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ABSTRACT 
Modeling nonlinear system has come on the fore in the last decades; some results are 

now available, even if precision and simplicity of application characteristics of linear 

problems do not hold anymore.  

One of the most important issues to face in structuring a nonlinear model is the 

identification of the rules that govern its evolution. This paper collects some of the 

results achieved for solving this problem, particularly analyzed from the point of view 

of Cellular Automata. 
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Introduction 

The purpose of this paper is to present the problem of identification of Cellular 

Automata, providing tools to solve it derived from nonlinear systems theory. 

 

The first chapter introduces some definitions and fundamental aspects of nonlinear 

systems: state variables, dynamic of the system, possible classification of nonlinear 

systems, different approaches available for an observer, concepts of reachability and 

observability. 

 

The second chapter presents Cellular Automata as nonlinear systems; the concepts 

explained in the previous chapter are applied to this kind of models.  

 

Chapters 3 and 4 face up respectively to direct and inverse problem issues. They are 

structured in the same way: at the outset the problem’s characteristics are discussed as 

well as the difficulties that arise. After, different methods to solve these problems are 

explained, sometimes using ideas drawn from other disciplines. 

 

In the end, in the fifth chapter some remarks are presented about applying the various 

methods discussed to real available data. 

1.  Nonlinear systems: preliminary definitions 

A dynamic system is a model of any part of the real world that evolves. 

While the concept of dynamic system may be easy to figure, the definition of what 

evolves and how might not be so immediate to explain, because the same part of the 

world can be modeled using different techniques, depending on the aspect we are 

interested in. 

The matter of “what evolves” is concerned with the state of the system, that is the set of 

variables that condense information of the system itself necessary to understand the 

evolution. You have to take into account that the state of a system may not be ever 

measurable directly by an observer; often, the observer can measure other variables, 

called outputs, which are linked to the state variables by a function. 
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The matter of “how it evolves” is concerned with dynamic itself, and it has two different 

aspects: on one hand, there are the rules which determine the evolution of the state of 

the system, on the other hand there are the relationships between state variables and 

outputs. 

Moreover, the observer can interact with the system‘s evolution through inputs that 

perturb the system and make it react. 

These concepts are mathematically synthesized in a couple of equations and an initial 

condition more: 

where x is the state of the system, y is the output, x0 is the initial state, f is the transition 

function and h is the function that transforms state variables in outputs. 

A basic classification of systems is made on the kind of functions f and h: 

• linear: f and h are both a sum of quantities, in each one appearing only one state 

variable raised to the first power; 

• nonlinear: in the quantities mentioned above appear products of variables, or 

variables raised to the second power or bigger, or any other mathematical operator 

that lays out the previous definition. 

Linear systems theory is well developed because the superposition principle holds: a 

linear system can be divided into parts that are independent and as a consequence can be 

studied separately, the effects on the whole system being the sum of the single ones. 

Because of the superposition principle, such problems can often be broken into simpler 

pieces that can be solved individually, and then the results can be added together.  

The superposition principle does not hold for nonlinear systems, so many difficulties 

arise which prevent us from using tools developed in linear theory. 

Further distinctions are made on state variables (continuous/discrete), functions varying 

with time (stationary/non stationary), stochasticity of state variables and/or parameters. 

Two different approaches to dynamic systems are available: 

• direct: the observer already knows the evolution rules of the system, so he tests the 

system using different inputs and recording the corresponding outputs: 
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• inverse: the observer has a series of inputs and corresponding outputs measured 

during experiments and wants to reconstruct how the system works. This purpose 

includes both the functions f and h and the parameters that may are included. 

Usually the observer already has an idea of the kind of structure, thanks to his 

experience and through comparisons with other systems better known; he tries to fit 

the function to the case study, using available data: 

The latter approach is the one that happens more frequently and is called identifiability 

problem of a dynamic system. We may introduce more specific definitions depending 

on the available data: if they are noise-free (ideal case) it is called deterministic 

identifiability, otherwise (real case) it is a numeric identifiability. If functions and 

parameters can be estimated uniquely, the model is globally identifiable from the 

experiment; if any of a finite number of alternative estimates for them model parameters 

fits the data, the model is locally identifiable; if any of an infinite number of estimates 

fits the data, the model is unidentifiable from the experiment. 

Two important properties of state variables are to be outlined, reachability and 

observability, which both concern the interaction of the model variables with the 

external world (inputs and outputs). 

 

Reachable states of a dynamic system are those you can move the system to, selecting 

the right inputs.  This property implies the possibility to control the system, especially 

artificial ones (whose dynamic is obviously known) that must be governed: 
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Observable states are distinguishable observing their output in correspondence of the 

same input. As a consequence, if the system state is not directly measurable and the 

only way to detect the system evolution is through outputs, only those states which 

“stamp” the output with their hallmark can be recognize; all the other ones are told 

undistinguishable: 

2. Cellular Automata and nonlinear systems 

Cellular Automata are actually nonlinear systems. This statement will be proved in the 

next paragraphs through the definitions explained in chapter 1. 

As a consequence of being made of cells, a Cellular Automaton is a system discrete in 

space; n-dimensional vectors describe its state, where n is the number of cells. Often in 

urban applications land use is chosen as state variable, within a finite set of values; as a 

consequence, state variables are measurable and you do not need to introduce a function 

that links it to outputs. 

As far as inputs are concerned, the observer may change cells state. 

 

Transition rules are a kind of “if….then” structure, where “if” introduces the 

neighborhood  and “then” the cell state in the next step. This kind of rules is pretty far 

from linearity and this prevent us to use the superposition principle; moreover, spatial 

proximity concept itself, as a basis of this kind of models (if necessary broadened with 
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long distance actions), prevents us from dividing the Automaton’s space into 

independent zones and taking the sum of partial effects as a result for the global effect. 

This operation would create unnatural breaks between cells interactions damaging the 

system’s evolution. 

The equations we have just introduced to explain system’s dynamic are ordinary 

differential equations of the first kind: in fact there is the first derivative of state 

variables that depend only on time. As we have learnt during mathematical analysis 

classes, this kind of equations is solved on an interval of time [t1, t2]; physically 

speaking, this means studying the evolutions of state variables during [t1, t2]. While 

equations explain how the system evolves now and forever, their solutions link the 

system to a determinate time period, giving us values for state variables. 

Operatively speaking, solving differential equations means to simulate the behavior of 

the system in [t1, t2]; in order to do this kind of computations using a computer, it is 

necessary to divide [t1, t2] in smaller time intervals of the same width, ∆t, used to 

approximate the derivative with the corresponding incremental ratio (in the next picture 

the state of the system is a one dimensional continuous variable to facilitate the 

representation): 

Solving differential equations that rule the dynamic of a Cellular Automaton implies 

some consequences on Automaton’s characteristics. 

Cellular Automata are discrete systems because their state variables take values in a 

finite set. The existence of a regular lattice, also, creates a regular grid where every cell 

state is computed as a mean value among all the existing values; in fact, this kind of 

discretization does not suit perfectly the land use distribution. As far as time is 

concerned, there is a clock that paces transitions. 
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As a matter of fact, in a real city transitions do not last the same time period: some are 

faster than others. On one hand computational issues force us to use a regular time 

interval to pace transitions, on the other hand the need to keep our model as close as 

possible to the real system requires irregular time intervals. A way to manage these 

opposite issues is modifying Automaton’s characteristics in order to take into account 

the differences explained above. 

First, Automata can be split into two subclasses, synchronous and asynchronous: the 

first kind develops transitions simultaneously, the latter admits that some transitions are 

slower than others. If  ∆t is smaller than the maximum time interval required to develop 

a transition, there is at least on transition that is late. 

t 

Synchronous 

Cellular Automaton 

Cell 1 

Cell 2 

Cell j 

Cell n 

..........

..........

∆t ∆t ∆t 

∆t ∆t ∆t 

Asynchronous 

Cellular Automaton 

Cell 1 

Cell 2 

Cell j 

Cell n 

.........

.........



 7 

Pictures in the previous page show the characteristics of both these classes: above is a 

synchronous Automaton where three transitions develop at the same time for every cell; 

below there is only one transition that takes different time intervals to develop: while 

the first and the third cells are synchronized with clock pace, the fourth is one step late 

and the second two steps late. If we would have chosen ∆t’ = 3∆t, all the four transitions 

would belong to the same time step. 

As a consequence an asynchronous Cellular Automaton succeeds in managing different 

time intervals required by transitions to develop; rules are applied when a transition is 

over, not simply when time step is over. 

 

A second issue of time discretization is the memory of an Automaton. 

In fact, every rule “if” introduces the neighborhood calculated in the current time step 

and “then” introduces the cell state in the next time step. The fact that transitions are not 

simultaneous implies that neighborhoods are difficult to define in every single time step 

because of late transitions, so it is necessary to keep memory of neighborhoods 

belonging to past time steps in order to reconstruct the right sequence of transitions. The 

deepness of memory depends on the case study. 

In the end we can briefly explain stationariness and stochasticity, keeping next chapters 

to develop the problem of identification of Cellular Automata, distinguishing direct and 

inverse approach. 

A Cellular Automaton is stationary if transition rules are always the same; if not, the 

differences might affect both the neighborhood and the transitions. 

Stochasticity may affect both rules and delays of transitions. A transition rule is 

stochastic if the same neighborhood produces different transitions: 

Every transition has its own probability to happen, and these probabilities are summed 

to 1. 
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A far as transitions’ delays are concerned, stochasticity has important consequences 

only if transition is shifted so forward that it belongs to the next time step; if not, you 

may neglect it. 

Next pictures show an asynchronous transition that can happen in two different times, 1 

and 2. 

In picture a), 1 and 2 are equal because in both cases the transition belongs to the same 

time step: the observer sees a red cell anyway. 

In picture b), on the contrary, if transition happens in 1 the observer sees a red cell, if it 

happens in 2 the observer sees a blue cell, because the transition to red belongs to the 

next time step. 

3. Direct problem 

If the observer knows the system dynamic he has to face up the so-called direct 

problem, whose purpose is perturbing the system through different inputs and analyzing 

the corresponding outputs. 

If we are dealing with a deterministic Cellular Automaton, there is only one way in 

which the system can evolve starting from a given configuration, once the observer has 

chosen the input; the observer whether decides to analyze the system’s evolution 

without perturbing it or tries to interact changing one or more cell states and recording 

how these changes may impact on evolution.  

This kind of one-way evolution does not hold if we are dealing with a stochastic 

Cellular Automaton. 

In a direct approach, the observer already knows the probability distribution of every 

rule and wants to find the path of evolution most likely to happen. 

∆t 
b)

∆t 
a)

1 2 21
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A useful tool for this kind of problems comes from stochastic processes theory: Markov 

Chains. A stochastic process is a set of random variables depending on a set of 

parameters. In our case we may focus on stochastic processes dependent on one 

parameter, time; as far as it is paced discretely, we call them temporal series. 

Markov processes are characterized by this property: the probability distribution of a 

variable at time t+1 depends only on the probability distribution at time t; we speak of 

chains when the state variable is discrete, as in our case. 

Mathematically:  

Markov chains are frequently used to describe the evolution of stochastic systems, 

which have a probability distribution of the state in every time as the system may be in 

state x1 with probability π1, in state x2 with probability π2, and so on. 

The state of an Urban Cellular Automaton made of n cells is a n-dimensional vector 

whose elements take values in a finite set of m land uses; every cell has its own m-

dimensional probability vector, πi(t): 

As a result, this kind of tool is very useful for us to improve our comprehension of 

system’s evolution; in fact, in our case as well, every neighborhood configuration has a 

number of possible transitions so that the state of every cell at time t is far from being 

uniquely determined from the previous time and depends on the probability distribution 

of the transition rules.  

Markov chains theory says that function g, which determines the evolution of the 

probability vector of every cell, depends on pij(t), that is the probability that a cell 

changes its state from i to j in the transition from time t to time t+1. 

In our case these probabilities are the same as transition rules probabilities, which are 

known as far as we are concerning a direct problem. Probabilities dynamics is 

))((g)1( kkk tt ππ =+
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where PT(t) is the transpose matrix whose elements are pij(t):  

This result allows us to admit that, even if the system is stochastic, the dynamic of 

probabilities is deterministic. 

 

Using these tools the observer can develop the tree of possible 

configurations that is connected to a given starting configuration, 

because its probability vectors π1(0), π2(0),....., πn(0) are known: 

their elements are all null except one, with 1 as value, 

corresponding to the actual state of the cell. So the evolution of the 

system can be represented as a tree whose root is an available map and branches are all 

the possible paths; every branch has a weight that is the probability of the corresponding 

configuration, that is the probability that all cells make that particular transition. 

 

If the observer wants to simulate the system ‘s evolution in a certain time period without 

perturbing the system, the problem is to evaluate the right simulation span according to 

the validity of the rules he possesses; in fact, while time goes on rules change because 

the system itself changes. 

The level on the tree corresponding to last moment of the simulation is made of maps 

called leaves, as tree theory prescribes.  

This kind of representation is useful to consider every possible evolution and detect the 

path most likely to happen: 
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If the observer wants to understand how changes made in urban land uses affect the 

evolution, Markov chains and trees also provide useful solving techniques. 

This aspect is connected to the wide issue of system control through external actions, 

briefly explained in the first chapter while we were speaking about reachable states. 

Controlling a system means trying to determine its evolution using appropriate inputs to 

modify transition probabilities. 

The first step is constructing a function of state variables or other variables connected to 

them; this function works as an indicator of system performance and it is not unique: 

you may choose different performance functions depending on what you are interested 

in. 

Later, after developing the tree without external interaction, the observer has to label 

every leaf with the corresponding value of performance.  

In the end, going backward to the root, he has to label all nodes according to the theory 

of trees; the global performance is the one of the root. 

 

For instance, suppose that the observer is interested in total public green surface in the 

city; the performance function is nV, that is the number of cells in public green land use, 

and the purpose is: 

The following picture depicts the previous tree added with performances of leaves and 

their fathers, obtained taking the performance of the child-node connected to the branch 

with the biggest weight: 
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The global performance of the system is 8, but the purpose of the observer is to 

maximize this performance; if he changes the weight of the branches he might succeeds 

in obtaining better performances. 

The maximization is in respect of weights because they are the only things that the 

observer may affect through external actions, namely changing cells state. In fact, in a 

direct approach transition rules and their probabilities are already known (and given for 

this kind of systems), so the observer can only try to promote those transitions that 

imply public green land use as a consequence. 

 

As far as stochastic Cellular Automata are concerned, we might compare this kind of 

systems with another one: chess matches, which can be structured in the same way.  

First, let us analyze what aspects are in common: 

• cells in Cellular Automaton space are the same as chess on a chessboard; the state of 

every piece is its position. Even if it would seem more natural comparing cells with 

chessboard squares, these ones do not change, they only host different pieces 

without being involved in any kind of changing. On the contrary pieces, moving on 

the chessboard, change their state. 

• Time is paced by moves; every move is the same as a transition. 

• Rules for moving every piece are precisely stated, they are deterministic, but the 

player has to move only one piece every time, so he has to choose the best move 

depending on the configuration on the chessboard. 

Speaking about differences: 

• While chess player can move only one piece in every move, more than one cell can 

change its state in a transition. 

0.5 

0.8 0.4 0.6 0.2 0.7 0.3 
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• Going on in a chess match pieces gradually become less, cells do not disappear. 

• Chess player must move one piece in every move, but in a transition all cell can 

keep their state unchanged. 

These differences affect this comparison only partially, so we may structure the two 

problems in the same manner. The observer (O) of the Cellular Automaton is like a 

chess player (P): they both have a starting configuration, from which develops a tree of 

possible configurations that depends on choices (for P) or transitions (for O); they both 

have a purpose (to win/ to maximize public green surface).  

The system “match” does not have its own dynamic (pieces do not move themselves!), 

but every player depends on the other player’s choices, so anyway there is a part of the 

system that a single player cannot control; he has to accept the way it develops, trying to 

interact with it. The probability distribution of every move he makes depends on the 

other player ‘s choices; every player tries to determine the evolution of the match 

towards his own purpose, which is to win. 

The system “stochastic Cellular Automaton” has its own dynamic that the observer 

cannot modify (transition rules with their own probability) but with which he may 

interact trying to route it in the path he is interested in. Every cell can change its state 

according to a probability distribution that the observer cannot affect because it depends 

on complex mechanisms that involve economy, society,… Instead he can modify the 

state of some cells to promote the more probable transitions. 

4. Inverse problem 

The most of the times the observer does not know the rules of the system’s dynamic, 

namely when he is dealing with natural systems (that are not man-made). He tries to 

understand how it works, recording outputs without interacting with it and/or analyzing 

how outputs change if he perturbs the system. 

The adjective “inverse” means that the order of cause and effect is reverse: the observer 

knows effects instead of causes and tries to deduce causes going backward; the 

unknown quantity of this problem is a function, that is the set of rules that determine the 

evolution of the system. 

We begin with analyzing the most important issues connected with inverse problems. 

Solving this kind of problems is strictly dependent on the quality of the available data, 

because it affects the uniqueness of solutions. A good general rule is that, in order to 
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determine a function of n variables, one should collect data that also depend on n 

variables. 

Often inverse problems solving is difficult because of the problem itself is ill-posed. In 

an ill-posed problem small changes in the observations may correspond to big changes 

in the phenomenon being observed. Ill-posed problems are difficult to deal with because 

the algorithms to solve them tend to be unstable, that means they are likely to produce 

very different solutions if inputs are changed just a little: 

 

When the problem is ill-posed accurate observations are not enough; it is important to 

have prior information about the unknown system, derived from oneself experience. As 

a beginning, you may consider a very simple dynamic, even if it introduces strong 

simplifications, and then make corrections to make the model fit reality. 

When you deal with well-posed problems (which are characterized by existence, 

uniqueness and stable solutions) more data available can improve the reconstruction; 

but more data in solving an unstable problem can be a double-edge sword. In fact, new 

data might generate a solution very different from the previous, posing the observer in 

front of a choice; this is the problem of data consistency. 

 

We go on explaining some methods for solving inverse problems. 

The first step in the case the system is continue is to make it discrete, dividing it into 

regions through a regular grid; in fact, the function we seek is supposed to be evaluated 

at every point of our system, in theory infinitely many points, and no computer has been 

made that can store an infinite amount of data. So every region will be treated as if it 

were a point. 

 

Then, you might use the optimization method: you start with assigning a value at 

unknown quantities, as an attempt, and after calculating the correspondent values of 

outputs (yi ); you need some way to compare the simulated measurements with the real 

ones (Yi). 

Ill-posed 

problem 

f 

unstable 
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You can do this, for example, by adding up the sums of the squares of the differences 

between the measurements: 

 The distance function gives us a quantitative measure of the error in our discrete model, 

and the idea of the optimization method is to look for the values of the variables that 

make the error as small as possible. 

Optimization methods are commonly used. If one needs to answer to a real inverse 

problem, optimization is a good technique to try. The ideas apply to almost every 

possible problem, and the methods can generally be stabilized. They produce a 

reconstruction that is reasonably consistent with the data. 

consistenti con i dati. 

However, optimization methods 

tend to require a great deal of 

computation, and hence are slow 

and expensive. Also, they can be 

fooled by local minima that do 

not represent the smallest possible 

error.  One cure for this is to start 

from very different values and see 

if the final result is the same. 

 

A second classical approach to nonlinear inverse problems is linearization: substituting 

a nearby linear problem as a proxy for a more difficult nonlinear one. After making that 

substitution, we solve the linear problem using the measured data. 

Linearization tends to be very useful when the problem is known to be close to a well-

understood one. If there is reason to think that the true configuration is a small 

perturbation of a known one, then linearization is the method of choice. Algorithms 

based on linearization are often faster and require less computer memory than 

optimization methods. Moreover, a study of a linearized problem gives insight into the 

corresponding nonlinear problem. Unfortunately, linearization is often used- for lack of 

a better method- even in the case of large perturbations. In that case, it is not clear how 

the answers are related to the true solutions of the problem. 
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A more general method of solution is called successive approximation. There are many 

ways to make successively better reconstructions of an unknown system; one of the 

most used methods involves the dependence of the problem on a parameter. The 

procedure consists of changing the parameter in small increments, and making 

corresponding small changes in the reconstruction:  

Successive approximation methods do address the full nonlinearity of the problem. 

However, they tend to be computationally intensive. Also, it is not clear under what 

circumstances the iterative process will converge to the correct answer. 

 

Now we want to analyze the inverse problem’s issues for an Urban Cellular Automaton. 

Here the challenge is trying to reproduce the behavior of the system “city”; available 

data are maps displaying cells land use. 

Nowadays these kinds of data are easily collectable thanks to remote sensing 

instruments and software for working with images; the picture in the next page is an 

example of this kind of maps. 

Of course we cannot assess that our data are noise-free, because as a matter of fact the 

procedure of dividing the city into cells through a regular grid introduces errors: the cell 

value is a mean of all the land uses that are actually in the cell. As a consequence, we 

are dealing with a numeric identification, according to the definitions introduced in the 

first chapter. 
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Still, the fact that we are dealing with a system that cannot be reproduced in laboratory, 

make us focusing on data availability, instead of data pureness. Two important factors 

are the span covered by data and the frequency they are collected with; both these issues 

do affect greatly the precision we can obtain using a given dataset. 

What assessments can we do about the structure of transition rules? 

 

As we have already stated, the dynamic of a system consists in rules that determine the 

system’s evolution now and forever. As far as a city is concerned, these rules do not 

keep unchanged while time elapses because of historical, economic and social factors; 

changing will be fast or slow depending on the particular context, but it inevitably takes 

place. So, if we are interested in models that work well on long run terms, we have to 

look for nonstationary rules. 

Moreover, if only a few maps are available, it is worth structuring the system as a 

deterministic one, because this kind of model is easier to estimate than the stochastic 

one and requires less data to be fitted to the real system. 

Choosing to model a city through a Cellular Automaton means that we want to use a 

kind of “if…then” rules. We are free to decide which kind of grid is the best, how many 

land uses consider and the span of a time step ∆t. 

Example of map showing land use: Milan in 1955 
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Consider a regular grid of n cells and m land uses; we focus now on neighborhood and 

time issues. 

If the observer lacks of experience, he may forms the starting hypothesis of a simple 

structure and modify it later, as the successive approximation method suggests for a 

parameter. 

First, we consider a very lucky situation: the observer has 10 maps M1, M2, …. 

displaying the same area at one-year intervals. Obviously the observer takes ∆t = 1 year.  

In order to find transition rules, he might follow this procedure: after having decided a 

starting configuration for the neighborhood using the minimum radius, he compares the 

first couple of maps, recording the results in a table; every record contains 

neighborhood cells states and the corresponding transition. At the end of the comparison 

he scans all the records and looks if there are any neighborhoods that produce different 

transition; if yes, the set of rules collected is not deterministic. So he has to use a bigger 

radius and repeat the comparison. 

On the contrary, if the observer forms the hypothesis of stochastic rules, instead of 

varying the radius he has to go on comparing successive couples of maps, collecting a 

series of tables. These are to be analyzed looking for neighborhoods that produce 

different transitions and drawing the probabilities of every transition. 

In both cases, in the end the observer obtains the set of rules that took place in those 10 

years. 

 

Unfortunately, most of the times we are not so lucky to have plenty of maps at equal 

time step. Frequency of availability affects greatly the choice of the simulation step and, 

in the end, the degree of precision we may obtain if we use the model to make 

predictions. In fact, rules derived from the comparison of maps N years far in time can 

be applied to make predictions on N years time intervals; you cannot hope to get more 

precise results with that set of rules. 

For instance, have a look to the following page: there are three maps showing the 

changes that took place between three couple of years: 1955/1965, 1955/1980, 

1955/1997. Every map is concerned with cells that had an agricultural use in 1955 and 

became residential respectively in 1965, 1980 and 1997. 

It is outstanding that the maps are different.  

An observer, who would have had only one of them, would obviously drag conclusions 

different from the ones dragged by another observer equipped with all the maps. 
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 When availability of data is a problem, the best thing to do is simplify the structure of 

the model; minimal models, even if they could appear too naïve, are more reliable than 

more complex models because they require less data to be fitted to the real system.  

5. From theory to applications 

Now we introduce some observations about the application of previous concepts to the 

available data. 

We have maps of three Italian cities and three European cities: Milan (1955, 1965, 

1980, 1997), Palermo (1955, 1963, 1989, 1997), Padova-Mestre (1955, 1963, 1988, 

1997), Dublin (1956, 1968, 1988, 1997), Wien (1958, 1971, 1986, 1997) and Porto 

(1958, 1968, 1983, 1997).   

So, for every city it is possible to study three transitions; these maps were drawn using 

remote sensing instruments, and the represented theme is land use. 

We have data and we want to understand how works the system that generated them: we 

are observers that have to solve an inverse problem, so we might attempt to use methods 

explained in chapter 4. 

 

Optimization method prescribes to take the first map of the series and form and 

hypothesis on transition rules, hypothesis that is like a trial value for starting the 

iterative procedure. Applying these rules to the map, we get another map that we have 

to compare with the second map of the real series to calculate the distance between 

them. Our purpose is minimizing this distance, and this is done changing progressively 

the transition rules. 

Once we have found the minimum, we go on analyzing the second transition: now the 

starting point is the second map of the series and the trial value are the transition rules 

gathered in the previous analysis. Following the same iterative procedure, this set is 

modified in order to minimize the distance between maps (the second generated by the 

model and the third of the real series). And so on, till all available maps are processed. 

We have to pay attention when we initialize the procedure with trial transition rules: the 

more these rules are distant from the real ones, the more long the iterative procedure.  

 

The linearization method applied to a Cellular Automaton implies to consider every cell 

as standing alone, as the superposition principle prescribes. As a consequence, we might 

structure an evolution path for every single cell without considering what is going on to 
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the neighbors, at least as we have presented till now. In fact, the path may be made more 

complex considering the interaction with neighboring cells, but this kind of interaction 

must be linear, that is the transition depends on a weighted sum of the cells state 

considered. 

You have to pay attention that this method gives good results only when the real 

dynamic is not too far from a linear structure; otherwise, the errors generated might be 

huge. 

  

In the end the successive approximation method: starting with the first map of the series, 

the observer forms a simple hypothesis on transition rules set for one step and applies it 

to the map obtaining the evolution after one step. Then, he modifies the state of one or 

more cells in the starting map and analyzes how these changes affect the evolution, 

gaining information about how the system works. On the basis of these insights, he 

modifies a little the set of transition rules and goes on iterating the procedure.  

This method is useful when there are only a few data available. On the contrary, if there 

is plenty of data and you prefer to use the optimization method, successive 

approximations may help you in finding a good trial value for initializing the iterative 

procedure of optimization. 
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