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Abstract 

In this paper we propose a reflection on the relevance of the concept of unit roots in the 

spatial dimension. The specialised literature has not paid excessive attention to this, even though its 

appearance meant changes in econometric methodology. In the paper we highlight that this is not an 

intuitive concept and that it does not adapt well to the type of models usually employed in the 

spatial context. Subsequently we focus our attention on the topic of deterministic trends associated 

with the scale factor that intervenes in autoregressive spatial processes. The incidence of this type of 

element results in a far from negligible risk of spurious correlation that should be taken into 

account. 
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1.- Introduction 

In a recent paper, Fingleton (1999) shows his surprise at the scant impact that the concepts 

of integration and cointegration have had in the field of spatial econometrics: ‘... it is apparent that 

some new developments that have introduced added rigor into mainstream econometrics, most 

notably unit roots and cointegration, have not had counterparts in the spatial regression literature’ 

(p.1). Other colleagues with a traditional econometric background show similar surprise. Such a 

reaction can be understood because, even if we admit a certain methodological immaturity in spatial 

econometrics, it is difficult to understand why a concept that has substantially altered the way of 

carrying out Econometrics has hardly been reflected in the spatial field. From my point of view, I 

believe there are objective reasons to explain the situation, including the following: 

(a)- The concept of integration is developed in a univariate context, but does not adapt well to the 

multivariate scenario of the spatial dimension. 

(b)- The spatial dynamic shows certain peculiarities with respect to the temporal, among which 

instantaneousness can be highlighted. 

(c)- The theoretical relevance of this subject in the spatial dimension, to say the least, still needs to 

be demonstrated. 

It must be remembered in relation to the last point that, although the problem of unit roots is 

already present in the econometric literature of the seventies (the antecedents date back to Yule, 

1926), we have to wait until the work of Nelson and Plosser (1982) for the question to gain 

prominence. In this work it is shown that the majority of economic series have unit roots and that 

this fact is relevant for macroeconomic analysis. After them, this type of literature really took off, 

so it would not be exaggerated to talk about a before and after Nelson and Plosser. However, in the 

field of spatial regression literature, nothing remotely similar has occurred, given that not even the 

concept of integration seems evident. 

The object of this paper is to take up the discussion proposed by Fingleton in the work 

mentioned above, adopting a slightly more critical position. In section two the fundamental 

concepts related to the hypotheses of unit roots and cointegration are analysed with a view to their 

application in a spatial context. The conclusions reached in this section are not excessively 

favourable to this supposition. In the third section we present the results of a small simulation 

designed around the concept of spatial deterministic trend. The work finishes with a section of 

conclusions and final recommendations. 
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2.- Spatial Unit Roots and Spurious Correlation 

The main characteristic of an integrated time series is precisely that it is obtained by 

integrating the contemporary noise with the whole set (possibly infinite) of previous noises. That is: 

 t);yyy tjttttt ∀σε∑ ε=⇒ε+= = −−
2

0j1 iidN(0,~  (1) 

which results in erratic series whose variance is not stationary given that it grows with time 

(V(yt)=σ2t). The memory of these processes is infinite (that is Cov(yt;yt-s)=σ2(1-s/t)) so that any 

shock will have permanent effects on the series. The consequences are not limited to non-

stationarity and non-ergodicity but extend to essential aspects both of the Law of Large Numbers 

and the Central Limit Theorem, not applicable in these circumstances. 

The spatial dimension introduces some difficulties into the previous discussion, as is shown 

in the seminal work of Fingleton(1999). It is illustrative that the first problem that the author is 

faced with is that of the specification of a data generating process (DGP) in space which permits the 

inclusion of a unit root. The solution proposed is well elaborated but not particularly intuitive: ‘To 

avoid circularity in the spatial context, a version of matrix W is used which has zeros defining an 

unconnected central cell, just as the time series analogy M1,T=0’ (p.5). In the work a regular lattice 

is used with a variable number of regional units and a contiguity matrix (row standardised) that 

reflects rook-type movements. The introduction of an unconnected central cell (‘... the unconnected 

central cell is defined by setting Wij=0 for i=(n+1)/2, j=1,...,n’ p.5) breaks with the principle of 

symmetry in the weight matrix (not essential). Furthermore, and more importantly, it enlarges the 

range of variation of the autoregressive parameter from the interval 11 <<−
− ρλ )(M , (relevant under 

the hypothesis of circularity) to ηρλ +<<−
− 11

)(M  with λ )(M −  being the highest negative 

eigenvalue of W and η a strictly positive factor (it can be demonstrated that η becomes smaller as 

the size of the lattice system increases). The final consequence is that the value 1 is no longer a 

singularity point of the matrix W and can, therefore, be used in the simulation of the spatial 

autoregressive process (SAR): 

 [ ] );Iyyy IBWW σεε=ερ−=⇒ε+ρ= −− 211 N(0,~  (2) 

Making ρ equal to 1 in the previous expression, we obtain what could be interpreted as a 

spatial random walk (SRW), equivalent to that specified in (1) for the time dimension. 
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However, in this case I think that between expressions (1) and (2) the differences 

predominate over the similarities. To illustrate this question we are going to use the system shown 

in Figure 1. 

Figure 1: A basic regional system. 

 

The contiguity matrix obtained from Fingleton’s proposal, using region 3 as unconnected, is: 
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The highest eigenvalues are 0.76 (positive) and –0.50 (negative), so that the admissible 

range of variation of the parameter ρ in equation (2) becomes (-2.0000; 1.3203). If we make ρ=1, 

we obtain: 

 ε+=ε+ρ= yyy LW  (3) 

with yL= Wy being the spatial lag of the series y. The reduced form of the latter system of equations 

can be expressed as: 
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The next question is to verify that the series is centred on zero (Ey=0) and is heteroskedastic 

(making σ2=1 we obtain V(y1)=8.39, V(y2)=6.06, V(y3)=1, V(y4)=6.17, V(y5)=3.77). Fingleton 

(1999) also advises that on increasing the number of regions all the indicators associated with the 

variance grow as well. That is to say, equation 3 replicates (at least in its formal aspect) the typical 

structure of a random walk and produces series with symptoms of integration. 
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However, it is inevitable to point out that the reduced form obtained for the SRW of (3) has 

little to do with the mechanism of accumulation of shocks characteristic of the temporal case 

(developed within the triangular structure of the system of equations of the reduced form). The 

variance is heteroskedastic, but its relationship with the sample size, or with the position of each 

region in the system, is not at all evident. It is true that, as we add new regions, there is a 

progressive increase in the variances associated with the variables of the SRW. Nevertheless, the 

growth shown by the variance indicators is vastly superior to that of the sample size (the proportion 

in Fingleton’s work is approximately four to one). 

These observations raise doubts about the interpretation of the DGP specified in (3), above 

all because what have been understood as symptoms of integration also admit other types of 

interpretations. For example, SAR processes are heteroskedastic by definition, whether or not there 

is a unit root in the equation. Furthermore, the explosive behaviour shown by the variance 

indicators can be explained by recourse to the diagonalisation of the contiguity matrix. Effectively, 

this matrix (square though, as it has been specified, asymmetric) can be decomposed into: 

 QQ∆QΛIQWIBQQΛW 111 −−− =ρ−=ρ−=⇒= )(  (4) 

The covariance matrix of vector y of expression (2) can be expressed as: 

 ')(')()()y(V Q∆Q'Q∆QQ∆Q'Q∆QBB' 11121111212 −−−−−−−−
σ=σ=σ=  (5) 

The variance of observation yr is a quadratic form on the matrix (Q’Q)-1: 

 q)(q)y(V *'
r

*
rr Q'Q 12 −

σ=  (6) 

with 







−−−

=
λρλρλρ R

Rrrr*
r

qqq
q

111 2

2

1

1 …  being the rth row of matrix Q∆-1, where qrs is the 

element of row r and column s of matrix Q. Developing this quadratic form we obtain: 

 ( )( )∑
λρ−λρ−

σ=∑σ=
n;m

mn
nm

nrmr
mn

n;m

*
nr

*
mrr m

qq
mqq)y(V

11
22  (7) 

with mmn the element of row m and column n of matrix (Q’Q)-1. If we maintain ρ=1 at the same 

time as we increase the sample size, one of the roots will approximate to 1 from the right (for 

example, the pth: 1→λ p ), and the final result will be a group of variances with a tendency to 

become explosive. 

A simpler solution consists of opting not to standardise the contiguity matrix, following the 

observation of Kelejian and Robinson (1992) when they criticise the interpretation of ρ in (2) as an 
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autocorrelation coefficient. In accordance with their reasoning, there is no need to impose 

restrictions on this parameter, except those related to the exclusion of the R singularity points 

associated with the contiguity matrix. The parametric space of the coefficient becomes the real line, 

excluding the R singularity points. Specifically, the probability that one of these discontinuities is 

located on the point ρ=1 is remote, so it is not necessary to alter the usual specification. 

This proposal solves the formal aspect of the problem, though it does not dissipate the 

doubts with respect to the interpretation of the SRW of (3) in the spatial dimension. For example, 

going back to system of Figure 1 and using a first order binary contiguity matrix, the reduced form 

associated with the SRW is: 
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Examining the structure of this system of equations, it becomes difficult to even think about 

seeking something comparable to a spatial stochastic trend. Another aspect to be considered is the 

evolution of the variance when there are changes in the sample size or in parameter ρ. In this case 

the results are simpler because matrix W maintains its symmetry and its eigenvectors are 

orthogonal. The covariance matrix of (5) simplifies as: 

 ')y(V Q∆Q 22 −σ=  (8) 

and the variance of observation r reduces to: 

 
( )

∑
−
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1 λρ
σ  (9) 

It is not easy to determine the behaviour of this ratio, though some evidence can be used. In 

the first place, the sum of the terms of the numerator is equal to 1 because the eigenvectors are 

orthogonal ( 1
1

2 =∑
=

R

m
mrq ). Furthermore, on excluding the singularity points of W, all the denominator 

terms are finite at the same time as their sum is limited (for ρ=1 it can be verified that 

( ) RSR
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consequence is that the variance of (9) is not a function of R. In reality, the determining element of 

this variance is the proximity of ρ to one of the singularity points of W. 

To sum up, my position on the real incidence of the problem of stochastic trends in a context 

of spatial series is one sceptic. It is true that there are symptoms that could be related to the 

phenomenon of unit roots, though not exclusively with it. In fact, there are other types of arguments 

that offer an equally satisfactory explanation. 

In the analysis of time series it is convenient to pay attention also to the problem of 

deterministic trends because they produce similar results. Frequently, the profiles of an integrated 

series with drift and of a stationary series around a linear trend tend to get confused, although the 

statistical implications of one or the other type of process are very different. This requires the 

discussion about the stochastic structure that underlies the series to be flexible enough to fit 

different specifications of the DGP (Maddala and Kim, 1998). 

The situation in a context of spatial series is peculiar because, as has been discussed, the root 

unit hypothesis may be questioned and the concept of deterministic trend has never achieved 

excessive popularity. One of the best-known models in this area is that of trend surfaces (Ripley, 

1981) but, in any case, it must be recognised that the proposals are scarce, perhaps because their 

usefulness as a modelling tool has been quite limited. 

Throughout this work we are going to use a different sense of the concept of spatial trend. 

To be exact, we are going to link this term to the non-stochastic component associated with the 

scale of a spatial autoregressive process. If we introduce a common scale factor for all the regions 

into the SAR of expression (2): 

 [ ] ε+δ=ε+=ε+ρ−=⇒ε+ρ+= −−− BBδδWIWδ 1*11 l*)(yyy  (10) 

with δ’=[ δ, δ, ..., δ]  of the order (Rx1), δ*=B-1
δ y l*=B-1l and l*=B-1l, and l is a unit vector also of 

order (Rx1). The component δ (or δ* in the reduced form) is non-stochastic and plays a role similar 

to a trend on the time axis.  

It must be remembered that, although the scale factor included in the structural form is the 

same for all regions (δ), the expected value of the series changes for each observation. Series (10) 

will not be mean stationary (Ey=δl*) unless the scale and/or the autoregressive parameter are zero 

(another possibility is that the series is a spatial moving average in which case it will always be 

mean stationary). This trending factor, δl*, is the fundamental path of the series through space 

around which an autoregressive component centred on zero (E[B-1
ε]=0) is superimposed. The sum 
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of both produces the series that is finally observed, y. That is to say, the first component seems to 

bring together the typical features of a trend. 

Apart from the above, the aspect that has most interested me with respect to this factor is 

that its presence, in SAR type series, leads naturally to the concept of spurious regression. Granger 

and Newbold (1974) begin their famous article saying that ‘It is very common to see reported in 

applied econometric literature time series regression equations with an apparently high degree of 

fit, as measured by the coefficient of multiple correlation R2 or the corrected coefficient R2 , but an 

extremely low value for the Durbin-Watson statistic. We find it very curious that whereas virtually 

every textbook on econometric methodology contains explicit warnings of the dangers of 

autocorrelated errors, this phenomenon crops up so frequently in well-respected applied work. (...). 

However, we will suggest that cases with much less extreme values may well be entirely 

spurious.’(p.111). 

The panorama that we find in a spatial context presents many similarities to that described 

by Granger and Newbold. Here also it is frequent to find applications with a good fit and clear 

symptoms of autocorrelation. The usual practice consists of reusing these indications to purge the 

starting relationship, modifying the dynamic structure of the error term or that of the equation itself. 

It is convenient to highlight that a model with evident symptoms of misspecification is rarely 

simply discarded, but rather, first, every attempt is made to correct these symptoms. This stance of 

absolute confidence in the theoretical specification is not good and can lead to statistically irrelevant 

or meaningless regressions in which the mechanism of common trends becomes relevant. 

Let us suppose, for simplicity’s sake that we are using a linear relationship between two 

variables, y1 and y2 such as the following: 

 y1r = α + βy2r+ ur (11) 

These variables have been generated by unconnected SAR processes: 
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The terms ε1 and ε2 are white noises ( [ ]Iσε 2
jj 0,N~ ) mutually independent. Given that the 

variables y1 and y2 are not related, the estimation of an equation like that of (11) should corroborate 

the hypothesis of a lack of relationship, accepting that β=0. However, the result will habitually be 
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the opposite when we introduce certain combinations of parameters. To prove this we only need to 

observe that the correlation coefficient between the two variables: 

 
( )( )

( ) ( )∑ −∑ −

∑ −−
=

rr

r rr

yyyy

yyyy
r

rr
yy

2211
22

2211
21

 (13) 

tends to unity when both share the same spatial deterministic trend. Introducing the following 

matrix notation: 

 ( )( ) [ ] [ ]yy 22112211 −−=∑ −− y'yyyyyr rr  

 ( ) [ ] [ ] 212 ,j;y'yyy
jjjjr jjr =−−=∑ − yy  

the probabilistic limit of (13) can be expressed as: 

 
[ ][ ]

[ ][ ] [ ] [ ])/Rplim()/Rplim(

/Rplim(
plim

2211

22

21
2211

11

yyyy

yy

−−−−

−−
=

yyyy

)yy
r ''

'

yy  (14) 

Moreover, it could be shown that: 

 [ ] [ ] )b,b(yy '
212122 Cov)/Rplim( 11 δδ=−− yy  (15a) 

 [ ][ ] c)b(yy jjjjjj
'

jj σδ 22 V)/Rplim( +=−− yy  (15b) 

where lb jj B 1−= ; ( ) ( )[ ]∑ −−∑ −=
−−

r rrj rjrj q
Rc λρλρ 111 222  and qr is the element r of the vector 

l'q Q= , with Q the matrix of eigenvectors of W. Introducing (15a) and (15b) into (14): 

 
c)b(c)b(

)b,b(
r yy

2
2
22

2
21

2
11

2
1

2121
21 VV

Covplim
σ+δσ+δ

δδ=  (16) 

The convergence limit of both variables, will be different to zero unless Cov(b1,b2)=0 (or 

δj=0, j=1,2). It will, in fact take values close to unity when the characteristics of the two SAR 

processes are similar. For example, if we make δj=δ and ρj=ρ, then bj=b, V(bj)=V(b), σj
2=σ2 and 

Cov(b1,b2)=V(b) so that the probabilistic limit of the coefficient is reduced to: 

 
))b(V/c()/(

r yy
δσ+

=
221 1

1plim  (17) 

which will tend to unity as the scale factor (δ)  increases with respect to the noise variance (σ2). 
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3.- Some Monte Carlo evidence 

The graphs included in Figure 1 can be useful to evaluate the real incidence of the problem 

posed in the previous section. These graphs come from a small simulation exercise on whose results 

I will now comment. During the experiment pairs of series with an SAR structure have been 

generated, replicating the equations of (12). The vectors εj, mutually independent, have been 

obtained from a gaussian distribution centred on zero and with unit variance. During the exercise, 

different sample sizes and scale factors, as well as distinct degrees of spatial dependence have been 

simulated. Then, each pair of series has been related through a linear model which has been 

estimated by LS. In the graphs of Figure 1 the average R2, obtained after 1000 iterations, for each 

pair of parameters is represented. The horizontal axis of each graph corresponds to the value of the 

autoregressive coefficient used in the SAR process of the right-hand side variable of the regression, 

while that corresponding to the left-hand side is represented on the vertical axis. 

The results shown in Figure 1 indicate that passing from a scale factor of zero in both 

variables to a scale of one hundred has a strong impact on the coefficient of determination. In the 

first case, the R2 rarely surpasses 0.05 while in the second values superior to 0.80 are the most 

habitual. That is to say, the risk of spurious correlation is minimum when no scale factor intervenes 

in the DGP of the variables. However, this risk increases dramatically when high scale series are 

combined. 

The surprising aspect of the simulation is that a perverse behaviour is observed in the sample 

size. Indeed, for a scale of one hundred, and as the sample size increases, the shape of the graphs 

tends to get concentrated on the cross-diagonal around which the pairs of parameters of the same 

sign and close in value are situated. That is, it is the combinations of parameters that lead to the 

result of (17). As was pointed out above, the average correlation coefficient that is observed for this 

type of series tends to unity as the scale increases. However, the graphs also indicate that the risk of 

spurious correlation is higher for small sized samples where regressions with an R2 coefficient 

superior to 0.80 predominate. This result is indeed peculiar because, in a context of time series, the 

risk of spurious correlation tends to grow with the sample size. 

If the risk of falling into artificial regressions exists, as is shown in Figure 1, the important 

question is how to detect this situation. Granger and Newbold (1974), in a time context, offer the 

clue of the Durbin-Watson statistic, indicating that a high value of this is synonymous with 

misspecification. Nevertheless, this advice is not very useful in a spatial context where the habitual 

practice is to adjust the specification to accommodate these symptoms of misspecification. 



 10 

FIGURE 1 

In any case, and following Granger and Newbold, in the simulation we have obtained some 

specification tests to examine whether their information can be made use of in any way. 

Specifically, we have analysed the following tests: 
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SARMA Test: 
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with σ̂ 2  and β̂ being the LS estimation (or ML) estimators and û  the corresponding residual series, 

σ+=β−ρ ˆ/)ˆˆ(ˆ 2
1 β'βTJR WMWXX'  and M the matrix (I-X(X’X)-1X’). As is well-known, the 

asymptotic distribution of the standardised Moran’s I is an N(0,1); the three Lagrange Multipliers 

that follow (LM-LAG, LM-EL and LM-LE) have an asymptotic )(12χ  distribution and the final 

SARMA test, another Lagrange Multiplier, is a )( 22χ . The characteristics of the five tests are 

relatively well documented (see, for example, Anselin and Florax, 1995), being of common use in 

the applied literature. 

Because of the characteristics of the problem addressed, it seems that the solution should 

come from the robust tests. Model (11) is wrongly specified because a spatial lag of the endogenous 

variable (y1) has been omitted. Variable y2, included in the right-hand side of the equation, is a 

proxy for this lag, which results in a high R2 when the DGP of the two variables includes a scale 

factor. That is, this is not about problems with the error term (εt is a white noise) but with the 
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dynamic structure of the equation. These symptoms of misspecification should be captured by the 

LM-LE test but should not have any impact on the LM-EL. The other tests included in the 

experiment will also reflect these symptoms, possibly not in a coherent form, so the checking of the 

equation can become confused and not very effective. 

The most relevant results about the behaviour of the five tests obtained in carrying out the 

simulation are summarised in Figures 2 to 6, where the same structure is used as in Figure 1. In this 

case, instead of the R2 of the regression, the percentages of rejections of the null hypothesis by the 

test to which it is dedicated are shown in the corresponding Figure. 

FIGURES 2 - 6 

Underlying these graphs, there are, at least, two types of tendencies. One is related to the 

number of observations and the other to the scale factor. With respect to the first, the performance 

of the tests to changes in the sample size is well known, and the results reflected tend to corroborate 

the expectations. However, the collection of Figures also clearly shows that the impact of the scale 

factor is not the same for the five tests. 

For example, Moran’s test behaves strangely when high scale factors are used in both 

variables. The power maps estimated for the case of (δ=0) conform to what was expected: it is not a 

very trustworthy test in reduced sample sizes (R=17) though its ability to detect problems in the 

specification, associated both with the error term and with the dynamic structure of the model, is 

high for large samples. Nevertheless, these graphs tend to get distorted when a scale factor is 

introduced into the DGP of the variables. The improvements in the power of the test, due to the 

increase in the number of observations, are no longer regularly shared out through the whole 

parametric space, but rather, we find the appearance of worms, regions in which the test loses power 

unexpectedly. This result seems to be to do with the strong non-stationarity in the mean that is 

characteristic of SAR series with a high scale factor. 

In contrast, the LM-LAG and SARMA tests (Figures 3 and 6) are affected positively by the 

inclusion of a scale factor in the DGP of the variables, in such a way that their estimated power 

improves with the size of the scale. The SARMA test has more difficulties to detect errors in the 

specification when the scale factor is zero and the sample size employed is of reduced dimensions. 

However, the estimated power of this test improves on increasing either of the two aspects (size or 

scale). 

Finally, Figures 4 and 5 show a quite disappointing behaviour of the robust tests. As has 

been said above, the LM-EL test should not detect signs of misspecification in the error term of the 
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model, as, in fact, occurs when the scale factor is zero. In this case, although the estimated power 

tends to be superior to the standard of 5% (it oscillates between 3% and 10%), it does not reach 

worrying levels except for very extreme combinations of parameters. The good behaviour of this 

test, in series with a reduced scale factor, suffers from the weakness of its complement, the LM-LE 

test. In Figure 6 it can be seen that the estimated power of this latter test hardly surpasses 20% in 

large zones of the parametric space, even having employed large sized samples. 

The scale helps to improve the estimated power of the LM-LE test, in such a way that with a 

factor of δ=100 its performance is fully satisfactory, as can be seen in Figure 5 (the estimated power 

in the darkest zone is, in fact, unity). On the other hand, the LM-EL test behaves in the same way 

when it should not, under any circumstances, do so. In Figure 4, and under the heading δ=100, 

irregular estimated power maps can be seen where the darkest zones tend to spread as the sample 

size increases (as before, the estimated power at these points is unity for the case of R=120). 

The conclusion that can be drawn from all of the above is that, using these tests, there is a 

probability that the analyst will not conclude that he is proposing a spurious relationship, and that 

this probability is no small matter. The tests will give signs of misspecification with respect to the 

static equation, ever sharper as the scale factor increases. However, the relevant problem is to 

identify clearly the real cause of misspecification. If we conclude that it is necessary to introduce a 

dynamic structure into the equation, the risk of spurious correlation disappears because the spatial 

lag of the endogenous variable will expel the erroneous variable from the equation. On the other 

hand, if the analyst feels satisfied with the fit of the equation, and prefers to correct the symptoms of 

misspecification by acting on the structure of the error, the risk will become reality. 

4.- Final conclusions 

In this work we wanted to take up a discussion that has not received excessive attention in 

spatial econometric literature, namely that of unit roots. This concept does not adjust well to the 

type of models that are habitually employed in a spatial context, characterised by instantaneousness 

and multidimensionality, which to a certain extent justify why it has been dealt with so little. 

The position maintained in this paper is one of scepticism with respect to the problem of 

stochastic trends. For this reason, attention has been centred on the topic of deterministic trends, 

associated with the scale factor that intervenes in SAR processes. The incidence of this type of 

elements results in a serious risk of spurious correlation which every analyst should keep in mind. 

In this sense we could make the following observations: 
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• The exploratory analysis of spatial data has been popularised among the practitioners of 

spatial econometrics as a way of introducing the problem. Nevertheless, this analysis 

should grow in importance to reach a stage where the coherence of the whole 

econometric specification is discussed. 

• There is an evident risk of posing spurious regressions between non-related variables. 

This risk increases with the size of the variables. 

• It is dangerous to develop a specification based exclusively on obtaining a good fit 

between variables, because the probability of obtaining meaningless equations is 

multiplied. 

• The tests of spatial dynamics (residual or substantive) commonly used will show 

symptoms of misspecification if the equation is spurious. The problem is that the 

information will tend to be confusing. 

• We should question the real usefulness of models with residual autocorrelation because 

they can mask spurious relationships between non-related variables. 
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FIGURE 1:. Average R2 for pairs of independent SAR series. 

Sampling size: R=17. 
 Scale: δ =0  Scale: δ =100 
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FIGURE 2: Misspecification analysis. Moran’s Test. Percentage of rejections of the 

null hypothesis. 

Sampling size: R=17. 
 Scale: δ =0  Scale: δ =100 

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0  

Sampling size: R=74. 
 Scale: δ =0  Scale: δ =100 

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0  

Sampling size: R=120. 
 Scale: δ =0  Scale: δ =100 

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0  

 



 17 

FIGURE 3: Misspecification analysis. LM-LAG Test. Percentage of rejections of the 

null hypothesis. 

Sampling size: R=17. 
 Scale: δ =0  Scale: δ =100 
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FIGURE 4: Misspecification analysis. LM-EL Test. Percentage of rejections of the null 

hypothesis. 

Sampling size: R=17. 
 Scale: δ =0  Scale: δ =100 
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FIGURE 5: Misspecification analysis. LM-LE Test. Percentage of rejections of the null 

hypothesis. 

Sampling size: R=17. 
 Scale: δ =0  Scale: δ =100 
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FIGURE 6: Misspecification analysis. SARMA Test. Percentage of rejections of the 

null hypothesis. 

Sampling size: R=17. 
 Scale: δ =0  Scale: δ =100 

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0  

Sampling size: R=74. 
 Scale: δ =0  Scale: δ =100 

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0  

Sampling size: R=120. 
 Scale: δ =0  Scale: δ =100 

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0  

 


