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Abstract: A model of interregional competition for the location of new (pro-
duction) facilities by a location decision maker (LDM) is analyzed as a differen-
tial game. Two regions try to enhance their attraction by making concessions
to the LDM in order to raise the probability that a new facility will be located
in a specific region, the benefit of which consists of the number of new jobs,
new income etc. It is shown that the prospective benefits and costs of exerting
influence are decisive for the final outcomes of the model. The open-loop Nash
equilibrium solution - which is also a degenerate feedback solution due to the
simple structure of the model - is likely to be inefficient in comparison with
the cooperative solution of joint benefit maximization of both regions.
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1. Introduction

Interregional competition for the location of new (production) facilities by a location
decision maker (LDM) has been recently analyzed in Jutila (1999). Two (or more)
regions try to enhance their attraction by making concessions to the LDM, defining
attraction as the probability that the LDM will locate his facility in a specific region.
The benefit of having a new facility located in a region consists of the number of new
jobs, new income etc. As Jutila (1999) remarks, it is “rather obvious that regions
are competing for jobs and income in a rather dynamically changing environment”.
However, he describes this dynamical game rather mechanically, without explicitly
considering the objective functions of the regions.

The present paper suggests a model of the competition for location decisions
between two regions as an explicit differential game.! Since the actions of one region

'in this dynamical setting directly influence the attraction of the other region and
since these actions are generally costly and should therefore be set off against the
prospective benefits of having a new facility located in the region, this is the typical
setting of a differential game.

It should be emphasized that the framework of the present model is entirely
different from the one usually employed in location games. According to Thisse
(1987, p. 519), “the primary purpose of location theory is to explain the spatial
distribution of production activities in an economy”. This explanation is attempted
by considering the optimum location in space from the viewpoint of competing
firms. The theory of location games applies game theoretic concepts to this end.2
In contrast, we are considering the game in a dynamical setting from the viewpoint
of two competing regions that try to influence an LDM who has announced that he
has almost completed his decision process and indicates that his final decision at
some future date T depends on the concessions made by both of the regions and
their governments, respectively. Thus, we ignore the primary optimization process of
the firm and of its LDM with respect to transportation cost minimization etc., and
assume that the LDM has already ascertained two almost equally good alternatives
(with respect to transportation costs etc.). The last stage of his optimization process
then consists in encouraging the two regions considered to make as many concessions
as possible. We analyze the actions of these regions to influence the LDM’s final
decision between the two possible locations. -

As far as the empirical relevance of this setting is concerned, the reader is referred
to Jutila (1999, p. 1), who remarks that “regions resort to intensified promotional,
marketing and public relations activities in order to create a positive attractive
image to LDMs.” As an example, he gives a detailed description of the profile that
Northwest Ohio, U.S.A., uses as a marketing device in order to raise its attraction
to LDMs. Moreover, his paper includes a case study of a plant location decision.

Section 2. describes the basic framework of the analysis. A simple example that
admits an explicit solution of the model is provided in section 3., whereas some

In comparison with Jutila (1999), however, we simplify the model in other respects: We consider
only two regions and we neglect the direct influences of the LDM on the ongoing competition
process. Our dynamical system describing the development of the probabilities is different from
Jutila’s.

2For a recent review of the theory of location games, cf. Gabszewicz & Thisse (1992).
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more general results are derived in section 4. The efficiency of the outcomes is
then analyzed in section 5. by comparing the Nash equilibrium solution with the
cooperative solution of joint benefit maximization for both regions. We will finally
discuss some possible extensions of the model.

2. The Model

We consider two regions, R1 and R2, and a location decision maker (LDM) that
decides to locate a new facility in one of the two regions. The game starts at time
t = 0 and the decision is being made at time ¢ = T'. The flow of the monetary benefit
of having the new facility located in region i, i = 1,2, is b; at every point in time
(and zero otherwise). The probability of having the facility located in region i from
time T on is p;(T). In the Nash equilibrium to be considered below, p;(T) is equal
to its expectation at times 0 < ¢ < T'. Thus, at times 0 < ¢ < T, the expectation of
the flow U;(t) of monetary benefit can be written as

0 : 0!_<__ t<T \
Ui(t) - {pi(T)bg : T <t< 60. . (1)

The probability p;(T") that the LDM decides to locate the facility in Ri can be
influenced by the regions according to the followmg differential equations, where a
dot denotes the derivative thh respect to time:? -

=A- D,
2
T @

Here, A = A(u,,u,) is a differentiable functlon of the control variables u; and u,
with

‘ . 84 8A

A12 aul>0 A <0, Ay = au2<0 A22>0 ‘3-
Alun, u2) € [0,1] Vuy > 0, up >0, (3)

and A(n,m)=1- A(m,n) Yn>0, m>0.

The control variable u,; is a force imposed by region 1 shifting attraction from

, region 2 to region 1, and u, is analogously interpreted. Conditions (3) have the -

following meaning: R1 (R2) can raise (lower) A and thereby increase its attraction
with diminishing returns; the function A is defined for all nonnegative values of u;, uz
“and can take on values between 0 and 1, which implies that the probabilities cannot
escape the same range. Finally, the last assumption in (3) implies that A(n,n) = 1/2
Vn > 0, so that the long-run probabilities for ¢ — oo are equal to 1/2 for both
regions if they choose the same value of u;. Due to this symmetry assumption,
the possibility of influencing the LDM is equal in both regions. This is a natural
assumption;- differences in the endeavor of forcing are taken into consideration by
possible differences in the cost functions of both regions that are considered below.

3A similar specification has been used by Asada (1997) in order to model the number of trips
using the transportation services of two firms. Without a condition such as (3), however, his

assumptions do not appear to be sufficient for keeping the state variable in its domain of definition.
, )
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The probabilities p;(T") are the values of the variables p;(t) at time T'. Clearly,
these variables should satisfy

P20, pO+m) =1 ad p=-p W,

which is easily seen to be true if we set B:=1—A and if the initial values p; (0) = pyo
and p»(0) = pgy satisfy the constraints?

Po=1—-p;p2>20, pp=>0. (4)

Therefore, the second equation in (2) can be written as
=(1-A4)-(1-p)=p— 4

this equation is redundant and can be neglected in the sequel. Thus, it suffices to
consider

p = A(uy, u2) — p1. ' (5)

The cost function of forcing is C;(u;) and is assumed to be convex and to involve’
no fixed costs. For simplicity, we set Ci(u;) = cu;, where ¢; > 0 is the constant
per unit cost of forcing in Ri. This assumption barely restricts the generality of
the model, because we have already assumed diminishing returns with respect to
the function A. Therefore, the flow of the monetary net benefit at time ¢ is U;(t) —
Ci(ui(t)). We assume that both of the regions are risk neutral, which implies that
the integral of the discounted flow of the expected monetary net benefit from time
0 to oo is a reasonable objective function to maximize. Let p with 0 < p < 1 be
the common discount rate for both regions. Using equation (1) and the fact that
u;(t) = 0 and therefore ¢;u;(t) = 0 is obviously optimal from time T on, the expected
cumulated monetary net benefit of Ri is :

0o T
Ji= f [Ui(t) — Ci(wi(t))]e™ dt = e=*"pi(T)bi/p — / cui(t)e™ dt,  (6)
0 ' 0

which has to be maximized given equations (5) and (4). Thus, the problem of maxi-
mizing over an infinite time interval has been reduced toa finite-time problem with
a discounted bequest-value

e~ Si(pi(T)) := ™" pi(T)bi/ p.

We analyze the problem with strategies in open-loop, which for the present case
means that R1 (R2 resp.) maximizes its objective function with respect to u,(t)
(u2(t) resp.) given the time-path of uy(t) (u,(t) resp.) without feedback control. The
open-loop Nash equilibrium is reached if both regions correctly anticipate the time-
path of their respective competitor, each of which is optimal in the indicated sense.
No region can put itself at an advantage by unilaterally deviating from the Nash
equilibrium strategy to another open-loop strategy. The respective problems of each
of the regions can be solved using Pontryagin’s maximum principle.

‘Notethat pr + P2 =A-pr+1-A-p=1-p —pr =0Vt if pro = 1 - pro.

\



4 ' Regional Competition for the Location of New Facilities

Due to the simple structure of the model, it is state-separable, that is, the deter-
mination of the controls and the costate variables is separated from the determina-
tion of the state variables. This implies in turn that the open-loop Nash equilibrium,
if it exists, is also a degenerate feedback Nash equilibrium that does not depend on
the initial state and is therefore subgame perfect.®

~ The current value Hamiltonians for regions 1 and 2 are

- Hy = —crug + AMi[A(u1, u9) — pu, |

. .
Hz = —CsUs + /\2[A(u1,u2) - pl]. ( )

As with (7), henceforth the first equation concerns R1 and the second corcerns
R2. While the respective equations for the individual regions describe their relevant
optimization problems, the simultaneous solution of all equations together yields the
Nash equilibrium of the game.

The necessary equilibrium condmons with respect to the control variables %, and
uy include

oH, dA

—_— =+ A =0,

Bu; 1 13— Buy @
aH2 =—Cp+ A 04 =0

au2 - 2 23 2 ) )

where for the moment we assume an interior solution for simplicity. Note that the
assumptions (3) together with the convexity of the cost functions imply that the
equations (8) determine the unique maxima of the Hamiltonians with respect to the
controls u; and u, respectively, because it is seen from (9) and (10) below that A;
is positive while ), is negative. The costate variables A; must satisfy

oH,
\ A= P/\l-g—l’)\l"'/\l,

1 9)
OH, : (
X0 = Do — —= = p\ + Ao
2 = pA2 . PA2 2
. Finally, the transversality conditions are
S,
A(T) = = b/p,
Op (T) (10)
0S:

Ao(T) = oo (T) =ba/p.

Given that A\; > 0 for all ¢t € [0,T] and A\, < 0 for all ¢ € [0, T}, it is easily
shown that the Hamiltonians H, respectively H, are concave in (u;, p;) respectively
(u2,71)- Since S;(p1(T)) and S2(1 — p1(T')) are concave in p,(T'), this implies that
the necessary conditions (8), (9), and (10) are also sufficient conditions for a Nash
equilibrium.

5See Fershtman (1987). For the concept of state-separability cf. Dockner, Feichtinger &
Jorgensen (1985). A comprehensive account of the theory of noncooperative differential games
as well as a short mt;roductlon to Pontrya.gm s maximum principle can be found in Ba.gar & Olsder
(1995).

\
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The equations (8), (9), and (10) together with (5) and (4) can be reduced to a
system of three differential equations with one initial and two transversality condi-
tions, either in p;, A; and A, or in p;, u; and u,. The solution of this boundary-value
- problem yields the Nash equilibrium trajectories u;(¢) of the game. We start with
the solution of a simple example in the next section and then return to the more
general case.

3. A Specific Example

In order to derive an explicit solution of the game, we use a concrete version of the
function A(u;,u;). A reasonable and simple candidate that satisfies the assumptions

(3) is
1 | 1

A(ula 'U,z) = _2’ -

This specification given, the solutions of the equations (8) with respect to u; are

Uy = \/ )\1/(201) -
uy = v/ —Xo/(262) -

From (9) and (10), the solutions of the linear differential equations for \;(t) are
easily calculated to be

(11)

M(t) = p (1+p)(t-T)

(12)
Aolt) = _%emm(t—r).

Substituting (12) into (11) now yields the open-loop Nash equilibrium trajectories

u(t) = v/ (2¢,p)eMAE-TI2 1)
uz(t) = b2/ (2cap)e+oNe=T2 _ 1

which, as mentioned before, are independent of the initial state and therefore are
subgame perfect degenerate feedback strategies. It should be noted that, for the sake
of notational simplicity, we do not use extra symbols for the optlmum strategies and
denote them simply as u;(t).

The equations (13) are only valid if the nonnegativity conditions are not violated.
However, the assumption of interior solutions seems reasonable, because b;/p, the
present value of the new facility in R: calculated at time T, should be a much greater
number than ¢; in order to have a reasonable problem. Therefore, if the planning
horizon T is not too large, both of the u; are positive for all ¢ € [0,T]. A necessary
but not sufficient condition for an interior solution is b;/(2¢;p) > 1. On the other
hand, if T is large enough, the nonnegativity conditions may be effective at the
beginning of the game even if b;/(2¢;p) is much greater than one. In this case, as can
be seen from (11), the equilibrium strategies are u;(t) = 0 during a period lasting

(13)
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from ¢t = 0 to some T; € (0,T) defined by Ai(T;) = 2¢;. From T; on, the strategy of
‘Ri is given by (13).
We neglect the case of effective nonnegativity constraints in the following, be-

. cause it involves only minor variations of the main arguments Equation (5) now
reads

1 1 1 o
— — y 0 — .
2 i+w) T 20rwm) M 1(0) = pro

=

Substitution of (13) into this equation yields the nonautonomous hnear differential
- equation for p;:

. 1 - -
pr=-p1+;+Ke He)e=10r2,

where K is the constant

_ v/b1/(2c10) — \/bz/(202p).
2v/61/(2¢10)v/b2/ (2c2p)

The general solution of the homogeneous part of the equation is Ce™, where C is
an arbitrary constant, and a particular solution of the nonhomogeneous equation
can be found using the variation of the constant formula The solution of the initial
value problem turns out to be

- 1 2K w1, 2K e
n(t) = (Plo —5 1= pe(1+”)T/2) b4 - 5+ ¢ +oE-T)/2 (14

The most important result concerning p, () is its value at time 7. From (14), ‘

1 N L 2K _
Pl(T) 2 (Pw - 5) Ty — -, (1 — ele=17/2) , (15)

and it should be recalled that p,(T) = 1 — py(T). Note also that 1 — ele-1T/2 5 ¢
because 0 < p < 1.

The main conclusions of this example are drawn from considering the equations
(13) and (15) and are summarized as follows:

1. From (13), the optimum subgame perfect policy functions u;(t) of both regions
in an open-loop Nash equilibrium are strictly monotonously increasing in time ¢
(except for a possible initial interval of inactivity). As one would have suspected,
forcing u;(t) at every given point in time rises with the benefit b; and falls with
the per unit cost of forcing c¢; and the discount rate p. At every point in time is

- uy(t) > uq(t) if and only if by /¢;-> by/cp. '

61t is important to notice that these results, especially the result concerning the monotonous
increase of u;(t) in ¢, do not depend on the discount rate p being positive. For p = 0, the problem
has to be modeled slightly differently in order to have a convergent objective function. For example,
it could be assumed that the benefit b; is only positive until a certain point in time 7 > T. Other
things being equal, the results of such a specrﬁcatlon with p = 0 are similar to the results obtained
so far for p > 0. )



4. Generalization 7

2. From (15), the probability of having the new facility located in R1 is greater than
the probability of a location in R2 if and only if the sum of the last two terms is
positive. For example, if the LDM is indifferent between both regions at time 0
(i. e. p1o = pao = 1/2), it depends on the value of K which region is more likely
to be preferred at time T. Clearly, K = 0 if both regions are identical. If the
regions are not identical, however,

K20 if b/e 2 b/e,

that is, whether p;(T) or ps(T) is greater depends on the ratios of the flows of
the respective benefit to the respective per unit cost of forcing.

3. The preceding discussion has not necessarily determined that the probability
pi(T) is higher for the region with a higher flow of benefit b; even if p1g = pa,
because this effect can easily be outweighed by the cost effect. If, for example,
by < by but ¢, is sufficiently smaller than c;, p;(T') can be greater than p,(T).
Thus, if a region has lower per unit costs of forcing — e. g. due to a closer familiarity
with the LDM - it may be more likely preferred with a relatively low net benefit.
Therefore, the LDM’s decision may be inefficient from a social point of view.

4. Generalization

We return to the more general case with an unspecified function A(u,,u;) satisfying
conditions (3). We are going to investigate whether the three main conclusions drawn
from the specific example in the last section continue to be valid or not. While it
is naturally impossible to get explicit solutions for the strategies now, the solutions
for the costate variables are given by (12) as before.

If we substitute (12) into equations (8), then we get a system of two equations
describing implicitly the evolution of the w;(t): :

A(uy,ug) = 'czl;p'e(“'p)a'—‘), . 6
1 .

A2(ul,"u2) = —%e(lﬂ)(T—t).

At any given point in time, u, and u, can be viewed as given by (16) as functions of
c; and b;, i = 1,2. Now, define the function ¢(t) := pe(!*?)7-*) and the parameters
a; := b;/c;i, i = 1,2, and differentiate (16) with respect to u; and a; to get

(An Al2) (dul) _ (‘(¢(t)/ a%)dal) a7
A21 Agg d’(tg - (¢(t) / a%)dag !

where the matrix on the left-hand side is abbreviated as A. From assumptions
(3) and if A is twice continuously differentiable (A € C?), it follows that |A| =
A11Ax — ApAy < 0, because Au‘ < 0 < Ay and Ao = Ay for all u; >0, uz > 0.
Thus, all principal minors of the Jacobian do not vanish for u; > 0, u, > 0, which, by
a well known theorem of Gale & Nikaidd (1965, p. 91), implies the global univalence
of the mapping on the left-hand side of (16). Hence, assuming enough variation of
the first order derivatives of the function A, this system of equations has globally
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unique solutions for u;(t) and uy(t). (If one or both of the nonnegativity constraints
are effective, (16) has no positive solution. This case will be neglected in the sequel.)
Since A is invertible, the solution of the matrix equation (17) is

(dul) _ 1 ( Az —Alz) (—(¢(t)/a¥)dal) (18)
dus) ~ |A| \-Aa Au (¢(t)/a3)dazs ]

To evaluate the signs of du;, we need some more information on the function
A that can be obtained from (3). The condition A(n,m) = 1 — A(m,n) implies
Al(n,m) = —Az(m, n) and Alz(n, m) = —Azl(m, n) If A € CZ, Alz(ul,U2) =
Az (u1,u). Therefore, if u; = u; = n, the last two equations imply A;2(n,n) = 0.
Next, observe that a; = a implies u; = uy,” and therefore A;3(n,n) = As (n,n) =
Thus, startlng from a symmetnc situation with a; = a5 and da; > 0 = da,, (18)
~ implies

Fus

Ouy __ ¢(t) A Oup
6a1

dar o} |A|

>0, =0. (19)
While this is only a local result at a first glance, a deeper investigation shows that
it establishes u;(t) > uy(t) for all ¢ € [0,T], if a; > a3, because both functions are
continuous in a; and (19) shows that u, rises — starting at a symmetric situation -
with a; above u; and u; = u; would imply a; = a; from (3) and (16).

The next step is to investigate the dependence of u;(t) on time ¢. Differentiating
(16) with respect to ¢ yields, similar to (18),

(ul) _ 1 ( Az —Alz) ( é(t)/ax ) (20)
i) |A[\-4a  Au /) \-¢(t)/a/"

Because ¢(t) < 0 and |A| < 0; it is straightforward to show that the assumptions
(3) imply that '&1 > 0, if A12 > —(az/al)Azg, and ’U2 >'0, if A21 < —(al/az)Au. In

other words, u; > 0, if A, is not too negative, and 1, > 0, if A,; is not too positive.
Both control variables will be increasing in ¢, if

which moreover implies that at least one of them is increasing in time. In the special
case with a; = a, we have seen before that A, = 0; thus, the inequality is satisfied
and %; and %, are positive in this case. In summary, although the first of the three

"To prove this, suppose that a; = a2 and u; = n # us = m. From (16), a1 = ap implies
Ay (n,m) +A2(n m) = 0. Let Au; = (m —n)/2 and Ay, = (n —m)/2 to get n' := n+ Ay =
m + Auy =: m’ and therefore A, (n',m') + As(n',m’) = 0 from (3). Taylor’s theorem implies the
existence of (n",m") = (n + kAu;,m + kAu,) fora k € (0,1) such that

A(n',m') + Ao (n,m’) = A; (n,m) + Az(n,m)

-0 0
+ [Au(n", m")-"l- Ay (ﬂ", m”)]Atq -+ [A12 (n”, m") + Ajg (n", m")]Aug.

Since Au; = —Auy and A;3(n",m") = Az;(n",m"), it follows that A;(n",m") = Aza(n”,m"),
which contradicts assumption (3). Thus, a; = a; implies u; = u,.



5. Pareto-Efficiency - | 9

main conclusions of section 3. cannot be definitely answered in the affirmative for
the general case, it is approximately valid.

The example employed in section 3. has the special property that A;a(u;, up) =0
for all values of (u;,u;) and therefore both , and %, are positive. As an example
involving non-vanishing cross partial derivatives, consider the function A given by

A(u u)= %Vul/u2 : UQZuIZO,
b .2 1-3Vuafur @ u >up>0.

This function fulfills the conditions in (3) but is only C* (not C?), however. Sub-
stituting the first order denvatlves into (16) yields the following Nash ethbnum
trajectories:

uy(t) = 4 = / (l+p)(t—T)’ us(t) = - / _%6;:_5 W+o)(t-T)  if g, = gl~> sz — ae,
u (t) = 21 /%e(up)(t—ﬂ’ up(t) = /cwz iby (140)t-T)  if g = %L S = a,.

These equilibrium strategies show that conclusion 1. of section 3. may be valid even
if the cross partial derivatives of A do not vanish.

In order to analyze the validity of the second and third of the three conclusions
in section 3., the solution of equation (5) — evaluated at ¢t = T — can be written
symbolically as

n(T)=¢eT [Pm + /; ' A(uy(t), ug(t))é dt] (21)

by the variation of the constant formula. As we have seen before, u,(t) % ua(t) for
all t if a, % ay. Since A(uy,us) % 1/2if uy (t) % uz(2), it follows that

" e atZ [ Letar=Ler -] 2
A (U1(t),U2(t))6 tz A 56 -—-2-6 '—5 = 01202.

We can use this result along with (21) to obtain the second conclusion:

as.

AllV

1 1\ _
PI(T)§'2'+(P10—§)6T = o

For example, if pp = 1/2, then R1 is more likely to be preferred at time T if a; > a,.
Finally, we note that the third conclusion is obviously valid in view of the results
obtained so far. :

5. Pareto-Efficiency

In order to evaluate the efficiency of the open-loop Nash equilibrium, it is useful to

consider the cooperative solution of joint benefit maximization of both regions. The :

v

\
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objective function in this case is

J=d+J = i/m[Ui(t) - (;i(ui(t))]e-pt dt
i=1 40 : r
= e "T[py(T)(by — bs) + ba)/p — ‘/; erua (t) + CéUg(t)]C-pt dt,

and it should be maximized with respect to u; and uo subjéct to

b1 = A(u, u2) — 1, P1(0) = pyo € (0,1).

It-is well known that the solution of this problem will be Pareto-efficient from the
point of view of the two regions together, that is, it satisfies the criterion of group-
rationality. -

In contrast to the noncooperative Nash equilibrium, for the prwent case it is
important to take the nonnegativity constraints explicitly into account right from
the beginning, because it is likely that one of the u; should be set to zero for all
t € [0, T, regardless of the parameter values. Thus, we have to impose the constraints
U 2 0, 1= 1, 2. ‘

The current value Hamiltonian is

H = —[cyu; + coug] + A[A(uy, u2) — p1],

and, taking the nonnegativity constra.mts into consideration, the necessary condi-
tions for an optimum include

OH 0A oH
—_— — —< > =
aul c + /\a ™ 0 U 2 0 aul Uy 0,
OH 0A OH
= — < > =
au2 c2 + ’\a 0 Uz 2 07 3u2' AUz 01 (22)
A=pA+ A,

AT) = (b1 = b2)/p.

We do not need the explicit solution here, because the main conclusions are easily
- derived from the necessary conditions. From the last two equations of (22) it follows
immediately that . :

A(t) 0 vt € [0,T] = b1<b2

Usmg this result in the other relations of (22), the properties (3) of the function A
.imply that

(w1(t) >0 and U2(t) 0 Vte[0,T]) if b > by,
(u(t) =0 and w(t)=0 Vte[0,T]) if by =by,
(u1 (t) 0 and 'u.2(t) > 0 Vt e [0 T]) lf b, < b,.

Thus, at least one of u; and u, is zero for all ¢. If b = b, it is clearly irrelevant
from the point of view of both regions together in which region the facility will be
\ .
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located; therefore, u; = u; = 0 for all ¢ is optimal. If, for example, b, is greater than
b2, it may be sensible to try to raise the probability of having the facility located in
R1. Thus, u3 = 0 and u; > 0 for all ¢ (whether the strict inequality for u, w1ll hold
depends on the parameter values).

These results indicate that the open-loop Nash equilibrium is highly inefficient
from the point of view of both regions together and therefore for the inhabitants
of these regions. For example, if b = b,, the joint benefit maximization requires
to spend nothing on forcing, while the expenditures for forcing are likely to be
positive in both regions in the Nash equilibrium (cf. the discussion following equation -

- (13)). This result resembles that of Asada (1997) for the case of the transportation
competition, who claims that the competition between two firms is not necessarily
_inefficient compared to the case of cooperation from the social point of view because
the expenditures of his firms will improve the quality of the transportation means. -
In the present case, however, this line of argument is not valid: Forcing of a region
in order to influence its own attraction with respect to the LDM involves costs by
~ definition; so far as these actions would have a value by themselves, rational regional
governments would carry them out without regard to the possible location of a new
facility. The costs of forcing should therefore be interpreted as net costs that have
no direct compensation in terms of the utility for the region’s inhabitants. Thus,
these costs have to be subtracted from the benefit provided by the new facility. ‘

On the other hand, the LDM would ignore the expenditures on forcing if they
would not be beneficial to him. From the point of view of the two regions and the
LDM together, the LDM’s extra benefit has to be taken into account. Apart from
the distributional problem involved, however, it is most likely that the gain of the
LDM does not outweigh the loss of the regions.

In summary, from a social point of view, the regions should not compete for the
LDM but should solve their problem of joint benefit maximization — the solution of
which may be that no forcing at all is optimal —, wait for the LDM’s decision and
come to an agreement on the payments that the preferred region passes to the loosing
region. (By the way, this is an argument for the German Lénderfinanzausgleich.)

6. Concluding Remarks

We have dealt with regional competition for the location of new facilities in the
framework of a differential game, the simplicity of which enables its quantitative
and/or qualitative solution. Moreover, state-separability implies that the open-loop
Nash equilibrium of the model is also a degenerate subgame perfect feedback equi-
librium. Despite this simplicity, the model seems to be reasonably well suited for
analyzing the problem at hand, thereby providing mterestmg insights into thls pro-
cess of regional competition.

The concept of a Nash equilibrium is sensible if both regions play symmetljlcal
roles with symmetrical information structures. A possible extension of the model
analyzed here is the consideration of the Stackelberg equilibrium, with one region
being the leader and the other being the follower. This setting, where the leader
informs the follower about his own strategy in advance, may be a realistic description
of some actual competition processes. Note that in order to obtain a reasonable
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Stackelberg equilibrium it is not possible to use the specific example of section 3.,
because the function A employed there uncouples the decision processes of both
players. The functional form used as an example in section 4. does not exhibit this
property.

Another possible extension is the exphcxt analysns of the LDM as a third player

that tries to influence the actions of the regions by giving feedbacks about special
requirements important for his decision process. The analysis of these interactions
belongs to the primary purposes of the model that Jutila (1999) has in mind.
" Finally, it would be interesting to analyze how a Pareto-efficient outcome of the
kind considered in section 5. could be reached by cooperative modes of play with
possible side-payments. With regard to the competing regions, this seems to be
the most important question from the practical point of view. We leave all these
extensions for future research.
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