
Arbia, Giuseppe; Piras, Gianfranco

Conference Paper

Convergence in per-capita GDP across European
regions using panel data models extended to spatial
autocorrelation effects

44th Congress of the European Regional Science Association: "Regions and Fiscal Federalism",
25th - 29th August 2004, Porto, Portugal

Provided in Cooperation with:
European Regional Science Association (ERSA)

Suggested Citation: Arbia, Giuseppe; Piras, Gianfranco (2004) : Convergence in per-capita GDP
across European regions using panel data models extended to spatial autocorrelation effects, 44th
Congress of the European Regional Science Association: "Regions and Fiscal Federalism", 25th - 29th
August 2004, Porto, Portugal, European Regional Science Association (ERSA), Louvain-la-Neuve

This Version is available at:
https://hdl.handle.net/10419/117202

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/117202
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Convergence in per-capita GDP across
European regions using panel data

models extended to spatial
autocorrelation effects.

Giuseppe Arbia∗

University G.D’Annunzio, Faculty of Economics
Viale Pindaro. I-65100 Pescara (Italy).

E-mail: arbia@unich.it
Tel. +39 085

Gianfranco Piras∗

Tor Vergata University, Faculty of Economics
via Columbia,2. I-00133 Rome (Italy)

Institute for Studies and Economic Analysis(ISAE)
Piazza dell’indipendenza,4. I-00185 Rome(Italy).

E-mail:g.piras@isae.it
Tel. +39 06 4448 2347

June 12, 2004

∗Very preliminary, please do not quote. In preparation for the 44th Euro-
pean Congress of the European Regional Sciencs Association (ERSDA) Region
and Fiscal Federalism, University of Porto, Porto, Portugal,25-29 August 2004.
We are grateful to J.P.Elhorst and J.P. LeSage, for providing Matlab Routines.



ABSTRACT

This paper studies the convergence of per-capita GDP across European
regions over a fairly long period. Most of the works are based on either cross-
sectional or fixed-effects estimates. we propose the estimation of convergence in
per-capita GDP across European regions by making use of panel-data models
extended to include spatial error autocorrelation and spatially lagged depen-
dent variable (Anselin, 1988; Elhorst, 2002). This will allow us to extend the
traditional β-convergence model to include a rigorous treatment of the spatial
correlation among the intercept terms. A spatial analysis of such intercept
terms will also be performed in order to shed light on the concept spatially
conditional convergence.
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1 Introduction

This paper studies the convergence of per-capita GDP across European regions
over a fairly long period. Many of the results obtained in the literature strongly
depend on the set of regions considered, the sample period, and the estimation
method used. Moreover, most of the works are based on either cross-sectional
or fixed-effects estimates. In general, studies based on fixed-effect models, pro-
duce much higher convergence rates than those obtained using cross-country
regressions. Both cross-sectional and fixed-effect models, however, are ob-
tained by imposing strong a priori restrictions on the model parameters. The
first imposes absolute regional homogeneity in the parameters of the process
describing GDP growth. The second allows for heterogeneity, but this depends
only on the intercept term as if all the differences in the GDP growth rates were
determined by the starting point for each region. An alternative approach has
been proposed by Peracchi and Meliciani (2003) that postulated a panel-data
model in which all parameters can differ across regions. In this way not only
the model avoids the imposition of strong restrictions, but it also provides spa-
tially distributed coefficient whose pattern can add significant insights. They
find significant correlation of growth rates across neighbouring regions and be-
tween regions belonging to the same country. Furthermore a series of papers
(Arbia et al., 2002; Arbia et al., 2003; Baumont et al., 2002, amongst the other
) have shown that the presence of spatial effects matter in the estimation of
the β-convergence process both in terms of different spatial regimes and in
terms of significant spatial spill-overs. Spatial effects, but incorporated within
a continuous time framework, were also discussed by Arbia and Paelinck (2003;
2004). In this paper we propose the estimation of convergence in per-capita
GDP across European regions by making use of panel-data models extended to
include spatial error autocorrelation and spatially lagged dependent variable
(Anselin, 1988; Helhorst, 2002). This will allow us to extend the traditional
β-convergence model to include a rigorous treatment of the spatial correlation
among the intercept terms. A spatial analysis of such intercept terms will also
be performed in order to shed light on the concept spatially conditional con-
vergence. In the paper we will analyze the theoretical properties of the model
and we will show some empirical results based on the per-capita GDP of the
European countries at level NUTS 2. The remaining of the present paper is
organized as follows: section two is devoted to a detailed discussion over the
data set; in section three a β− convergence model is estimated, estimation re-
sults are presented and residuals diagnostic are discussed. In section 4 a simple
fixed effect model is estimated, while in section five, the correction to take in
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account of spatial dependence in panel data model is introduced, and a fixed
effect panel data model extended to spatial error autocorrelation is estimated.
Conclusion follows in which indication for further research are reported.

2 Preliminary data analysis

Spatial data availability remains one of the greater problem in European con-
text, although many progress has been made in recent time by the European
Statistical Institute. Thus, data availability remains scarce and in many case
is very difficult to dispose of harmonized data sets allowing consistent region
comparisons.

In the present work we use data on the per capita GDP in logarithms ex-
pressed in PPS and drown from the REGIO database. We include 125 regions
of 10 European Countries: Belgium, Denmark, France, Germany, Luxembourg,
Italy, Netherlands, Portugal, and Spain. Our sample starts from 1980 to 1995.1

The REGIO data base has to be considered the first and most famous data
set with spatially referred data. REGIO is an harmonized regional statistical
database (developed by Eurostat, the European Statistical Institute), covering
the main aspects of economic and social life in the European Union. The
database, created in 1975, is currently divided into ten statistical domains 2.
The regions are classified at three levels of spatial aggregation, using the so-
called Nomenclature of Territorial Units for Statistics (NUTS) typology 3. We
consider the second level of spatial aggregation.

In many cases, the preliminary analysis of data is highly significative and
very informative which respect to the spatial dynamics of a particular phe-
nomena.

In this preliminary data analysis we show the quantile maps of the growth
rate of per-capita GDP. We have divided observations on the spatial units into
six different ranges. The evidence that the maps show is the fact that the

1Many works use the same data set in empirical studies: Quah, 1996; Baumont, Ertur
and LeGallo, 2002; Arbia and Paelink, 2004, among others

2The ten domains of the REGIO database are the following: demography, economic
accounts, unemployment, the labor force sample survey, energy statistics, transport, agri-
culture, living conditions, tourism, and statistics concerning research and development.

3The spatial aggregation levels are the following: NUTS1, representing the 78 European
regions, NUTS2, corresponding to the 211 basic administrative units, and NUTS3, for 1,093
subdivisions of basic administrative units.
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Figure 1: Quantile map of the variable growth per-capita GDP calculated in
1981

evolution over time of the phenomena under observation is not very variable.
In fact, many regions belong to the same range over the entire period, and
their growth path is relatively stable. Moreover, if we consider jointly the
maps of the growth rate, and the maps of the same variable given in levels,
there is a consistent evident of spatial effects. In fact, regions which present a
high growth rate, in the most of the cases confine with spatial units in which
the level belongs to the highest quantile. This evidence show that having a
neighbor with particularly high level of income, produce a positive spillover for
the poor regions, and their growth rate rise sensibly. In other term, the catch
up effect discussed in Barro and Sala-y-Martin (1995) seem to be present in our
data set. Convergence process to the own steady state seem to be more rapid
for the poor regions. Thus, we only show four maps (1981, 1985, 1990, and
1995) instead of all the possible, because they are a good and representative
synthesis of the dynamics we have just described over all the period 1981-1995.

In order to to test for global spatial autocorrelation in per-capita GDP in
logarithm, we have calculated the Moran-I index over the entire period and
its significance level which are reported in Table 1.4. In our elaboration we
make use of a spatial weight matrix based on the inverse of squared pure

4The Moran-I index is written in the following matrix form: It(k) = n
S0

z′

t
Wzt

z′

t
zt

, where zt

is the vector of the n observations for year t in deviation from the mean and W is a spatial
weight matrix (Cliff and Ord, 1981).
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Figure 2: Quantile map of the variable growth per-capita GDP calculated in
1985

Figure 3: Quantile map of the variable growth per-capita GDP calculated in
1990
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Figure 4: Quantile map of the variable growth per-capita GDP calculated in
1995

geographical distance (great circle distance between regional centroids), which
is indeed strictly exogenous.(for great detail on the construction of a similar
matrix see, among others, Baumont, Ertur, and LeGallo, 2002). The results
show that the Moran-I index is fairly stable across time. It takes negative
values during the period starting from 1984 to 1986, and in the 1981 and 1990.
The values assumed during all the others years considered in our sample are
positive and belongs to the interval 0.17-0.47. Really, excluding the value it
takes in 1987, the interval may be considered very shorter, showing values
which do not vary sensibly. Values of I larger (or smaller) then the expected
values indicate positive (negative) spatial autocorrelation. Inference is based
on permutation approach (10000 permutation). As shown in the fourth column
of Table 1, in our sample per capital regional GDP is, in almost all cases,
positive spatial autocorrelated, since the p statistics are near to zero for great
part of the years considered. The only exceptions are represented by 1981,
1985, 1986, and 1990). This results suggest that the null hypothesis of no
spatial autocorrelation is rejected and that OLS estimates should be improved
in order to take in account spatial autocorrelation. Moreover, this latter result
is particulary robust to a different choice of the spatial weight matrix. In fact,
we have calculated the Moran-I by using different specification of the weights
5 obtaining very similar results, which, thus, are not reported in the present

5In particular, we have considered to more spatial weight matrices: a simple binary
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Variable Moran-I Z-value prob
ggdp81 −0.048 −1.159 0.246
ggdp82 0.247 7.341 0.000
ggdp83 0.277 8.222 0.000
ggdp84 −0.067 −1.695 0.090
ggdp85 −0.023 −0.437 0.661
ggdp86 −0.007 0.021 0.982
ggdp87 0.170 5.134 0.000
ggdp88 0.144 4.382 0.000
ggdp89 0.084 2.649 0.008
ggdp90 −0.002 0.166 0.867
ggdp91 0.443 12.99 0.000
ggdp92 0.326 9.619 0.000
ggdp93 0.479 14.004 0.000
ggdp94 0.354 10.420 0.000
ggdp95 0.363 0.685 0.000

Table 1: Moran-I calculated over the entire data set for each time peiod (1980-
1995). Variable ggdp is the growth rate of per-capita GDP.

paper.

3 β-convergence model

Two concept of convergence appear in the literature of economic growth across
countries or regions. The first, may be described by the fact that a poor
economies tends to grow faster than a rich one, so that the poor spatial unit
tend to catch up to the rich one in terms of level of per-capita income. Such
a situation is always referred to as β-convergence models. The second inter-
pretation applies when poor economies tend to grow faster then the rich ones.
This process is called σ-convergence. Generally, convergence of the first type
tends to generate convergence of the second: poor regions which grow faster
than reach ones let to a reduction in the dispersion of per-capita income across

contiguity matrix, and a binary spatial weight matrix with a simple distance-based critical
cut-off.
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individuals6.

The framework used in the present paper to estimates convergence among
European regions is described by the following cross-sectional model:

Yt = α + βY0 + ε (1)

where, Yt is the entire period growth rate, 7 α is a constant, Y0 is the log of the
per-capita GDP of the first period in the sample, and ε is the classical error
term with zero mean. If β is significantly negative, once X is held constant,
may be concluded that there is unconditional β-convergence. At this point it is
useful to remember that, after having estimated this cross-sectional equation,
it is possible to calculate both the speed of convergence, and the time necessary
to get the own steady state, known in literature as the half-life.8. Under the
concept of unconditional β-convergence, there are some particular statements.
Firstly, should be assumed that all economies are structurally similar, then,
should be characterized by the same steady state. Moreover, all the spatial
units may differ only for their initial conditions. In this section we do not test
for the present of σ-convergence (for greater details on this arguments see Sala-
I-Martin, 1996), but only say that this two concept may be used to capture
conceptually different phenomena, as the σ-convergence gives information on
the evolution over time of the distribution of the per-capital GDP.

Main results obtained using our simple specification are reported in Table2.
In the first column the estimates of β is reported. The significantly negative
value of the parameter, show the presence of unconditional β-convergence.

In Figure 5, we show the scatter plot of the regression line of the β-
convergence model. The growth rate of per-capital income for 1980-1995,
shown on the vertical axis, is negatively related to the log of per-capita in-
come in 1980, shown on the horizontal axis. For this reason, there is evidence
of the existence of absolute β-convergence for the European regions. Indeed,

6Always in literature are given two different definition of convergence: conditional and
absolute. Conditional convergence occurs when the growth rate of an economy is positively
related to the distance between the particular level of income of this region and his own
steady state. Absolute convergence is the event for which poor regions tend to grow faster
than reach ones. For a detailed discussion on this two definition see, among others, Barro
and Sala-y-Martin (1995)

7More precisely it is calculated by subtracting the level of per capita income in the first
period from the level of the last period over observation and by dividing this difference by
the level of the first period ( yT−y0

y0

)
8The speed of convergence is equal to: s = − ln(1 + Tβ)/T ; while the half-life may be

calculated as: τ = − ln(2)/ ln(1 + β)
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OLS ESTIMATION OF THE β-CONVERGENCE MODEL
Dependent Variable lgdp9580
F-statistic 10.785
Prob F-stat. 0.001
Log-likelihood 57.690
Akaike -111.381
Schwarz -105.725
lgdp9580 Coef. Std.Err. t P > |t|
lgdp-80 −0.175 0.053 -3.28 0.001
cons 1.939 0.471 4.12 0.000
R-squared 0.080
Adj. R-squared 0.073
Test on Normality of errors
Test DF Value Prob.
Jarque-Bera 2 5.284 0.071
Diagnostic for heteroschedasticity
Test DF Value Prob.
Breusch-Pagan 1 0.174 0.676
Koenker-Bassett 1 0.117 0.731
Specification Robust Test
Test DF Value Prob.
White 2 0.727 0.695
Diagnostic for Spatial Dependence
Test MI Value Prob.
Moran’s I 0.341 5.786 0.000
Speed of convergence
Half-life

Table 2: Results of the estimation of the β-convergence model. The variable
lgdp-9580 is the logarithm of the growth rate calculated over the entire period
of our data set. The variable lgdp-80 id the logarithm of the value of per-
capital GDP in the first observation period (1980). Speed of convergence and
half-life have been calculated using the expressions reported in the footnote.
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Figure 5: Scatter plot of the regression line of the β-convergence model. De-
pendent variable: growth rate of per-capita GDP for 1980-1995. 125 regions
have been considered in data set.

the coefficient of the regression line show that the process of convergence is
still rather weak.

4 Fixed effect estimation

A panel, or longitudinal data set, consist of a sequence of observations, re-
peated through time, on a set of statistical units (individuals, firms, countries,
etc.)

Panel data models has attracted the interest of many researcher in recent
time. Baltagi (2001), in the introduction of his seminar book on panel data,
list some benefits and some limitation in using panel data (Hsiao, 1985, 1986;
Klevmarken, 1989; Solon, 1989). Firstly, they let controlling for individuals
heterogeneity. Moreover, they are more informative data with respect to time
series or pure cross-sectional data, present more variability, less collinearity
among the variables, more degrees of freedom and more efficiency. In more
details, it should be stressed that a panel data regression differs from a time
series or cross-section regression as it consider both the time and the individuals
dimension. Panel data offers two distinct advantages over pure cross-section
or time series (Peracchi, 2001). First, the observed units are followed through
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times. This occurrence let simplify the analysis of some economic problems
that would be more difficult to study using pure cross sections. Moreover, panel
data make it possible to analyze behavior of the individual units, controlling
for heterogeneity among them: the latter is not a property of time series too.

Thus, some problems rise using panel data. For example, design and data
collection problems are more complicated then in the case of time series or
cross-sectional data. Measurement errors may arise and due to distortions in
inference. In many cases, the time series dimension is still too short. Probably,
the main problem in using panel data remains selectivity, which may rise in
different forms (self-selectivity, non-response, attrition).

More formally, the most general formulation of a panel data model may be
expressed by the following equation:

yit = αi + X
′

itβ + uit + εit (2)

with i (i = 1, ..., N) denoting individuals, and t (t = 1, ..., T ), denoting time
periods, and X

′

it, the it-th observation on K explanatory variables. It should
be noted that αi is time invariant and accounts for any individual-specific ef-
fect not included in the regression equation. Two different interpretation may
be given of the αi, and two different basic model may be distinguish according
this interpretations.
If the αi are assumed to be fixed parameters to be estimated the model ex-
pressed in the previous equation take the name of fixed effect panel data model.
If the αi are assumed to be random, random effect panel data model is gen-
erated by the previous equation. Generally, fixed effect model is particularly
indicated when the regression analysis is limited to a precise set of individuals,
firms or regions; random effect, instead, is an appropriate specification if we
are drawing a certain number of individuals randomly from a large population
of reference 9.

For this reason, as our data set consists on the observation over 125 Eu-
ropean regions, we have decided to estimate a fixed effect panel data model
to check for convergence among them. Following Islam (1995), a number of
research have tried to estimate the speed of convergence among regions using
panel data sets and variant of fixed effect model. One of the main advan-
tages which may be obtained from the application to convergence problems
of panel data models instead that cross-sections is that it is not necessary to

9For more detail on the discussion regarding the use of this two models for panel data
we suggest to see specialistic books on panel data (i.e. Baltagi 2001)
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hold constant the steady state, as it may be directly estimated by the fixed
effects using least square dummy variables estimator. In the literature, there
is a great evidence that estimates of the speed of convergence from panel data
with fixed effects tend to be much larger than the 2 percent-per-year number
estimated from cross sections (Barro and Sala-I-Martin, 1995). Some poten-
tial problems rise from the fact that in order to obtain significative results, one
need to include many time series observations: in other words, the dependent
variable should be the yearly (or over two years) growth rate of the per-capita
GDP. This short time periods tend to capture short-term adjustment toward
the trend rather than long-term convergence.

The model we estimate in the present paper may be expressed by the
following equation:

aggdpi,t = αi + lgdpi,t + εit, (3)

where aggdpi,t is the yearly growth rate of per-capita GDP, lgdpi,t is the
log of the per-capita-GDP for region i at time t; and αi are interpreted as
parameter to be estimated as in the fixed effect model specification.

In Table 3 the estimate results of the previous equation are reported. It
should be notice that the coefficient of the growth rate variable is still signif-
icantly negative, and the hypothesis of converge among European regions is
still confirmed. Thus, the value of the growth rate coefficient we have found
using the fixed effect estimator is smaller than those founded using the simple
β-convergence model, this indicating that the speed of convergence is lower
than those usually estimated in the literature which make use of absolute con-
vergence models.

A very interesting aspect, which remain to be investigate is the spatial
analysis of the residuals obtained by the fixed effect estimation.

Figures from 7 to 10 show the quantile map constructed by dividing regions
according to the value of the residuals into six groups for the years 1981, 1985,
1990, and 1995: a spatial structure is still evident.

This evidence is confirmed by the values of the Moran-I index calculated on
the residuals for each year. In fact, as it is shown in table 4, the null hypothesis
of no spatial dependence in the residuals structure should be rejected in almost
all the cases. The same evidence is shown by Figure from 12 to 15 which report
the scatter plot of the Moran calculated in 1981, 1985, 1990, and 1995, and
added in the paper only to have a more graphical evidence. The same analysis
conducted over the estimated α coefficients due to reject the hypothesis of
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spatial heteroschedasticity. In fact, the value of the Moran calculated over the
sequence of the estimated α due to the acceptance of the null hypothesis of no
spatial dependence.

growth-gdp Coef. Std.Err. t P > |t|
lgdp −0.047 0.035 -13.39 0.000
cons 0.506 0.032 15.37 0.000
sigma-u 0.012
sigma-e 0.037
rho 0.100
R-square:

within 0.099
between 0.039
overall 0.061

Corr(u-i, Xb) -0.569

Table 3: Fixed-effects regression. Number of groups 125, number of observa-
tions per group 14.

5 Spatial Panel Data Model

In traditional panel data literature, one does not usually worry about cross-
section correlation. However, when the data are referred to be a cross-section
of countries, regions, states or counties, these kind of aggregates are likely
to exhibit cross-sectional correlation that has to be considered. With the
increasing availability of micro as well as macro panel data, spatial panel data
models are becoming of particular interest in empirical research.10

Generally, this kind of data do not present the problem of selectivity, as the
series belong to national account, which are not collected in very rare cases.

The aim of this section is to estimates a fixed effect panel data model
extended to spatial error autocorrelation. In spatial research, cross-sectional
data offers information on a number of spatial units at a given period in time,
time series data are related to observation on a given spatial units, panel data
put together this two characteristics and offers observation on a number of

10For a few application on spatial panel data see, among others, Elhorst (2003), Case
(1991), Baltagi and Li (2001), Holtz-Eakin (1994), etc.
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Variable Moran-I Z-value prob
res81 0.461 14.246 0.000
res82 0.464 13.594 0.000
res83 0.464 13.586 0.000
res84 0.476 13.941 0.000
res85 0.463 13.859 0.000
res86 0.476 13.940 0.000
res87 0.457 13.387 0.000
res88 0.452 13.232 0.000
res89 −0.443 12.983 0.000
res90 0.422 12.855 0.000
res91 0.445 13.042 0.000
res92 0.448 13.121 0.000
res93 0.415 12.187 0.000
res94 0.429 12.586 0.000
res95 0.422 12.736 0.000

fixed effects −0.007 0.876 0.380

Table 4: Moran-I calculated over the residuals of the fixed effect panel data
model estimation for each time period (1981-1995). Variable res are the resid-
uals, fixed effect are the estimated α coefficients.

Figure 6: Quantile map constructed by dividing groups according to the esti-
mated value of the coefficient α denoting the individual-specific effect.
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Figure 7: Quantile map constructed by dividing groups according to the value
of the residuals calculated for 1981.

Figure 8: Quantile map constructed by dividing groups according to the value
of the residuals calculated for 1985
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Figure 9: Quantile map constructed by dividing groups according to the value
of the residuals calculated for 1990

Figure 10: Quantile map constructed by dividing groups according to the value
of the residuals calculated for 1995
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Figure 11: Moran scatter plot of the estimated values of the coefficient α de-
noting the region specific effect in the fixed effect estimates of the convergence
among the European regions over the period 1980-1995.

Figure 12: Moran scatter plot of the residuals of the fixed effect estimates,
over the year 1981
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Figure 13: Moran scatter plot of the residuals of the fixed effect estimates,
over the year 1985

Figure 14: Moran scatter plot of the residuals of the fixed effect estimates,
over the year 1990
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Figure 15: Moran scatter plot of the residuals of the fixed effect estimates,
over the year 1995

spatial units over a precise time period. As we said in the previous section,
the interest on the estimation of panel data models have been growing in recent
time, thus, two problems may arise when panel data models have a locational
component. The first problem is spatial heterogeneity, which can be defined
as parameters that may not be homogeneous throughout the data set, but
vary with location. Secondly, spatial dependence may exist between the ob-
servations at each point in time. In a recent paper Elhorst (2003)provides
a survey of the specification and estimation of spatial panel data models in-
cluding spatial error autocorrelation, or by extending the specification with a
spatially lagged dependent variable. In particular, he starts from the classical
literature on panel data, and adapt what can be learned from the econometric
literature by discussing four widely used models: the spatial fixed effect model,
the spatial random effect model, and the fixed and random coefficient spatial
error models. He presents the relative likelihood for each model, discuss the
asymptotic properties, and the estimation procedure. Moreover, the poten-
tially problems which may rise from the spatial version of this four models
are discussed in detail. In the present work, we consider only the specification
considering fixed effect panel data model extended to spatial error correlation.
It should be stressed that the application of such a model in the estimation
of regional convergence, appear the most reasonable solution between all the
possible specifications. Moreover, the present paper is the first application of
spatial fixed effect model to the problem of convergence among regions, and
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this analysis represent the most innovative aspect of our work. The spatial
econometrics literature has shown that OLS estimation in models which take
in account of spatial effects is inappropriate. More in detail, it should be added
that the OLS estimator of the parameter of interest, while unbiased, became
inefficient in the case of spatial error autocorrelation, and that in the case of a
spatially lagged dependent variable, the estimates not only lose their property
of unbiadness, but also became inconsistent. As everybody knows, the latter is
one of the property which should be necessary required to an estimator. The
most commonly suggested method to overcome this problems proposed in the
spatial econometrics literature is to estimate such models via maximum likeli-
hood (Anselin, 1988; Anselin and Hudak, 1992). In his paper, Elhorst derives
the maximum likelihood function for all the models listed before. The start-
ing point of many econometric analysis is the classical panel data model we
discussed in the previous section. The starting point of our empirical analysis
is the equation representing the extension of the fixed effect model to spatial
error autocorrelation:

Yt = Xtβ + µ + ϕt, withϕt = δWϕt + εt. (4)

In our case, the Yt is the annual growth rate of the per-capita GDP of the
European regions, the Xt is the log of the per-capita GDP, µi denotes the
vector of random country effect which are assumed to be independent, with the
same distribution, with zero mean and finite variance; δ is the scalar spatial
autoregressive coefficient (which is less then one).W is the classical spatial
weights matrix discussed in section 2, whose diagonal elements are zero; and
εt are assumed to be independent, identical distributed with zero mean and
finite variance, and also independent of µi. For the derivation of the maximum
likelihood of this model, and the formulation of the first order conditions for
its maximization, as well as the LM test for δ, see Anselin (1988), or Elhorst
(2003).

In Table 5, main result of the estimation of the model we have just described
are reported. The main advantage deriving from this kind of estimation is in
the fact that one can take in account the spatial dependence present in the
data set and to control for it in the estimation, obtaining a more confidence
estimation of the coefficient of the growth GDP variable. In fact, the coefficient
of interest almost show the presence of convergence to the steady state (as it is
significantly negative), but it take a value smaller than the one obtained using
other estimation techniques. It may be concluded that, to take in account
for spatial dependence due to have a growth rate of convergence smaller than

20



those obtained in the main literature. This relatively simple model we have
estimated in the present section, is only the first step of a possible research
path in the application of spatial panel data models to problem of convergence
among spatial units.

Fixed effect with spatial autocorrelation
Dependent variable growth GDP
R-squared 0.0800
Adjusted R-squared 0.0863
Sigma squared 0.0013
Log-likelihood 2664.7055
Number of observations 1875
Number of variables 1
Adjusted R-squared 0.0863
variable Coefficient Asymptotic t-stat z-probability
growth GDP -0.0315 -18.187 0.000
δ 0.039 1.562 0.118

Table 5: Fixed effect with spatial autocorrelation.

There is not great evidence that the fixed effect model extended to spatial
error autocorrelation correct the residuals structure of spatial dependence at
all. From Table 6 it may be concluded that the Moran-I index remain signi-
ficative for almost all years in the data set. Thus, the correction, even not
exhaustive, improve the estimation, as the value of the index decrease. From
the graphical analysis, the effect of the correction seems to be more evident.

6 Conclusions

In the present paper we have considered the problem of converge among Eu-
ropean regions. Many works in literature study convergence making use of
fixed-effect model or cross-country regression. Our investigation starts from
the observation that this two techniques both impose strong a-priori restric-
tions on the model parameters. From one side, cross-section method do not
consider heterogeneity at all, from the other, fixed effect approach make it
depend only by the different intercept for each region. In other terms, all the
differences in growth rates depends only by the different starting point for the
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Variable Moran-I Z-value prob
respa81 0.021 0.859 0.390
respa82 0.234 6.971 0.000
respa83 0.389 11.413 0.000
respa84 0.143 4.355 0.000
respa85 0.042 1.462 0.143
respa86 0.297 8.786 0.000
respa87 0.073 2.351 0.018
respa88 0.108 3.359 0.000
respa89 0.098 3.049 0.002
respa90 0.155 4.688 0.000
respa91 0.530 15.484 0.000
respa92 0.356 10.476 0.000
respa93 0.434 12.724 0.000
respa94 0.361 10.627 0.000
respa95 0.389 11.427 0.000

Table 6: Moran-I calculated over the residuals of the spatial fixed effect panel
data model estimation for each time period (1981-1995). Variables respa are
the residuals.

Figure 16: Quantile map of the value of the residuals of the spatial panel data
model extended to spatial error autocorrelation, over the year 1981
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Figure 17: Quantile map of the value of the residuals of the spatial panel data
model extended to spatial error autocorrelation, over the year 1985

Figure 18: Quantile map of the value of the residuals of the spatial panel data
model extended to spatial error autocorrelation, over the year 1990
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Figure 19: Quantile map of the value of the residuals of the spatial panel data
model extended to spatial error autocorrelation, over the year 1995

spatial unit considered. The methodology used in the present paper allowed
us to extend the traditional models by considering a specific treatment of the
spatial correlation among the intercept terms, and a rigorous spatial analysis
of the residuals obtained in the various models we have estimated. A spatial
analysis of the intercept terms and of the residuals have been, in fact, con-
ducted in this work. The main result we have obtained consist in the fact that
taking in account of the spatial dependence among the spatial units, consid-
erably improve the estimated values of the speed of convergence among the
European regions.

The present paper may be considered as the point of departure for many
future researches. Firstly, the fixed effect estimated in this work would be
extended to a spatially lagged dependent variable. Then, a random effect
spatial panel data model could be used to estimates the same problem, and very
interesting will be to consider the framework of dynamic panel data models
extended to spatial error autocorrelation or to a spatially lagged dependent
variable.
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