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Abstract

In this paper we propose a Structural Equations Model (SEM) ap-

proach to spatial dependence models. Latent variables are used to rep-

resent spatial spill-over effects in the structural model of which the ob-

served spatially lagged variables are indicators. This approach allows for

more information and modeling flexibility than the representation of spa-

tial spill-over effects in terms of Wy or Wx. Furthermore, we propose a

Full Information Maximum Likelihood (FIML) estimator as an alternative

to the estimators commonly used, notably the iterative and two-stage es-

timators for the error and lag model, respectively. We also show that the

estimation procedures included in the software packages Mx and LISREL

8 to estimate SEMs can be applied in a straightforward way to estimate

spatial dependence models in a standard fashion.
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1. Introduction

During the past decades several estimation procedures of linear mod-

els with spatial dependence have been developed. Well-known and fre-

quently applied are the iterative and two-stage estimators for the error

and the lag model. Particularly, Anselin (1988) proposes an iterative two-

stage procedure to maximize the log-likelihood of the spatial error model.

From the initial OLS estimator of the regression coefficients the residu-

als are calculated. Given the residuals, the spatial correlation parameter

is estimated from maximization of the concentrated log-likelihood. Given

the spatial parameter estimated, feasible GLS is applied to obtain new

estimates of the regression coefficients and to compute a new set of residu-

als. When a convergence criterion is met, the lastly obtained estimates are

taken as the final ones and the variance of the disturbance is estimated.

Otherwise, the above procedure is repeated until the convergence criterion

is met (see Anselin and Hudak (1992) for details).

For the spatial lag model Anselin (1988) proposes a non-iterative two-

stage procedure. The vectors of regression coefficients obtained from OLS

of the dependent variable and of the spatially lagged dependent variable

on the exogenous variables, respectively, are used to obtain the respective

sets of residuals. Given the sets of residuals, the spatial autocorrelation pa-

rameter is obtained from maximization of the concentrated log-likelihood.
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Given the spatial autocorrelation parameter, the vector of regression coef-

ficients of the spatial lag model and the variance of the disturbance term

are obtained (see Anselin and Hudak (1992) for details).

Typical for the class of estimation procedures of spatial dependence

models presently in use is that they are restricted to models that contain

directly observable variables only. The purpose of this paper is to introduce

the class of Structural Equations Models (SEM) and corresponding estima-

tion procedures that allow within one and the same model framework the

presence of both latent and observable variables. Latent variables (also de-

noted theoretical constructs) refer to those phenomena that are supposed

to exist but cannot be observed directly. Well-known examples of latent

variables are utility, socio-economic status, regional welfare. Directly ob-

servable variables on the other hand possess direct empirical meanings

derived from experience. Latent variables can only be observed and mea-

sured by means of observable variables. For instance, the latent variable

socio-economic status is observed and measured by such observable vari-

ables as income, education, profession, position in a social network, etc. In

a similar vein, regional welfare is measured by regional observable variables

such as per capita GDP, income distribution, employment opportunities,

features of the housing market, health indicators, indicators of environ-

mental quality, etc. The simultaneous use of both latent and observable
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variables in an empirical analysis has amongst others the advantages that

latent variables are give empirical meanings by means of operational defi-

nitions; that a closer correspondence between theory and empirics can be

obtained; that measurement errors can be accounted for, and that the im-

pacts of multicollinearity can be mitigated. (See amongst others Blalock

and Blalock (1971) and Folmer (1986) and the references therein for further

details.)

The class of Structural Equations Models (SEM) that we are consid-

ering in this paper makes it possible to simultaneously estimate theoretical

statements (which contain latent variables only) and correspondence state-

ments (which contain both latent and observable variables). Particularly,

a SEM is made up of two related sub-models:

- A latent variables measurement model which represents the relation-

ships between the latent variables and their observable indicators.

- A structural model which represents the relationships between the

latent variables.

An immediate consequence of the presence of both latent and observ-

able variables within one model framework is that it allows for an alter-

native representation of spatial dependence in the sense that the spatially

lagged variables Wy (spatial lag model) or Wx (spatial cross model) can
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be represented by means of latent variables. We will first generalize the

spatial lag to models containing a latent dependent variable. Next, the

conventional way of representing the spatial model by means of a weight

matrix W describing the spatial arrangement of the units of observation is

replaced by latent variables representing spatial dependence of which the

observed values of the neighbouring spatial units are indicators. As will be

shown, the latent variable approach to modelling spatial dependence allows

a more informative and more flexible presentation of spatial dependence

than the conventional approach by means of a weight matrix that is given

a priori.

In this paper we furthermore present a Full Information Maximum

Likelihood (FIML) alternative estimator to the iterative and two-stage pro-

cedure. That is, the coefficients of interest are estimated in a simultaneous

equations model framework such that the nature of spatial dependence, i.e.

the (two-way) interaction between the dependent variable and its spatial

lags3, is adequately taken into account.

This paper is organized as follows. In section 2 we briefly introduce

the class of SEMs. In section 3 we specify the standard lag and error model

as SEMs and estimate them for Anselin’s (1988) Columbus, Ohio, crime

data set, applying the standard software packages Mx and LISREL 8 in

a bid to show that standard spatial dependence models can be routinely
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estimated by SEM software. In section 4 we present the lag model for a

latent dependent variable. In section 5 we present a SEM representation

of the spatial lag model such that in the structural model Wy is replaced

by a latent variable (spatial spill-over) and the measurement model repre-

sents the relationships between the latent variable and the lagged observed

dependent variables in neighbouring units of observation. The models in

sections 4 and 5 are applied to the Columbus, Ohio, crime data set again.

Section 5 concludes the paper.

2. The Structural Equation Model (SEM)

A SEM in general form reads:

η = Bη + ζ with cov(ζ) = Ψ , (1)

y = Λη + ε with cov(ε) = Θ . (2)

The model consists of two equations. In the latent structural equation

(1) vector η contains the k latent variables, B specifies the structural

relationships among the latent variables, and Ψ is the covariance matrix

of the vector of errors ζ. Moreover, Ψ encompasses the covariance matrix

of the exogenous variables, contained in η. In the measurement equation

(2) the vector y contains the p observed variables, the p × k-matrix Λ

specifies the loadings or regression coefficients of the observed variables on

the latent variables, and Θ is the measurement error covariance matrix.
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The measurement errors in ε are assumed to be uncorrelated with the

latent variables in η as well as with the structural errors in ζ.

Although SEM originated in the field of confirmatory factor analysis,

it encompasses a wide variety of classes of models, such as first and sec-

ond order factor analysis models, structural equation models for directly

observable variables and various types of regression models. For instance,

if in (2) Λ = I and ε = 0 the structural equation model for directly

observable variables results.

Instead of model (1)-(2) one often encounters a more elaborate version

of the SEM model in which endogenous and exogenous variables are put in

different latent vectors η and ξ and observed vectors y and x, respectively:

η = Bη + Γξ + ζ with cov(ξ) = Φ, cov(ζ) = Ψ , (3)

y = Λyη + ε with cov(ε) = Θε , (4)

x = Λxξ + δ with cov(δ) = Θδ . (5)

However, the formulation in model (1)-(2) with all latent variables in one

single vector η and all observed variables in another single vector y, is

in fact more flexible, making it possible, for instance, to directly spec-

ify correlations among endogenous measurement errors ε and exogenous

measurement errors δ.

Several parameter estimation methods for SEMs have been devel-

oped including instrumental variables (IV), two-stage least squares (TSLS),
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unweighted least squares (ULS), generalized least squares (GLS), fully

weighted (WLS) and diagonally weighted least squares (DWLS), and max-

imum likelihood (ML). Many easily accessible software packages are avail-

able to estimate SEMs including Mx (Neale, Boker, Xie, & Maes, 2003)

and LISREL 8 (Jöreskog, K.G., & Sörbom, D., 1996). These packages in-

clude procedures to check model identification, to evaluate the estimation

results and to calculate indirect and total effects. Here we restrict ourselves

to the ML method, which maximizes the loglikelihood function of the free

elements in the parameter matrices B, Ψ, Λ, and Θ for given data Y:

`(θ|Y) = −N

2
ln | Σ | −N

2
tr(SΣ−1)− pN

2
ln 2π . (6)

θ in (6) contains the free parameters in the matrices B, Ψ, Λ, and Θ,

YN×p is the data matrix (N rows of independent replications of the p-

variate vector y, typically originating from a sample of randomly drawn

subjects), Σp×p is the model-implied covariance or moment matrix:

Σ = Λ(I−B)−1Ψ(I−B)−1Λ′ + Θ , (7)

which is a function Σ(θ) of θ. Finally, Sp×p = 1
N
Y′Y is the sample covari-

ance or moment matrix.

The ML-estimator θ̂ = argmax `(θ|Y) chooses that value of θ which

maximizes `(θ|Y). If the observed variables follow a multivariate normal

distribution, maximization of `(θ|Y) gives genuine maximum likelihood es-
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timates. However, when the range of the variables is in principle (−∞,∞)

and second-order moments exist, the assumption of multivariate normality

can be justified as a first working hypothesis on the basis of of a central limit

theorem or maximum entropy. The latter means that the normal distribu-

tion reflects the lack of knowledge about the distribution more completely

than other distributions (Rao, 1965).

Application of ML under the assumption of normality whereas the

distribution actually deviates from normality may also be defended on the

basis of the fact that it usually leads to a reasonable fitting function and

to estimators with acceptable properties for a wide class of distributions.

However, in the case of deviation from normality the standard errors pro-

duced by LISREL 8 and most other SEM programs should be interpreted

with caution. The same applies to various statistics for model fit judge-

ment, especially χ2.

The ML fitting function can also be used without the assumption

of normality. Under these circumstances the estimator is still consistent.

However, the model fit judgement statistics are no no longer valid. Similar

observations apply to the other estimators in the LISREL 8 and other SEM

programs.

Instead of maximizing the loglikelihood function in (6) standard soft-
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ware for SEM analysis usually minimizes the fit function

FML = ln | Σ | +tr(SΣ−1)− ln | S | − p (8)

or χ2 = (N − 1)FML with the same result. Because the data based S is a

constant, (6) and (8) relate linearly.

As an introduction to the next section, we consider the vector of

exogenous variables ξ in (3) as fixed and observed, that is ξ = x (no

equation (5)). In that case the loglikelihood function (6) reduces to (Oud,

2004)

`(θ|Y0) =

−N

2
ln | Σ0 | −

1

2

N∑
i=1

(y0i − µ0i)
′Σ−1

0 (y0i − µ0i)−
p0N

2
ln 2π , (9)

where the subscript of Y0 and y0 indicates that no exogenous variables are

included, p0 is the number of variables in Y0 and y0,

µ0 = E(y0) = Λy(I−B)−1Γx , (10)

Σ0 = E[(y0 − µ0)(y0 − µ0)
′] = ΛyΨΛ′

y + Θε . (11)

For a latent regression model (MIMIC or multiple-indicators-multiple-

causes model, see Jöreskog, K.G., & Sörbom, D., 1996, p. 185-187), a

further simplification applies: B = 0, µ0 and Σ0 in (10) and (11) become

µ0 = ΛyΓx , (12)

Σ0 = ΛyΨΛ′
y + Θε . (13)
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3. SEM representation of spatial dependence

Spatial lag model in SEM

We consider the standard spatial lag and spatial error models. First

the spatial lag model:

ỹ = ρWỹ + Xγ + ε̃ , (14)

where

ỹ is the N × 1 vector with observations on the dependent variable y;

W is the N ×N contiguity matrix;

X is the N × q matrix of observations of the explanatory variables;

ε̃ is the N × 1 vector of stochastic disturbances;

ρ is the spatial dependence parameter measuring the average influence of

contiguous observations on y;

γ is the p× 1 vector of regression coefficients of the explanatory variables.

We adopt the SEM convention to focus on variables, ignoring the units

of observation. That is, y is taken to represent the dependent variable as

such and is written as a scalar (1 × 1) rather than N × 1 vector ỹ. This

leads to

y = ρ y
W

+ γ ′x + ε , (15)
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which contains the spatially lagged dependent variable y
W

(for the time

being we ignore the transformation Wỹ).

We now turn to the formulation of (15) in SEM terms (1). Moreover,

we shall apply the SEM model to the well-known example, relating crime to

income and housing for 49 contiguous neighborhoods in Columbus, Ohio.

Its data matrix Y and contiguity matrix W were obtained from Anselin

(1988) and from website http://www.spatial-econometrics.com. The spa-

tial SEM analyses are performed by the ML option of SEM programs Mx

and LISREL 8.

The 49 × 5 data matrix consists of the five columns y (crime), y
W

(spatially weighted crime) x1 (income), x2 (housing value), and 1 (unit

variable). Because of the presence of the unit variable, the sample moment

matrix S has the variable means in the last row and last column. In a model

with observables only, Λ = I and Θ = 0 and model implied moment matrix

Σ = (I−B)−1Ψ(I−B′)−1 involves only B and Ψ which read:

y y
W

x1 x2 1

B =


0 ρ γ1 γ2 γ0

0 0 0 0 µy
W

0 0 0 0 µx1

0 0 0 0 µx2

0 0 0 0 0


y

y
W

x1

x2

1
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y y
W

x1 x2 1

Ψ =


σ2

0 σ2
y

W

0 σy
W

,x1 σ2
x1

0 σy
W

,x2 σx2,x1 σ2
x2

0 0 0 0 1


y

y
W

x1

x2

1

Moreover, in a model with observables only, the estimated covariance ma-

trix of the explanatory variables (y
W

, x1, and x2) is equal to the corre-

sponding sample covariance matrix. The total number of parameters in

matrices B and Ψ (including the coefficient of the unit variable 1) is 15,

while also the number of nonidentical elements in the 5×5 sample moment

matrix S is 15. Hence, the model is just identified.

Note that estimating the model by means of the ML option of the

SEM program, without special measures taken, results in an estimator,

called Lag-OLS by Anselin (1988), which is biased and inconsistent. The

reason is that the SEM loglikehood function (6) as well as the adapted

forms (8) and (9) are incomplete. They are based on a transformation of

standard normal variates into observed variables which does not take into

account that the spatial lag variable y
W

is in fact a transformation Wỹ of

another variable y in the model. Specifically, the transformation implicitly

used in SEM is

Ω− 1
2 (ỹ −Xγ) = ν̃ , (16)

where Ω is a diagonal N ×N matrix with the variances σ2 on the diagonal
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and ν̃ a N × 1 vector of standard normal variates, whereas actually the

following transformation is applied

Ω− 1
2 (Aỹ −Xγ) = ν̃ with A = I− ρW . (17)

This leads via the Jacobian of the transformation to the introduction of an

extra additive component ln |A| into the loglikelihood (9), which takes in

this univariate case the form

`(θ|ỹ) = ln | Ω− 1
2A | −1

2
(Aỹ −Xγ)′Ω−1(Aỹ −Xγ)− N

2
ln 2π

= ln | A | −N

2
ln σ2 − 1

2σ2

N∑
i=1

(yi − µi)
2 − N

2
ln 2π . (18)

(18) clearly shows that the component ln |A| is added to the standard

univariate loglikelihood 3. Fortunately, the flexibility of the SEM program

Mx with its matrix algebraic toolbox and user defined fit function option

allows this component to be defined and added to the standard fit function.

It means that the spatial lag model can be directly estimated in one run

of the program.

In Table 1 the results are compared with those given by Anselin (1988)

and Anselin and Bera (1999)4. The differences between the values obtained

3As it minimizes χ2 = (N − 1)FM = −2(N−1
N )[`(θ|Y)+ constant] the correction to

be applied to obtain the maximum likelihood solution by means of the Mx program is

−2(N−1
N ) ln |A| . (19)

4In addition to the parameter estimates the Mx program also computes likelihood
based confidence intervals for the parameters (Neale & Miller, 1997). However, we
restrict ourselves to point estimates and ignore the confidence intervals.
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from the SEM-Mx procedure and Anselin’s two-stage procedure are very

small and within rounding errors.

Spatial Lag Spatial Error
SEM-Mx Anselin SEM-Mx Anselin

ρ 0.4314 0.431
λ 0.5622 0.562

γ1 -1.0307 -1.032 -0.9403 -0.941

γ2 -0.2660 -0.266 -0.3022 -0.302

γ0 45.0568 45.079 59.8791 59.893

σ2 95.5037 95.495 95.5683 95.575

`(θ|Y) -165.4127 -165.408 -166.4006 -166.398

−2(N−1
N

) ln |A| 2.2871 4.1899

corrected χ2 3.0358 8.0796

df 0 2

Table 1: ML estimates of the spatial lag and spatial error models for the Columbus,
Ohio, crime data set by the direct SEM-Mx procedure and the two-stage and iterative
procedures of Anselin (1988)

Spatial error model in SEM

Although the spatial error model is more complicated because of the

implied nonlinearities, its estimation by the flexible nonlinear SEM pro-

gram Mx is technically not more difficult than for the spatial lag model.

We shall illustrate the procedure again by means of the Columbus, Ohio,
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crime data. The spatial error model reads:

ỹ = Xγ + ε̃ with ε̃ = λWε̃ + ζ̃ , (20)

or:

ỹ = λWỹ + Xγ − λWXγ + ζ̃ , (21)

and in variable formulation:

y = λy
W

+ γ ′x− λγ ′x
W

+ ζ . (22)

For the Columbus, Ohio, crime data set (22) becomes

y = λy
W

+ γ1x1 + γ2x2− λγ1xW,1
− λγ2xW,2

+ (1− λ)γ0 + ζ . (23)

So, the model contains 7 variables, including the unit variable. The SEM

matrices B and Ψ become

y y
W

x1 x2 x
W,1

x
W,2

1

B =



0 λ γ1 γ2 −λγ1 −λγ2 (1− λ)γ0

0 0 0 0 0 0 µy
W

0 0 0 0 0 0 µx1

0 0 0 0 0 0 µx2

0 0 0 0 0 0 µx
W,1

0 0 0 0 0 0 µx
W,2

0 0 0 0 0 0 0



y
y

W

x1

x2

x
W,1

x
W,2

1

,
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y y
W

x1 x2 x
W,1

x
W,2

1

Ψ =



σ2

0 σ2
y

W

0 σx1,y
W

σ2
x1

0 σx2,y
W

σx2,x1 σ2
x2

0 σx
W,1

,y
W

σx
W,1

,x1 σx
W,1

,x2 σ2
x

W,1

0 σx
W,2

,y
W

σx
W,2

,x1 σx
W,2

,x2 σx
W,2

,x
W,1

σ2
x

W,2

0 0 0 0 0 0 1



y
y

W

x1

x2

x
W,1

x
W,2

1

.

The matrix B has the following entries to be estimated: λ, γ1, γ2,−λγ1,

−λγ2, (1 − λ)γ0, µy
W

, µx1 , µx2 , µx
W,1

and µx
W,2

. Note that there are three

nonlinearly restricted entries −λγ1,−λγ2, (1− λ)γ0
5.

Disregarding all (co)variances to be estimated with respect to the

independent variables that are immediately given by the sample covari-

ance matrix, there are 5 parameters left (λ, γ1, γ2, γ0, σ
2) to be estimated,

just as many as for the spatial lag model. However, the sample moment

matrix contains 7 nonidentical elements to estimate them. So, if all param-

eters are identified individually, the model as a whole is overidentified with

df = 2. 6

The transformation the loglikelihood should be based on, is easily

5The entry for the constant (1− λ)γ0 (coefficient of the unit variable 1) is explained
by the fact that spatially weighting a constant variable 1 gives 1 again, so that γ0 (for
x0 = 1) and the spatial correction −λγ0 (for x

W,0 = 1) are estimated in combination
for the single unit variable 1.

6The reason for overidentification is that the SEM appproach introduces three new
transformed variables, while under the spatial lag model only one new transformed
variable is introduced.
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derived from (21):

Ω− 1
2A(ỹ −Xγ) = ν̃ with A = I− λW . (24)

Although it is different from (17), it has the same Jacobian as the spatial

lag model, when the lag parameter ρ is replaced by the error parameter λ.

It means that to obtain the ML solution, the correction in the minimization

of χ2 should take place analogously to matrix (19). Table 1 shows that,

again, the values obtained by the direct SEM-Mx procedure are close to

the estimastes obtained by Anselin.

While we have shown in this section that the standard spatial lag and

error models can directly be estimated in one run by means of the SEM

program Mx, other SEM programs like LISREL 8 can also be used to do

the job in an iterative stepwise fashion as follows. First get a starting

value for the spatial parameter ρ or λ by estimating all model parameters,

including the spatial parameter ρ or λ, by means of OLS. Next fix the

spatial parameter at the OLS-value found and compute the χ2- correction

(19) by any matrix algebraic program as, for example, GAUSS. Increase or

decrease the spatial parameter value stepwise until the minimum corrected

χ2 is found.

4. Spatial lag model for a latent dependent variable

The model in this section will be coined latent spatial lag model. It
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differs from the standard spatial lag model (see section 3) in that the regres-

sand is a latent variable (MIMIC model), measured by several indicators.

Spatial dependence applies to the latent variable instead of the observed

variable. So, the structural equation looks like (15) but has observed y

replaced by latent η:

η = ρ η
W

+ γ ′x + ζ . (25)

It is completed by measurement equations

y = Λη + ε and y
W

= Λη
W

+ ε
W

(26)

with m observed variables in y as well as m observed variables in y
W

. We

assume Λ to be equal for the original y and the lagged y
W

, which seems

desirable to achieve measurement invariance for latent η and lagged latent

η
W

. However, if wanted, this is assumption is easily relaxed.

In observation unit form the model becomes

η̃ = ρWη̃ + Xγ + ζ̃ , (27)

ỹ = Λ̃η̃ + ε̃ and ỹ
W

= Λ̃Wη̃ + ε̃
W

, (28)

where η̃ and ζ̃ are N × 1 but ỹ, ε̃, ỹ
W

and ε̃
W

are Nm× 1 with

Λ̃Nm×N = IN×N ⊗Λm×1 ,

ỹ
W

= W̃ỹ for W̃Nm×Nm = WN×N ⊗ Im×m .
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It should be noted that we assumed One first derives

ỹ = ρΛ̃Wη̃ + Λ̃Xγ + Λ̃ζ̃ + ε̃

= ρỹ
W
− ρε̃

W
+ Λ̃Xγ + Λ̃ζ̃ + ε̃

and then

(I− ρW̃)ỹ = Λ̃Xγ + Λ̃ζ̃ + ε̃− ρε̃
W

,

which for Ã = I− ρW̃ leads to the transformation from m-dimensional ν̃

to m-dimensional ỹ

Ω− 1
2 (Ãỹ− Λ̃Xγ) = ν̃ for

Ω = I⊗ (Λσ2
ζ1
Λ′ + Θε + ρ2Θε

W
− ρΘε,ε

W
− ρΘε

W
,ε) . (29)

Via the Jacobian of the transformation

J =| Ω− 1
2 || Ã |

it is seen that an extra component ln | Ã | = m ln | A | is to be added

to the loglikelihood, which is m (the number of indicators of the latent

variable) times the correction in the standard spatial lag model, and that

in SEM covariance matrix Σ the standard form Λσ2
ζ1
Λ′ + Θε should be

replaced by the corrected form between parentheses in Ω in (29).

Instead of estimating the combination Θ∗
ε

Θ∗
ε = Θε + ρ2Θε

W
− ρΘε,ε

W
− ρΘε

W
,ε (30)
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as in standard SEM, one should estimate Θε in conjunction with the other

components in (30) in terms of parameter ρ (to keep ρ within appropriate

bounds, one should then also specify 0 < ρ < 1). However, because, in gen-

eral, (30) does not put extra constraints on ρ, first estimating Θ∗
ε and then

afterwards computing its components in (30), in general, will give the same

results. It should be noted also, that the correlation between measurement

errors ε̃
W

and ε̃, coming from different observation units, will be nonex-

istent or very small and that the measurement variances in Θε
W

will be

much smaller than in Θε. The reason for the latter is that the relative mea-

surement error of linear combinations of indicators is much smaller than of

the single indicators (Lord & Novick, 1968, pp. 85-87). The consequence is

that in practice the difference between Θ∗
ε and Θε will be small, while also

knowledge of Θ∗
ε (measurement error variance under spatial dependence)

will be more relevant than of the rather theoretical Θε (measurement error

variance under the assumption of no spatial dependence).

We conclude that for the latent spatial lag model the correction to

the χ2 is

−2(N−1
N

)m ln |A| (31)

and Λσ2
ζ1
Λ′ + Θε in Σ is to be corrected by adding

ρ2Θε
W
− ρΘε,ε

W
− ρΘε

W
,ε . (32)
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We applied the latent spatial lag model to the Columbus, Ohio, crime

data, where we considered Income and Housing as indicators of a latent

variable Social Economic Situation and analyzed the effect of Crime on

Social Economic Situation. The estimation results of the SEM-Mx proce-

dure are given in Table 2. We show the estimated SEM matrices B, Ψ, Λ,

and Θ∗. The model χ2 was 9.277 (noncorrected value 8.639 + correction

0.638) with degrees of freedom df = 5 (p = 0.099), which indicates that

the model is fitting very well.

SES
Lagged
SES

Crime 1

B̂ =


− 0.170 − 0.228 19.9
− − − 35.1
− − − 14.7
− − − −


SES
Lagged SES
Crime
1

Ψ̂ =


5.043
− 16.48
− −39.54 274.2
− − − 1


SES
Lagged SES
Crime
1

Λ̂ =


1 − − −

1.85 − − 19.7
− 1 − −
− 1.85 − 19.7
− − 1 −
− − − 1


Income
Housing
Lagged Income
Lagged Housing
Crime
1
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Income Housing
Lagged
Income

Lagged
Housing

Crime 1

Θ̂
∗

=


10.58 − − − − −
− 216.3 − − − −
− − 0.86 − − −
− − − 62.8 − −
− − − − − −
− − − − − −


Income
Housing
Lagged Income
Lagged Housing
Crime
1

Table 2: Estimated SEM matrices of the latent spatial lag model applied to the

Columbus, Ohio, crime data set (Anselin, 1988)

Both the rather low latent spatial lag parameter (0.170) as well as

the quite substantial negative effect exerted by Crime on the SES of the

neighborhood (-0.288), were tested for significance by the χ2-difference

test. The spatial lag parameter was found to be nonsignificant (χ2
dif =

1.528 with df = 1, p = 0.216) but the effect of Crime was highly significant

(χ2
dif= 27.588 with df = 1, p < 0.00001).

The measurement unit (loading) and measurement origin in measur-

ing SES were both estimated to be greater for Housing (1.85 and 19.7, re-

spectively) than for Income. The corrected measurement error variance θ∗ε

was estimated to be 10.58 for Income and 216.3 for Housing, corresponding

to reliabilities R2 of 0.667 and 0.352, respectively. This shows that Income

is a much more reliable indicator of SES than Housing. The estimates of

the uncorrected measurement error variances θε of 10.55 and 214.5 were

indeed hardly different from the corrected ones and, as expected, the esti-

mates of the lagged measurement error variances θε
W

(0.86 and 62.8) were
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much lower than either the corrected or uncorrected ones.

5. Latent variable representation of the spatial lag model

In this section we propose the following SEM for the spatial lag model

η = Bη + Γx + ζ , (33)

y = Λyη + ε , (34)

where

B =

[
0 β12

β12 0

]
, Γ =

[
γ1 γ2 . . . γ0

0 0 . . . µη2

]
, Ψ =

[
σ2

ζ1
0

0 σ2
ζ2

]
,

y =


y
y1

y2
...
yk

 , Λy =


1 0
0 1
0 λ2
...

...
0 λk

 , Θε =


0 0 0 0 0
0 0 0 0 0
0 0 σ2

ε2
0 0

0 0 0
. . . 0

0 0 0 0 σ2
εk

 ,

The following observations apply. First we again adopted the SEM con-

vention to specify the model in terms of variables rather than in units of

observation. That is y, y1, y2, ..., yk in y are written as scalars (1×1) rather

than N × 1 vectors. Secondly, the lagged observed variables are included

in the vector y and are taken as indicators of the latent variable η2. We

assume that the spatially lagged observed variables are selected on the ba-

sis of theoretical or ad hoc considerations. Selection is done by means of
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selection or weight matrices Wi as follows:

ỹ1 = W1ỹ
ỹ2 = W2ỹ

...
ỹk = Wkỹ

. (35)

That is, W1 selects the values for the first indicator y1, W2 for the sec-

ond indicator y2, etc. Third, simultaneity bias due to the interaction be-

tween the dependent variable and its lags is controlled for by the matrix

B. Specifically, β12 represents the impacts of the latent spill-over variable

on the dependent variable (i.e. β12 corresponds to ρ in the standard lag

model), whereas β12 represents the reverse effect. Fourth, it is assumed

again that the unit variable is included as the last variable in x, having the

regression intercept γ0 (for η1 = y) as associated coefficient and specifying

also the mean µη2 of the spill-over variable.

Below we illustrate the proposed approach using the Columbus crime

data set again. Observe that the selection matrices (35) are based on dis-

tance. That is, for each region the three nearest neighbours are selected.

We defined W1 as the selector of the nearest contiguous neighbor, W2 of

the next nearest contiguous neighbor and W3 of the third nearest contigu-

ous neighbor. Seven units had only two contiguous neighbors and for these

cases we let W3 select the nearest non-contiguous neighbor.

The estimation results of the SEM-Mx procedure are given in Table

3. We show the estimated SEM matrices B, Ψ, and Λ (formulation (1)-
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(2)). The measurement error variances of Crime-neighbor2 and Crime-

neighbor3 were estimated to be 185.4 and 202.9 (corresponding to R2’s

of 0.881 and 0.873, respectively). The model χ2 was 27.8 with degrees of

freedom df = 10 (p = 0.004). We observe that the overall fit as indicated by

χ2 is reasonable to good with a χ2/df of less than 3 and a CFI (comparative

Fit Index) of 0.977. This conclusion is supported by the modification

indices of parameters eligible to be freed, which are all rather small.

The measurement model (Λ̂) shows that the nearest neighbor is the

most important indicator for the latent variable spill-over. Moreover, the

impacts of the second and third neighbors are virtually equal. (This could

be formally tested by imposing an equality constraint for the corresponding

coefficients, re-estimating the model and calculating the difference in χ2

values.)

Crime
Crime-
neighbor

Income Housing 1

B̂ =



− 0.073 − 1.489 −0.279 64.372
− (0.745) (−4.393) (−2.798) (6.483)

0.548 − − − 20.420
(3.622) − − − (3.625)
− − − − 14.377
− − − − (17.643)
− − − − 38.436
− − − − (14.571)
− − − − −



Crime

Crime-neighbor

Income

Housing

1

27



Ψ̂ =



112.4
(30.2)
− 166.4
− (34.2)
− − 31.9
− − (4.9)
− − 51.6 334.0
− − (3.1) (4.9)
− − − − 1



Crime

Crime-neighbor

Income

Housing

1

Λ̂ =



1 − − − −
− 1 − − −
− 0.863 − − −
− (18.8) − − −
− 0.871 − − −
− (18.2) − − −
− − 1 − −
− − − 1 −
− − − − 1



Crime
Crime-neighbor1
Crime-neighbor2

Crime-neighbor3

Income
Housing
1

Table 3: Estimated SEM matrices of the lag model applied to the

Columbus, Ohio, crime data set (Anselin, 1988); t-values between parentheses

From the structural model it follows that the overall spatial spill-over

effect is positive, though insignificant. Particularly, it is small compared

to the own housing effect and very small relative to the own income effect.

Although they are not quite comparable due to amongst others differences

in the way spatial spill-over is measured (contiguity-based in Anselin; dis-

tance based in the present case), the coefficients for housing are very close

to those presented in Table 1. For income the coefficients in Table 1 exceed

those obtained here. Finally we observe that the coefficient in the second

structural equation representing the impact of the dependent variable on
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the spill-over variable is large compared to the reverse effect. This is most

likely due to the absence of other explanatory variables in this equation.

Further research on this issue is needed.

6. Conclusion

In this paper we have considered structural equations (SEM) ap-

proaches to spatial dependence models. As a first step, we adapted the

standard SEM likelihood function such that the standard lag and error

models can be estimated in a straightforward fashion by the standard

SEM software packages. Application to the Columbus, Ohio, crime data

set (Anselin, 1998) showed that by these packages virtually the same es-

timates are obtained as by the standard software for spatial dependence

models. The SEM software package Mx has the main advantage that it

allows one-time estimation rather than the iterative and two-stage proce-

dures used in standard spatial modelling software. Moreover, SEM allows

handling of nonlinearities in a straightforward fashion.

In the second part of the paper we used the SEM framework to model

the spatial configuration for the spatial lag model. First, we generalized

the spatial lag model to latent dependent variables, of which the observed

lags are indicators. Next, the conventional way of representing the spatial

model by means of a weight matrix W describing the spatial arrangement
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of the units of observation was replaced by latent variables representing

spatial dependence of which the observed values of the neighbouring spa-

tial units are indicators. This approach is both more flexible and more

informative than modelling by means of an a priori given spatial weight

matrix W. In addition we presented a Full Information Maximum Like-

lihood Estimator to control for endogeneity bias due to the interaction

between the dependent variable and its lags. The models were applied to

the Columbus, Ohio, crime data set. Although for several parameter esti-

mates were obtained in line with the results obtained by Anselin (1998),

further research, particularly Monte Carlo simulation, is needed.

The SEM approach to spatial dependence models has several poten-

tial advantages which are worthwhile further exploring. Particularly, the

SEM approach allows straightforward application to systems of equations.

Secondly, it allows the introduction of several dynamic SEM features into

spatial modelling.
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