z = [i Wy^ x Wx ].

Using y^  for y in occurrences on the right-hand side, IV estimation of the alternative forms (1) -
(4) is easily provided. The choices of X, Z, and dependent variable for (1)-(4) are outlined in
Table 1.

___________________________________________________________________________
Table 1. Choices of X, Z,  and dependent variable.
___________________________________________________________________________
Model X Z dependent variable

(1) SADL [i Wy x Wx] [ i Wy^ x Wx ] y
(2) SBA [i Wy ��x Wx] [ i Wy^ ��x Wx] ��y
(3) SEC [i (Wy-Wx) ��x Wx] [ i (Wy^-Wx) ��x Wx] ��y
(4) SBE [i ��y x ��x] [ i ��(y^) x ��x] y
___________________________________________________________________________

Using the one-to-one correspondence between the parametres of the four models, IV estimators
for ��SADL may be derived from any of the four models upon IV estimation of these, just as the
VSADL is easily derived using for example the delta method (Greene, 2000). Asymptotically, equal
estimates for ��SADL and VSADL will emerge, although they may deviate for a fixed size sample. As
such, the four models are asymptotically equivalent with respect to IV performance. Consequent-
ly, the success of IV in all models depends on the success of IV applied to any model. And -
basically - this success hings on the success of the choice of y^  as an instrument for occurrences
of y in any X matrix. We will investigate this topic using a Monte Carlo based simulation study.
Due to the asymptotic similarity of the four models, a study based on the SADL will suffice.



4. A simulation study.

The focus of our interest is the estimation of the SADL defined in (1). Two central topics must
be adressed:

1. Can �0, �1, �0, and �1 be estimated consistently, using the suggested IV estimator?

2. Can meaningfull inference be derived using the estimated VSADL?

Topic 2. involves inspection of the asymptotic t values for each estimated parameter, defined as

t = (gp-�p)/sp

where sp is the square root of the p’th diagonal element in the estimated VSADL. Further, the
applicability of VSADL for model inference will be adressed by examining the Wald test for model
significanse, defined as

Wald = (gSADL-��SADL)’(VSADL)
-1 (gSADL-��SADL) .

To ensure generality of the study, we will investigate the properties of IV for �1 varying between
0 and 1. The resting parametres, i.e. �0, �0, �1, and )2 will be restricted to 1, as their sign and
magnitude do not provide any problems. Further the impact of varying sample size n will be
investigated. Finally, to avoid restriction of the results to cases covered by any specific W matrix,
a randomization of this matrix will be employed. This randomization is performed by the
following simple rule:

For each of the n(n-1)/2 possible proximity relations: Generate a random number from the U(0,1)
distribution. If this value is higher than a preselected value, d, assign Wij = Wji = 1, otherwise 0.

Full generality is obtained by repeating the study for different values of d.

The full design of the study is described in the following Monte Carlo algorithm:

For n=25, 50, 100 do:
 For d=0.01, 0.05 do:
    For �1 = 0.01, 0.25, 0.5, 0.75, 0.9 do:

Replicate 10,000 times:
Generate �� from n independent N(0,1)
Generate x from n independent U(0,1)
Create a random W using d and the above rule
Row-standardize W (i.e. divide each element with rowsum)
Calculate y = (I-W) -1(i + x + Wx + ��)
Perform IV estimation of SADL
Store estimates, denoted by a0, a1, b0 , and b1
Store t values for the parametres
Store the Wald test

Calculate 5, 10 50, 90, 95 per cent deciles for each stored quantity
Conclude the study by comparing these deciles to their theoretical counterparts.



The results from the Monte Carlo algorithm are collected in Table 2. Many interesting
featuresmay be derived from these results. We briefly outline those of main concern for us:

The estimator a0 is generally downward biased. This bias devreases with increasing sample size.
Further, the bias seems to be larger for a high-density W matrix. The t value is also downward
biased and has a strong tendency towards too short tails as compared to the N(0,1) distribution.
That is, an overtendency to accept the hypothesized H0 value is present. Whereas the bias in the
t value seems to decrease for increased sample size, the short-tail tendency seems to prevail. This
latter prevalence is also unaffected by the density of W. In general, all these problems are
worsened for increasing values of �1.

The estimator a1 as well as its t value is generally upward biased. This bias increases with
increasing density of W, but decreases with increasing sample size. The bias increases with
increasing �1. Further, the t values have shorter tails than the N(0,1) distribution. This empirical
distribution does not vary very much while �1 n and d change.

The estimators b0 and b1 are remarkably stable. The - generally downward - biases are very small,
even for large �1 and are reduced when n increases. Further, the density of W does not impact the
biases. The t values are generally almost unbiased, but their distributions have shorter tails tha
the N(0,1).

The Wald test has a peculiar behaviour: For small sample sizes, it seems to be overstated,
whereas this overstatement reduces and even turns into an understatement with increasing sample
size. This behaviour seems almost unaffected by the size of �1 and the density of W.

For empirical researchers applying the IV estimation methodology, we will suggest to account
for the following features while interpreting estimation results:

- The estimate of �1 is somewhat overstated but its t value is understated.
- The parametres for exogenous variables as well as for spatial lags of these is slighly understated
as well as the corresponding t values. That is, one must not be too strict in rejecting significanse
of these.
- The Wald test for model significanse is somewhat understated for fairly large sample sizes, but
overstated for very small sample sizes. We suspect this feature to carry over to any asymptotic
Wald-type test for model specification, based on the estimated covariance matrix (though this
suspicion is not formally confirmed for any but the model significanse test).

5. An empirical illustration.

(Estimation of a commuting model for 275 Danish municipalities - provided in future version of
the paper)

6. Conclusions.

(Follows in future version of the paper)
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Table 2. Results of Monte Carlo study.
_____________________________________________________________________________________
Deciles for theoretical distribution:   5     10    50    90    95
                              N(0,1):  -1.61 -1.21  0     1.21  1.61
                               32(4):   0.71  1.06  3.36  7.78  9.49
_____________________________________________________________________________________
�1   n     d    dec.  Wald    a0     t(a0)  a1     t(a1)  b0     t(b0)  b1     t(b1)

0.01 25    0.01  5     0.04  -8.31  -1.47  -7.51  -1.14  -2.14  -1.24  -8.30  -1.11
                10     0.15  -3.12  -1.06  -3.55  -0.86  -0.80  -0.90  -3.67  -0.81
                50     1.79   0.72  -0.07   0.02   0.00   1.01   0.00   0.98   0.00
                90     6.88   6.65   0.77   3.37   0.82   2.83   0.96   4.14   1.01
                95     9.42  12.32   1.03   7.21   1.07   4.09   1.31   8.17   1.45

           0.05  5     0.05 -10.02  -1.39  -7.88  -1.20  -1.91  -1.31 -10.17  -1.17
                10     0.17  -3.88  -1.01  -3.88  -0.91  -0.72  -0.96  -4.41  -0.84
                50     1.92   0.76  -0.05  -0.03  -0.02   0.99  -0.01   0.96  -0.01
                90     7.06   7.10   0.86   3.97   0.82   2.68   1.00   4.63   1.00
                95     9.42  13.52   1.14   8.10   1.07   3.83   1.40   9.09   1.44

     50    0.01  5     0.06  -7.05  -1.35  -6.20  -1.09  -1.06  -1.23  -6.34  -1.00
                10     0.20  -2.65  -1.01  -3.07  -0.83  -0.24  -0.91  -2.88  -0.76
                50     1.82   0.79  -0.07   0.01   0.00   0.99   0.00   1.02   0.00
                90     5.77   5.64   0.75   3.09   0.83   2.26   0.91   3.30   1.02
                95     7.69  10.02   0.96   6.04   1.08   3.01   1.23   5.90   1.40

           0.05  5     0.06 -11.12  -1.31  -7.84  -1.12  -0.85  -1.13  -9.01  -1.07
                10     0.20  -4.17  -0.97  -3.83  -0.87  -0.14  -0.96  -3.82  -0.82
                50     1.87   0.79  -0.05   0.00   0.00   0.98  -0.02   1.00   0.00
                90     6.05   7.09   0.81   4.04   0.81   2.10   0.92   4.39   0.98
                95     7.84  12.84   1.07   8.83   1.04   2.74   1.27   8.72   1.39

    100    0.01  5     0.10  -5.50  -1.32  -4.81  -1.14  -0.30  -1.26  -4.99  -1.02
                10     0.31  -2.01  -1.01  -2.39  -0.90   0.14  -0.96  -2.21  -0.81
                50     1.98   0.83  -0.07   0.03   0.01   0.99  -0.01   1.07   0.04
                90     5.78   4.77   0.80   2.48   0.87   1.83   0.96   2.79   1.07
                95     7.47   8.52   1.03   5.09   1.12   2.25   1.25   4.83   1.46

           0.05  5     0.06 -13.13  -1.23  -9.43  -1.10  -0.24  -1.24  -9.36  -1.02
                10     0.20  -5.10  -0.92  -4.53  -0.85   0.22  -0.93  -4.35  -0.78
                50     1.84   0.84  -0.04  -0.01   0.00   0.98  -0.02   1.11   0.02
                90     5.60   8.18   0.81   4.56   0.81   1.77   0.95   4.54   0.98
                95     7.35  16.02   1.02   9.75   1.05   2.19   1.28   9.32   1.34



(table 2 continued)

�1   n     d    dec.  Wald    a0     t(a0)  a1     t(a1)  b0     t(b0)  b1     t(b1)

0.25 25    0.01  5     0.06 -11.53  -1.60  -5.89  -1.01  -2.13  -1.37  -7.66  -1.23
                10     0.18  -4.53  -1.20  -2.61  -0.75  -0.87  -1.00  -3.44  -0.92
                50     1.96   0.48  -0.14   0.37   0.06   0.98  -0.01   0.88  -0.03
                90     7.16   7.26   0.67   3.39   0.97   2.83   0.96   3.81   1.00
                95     9.67  14.28   0.88   6.57   1.29   4.02   1.32   6.47   1.41

           0.05  5     0.07 -14.21  -1.55  -6.56  -1.05  -1.82  -1.41  -8.72  -1.25
                10     0.20  -5.85  -1.16  -3.06  -0.89  -0.73  -1.03  -4.13  -0.93
                50     2.05   0.45  -0.12   0.38   0.06   0.96  -0.02   0.92  -0.02
                90     7.31   8.27   0.72   3.85   0.97   2.63   0.97   4.33   1.02
                95     9.80  15.88   0.97   7.55   1.26   3.63   1.37   7.74   1.43

     50    0.01  5     0.08  -8.16  -1.48  -4.40  -1.02  -0.88  -1.36  -5.10  -1.22
                10     0.26  -2.97  -1.17  -2.10  -0.80  -0.23  -1.03  -2.32  -0.93
                50     2.04   0.69  -0.10   0.30   0.03   0.98  -0.02   0.96  -0.01
                90     6.32   6.23   0.71   2.55   0.99   2.23   0.93   3.08   0.99
                95     8.32  11.24   0.91   5.15   1.28   2.99   1.25   4.68   1.35

           0.05  5     0.07 -12.94  -1.41  -7.40  -1.05  -0.82  -1.35  -7.39  -1.19
                10     0.24  -5.58  -1.07  -3.42  -0.81  -0.35  -1.02  -3.52  -0.92
                50     1.99   0.58  -0.10   0.33   0.04   0.97  -0.02   0.96  -0.01            
                90     6.34   9.11   0.75   3.65   0.96   2.15   0.98   4.04   0.98
                95     8.34  18.12   0.96   7.21   1.22   2.75   1.28   7.57   1.37

    100    0.01  5     0.20  -4.70  -1.51  -3.14  -1.08  -1.18  -1.41  -3.15  -1.25
                10     0.46  -1.85  -1.19  -1.36  -0.87   0.19  -1.07  -1.55  -0.98
                50     2.26   0.80  -0.08   0.28   0.03   0.98  -0.02   1.05   0.03
                90     6.12   4.90   0.80   1.95   1.06   1.82   0.97   2.60   1.04
                95     7.85   8.47   1.00   3.37   1.33   2.24   1.27   3.48   1.38

           0.05  5     0.08 -14.75  -1.33  -8.01  -1.05  -0.14  -1.29  -7.32  -1.14
                10     0.27  -6.31  -1.03  -3.59  -0.81   0.23  -1.00  -3.62  -0.88
                50     2.01   0.70  -0.06   0.30   0.02   1.00   0.00   1.06   0.02
                90     5.83   9.77   0.76   4.08   0.94   1.76   0.95   4.09   0.97
                95     7.52  19.76   0.98   7.92   1.21   2.17   1.27   7.70   1.31



(table 2 continued)

�1   n     d    dec.  Wald    a0     t(a0)  a1     t(a1)  b0     t(b0)  b1     t(b1)

0.50 25    0.01  5     0.08 -13.69  -1.76  -3.64  -0.91  -1.72  -1.51  -5.55  -1.44
                10     0.24  -5.77  -1.36  -1.56  -0.67  -0.82  -1.14  -2.94  -1.10
                50     2.17   0.28  -0.20   0.65   0.12   0.90  -0.05   0.84  -0.05
                90     7.57   7.69   0.58   2.72   1.18   2.70   0.90   3.68   0.96
                95     9.97  15.84   0.74   4.89   1.52   3.69   1.25   5.23   1.36

           0.05  5     0.08 -17.92  -1.65  -4.75  -0.96  -1.61  -1.51  -7.37  -1.46
                10     0.25  -8.34  -1.28  -2.03  -0.72  -0.67  -1.12  -3.58  -1.08
                50     2.24   0.18  -0.16   0.68   0.11   0.91  -0.05   0.83  -0.04
                90     7.66   9.89   0.64   3.42   1.14   2.59   0.95   0.83   1.00
                95    10.32  19.47   0.86   6.16   1.45   3.56   1.30   2.35   1.40

     50    0.01  5     0.13  -9.00  -1.72  -2.98  -0.97  -0.73  -1.52  -3.55  -1.38
                10     0.33  -3.49  -1.33  -1.27  -0.75  -0.18  -1.14  -1.78  -1.09
                50     2.21   0.57  -0.15   0.59   0.09   0.97  -0.02   0.95  -0.02
                90     6.76   6.91   0.66   2.11   1.18   2.24   0.92   3.04   0.95
                95     8.79  13.22   0.86   3.68   1.50   2.90   1.22   4.03   1.26

           0.05  5     0.07 -12.94  -1.41  -7.40  -1.05  -0.82  -1.35  -7.39  -1.19
                10     0.24  -5.58  -1.07  -3.42  -0.81  -0.15  -1.02  -3.52  -0.92
                50     1.99   0.58  -0.10   0.33   0.04   0.97  -0.01   0.96  -0.01
                90     6.34   9.11   0.75   3.65   0.96   2.15   0.98   4.05   0.98
                95     8.34  18.12   0.97   7.22   1.22   2.75   1.28   7.57   1.37

    100    0.01  5     0.27  -4.62  -1.65  -1.95  -1.02  -0.05  -1.51  -2.09  -1.41
                10     0.56  -1.89  -1.30  -0.81  -0.82   0.25  -1.16  -0.97  -1.11
                50     2.42   0.74  -0.11   0.54   0.05   0.99  -0.01   1.02   0.01
                90     6.61   5.42   0.76   1.56   1.20   1.81   0.98   2.57   1.00
                95     8.28   9.36   0.94   2.44   1.50   2.17   1.27   3.17   1.32

           0.05  5     0.12 -20.95  -1.42  -5.74  -0.99  -0.11  -1.40  -6.85  -1.28
                10     0.35  -9.76  -1.11  -2.48  -0.77   0.24  -1.08  -3.39  -1.00
                50     2.16   0.31  -0.10   0.66   0.08   0.97  -0.04   0.91  -0.03
                90     6.12  11.63   0.73   3.84   1.06   1.72   0.94   3.59   0.95
                95     7.68  22.53   0.94   6.99   1.34   2.06   1.24   5.73   1.31



(table 2 continued)

�1   n     d    dec.  Wald    a0     t(a0)  a1     t(a1)  b0     t(b0)  b1     t(b1)

0.75 25    0.01  5     0.10 -17.02  -1.87  -1.69  -0.88  -1.34  -1.61  -3.72  -1.61
                10     0.31  -7.76  -1.49  -0.42  -0.66  -0.64  -1.24  -2.17  -1.26
                50     2.51   0.06  -0.24   0.86   0.17   0.91  -0.05   0.86  -0.05
                90     8.30   9.06   0.57   2.03   1.37   2.58   0.95   3.67   0.97
                95    10.98  18.86   0.78   3.23   1.73   3.37   1.30   4.85   1.32

           0.05  5     0.08 -17.93  -1.65  -4.75  -0.96  -1.61  -1.51  -7.37  -1.46
                10     0.25  -8.35  -1.27  -2.03  -0.72  -0.67  -1.12  -3.59  -1.08
                50     2.24   0.18  -0.17   0.68   0.11   0.91  -0.05   0.83  -0.04
                90     7.66   9.89   0.64   3.41   1.14   2.59   0.95   4.17   1.00
                95    10.23  19.47   0.87   6.16   1.44   3.56   1.30   6.30   1.40

     50    0.01  5     0.17 -11.51  -1.83  -1.29  -0.92  -0.50  -1.63  -2.16  -1.56
                10     0.43  -4.47  -1.43  -0.26  -0.74  -0.08  -1.23  -1.14  -1.25
                50     2.47   0.46  -0.16   0.81   0.11   0.96  -0.03   0.96  -0.02
                90     7.51   8.08   0.67   1.61   1.31   2.13   0.93   2.92   0.94
                95     9.63  15.73   0.85   2.51   1.71   2.67   1.22   3.78   1.24

           0.05  5     0.11 -29.39  -1.61  -3.13  -1.66  -0.54  -0.94  -4.60  -1.51
                10     0.32 -12.95  -1.25  -1.13  -1.26  -0.06  -0.72  -2.37  -1.14
                50     2.33  -0.15  -0.15   0.88  -0.15   0.95   0.12   0.91  -0.04
                90     7.00  14.90   0.68   2.74   0.68   2.04   1.21   3.50   0.97
                95     9.06  30.19   0.88   4.97   0.88   2.57   1.56   4.96   1.30

    100    0.01  5     0.32  -5.60  -1.75  -0.75  -1.04   0.05  -1.63  -1.35  -1.63
                10     0.63  -2.60  -1.38  -0.06  -0.84   0.30  -1.25  -0.61  -1.25
                50     2.60   0.73  -0.10   0.77   0.05   1.00   0.00   1.00   0.00
                90     7.07   6.68   0.78   1.33   1.32   1.75   1.00   2.42   1.03
                95     8.92  12.13   0.99   1.78   1.67   2.04   1.29   2.97   1.34

           0.05  5     0.16 -33.15  -1.54  -3.80  -0.98  -0.04  -1.52  -4.91  -1.43
                10     0.41 -15.22  -1.23  -1.51  -0.77   0.26  -1.16  -2.53  -1.13
                50     2.31  -0.04  -0.11   0.87   0.09   0.97  -0.04   0.95  -0.02
                90     6.54  17.92   0.75   3.02   1.20   1.71   0.95   3.41   0.96
                95     8.39  35.44   0.95   5.26   1.50   2.06   1.25   4.79   1.28



(table 2 continued)

�1   n     d    dec.  Wald    a0     t(a0)  a1     t(a1)  b0     t(b0)  b1     t(b1)

0.90 25    0.01  5     0.12 -29.12  -1.88  -0.35  -0.87  -1.13  -1.65  -3.11  -1.66
                10     0.36 -12.77  -1.51   0.30  -0.66  -0.53  -1.26  -1.82  -1.29
                50     2.68  -0.28  -0.24   0.97   0.19   0.92  -0.04   0.87  -0.04
                90     8.66  12.14   0.60   1.66   1.41   2.44   0.99   3.46   0.98
                95    11.47  24.67   0.78   2.50   1.80   3.16   1.32   4.58   1.32

           0.05  5     0.11 -53.40  -1.81  -1.48  -0.93  -1.11  -1.67  -4.48  -1.65
                10     0.35 -24.89  -1.44  -0.21  -0.69  -0.52  -1.24  -2.41  -1.25
                50     2.65  -1.34  -0.21   1.02   0.19   0.92  -0.05   0.85  -0.05
                90     8.53  22.07   0.65   2.27   1.40   2.42   1.02   3.89   1.03
                95    11.29  46.91   0.87   3.77   1.75   3.14   1.40   5.43   1.41

     50    0.01  5     0.19 -18.05  -1.82  -0.21  -0.92  -0.36  -1.70  -1.64  -1.67
                10     0.48  -7.60  -1.44   0.34  -0.72  -0.01  -1.29  -0.91  -1.29
                50     2.65   0.26  -0.16   0.93   0.12   0.95  -0.04   0.96  -0.02
                90     7.67  11.53   0.68   1.38   1.39   2.01   0.98   2.79   0.98
                95     9.85  22.40   0.86   1.91   1.76   2.45   1.29   3.50   1.28

           0.05  5     0.13 -64.00  -1.67  -1.90  -0.91  -0.50  -1.59  -3.88  -1.57
                10     0.37 -28.86  -1.31  -0.44  -0.69  -0.05  -1.20  -2.07  -1.23
                50     2.45  -1.53  -0.16   1.03   0.15   0.95  -0.05   0.84  -0.06
                90     7.48  26.79   0.67   2.49   1.28   1.98   0.95   3.40   0.96
                95     9.56  56.59   0.88   4.23   1.64   2.43   1.28   4.51   1.30

    100    0.01  5     0.34 -10.21  -1.79  -0.01  -1.02   0.11  -1.69  -0.98  -1.67
                10     0.63  -5.28  -1.42   0.40  -0.82   0.32  -1.29  -0.42  -1.32
                50     2.68   0.57  -0.09   0.92   0.06   0.99  -0.01   0.99  -0.01
                90     7.41  10.29   0.79   1.26   1.39   1.70   1.03   2.36   1.03
                95     9.34  18.27   0.98   1.53   1.75   1.96   1.34   2.83   1.33

           0.05  5     0.18 -61.02  -1.56  -3.04  -0.98   0.04  -1.60  -3.66  -1.52
                10     0.47 -32.27  -1.27  -1.00  -0.76   0.29  -1.21  -2.09  -1.18
                50     2.49  -1.64  -0.13   1.03   0.12   0.98  -0.03   0.91  -0.04
                90     6.77  37.57   0.75   2.66   1.24   1.72   0.98   3.43   0.98
                95     8.60  77.09   0.96   4.12   1.57   2.06   1.29   4.77   1.32
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Abstract.

A spatial generalization of the (from times-series special case well known) Autoregressively
Distributed lag model is defined. Equivalent forms - a Spatial Error Correction model, a Spatial
Bewley model and a Spatial Baardsen model - are considered. As none of these may be
consitently estimated by Ordinary Least Squares, an Instrument Variable estimation procedure
is investigated.



1. Introduction.

Spatial regression has been discussed widely in books dedicated to developments in spatial
econometrics, notably by Anselin (1988) and Anselin and Florax (1995). The consequenses for
estimation and inference of the presence of stable spatial processes has been widely studied
(Haining 1990, Anselin 1988, Bivand 1980, Richardson 1990, Richardson and Hèmon 1981,
Clifford and  Richardson 1985, Clifford, Richardson and Hèmon 1989). A recent study (Fingleton
1999) takes the first steps into analyses of implications of spatial unit roots, spatial cointegration
and spatial Error Correction models.

The present paper contributes to the further development of these topics by introduction of a
general Spatial Autoregressively Distributed Lag (SADL) model and different variants of this.
As none of these models may be consistently estimated by Ordinary Least Squares (OLS), a
consistent Instrument variable (IV) estimation procedure is investigated. The performance of this
estimator is evaluated using Monte Carlo simulations while adressing the impacts of sample size
and controlling for proximity structure.

2. Models for spatial dynamics.

The Spatial Autoregressive (SAR) model was initially studied by Whittle (1954) and has been
used extensively in works by Ord (1975), Cliff and Ord (1981), Ripley (1981), Upton and
Fingleton (1985), Anselin (1988), Griffith (1992), and Haining (1990). The SAR is defined by

y = 'Wy + X�� + �� , ���N(0 , )2I ) ,

in which y is an n×1 vector, X an n×K matrix of exogenous covariates, ' the autoregression
parameter, I the n×n identity matrix, �� an n×1 vector of white noises distributed with variances
)2, and W an n×n proximity matrix defined by Wij = 1 if observation j is assumed to impact
observation i. W may be noncircular, which is the case for the times series variant where Wij =
1 if j = i-1. For the general spatial case, W is generally circular. For example if the sample
consists of a cross-section of n regions W is usually defined by Wij = Wji = 1 if region i and j are
neighbours. As shown by Anselin (1988), circularity of W renders OLS estimation of the
parametres inconsistent. This is in contrast to the times-series special case (and any other non-
circular cases) where OLS provides consistent (although inefficient) estimation.

A Spatial Autoregressively Distributed Lag (SADL) model is defined by respecifying the SAR
as

(1) y = �0 + �1Wy + �0x + �1Wx + ��

where x and y are n×1 vectors, and �0 , �1 , �0 , and  �1 are parametres. We may be more detailed
and specify a SADL(p,q,k) defined by adding spatial lags for y and x up to order p and q, and k
explanatory x variables. In this respect, (1) represents a SADL(1,1,1) model. However, for case
of simplicity, wi will concentrate on the SADL(1,1,1) and shortly denote this SADL, as the
generalization to higher order models is almost obvious: Define L  as the spatial lag operator, i.e.
L (x) = Wx, L2(x) = L (L (x)) = W(Wx) = W2x, and Lq(x) = L ( Lq-1(x))= Wqx.

The SADL specifies how the expectation of yi is formed, in terms of xi and xj ‘s and yj ‘s in



contiguous units. In other words, SADL is a level-to-level local specifikation. A global
specification is given by unconditional expectations on the form E(yi) = y* in (1). Using E(�i) =
0, we have

y* = �0 + �1 y*  + �0 x*  + �1 x*  

hence

y*  = [�0/(1-�1)] + [(�0 +  �1)/(1-�1)] x*  = k0 + k1 x*

where k1 is the global multiplier for y with respect to x, which is defined in the case of �1 being
less than 1, i.e. spatial stationarity (See Fingleton (1999) for a formal treatment of spatial (non-
)stationarity).

Some easy manipulations of (1) provides the equivalent representation 

(2) ��y = �0 + (�1-1)Wy + �0��x + (�0+�1)Wx + ��

where �� = ( I -W ). Further manipulations provide

(3) ��y = �0 + (�1-1)( Wy - Wx) + �0��x + (�0+�1+�1-1)Wx + �� .

Alternative manipulations provide

(4) y = �0/(1-�1) + (�1/(1-�1))��y + �0��x + ((�0+�1)/(1-�1))x - (�1/(1-�1))��x + (1/(1-�1))��
.

The forms (2)-(3)-(4) are algebraically equivalent to (1) but provide different interpretations. (2)
is a spatial generalization of the times-series Baardsen specification, which we will denote the
SBA model. (3) generalizes the Error Correction (EC) model and will be denoted the SEC model.
Finally, (4) is a generalization of the Bewley transfom which we will call the SBE model.

Opposed to the SADL the SBA and the SEC describe the formings of expected local differences
in y as depending on local differences in x and locally lagged values in x. They are distinctive in
that the SBA introduces locally lagged levels in y whereas the SEC introduces the locally lagged
discrepancy between y and x.

3. IV estimation of spatial dynamics models.

None of the specifications (1)-(4) can be estimated using OLS. This is due to the presence of
contemporaneous y values in the variable Wy emerging in some form or another as an
explanatory variable, implying correlation between Wy and ��. For the case of the SAR this is
proved in details in Anselin (1988), whereas Fingleton (1999) provides the proof for the
SEC.Their arguments are directly carried over to the SADL SBA and SBE models. Due to the
aforementioned correlation asymptotically justified methodologies must be applied. Basically,
two estimation methods are provided: The ML-GLS and the IV estimation.

Briefly ML-GLS consists of two steps: First the log likelihood function for y is concentrated to
be a non-analytical function of �1 only. Using some iterative method, the estimate of �1



maximizing the log likelihood function is found. Second, the maximizing estimates for �0, �0 and
�1 are provided using one-step GLS estimators. Any sort of inference is carried out using the
Fisher Information matrix. See Anselin (1988) for details and further references.

IV estimation is base on the idea of finding a variable z which is uncorrelated with �� but
correlated with Wy (or whatever form in y appearing on the right-hand side of (1)-(4) ) and using
this as an instrument variable in a one-step least square estimation. Formally, if we want to
estimate the SADL in (1), we define X = [i Wy x Wx] and Z = [i z x Wx], where i is an n×1
vector of 1's. Defining ��SADL = (�0 �1 �0 �1)’ , the IV estimator is

gSADL = (X’PZX)-1X’PZy

where Pz = Z(Z’Z )-1Z’ . The covariance matrix is provided by

VSADL = )2(X’PzX)-1

with )2 estimated consistently by

s2 = ( y-XgSADL  )’( y-XgSADL )/n .

As a choice for z, Anselin (1988) suggests the lagged value of the prediction of y from an OLS
regression on those variables in X not correlated with ��, i.e. x and Wx. Denoting the predicted
y by y^ , the instrument variable is defined as Wy^ , and the IV estimator is obtained by setting
Z = [i Wy^ x Wx ].

Using y^  for y in occurrences on the right-hand side, IV estimation of the alternative forms (1) -
(4) is easily provided. The choices of X, Z, and dependent variable for (1)-(4) are outlined in
Table 1.

___________________________________________________________________________
Table 1. Choices of X, Z,  and dependent variable.
___________________________________________________________________________
Model X Z dependent variable

(1) SADL [i Wy x Wx] [ i Wy^ x Wx ] y
(2) SBA [i Wy ��x Wx] [ i Wy^ ��x Wx] ��y
(3) SEC [i (Wy-Wx) ��x Wx] [ i (Wy^-Wx) ��x Wx] ��y
(4) SBE [i ��y x ��x] [ i ��(y^) x ��x] y
___________________________________________________________________________

Using the one-to-one correspondence between the parametres of the four models, IV estimators
for ��SADL may be derived from any of the four models upon IV estimation of these, just as the
VSADL is easily derived using for example the delta method (Greene, 2000). Asymptotically, equal
estimates for ��SADL and VSADL will emerge, although they may deviate for a fixed size sample. As
such, the four models are asymptotically equivalent with respect to IV performance. Consequent-
ly, the success of IV in all models depends on the success of IV applied to any model. And -
basically - this success hings on the success of the choice of y^  as an instrument for occurrences
of y in any X matrix. We will investigate this topic using a Monte Carlo based simulation study.
Due to the asymptotic similarity of the four models, a study based on the SADL will suffice.



4. A simulation study.

The focus of our interest is the estimation of the SADL defined in (1). Two central topics must
be adressed:

1. Can �0, �1, �0, and �1 be estimated consistently, using the suggested IV estimator?

2. Can meaningfull inference be derived using the estimated VSADL?

Topic 2. involves inspection of the asymptotic t values for each estimated parameter, defined as

t = (gp-�p)/sp

where sp is the square root of the p’th diagonal element in the estimated VSADL. Further, the
applicability of VSADL for model inference will be adressed by examining the Wald test for model
significanse, defined as

Wald = (gSADL-��SADL)’(VSADL)
-1 (gSADL-��SADL) .

To ensure generality of the study, we will investigate the properties of IV for �1 varying between
0 and 1. The resting parametres, i.e. �0, �0, �1, and )2 will be restricted to 1, as their sign and
magnitude do not provide any problems. Further the impact of varying sample size n will be
investigated. Finally, to avoid restriction of the results to cases covered by any specific W matrix,
a randomization of this matrix will be employed. This randomization is performed by the
following simple rule:

For each of the n(n-1)/2 possible proximity relations: Generate a random number from the U(0,1)
distribution. If this value is higher than a preselected value, d, assign Wij = Wji = 1, otherwise 0.

Full generality is obtained by repeating the study for different values of d.

The full design of the study is described in the following Monte Carlo algorithm:

For n=25, 50, 100 do:
 For d=0.01, 0.05 do:
    For �1 = 0.01, 0.25, 0.5, 0.75, 0.9 do:

Replicate 10,000 times:
Generate �� from n independent N(0,1)
Generate x from n independent U(0,1)
Create a random W using d and the above rule
Row-standardize W (i.e. divide each element with rowsum)
Calculate y = (I-W) -1(i + x + Wx + ��)
Perform IV estimation of SADL
Store estimates, denoted by a0, a1, b0 , and b1
Store t values for the parametres
Store the Wald test

Calculate 5, 10 50, 90, 95 per cent deciles for each stored quantity
Conclude the study by comparing these deciles to their theoretical counterparts.



The results from the Monte Carlo algorithm are collected in Table 2. Many interesting
featuresmay be derived from these results. We briefly outline those of main concern for us:

The estimator a0 is generally downward biased. This bias devreases with increasing sample size.
Further, the bias seems to be larger for a high-density W matrix. The t value is also downward
biased and has a strong tendency towards too short tails as compared to the N(0,1) distribution.
That is, an overtendency to accept the hypothesized H0 value is present. Whereas the bias in the
t value seems to decrease for increased sample size, the short-tail tendency seems to prevail. This
latter prevalence is also unaffected by the density of W. In general, all these problems are
worsened for increasing values of �1.

The estimator a1 as well as its t value is generally upward biased. This bias increases with
increasing density of W, but decreases with increasing sample size. The bias increases with
increasing �1. Further, the t values have shorter tails than the N(0,1) distribution. This empirical
distribution does not vary very much while �1 n and d change.

The estimators b0 and b1 are remarkably stable. The - generally downward - biases are very small,
even for large �1 and are reduced when n increases. Further, the density of W does not impact the
biases. The t values are generally almost unbiased, but their distributions have shorter tails tha
the N(0,1).

The Wald test has a peculiar behaviour: For small sample sizes, it seems to be overstated,
whereas this overstatement reduces and even turns into an understatement with increasing sample
size. This behaviour seems almost unaffected by the size of �1 and the density of W.

For empirical researchers applying the IV estimation methodology, we will suggest to account
for the following features while interpreting estimation results:

- The estimate of �1 is somewhat overstated but its t value is understated.
- The parametres for exogenous variables as well as for spatial lags of these is slighly understated
as well as the corresponding t values. That is, one must not be too strict in rejecting significanse
of these.
- The Wald test for model significanse is somewhat understated for fairly large sample sizes, but
overstated for very small sample sizes. We suspect this feature to carry over to any asymptotic
Wald-type test for model specification, based on the estimated covariance matrix (though this
suspicion is not formally confirmed for any but the model significanse test).

5. An empirical illustration.

(Estimation of a commuting model for 275 Danish municipalities - provided in future version of
the paper)

6. Conclusions.

(Follows in future version of the paper)

References.



Anselin, L. 1988: Spatial Econometrics: Methods and Models. Kluwer.
Anselin, L. and R. Florax (eds.)1995: New Directions in Spatial Econometrics. Springer-
Verlag.
Bivand, R. 1980:A Monte-Carlo Study of Correlation Coefficient Estimation With Spatially
Autocorrelated Observations. Quaestiones Geographicae, 6, 5-10.
Cliff, A. and J. Ord 1981: Spatial Processes: Models and Applications. Pion.
Clifford, P. and S. Richardson 1985: Testing the Association between Two Spatial Processes.
Statistics and Decisions, Supplement no. 2, 155-60.
Clifford, P., S. Richardson. and D. Hémon 1989: Assessing the Significanse of the Correlation
between Two Spatial Processes. Biometrics, 45,, 123-34.
Fingleton, B 1999: Spurious Spatial Regression: Some Monte Carlo Results with a Spatial
Unit Root and Spatial Cointegration. Journal of Regional Science, 39, 1-19.
Greene, W. 2000: Econometric Analysis. Prentice-Hall.
Griffith, D. 1992: Simplifying the Normalizing Factor in Spatial Autoregressions for Irregular
Lattices. Papers in Regional Science, 71 71-86.
Haining, R. 1990: Spatial Data Analysis in the Social and Environmental Sciences. Cambrid-
ge University Press.
Ord, J. 1975: Estimation Methods for Models of Spatial Interaction. Journal of the American
Statistical Association, 70, 120-6.
Richardson, S. 1990: Some Remarks on the Testing of Association between Spatial Processes.
In D. Griffith (ed.): Spatial Statistics: Past, Present and Future. Image. Pp. 277-309.
Richardson S. and D. Hémon 1981: On the Variance of the Sample Correlation between Two
Independent Lattice Processes. Journal of Applied Probability, 18, 943-8.
Ripley, B. 1981: Spatial Statistics. Wiley.
Upton G. and B. Fingleton 1985: Spatial Data Analysis by Example, vol. 1. Wiley.
Whittle, P. 1954: On Stationary Processes in the Plane. Biometrika, 41, 434-49.



Table 2. Results of Monte Carlo study.
_____________________________________________________________________________________
Deciles for theoretical distribution:   5     10    50    90    95
                              N(0,1):  -1.61 -1.21  0     1.21  1.61
                               32(4):   0.71  1.06  3.36  7.78  9.49
_____________________________________________________________________________________
�1   n     d    dec.  Wald    a0     t(a0)  a1     t(a1)  b0     t(b0)  b1     t(b1)

0.01 25    0.01  5     0.04  -8.31  -1.47  -7.51  -1.14  -2.14  -1.24  -8.30  -1.11
                10     0.15  -3.12  -1.06  -3.55  -0.86  -0.80  -0.90  -3.67  -0.81
                50     1.79   0.72  -0.07   0.02   0.00   1.01   0.00   0.98   0.00
                90     6.88   6.65   0.77   3.37   0.82   2.83   0.96   4.14   1.01
                95     9.42  12.32   1.03   7.21   1.07   4.09   1.31   8.17   1.45

           0.05  5     0.05 -10.02  -1.39  -7.88  -1.20  -1.91  -1.31 -10.17  -1.17
                10     0.17  -3.88  -1.01  -3.88  -0.91  -0.72  -0.96  -4.41  -0.84
                50     1.92   0.76  -0.05  -0.03  -0.02   0.99  -0.01   0.96  -0.01
                90     7.06   7.10   0.86   3.97   0.82   2.68   1.00   4.63   1.00
                95     9.42  13.52   1.14   8.10   1.07   3.83   1.40   9.09   1.44

     50    0.01  5     0.06  -7.05  -1.35  -6.20  -1.09  -1.06  -1.23  -6.34  -1.00
                10     0.20  -2.65  -1.01  -3.07  -0.83  -0.24  -0.91  -2.88  -0.76
                50     1.82   0.79  -0.07   0.01   0.00   0.99   0.00   1.02   0.00
                90     5.77   5.64   0.75   3.09   0.83   2.26   0.91   3.30   1.02
                95     7.69  10.02   0.96   6.04   1.08   3.01   1.23   5.90   1.40

           0.05  5     0.06 -11.12  -1.31  -7.84  -1.12  -0.85  -1.13  -9.01  -1.07
                10     0.20  -4.17  -0.97  -3.83  -0.87  -0.14  -0.96  -3.82  -0.82
                50     1.87   0.79  -0.05   0.00   0.00   0.98  -0.02   1.00   0.00
                90     6.05   7.09   0.81   4.04   0.81   2.10   0.92   4.39   0.98
                95     7.84  12.84   1.07   8.83   1.04   2.74   1.27   8.72   1.39

    100    0.01  5     0.10  -5.50  -1.32  -4.81  -1.14  -0.30  -1.26  -4.99  -1.02
                10     0.31  -2.01  -1.01  -2.39  -0.90   0.14  -0.96  -2.21  -0.81
                50     1.98   0.83  -0.07   0.03   0.01   0.99  -0.01   1.07   0.04
                90     5.78   4.77   0.80   2.48   0.87   1.83   0.96   2.79   1.07
                95     7.47   8.52   1.03   5.09   1.12   2.25   1.25   4.83   1.46

           0.05  5     0.06 -13.13  -1.23  -9.43  -1.10  -0.24  -1.24  -9.36  -1.02
                10     0.20  -5.10  -0.92  -4.53  -0.85   0.22  -0.93  -4.35  -0.78
                50     1.84   0.84  -0.04  -0.01   0.00   0.98  -0.02   1.11   0.02
                90     5.60   8.18   0.81   4.56   0.81   1.77   0.95   4.54   0.98
                95     7.35  16.02   1.02   9.75   1.05   2.19   1.28   9.32   1.34



(table 2 continued)

�1   n     d    dec.  Wald    a0     t(a0)  a1     t(a1)  b0     t(b0)  b1     t(b1)

0.25 25    0.01  5     0.06 -11.53  -1.60  -5.89  -1.01  -2.13  -1.37  -7.66  -1.23
                10     0.18  -4.53  -1.20  -2.61  -0.75  -0.87  -1.00  -3.44  -0.92
                50     1.96   0.48  -0.14   0.37   0.06   0.98  -0.01   0.88  -0.03
                90     7.16   7.26   0.67   3.39   0.97   2.83   0.96   3.81   1.00
                95     9.67  14.28   0.88   6.57   1.29   4.02   1.32   6.47   1.41

           0.05  5     0.07 -14.21  -1.55  -6.56  -1.05  -1.82  -1.41  -8.72  -1.25
                10     0.20  -5.85  -1.16  -3.06  -0.89  -0.73  -1.03  -4.13  -0.93
                50     2.05   0.45  -0.12   0.38   0.06   0.96  -0.02   0.92  -0.02
                90     7.31   8.27   0.72   3.85   0.97   2.63   0.97   4.33   1.02
                95     9.80  15.88   0.97   7.55   1.26   3.63   1.37   7.74   1.43

     50    0.01  5     0.08  -8.16  -1.48  -4.40  -1.02  -0.88  -1.36  -5.10  -1.22
                10     0.26  -2.97  -1.17  -2.10  -0.80  -0.23  -1.03  -2.32  -0.93
                50     2.04   0.69  -0.10   0.30   0.03   0.98  -0.02   0.96  -0.01
                90     6.32   6.23   0.71   2.55   0.99   2.23   0.93   3.08   0.99
                95     8.32  11.24   0.91   5.15   1.28   2.99   1.25   4.68   1.35

           0.05  5     0.07 -12.94  -1.41  -7.40  -1.05  -0.82  -1.35  -7.39  -1.19
                10     0.24  -5.58  -1.07  -3.42  -0.81  -0.35  -1.02  -3.52  -0.92
                50     1.99   0.58  -0.10   0.33   0.04   0.97  -0.02   0.96  -0.01            
                90     6.34   9.11   0.75   3.65   0.96   2.15   0.98   4.04   0.98
                95     8.34  18.12   0.96   7.21   1.22   2.75   1.28   7.57   1.37

    100    0.01  5     0.20  -4.70  -1.51  -3.14  -1.08  -1.18  -1.41  -3.15  -1.25
                10     0.46  -1.85  -1.19  -1.36  -0.87   0.19  -1.07  -1.55  -0.98
                50     2.26   0.80  -0.08   0.28   0.03   0.98  -0.02   1.05   0.03
                90     6.12   4.90   0.80   1.95   1.06   1.82   0.97   2.60   1.04
                95     7.85   8.47   1.00   3.37   1.33   2.24   1.27   3.48   1.38

           0.05  5     0.08 -14.75  -1.33  -8.01  -1.05  -0.14  -1.29  -7.32  -1.14
                10     0.27  -6.31  -1.03  -3.59  -0.81   0.23  -1.00  -3.62  -0.88
                50     2.01   0.70  -0.06   0.30   0.02   1.00   0.00   1.06   0.02
                90     5.83   9.77   0.76   4.08   0.94   1.76   0.95   4.09   0.97
                95     7.52  19.76   0.98   7.92   1.21   2.17   1.27   7.70   1.31



(table 2 continued)

�1   n     d    dec.  Wald    a0     t(a0)  a1     t(a1)  b0     t(b0)  b1     t(b1)

0.50 25    0.01  5     0.08 -13.69  -1.76  -3.64  -0.91  -1.72  -1.51  -5.55  -1.44
                10     0.24  -5.77  -1.36  -1.56  -0.67  -0.82  -1.14  -2.94  -1.10
                50     2.17   0.28  -0.20   0.65   0.12   0.90  -0.05   0.84  -0.05
                90     7.57   7.69   0.58   2.72   1.18   2.70   0.90   3.68   0.96
                95     9.97  15.84   0.74   4.89   1.52   3.69   1.25   5.23   1.36

           0.05  5     0.08 -17.92  -1.65  -4.75  -0.96  -1.61  -1.51  -7.37  -1.46
                10     0.25  -8.34  -1.28  -2.03  -0.72  -0.67  -1.12  -3.58  -1.08
                50     2.24   0.18  -0.16   0.68   0.11   0.91  -0.05   0.83  -0.04
                90     7.66   9.89   0.64   3.42   1.14   2.59   0.95   0.83   1.00
                95    10.32  19.47   0.86   6.16   1.45   3.56   1.30   2.35   1.40

     50    0.01  5     0.13  -9.00  -1.72  -2.98  -0.97  -0.73  -1.52  -3.55  -1.38
                10     0.33  -3.49  -1.33  -1.27  -0.75  -0.18  -1.14  -1.78  -1.09
                50     2.21   0.57  -0.15   0.59   0.09   0.97  -0.02   0.95  -0.02
                90     6.76   6.91   0.66   2.11   1.18   2.24   0.92   3.04   0.95
                95     8.79  13.22   0.86   3.68   1.50   2.90   1.22   4.03   1.26

           0.05  5     0.07 -12.94  -1.41  -7.40  -1.05  -0.82  -1.35  -7.39  -1.19
                10     0.24  -5.58  -1.07  -3.42  -0.81  -0.15  -1.02  -3.52  -0.92
                50     1.99   0.58  -0.10   0.33   0.04   0.97  -0.01   0.96  -0.01
                90     6.34   9.11   0.75   3.65   0.96   2.15   0.98   4.05   0.98
                95     8.34  18.12   0.97   7.22   1.22   2.75   1.28   7.57   1.37

    100    0.01  5     0.27  -4.62  -1.65  -1.95  -1.02  -0.05  -1.51  -2.09  -1.41
                10     0.56  -1.89  -1.30  -0.81  -0.82   0.25  -1.16  -0.97  -1.11
                50     2.42   0.74  -0.11   0.54   0.05   0.99  -0.01   1.02   0.01
                90     6.61   5.42   0.76   1.56   1.20   1.81   0.98   2.57   1.00
                95     8.28   9.36   0.94   2.44   1.50   2.17   1.27   3.17   1.32

           0.05  5     0.12 -20.95  -1.42  -5.74  -0.99  -0.11  -1.40  -6.85  -1.28
                10     0.35  -9.76  -1.11  -2.48  -0.77   0.24  -1.08  -3.39  -1.00
                50     2.16   0.31  -0.10   0.66   0.08   0.97  -0.04   0.91  -0.03
                90     6.12  11.63   0.73   3.84   1.06   1.72   0.94   3.59   0.95
                95     7.68  22.53   0.94   6.99   1.34   2.06   1.24   5.73   1.31



(table 2 continued)

�1   n     d    dec.  Wald    a0     t(a0)  a1     t(a1)  b0     t(b0)  b1     t(b1)

0.75 25    0.01  5     0.10 -17.02  -1.87  -1.69  -0.88  -1.34  -1.61  -3.72  -1.61
                10     0.31  -7.76  -1.49  -0.42  -0.66  -0.64  -1.24  -2.17  -1.26
                50     2.51   0.06  -0.24   0.86   0.17   0.91  -0.05   0.86  -0.05
                90     8.30   9.06   0.57   2.03   1.37   2.58   0.95   3.67   0.97
                95    10.98  18.86   0.78   3.23   1.73   3.37   1.30   4.85   1.32

           0.05  5     0.08 -17.93  -1.65  -4.75  -0.96  -1.61  -1.51  -7.37  -1.46
                10     0.25  -8.35  -1.27  -2.03  -0.72  -0.67  -1.12  -3.59  -1.08
                50     2.24   0.18  -0.17   0.68   0.11   0.91  -0.05   0.83  -0.04
                90     7.66   9.89   0.64   3.41   1.14   2.59   0.95   4.17   1.00
                95    10.23  19.47   0.87   6.16   1.44   3.56   1.30   6.30   1.40

     50    0.01  5     0.17 -11.51  -1.83  -1.29  -0.92  -0.50  -1.63  -2.16  -1.56
                10     0.43  -4.47  -1.43  -0.26  -0.74  -0.08  -1.23  -1.14  -1.25
                50     2.47   0.46  -0.16   0.81   0.11   0.96  -0.03   0.96  -0.02
                90     7.51   8.08   0.67   1.61   1.31   2.13   0.93   2.92   0.94
                95     9.63  15.73   0.85   2.51   1.71   2.67   1.22   3.78   1.24

           0.05  5     0.11 -29.39  -1.61  -3.13  -1.66  -0.54  -0.94  -4.60  -1.51
                10     0.32 -12.95  -1.25  -1.13  -1.26  -0.06  -0.72  -2.37  -1.14
                50     2.33  -0.15  -0.15   0.88  -0.15   0.95   0.12   0.91  -0.04
                90     7.00  14.90   0.68   2.74   0.68   2.04   1.21   3.50   0.97
                95     9.06  30.19   0.88   4.97   0.88   2.57   1.56   4.96   1.30

    100    0.01  5     0.32  -5.60  -1.75  -0.75  -1.04   0.05  -1.63  -1.35  -1.63
                10     0.63  -2.60  -1.38  -0.06  -0.84   0.30  -1.25  -0.61  -1.25
                50     2.60   0.73  -0.10   0.77   0.05   1.00   0.00   1.00   0.00
                90     7.07   6.68   0.78   1.33   1.32   1.75   1.00   2.42   1.03
                95     8.92  12.13   0.99   1.78   1.67   2.04   1.29   2.97   1.34

           0.05  5     0.16 -33.15  -1.54  -3.80  -0.98  -0.04  -1.52  -4.91  -1.43
                10     0.41 -15.22  -1.23  -1.51  -0.77   0.26  -1.16  -2.53  -1.13
                50     2.31  -0.04  -0.11   0.87   0.09   0.97  -0.04   0.95  -0.02
                90     6.54  17.92   0.75   3.02   1.20   1.71   0.95   3.41   0.96
                95     8.39  35.44   0.95   5.26   1.50   2.06   1.25   4.79   1.28



(table 2 continued)

�1   n     d    dec.  Wald    a0     t(a0)  a1     t(a1)  b0     t(b0)  b1     t(b1)

0.90 25    0.01  5     0.12 -29.12  -1.88  -0.35  -0.87  -1.13  -1.65  -3.11  -1.66
                10     0.36 -12.77  -1.51   0.30  -0.66  -0.53  -1.26  -1.82  -1.29
                50     2.68  -0.28  -0.24   0.97   0.19   0.92  -0.04   0.87  -0.04
                90     8.66  12.14   0.60   1.66   1.41   2.44   0.99   3.46   0.98
                95    11.47  24.67   0.78   2.50   1.80   3.16   1.32   4.58   1.32

           0.05  5     0.11 -53.40  -1.81  -1.48  -0.93  -1.11  -1.67  -4.48  -1.65
                10     0.35 -24.89  -1.44  -0.21  -0.69  -0.52  -1.24  -2.41  -1.25
                50     2.65  -1.34  -0.21   1.02   0.19   0.92  -0.05   0.85  -0.05
                90     8.53  22.07   0.65   2.27   1.40   2.42   1.02   3.89   1.03
                95    11.29  46.91   0.87   3.77   1.75   3.14   1.40   5.43   1.41

     50    0.01  5     0.19 -18.05  -1.82  -0.21  -0.92  -0.36  -1.70  -1.64  -1.67
                10     0.48  -7.60  -1.44   0.34  -0.72  -0.01  -1.29  -0.91  -1.29
                50     2.65   0.26  -0.16   0.93   0.12   0.95  -0.04   0.96  -0.02
                90     7.67  11.53   0.68   1.38   1.39   2.01   0.98   2.79   0.98
                95     9.85  22.40   0.86   1.91   1.76   2.45   1.29   3.50   1.28

           0.05  5     0.13 -64.00  -1.67  -1.90  -0.91  -0.50  -1.59  -3.88  -1.57
                10     0.37 -28.86  -1.31  -0.44  -0.69  -0.05  -1.20  -2.07  -1.23
                50     2.45  -1.53  -0.16   1.03   0.15   0.95  -0.05   0.84  -0.06
                90     7.48  26.79   0.67   2.49   1.28   1.98   0.95   3.40   0.96
                95     9.56  56.59   0.88   4.23   1.64   2.43   1.28   4.51   1.30

    100    0.01  5     0.34 -10.21  -1.79  -0.01  -1.02   0.11  -1.69  -0.98  -1.67
                10     0.63  -5.28  -1.42   0.40  -0.82   0.32  -1.29  -0.42  -1.32
                50     2.68   0.57  -0.09   0.92   0.06   0.99  -0.01   0.99  -0.01
                90     7.41  10.29   0.79   1.26   1.39   1.70   1.03   2.36   1.03
                95     9.34  18.27   0.98   1.53   1.75   1.96   1.34   2.83   1.33

           0.05  5     0.18 -61.02  -1.56  -3.04  -0.98   0.04  -1.60  -3.66  -1.52
                10     0.47 -32.27  -1.27  -1.00  -0.76   0.29  -1.21  -2.09  -1.18
                50     2.49  -1.64  -0.13   1.03   0.12   0.98  -0.03   0.91  -0.04
                90     6.77  37.57   0.75   2.66   1.24   1.72   0.98   3.43   0.98
                95     8.60  77.09   0.96   4.12   1.57   2.06   1.29   4.77   1.32

_____________________________________________________________________________________


