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Abstract: GMM estimation of autoregressive panel data equations in error-ridden variables
when the noise has memory, is considered. The impact of variation in the memory length in signal
and noise spread and in the degree of individual heterogeneity are discussed with respect to finite
sample bias, using Monte Carlo simulations. Also explored are also the impact of the strength of
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1 Introduction
Moment-based estimation of first-order autoregressive, AR(1), models from ‘short pan-

els’ has seen a growing interest for more than 20 years, and estimator properties have

been considered in several contexts. While consistency in well-specified models is easy

to ensure, even with short panels, substantial finite sample biases may occur, as demon-

strated through Monte Carlo (MC) simulations by, e.g., Kiviet (1995), Ziliak (1997) and

Bun and Kiviet (2006). Also for static panel data models with mis-measured regressors,

moment-based estimation is useful.1 On the general level, panel data may help coming

to grips with three problems that may occur simultaneously: autoregression, error-ridden

regressors, and finite memory of the errors.

In this paper fixed effects AR(1) models with errors in variables (EIV) and finite sam-

ple properties of Generalized Method of Moments (GMM) procedures mixing variables in

levels and in differences are explored and illustrated. This is done partly by experiments

with synthetic data and partly by an application using country panels. A distinctive fea-

ture of the approach is that the errors are allowed to have a memory – the ‘noise’ memory

is superimposed on the ‘signal’ memory. For short panels with N units, a multitude of

N -consistent GMM estimators exist. The difficulty in obtaining analytical expressions for

their finite sample expectations and small-sample biases calls for MC studies.

Selected issues in GMM panel data estimation of AR(1) models with EIV have been

discussed through MC simulations in a related study, Biørn and Han (2013), inter alia,

the impact on finite sample bias of changes in the noise variances and noise memories,

the potential gains obtained by supplementing IV sets based on exogenous variables with

IVs based on endogenous variables, and the importance of unit-specific heterogeneity. In

this study, we bring other ideas into focus, inter alia: (a) The impact on estimated short-

run versus long-run responses of changed noise and signal pattern. (b) The impact on

estimator bias of increased time-invariant heterogeneity in the equation and in the signal.

(c) The impact on performance of changed panel size and time-series length. The empirical

illustration is related to the impact of Foreign Direct Investment (FDI) on GDP growth,

where studies from the last decade have given the measurement error problem attention.

A novelty is that the service FDI is compared with the manufacturing FDI.

2 Model and estimators
We consider an AR(1) model for a balanced design with N individuals, indexed by i,

observed in T periods, indexed by t, including K strictly exogenous variables, allowing for

fixed, time-invariant heterogeneity, αi and for measurement errors in all variables:

(1)

µit = αi + ξitβ + µi,t−1λ+ uit, |λ|<1,
qit = ξit + ηit,
yit = µit + νit,
ξit ⊥ ηit ⊥ uit ⊥ νit.

Here (µit, ξit) are latent variables, ξit with finite memory Nξ; (yit, qit) are their observable

counterparts; (νit,ηit) are errors with zero means and memories (Nν , Nη); (ξit,ηit) are

1For the EIV case, see, inter alia, Griliches and Hausman (1986), Biørn (2000), Wansbeek and Meijer (2000,
section 6.9), Wansbeek (2001), Biørn and Krishnakumar (2008, Section 10.2), and Xiao et al. (2007, 2010). For
the AR-case, see, inter alia, Arellano and Bond (1991), Ahn and Schmidt (1995), Arellano and Bover (1995), and
Blundell and Bond (1998).
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(1 × K)-vectors; uit is a disturbance with memory Nu; β is a (K × 1) coefficient vector

and λ is a scalar constant.2 Eliminating µit and ξit, letting ωit=uit+νit−νi,t−1λ and

(2) wit=ωit−ηit=uit+νit−νi,t−1λ−ηitβ,

we obtain the following relationships in observable variables

yit = αi + qitβ + yi,t−1λ+ wit,(3)

∆yit = ∆qitβ +∆yi,t−1λ+∆wit.(4)

Obviously, (yit, qi,t+τ ) and wi,t+θ will be correlated for some (τ, θ), uncorrelated for others.

In Biørn (2015) it is shown that potential q-IVs3 for, respectively, (3) and (4) are:

∆qi,t+τ , τ ̸∈ [−Nη, Nη+1], τ ∈ [−Nq, Nq+1],(5)

qi,t+τ , τ ̸∈ [−(Nη+1), Nη], τ ∈ [−(Nq+1), Nq].(6)

where Nq=max[Nξ, Nη] and Nω=max[Nu, Nν+1] are the memories of qit and ωit. Letting

xit=(qit, yi,t−1),γ =(β′, λ)′ and denoting levels and differences by L- and D-subscripts,

respectively, (3)–(4), after stacking by all relevant periods, read in compact notation

yLi = αi +XLiγ +wLi,(7)

yDi =XDiγ +wDi.(8)

Following (5) and (6), we let ZDi be the IV matrix for XLi in (7), constructed by

selecting the relevant elements from (the matrix in differences) XDi, and let ZLi be the

IV matrix for XDi in (8), constructed by selecting the relevant elements from (the matrix

in levels) XLi. The ‘step-two’ GMM estimators, to be considered for γ are, respectively,

γ̃L = {[
∑

iX
′
LiZDi][

∑
iZ

′
DiŵLiŵ

′
LiZDi]

−1[
∑

iZ
′
DiXLi]}−1(9)

× {[
∑

iX
′
LiZDi][

∑
iZ

′
DiŵLiŵ

′
LiZDi]

−1[
∑

iZ
′
DiyLi]},

γ̃D = {[
∑

iX
′
DiZLi][

∑
iZ

′
LiŵDiŵ

′
DiZLi]

−1[
∑

iZ
′
LiXDi]}−1(10)

× {[
∑

iX
′
DiZLi][

∑
iZ

′
LiŵDiŵ

′
DiZLi]

−1[
∑

iZ
′
LiyDi]},

where ŵLi and ŵDi are residual vectors from the related ‘step-one’ estimation; see David-

son and MacKinnon (2004, Sections 9.2–9.3).

3 Design of simulations
In the simulation framework now to be described, K=2 exogenous variables are assumed.

The processes generating (ηit, νit, uit) are specified as (Vector) Moving Average ((V)MA),

the signal vector ξit is a time invariant vector plus a VMA process:

ξit = χi+
∑Nξ

s=0ψi,t−sAs,
ψit∼ IINK(0,Σψ), Σψ, A0, . . . ,ANη diagonal,

χi∼ IINK(χ̄,Σχ), Σχ non-diagonal,
(11)

i=1, . . . , N ; t=1, . . . , T,

where IIN denotes ‘identically independently normal’ and subscript K indicates the distri-

bution’s dimension. Measurement errors and disturbances are generated by

2In the model versions actually used in the simulations this assumption will be modified, as ξit is generated as
the sum of a moving average component with memory Nξ and a time-invariant component. The memory of ∆ξit
then becomes Nξ+1, as differencing removes any time-invariant component.

3Only the use of q-IVs will be considered in this study.
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ηit =
∑Nη

s=0 ϵi,t−sBs, ϵit∼ IINK(0,Σϵ), Σϵ, B0, . . . ,BNη diagonal,

νit =
∑Nν

s=0 δi,t−sds, δit∼ IIN1(0, σ
2
δ ),(12)

uit =
∑Nu

s=0 vi,t−scs, vit∼ IIN1(0, σ
2
v), i=1, . . . , N ; t=1, . . . , T.

Heterogeneity in the equation, assumed fixed in the original model, is generated as if

random, αi ∼ IIN1(0, σ
2
α), and assumed uncorrelated with χi and ψit.

4

Table 1: Baseline parameter sets for simulations

Coefficients: (β1, β2, λ) = (0.6, 0.3, 0.8).

Auxiliary matrices: I2 =

[
1 0

0 1

]
J2 =

[
1 1

2
1
2 1

]
ξit process: (χ̄1, χ̄2) = (5, 10);

σ2
χ = 0.1; Σχ = σ2

χJ2;

σ2
ψ=1; Σψ = σ2

ψI2;

Nξ=4 : As = (1− s
5
)I2, s=0, 1, . . . , 4.

Nξ=6 : As = (1− s
7
)I2, s=0, 1, . . . , 6.

=⇒ diag[V(ξit)] : σ2
ξ1 = σ2

ξ2 =

{
σ2
χ + σ2

ψ × 2.200, Nξ = 4.

σ2
χ + σ2

ψ × 2.857, Nξ = 6.

ηit process: σ2
ϵ = 0.1; Σϵ = σ2

ϵI2;

Nη=0 : B0 = I2;

Nη=1 : B0 = I2, B1 = 1
2
I2;

Nη=2 : B0 = I2, B1 = 2
3
I2, B2 = 1

3
I2;

=⇒ diag[V(ηit)] : σ2
η1 = σ2

η2 =


σ2
ϵ × 1.000, Nη=0.

σ2
ϵ × 1.250, Nη=1.

σ2
ϵ × 1.556, Nη=2.

αi process: σ2
α = 0.1.

uit process: σ2
v = σ2

u = 0.1;

Nu = 0, c0 = 1.

νit process: σ2
δ = 0.1;

Nν=0 : d0 = 1; σ2
ν = σ2

δ × 1.000.

Nν=1 : d0 = 1, d1=
1
2
; σ2

ν = σ2
δ × 1.250.

Nν=2 : d0 = 1, d1=
2
3
, d2=

1
3
; σ2

ν = σ2
δ × 1.556.

Combining (1) and (2) with (11) and (12) it follows that

qit = χi+
∑Nξ

s=0ψi,t−sAs +
∑Nη

s=0 ϵi,t−sBs,(13)

(1−λL)(yit−νit)µit = αi+(χi+
∑Nξ

s=0ψi,t−sAs)β+
∑Nu

s=0vi,t−scs,(14)

wit =
∑Nu

s=0vi,t−scs +
∑Nν

s=0(1− λL)δi,t−sds − (
∑Nη

s=0 ϵi,t−sBs)β.(15)

Since χi and αi enter the model asymmetrically and the variables in levels and in differ-

ences fill opposite roles in γ̃L and γ̃D, changes in the degree of heterogeneity, measured

by σ2
χ and σ2

α, impact the estimators’ distribution in quite different ways. For example,

changes in χ̄ or in σ2
χ affect both qit and yit, but neither of ∆qit or ∆yit, since differencing

eliminates any time-invariant variable, while an increase in σ2
α affects only the distribution

of the level yit.

The design parameters in the baseline simulations are N = 100, T = 10 and K = 2,

and R=500 replications are performed. The latent exogenous variable vector has memory

4Since these assumptions for generating αis are not exploited by the GMM procedures, the fixed effects assump-
tion may be viewed as equivalent with conditioning on the αi values drawn.
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Nξ=4 (exceptionally 6), while the memory of the errors is alternatively set to Nη=0, 1, 2

and Nν=0, 1, 2. The disturbance memory is set to Nu=0 and its variance to σ2
u=σ2

v=0.1.

Table 1 displays the parameter set.5

4 Simulation results
We next discuss MC simulation results6 with focus on, inter alia, comparing the perfor-

mance of GMM with respect to the impact of changes in the noise and signal pattern

(spread and memory length) on the estimated short-run versus long-run coefficient esti-

mates, the impact on bias of increased time-invariant heterogeneity, and of changed panel

design, including panel size and ‘shortness’.

First, we consider a benchmark case with an error-free AR(1) model (σ2
δ =σ2

ϵ =0 =⇒
σ2
ν = σ2

ηk =0, k = 1, 2). Table 2 gives the means of the GMM estimators for Nξ =4 and

(σ2
χ, σ

2
ψ)=(0.1, 1.0) (=⇒ σ2

ξ1=σ2
ξ2=2.3) and (σ2

χ, σ
2
ψ)=(0.1, 0.5) (=⇒ σ2

ξ1=σ2
ξ2=1.2); see

Table 1. For the equation in levels a small bias occurs, negative for (β1, β2) and positive

for λ, smaller when σ2
ψ =1 (denoted as the large signal spread case) than when σ2

ψ =0.5

(denoted as the small signal spread case). The equation in differences gives negatively

biased coefficient estimates, and again the bias is smaller when the signal spread is large

than when it is small.

Table 2: Benchmark model: No measurement error. Mean of estimates

(β1, β2, λ)=(0.6, 0.3, 0.8). (χ̄1, χ̄2)=(5, 10). (N,T )=(100, 10)

Nξ=4. σ2
δ=σ2

ϵ =0, σ2
u=σ2

χ=σ2
α=0.1

Eq. IV σ2
ψ β1 β2 λ

Lev Diff 1.0 0.5850 0.2688 0.8130
Diff Lev 1.0 0.5727 0.2879 0.7046
Lev Diff 0.5 0.5680 0.2369 0.8265
Diff Lev 0.5 0.5482 0.2782 0.6317

Next, we let the dynamics and the measurement errors interact. Table 3 illustrates

the impact on the mean of the estimates of changes in the measurement error pattern,

starting from the no measurement error case (σ2
ϵ =σ2

δ =0). For the equation in levels with

large signal spread (σ2
ψ=1) there is a small negative bias in (β1, β2) and a small positive

bias in λ. The bias increases, but is still small, when the equation is taken to differences,

and then the bias of λ changes sign.

Introducing measurement error in the exogenous variables only, (σ2
ϵ , σ

2
δ ) = (0.1, 0.0),

leads, for the level version of the equation, to an increased bias, while doing the same for

the endogenous variable (σ2
ϵ , σ

2
δ ) = (0.0, 0.1), reduces the bias. Again, there is a notable

contrast between level and the difference versions. While for the former, mismeasured

exogenous variables only gives an increased bias, a similar experiment for the endogenous

variable now also magnifies the bias, and the impact of the latter may exceed the impact

of the former. The configuration σ2
ψ = 1, (Nξ, Nη, Nν) = (4, 0, 0) gives for example a

simulated mean of λ of 0.70 in the absence of measurement error, and 0.67 and 0.51 for

(σ2
ϵ , σ

2
δ )=(0.1, 0.0) and (σ2

ϵ , σ
2
δ )=(0.0, 0.1), respectively. Interestingly, for the level version

5The µit process is initialized by using as start values the ‘long-run expectation’ µi0=E[µit/(1−λL)] = χ̄β/(1−λ).
6The simulations are performed by a computer program in the Gauss software code; see Gauss (2006), con-

structed by the authors. The standard errors are calculated from the GMM formulae, as described in Biørn and
Krishnakumar (2008, Section 10.2.5).
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it is the combination of exogenous variable error-free and endogenous variable error-ridden,

(σ2
ϵ , σ

2
δ )=(0.0, 0.1), that gives the smallest bias (lowest estimate of λ, highest estimate of

β1, β2) – also relative to the case with no measurement (Table 3, rows 1–9), while for the

difference version the smallest bias occurs in the no measurement case.

For the large signal spread case we find that the level version outperforms the differ-

ence version, giving smallest bias for all parameters. The same is the case under small

signal spread, except that for β2 the difference version outperforms the level version when

there is no error or error in the exogenous variable only (Table 3, rows 4–5 vs. 13–14). Un-

surprisingly, the estimates from the large signal spread experiment (σ2
ψ=1) have smaller

bias than those from the small signal spread (σ2
ψ=0.5). Our tentative recommendations

therefore are: For estimation, give in general preference to the equation in levels. Only ex-

ceptionally (exemplified by β2 with error in the exogenous variable only or no measurement

error at all) the equation in differences is preferable.7

Table 4 (which is an extract of Appendix Table A.1) supplements Table 3 by illustrat-

ing the impact of inflating measurement error spread (σ2
ϵ , σ

2
δ ) stepwise from (0.1,0.1) to

(0.5,0.5). The primary findings are: For the equation in levels: [a] An increased σ2
δ (in-

creasing spread of the error in the endogenous variable ν) induces an increase in the mean

of the estimated β1, β2 (reduced negative bias), and the bias may disappear and become

positive, while it induces a reduction of λ (reduced positive bias). [b] An increased σ2
ϵ (in-

creasing spread of the error in the exogenous variables η) induces a reduction of the mean

of the estimated β1, β2 (increased negative bias) and an increase of λ (increased positive

bias). Note, for example, the very small (positive or negative) bias for (σ2
ϵ , σ

2
δ )=(0.1, 0.5).

For the equation in differences: [a] An increased σ2
δ (increasing spread of the error in the

endogenous variable ν) induces a reduction of the mean of the estimated β1, β2 (increased

negative bias) as well as a reduction of λ (increased negative bias). [b] An increased σ2
ϵ

(increasing spread of the error in the exogenous variables η) gives reduced mean of the es-

timated β1, β2 (increased negative bias), while λ is also reduced (increased negative bias).

Therefore increased spread of ν only contributes to reducing bias for the equation in dif-

ferences. [c] For (σ2
ϵ , σ

2
δ )= (0.5, 0.5), the bias is severe, in particular for λ.The impact of

increased signal memory, from 4 to 6 (which extends the IV set, see (5)–(6)), is illustrated

by comparing columns 4–6 with 7–9 in Table A.1.

The impact of changed degree of time-invariant heterogeneity – the ubiquitous type of

heterogeneity considered in applied panel data analysis – is illustrated in Table 5 (which is

an extract of Appendix Table A.2). It exemplifies the impact on the mean of the simulated

estimates when inflating stepwise, from 0.1 to 0.5, the variance of the heterogeneity in the

equation, σ2
α, and of the heterogeneity in the exogenous variable, σ2

χ. The main findings are:

For the equation in levels: [a] An increased equation heterogeneity σ2
α has an ambiguous

impact on the mean of the estimated β1, β2, but its bias is still negative. It also has an

ambiguous effect on λ, but its bias is still positive. [b] An increased signal heterogeneity

σ2
χ leads to reduced (mean of the estimated) β1, β2 (negative bias increased), while λ is

increased (positive bias increased) in most cases. [c] A reduced signal spread, through

reduced σ2
ψ, leads to reduced (mean of the estimated) β1, β2 (negative bias increased)

7The general validity of these conclusions should not be overstated, however, inter alia because they rest on the
assumed distributional pattern of for the heterogeneity variables χi and αi; cf. Table 1.
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and increased λ (positive bias increased). [d] The impact of increased error memory is

ambiguous. For the equation in differences: [a] An increased equation heterogeneity, σ2
α,

leads to increased (mean of the estimated) β1, β2 (negative bias reduced) and increased λ

(positive bias reduced). [b] An increased signal heterogeneity σ2
χ leads to increased mean

of the estimated β1, β2 (negative bias reduced) and increased λ (negative bias reduced).

[c] A reduced spread of the signal ξ through a reduced σ2
ψ, leads to reduced (mean of the

estimated) β1, β2 (negative bias increased) and reduced (mean of the estimated) λ (positive

bias increased). [d] The impact on the (mean of the estimated) β1, β2, λ of increased error

memory is an increased bias.

Persistence and contrasts between short-run and long-run responses are often given

attention in applied panel data studies. Tables 6 and 7 illustrate the impact on the means

of the estimates of (β1, β2, λ) and their implied long-run coefficients [β1/(1−λ), β2/(1−λ)]

when the AR parameter λ varies. The (β1, β2) estimates (Table 6) are negatively biased

in all examples (for both the static case, λ= 0, and the weak and strong autoregression

cases, λ=0.2 and =0.8), with one exception: β2 is approximately unbiased (mean estimate

0.3004) for σ2
ψ=1 and (Nξ, Nη, Nν)= (4, 0, 0). For λ, the sign of the bias differs between

the two versions of the equation. For the equation in levels there is a positive bias, which

is increased when an error memory is introduced or the signal variance is reduced. For

example, with (β1, β2, λ) = (0.3, 0.6, 0.0), the mean λ= 0.0178 for (Nξ, Nη, Nν) = (4, 0, 0)

under large signal spread, increased to 0.0381 under small signal spread; or increased to

0.0661 under large signal spread for (Nξ, Nη, Nν)=(4, 1, 0). For the equation in differences

there is a negative bias, whose magnitude mirrors the equation in levels. For the long-run

coefficients (Table 7) the results depart in several respects from the results for the short-

run coefficients. First, the conclusion that biases become smaller under large (σ2
ψ = 1)

than under small signal spread (σ2
ψ=0.5) does not hold invariably for the long-run coeffi-

cients. An example is provided for the equation in levels for (β1, β2, λ)=(0.3, 0.6, 0.0) and

(Nξ, Nη, Nν)= (4, 2, 0). Secondly, the systematic negative biases for (β1, β2) in all exam-

ples do not hold. For example, (β1, β2, λ)=(0.3, 0.6, 0.0) and σ2
ψ=1 give, for the equation

in levels, β1/(1−λ)=0.3010 (i.e., very small positive bias) when (Nξ, Nη, Nν)=(4,1,0) and

β1/(1−λ) = 0.2990 (i.e., very small negative bias) when (Nξ, Nη, Nν) = (4, 2, 0). Finally,

for the equation in differences we still find negative biases in the long-run coeffcients. The

biases increase when an error memory is introduced or the signal variance is reduced. A

comparison of Tables 6 and 7 indicates that when estimation of long-run effects of ex-

ogenous variables is our main concern, the advantages of keeping equations in levels are

strengthened. Therefore when analyzing genuine data in cases where long-run impacts are

parameters of crucial interest, the better choice seems to be to keep equations in levels

and use IVs in differences.
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Table 3: Introducing measurement errors. Mean of estimates

(N,T ) = (100, 10). (β1, β2, λ)=(0.6, 0.3, 0.8). (χ̄1, χ̄2)=(5, 10). σ2
u=σ2

χ=σ2
α=0.1

(exog.) (endog.) (Nξ, Nη, Nν) = (Nξ, Nη, Nν) =

σ2
ϵ σ2

δ (4,0,0) (4,1,0) (4,2,0) (4,2,2) (4,0,0) (4,1,0) (4,2,0) (4,2,2)

Eq. in levels; σ2
ψ = 1.0 Eq. in levels; σ2

ψ = 0.5

β1 0.0 0.0 0.5850 0.5857 0.5837 0.5814 0.5680 0.5702 0.5718 0.5718
0.1 0.0 0.5612 0.5501 0.5478 0.5468 0.5285 0.5193 0.5046 0.5078
0.0 0.1 0.5893 0.5926 0.5876 0.5908 0.5767 0.5793 0.5705 0.5862

β2 0.0 0.0 0.2688 0.2658 0.2633 0.2680 0.2369 0.2343 0.2295 0.2371
0.1 0.0 0.2587 0.2572 0.2529 0.2510 0.2261 0.2243 0.2221 0.2198
0.0 0.1 0.2752 0.2738 0.2774 0.2794 0.2582 0.2508 0.2555 0.2707

λ 0.0 0.0 0.8130 0.8141 0.8152 0.8141 0.8265 0.8271 0.8288 0.8260
0.1 0.0 0.8203 0.8228 0.8245 0.8256 0.8365 0.8387 0.8421 0.8423
0.0 0.1 0.8104 0.8101 0.8096 0.8082 0.8178 0.8202 0.8197 0.8126

Eq. in differences; σ2
ψ = 1.0 Eq. in differences; σ2

ψ = 0.5
β1 0.0 0.0 0.5727 0.5714 0.5654 0.5659 0.5482 0.5433 0.5501 0.5430

0.1 0.0 0.5391 0.5243 0.5117 0.5120 0.4867 0.4701 0.4461 0.4497
0.0 0.1 0.5165 0.5097 0.5073 0.4810 0.4703 0.4592 0.4510 0.4257

β2 0.0 0.0 0.2879 0.2851 0.2839 0.2845 0.2782 0.2735 0.2706 0.2704
0.1 0.0 0.2651 0.2655 0.2538 0.2565 0.2453 0.2329 0.2260 0.2287
0.0 0.1 0.2593 0.2560 0.2538 0.2415 0.2393 0.2328 0.2279 0.2179

λ 0.0 0.0 0.7046 0.6958 0.6923 0.6897 0.6317 0.6165 0.6094 0.6067
0.1 0.0 0.6664 0.6459 0.6228 0.6196 0.5734 0.5393 0.5104 0.5071
0.0 0.1 0.5146 0.4957 0.4827 0.3919 0.3574 0.3386 0.3175 0.2059

Table 4: Changing noise variances and noise memory. Impact on estimate mean

(N,T ) = (100, 10). (β1, β2, λ)=(0.6, 0.3, 0.8). (χ̄1, χ̄2)=(5, 10). σ2
ψ=1, σ2

u=σ2
χ=σ2

α=0.1

(exog.) (endog.) (Nξ, Nη, Nν) = (Nξ, Nη, Nν) =

σ2
ϵ σ2

δ (4,0,0) (4,1,0) (4,2,0) (4,2,2) (4,0,0) (4,1,0) (4,2,0) (4,2,2)

Equation in levels Equation in differences
β1 0.1 0.1 0.5655 0.5594 0.5536 0.5591 0.4839 0.4687 0.4610 0.4415

0.5 0.1 0.4896 0.4641 0.4426 0.4463 0.3867 0.3529 0.3392 0.3107
0.1 0.5 0.5865 0.5749 0.5717 0.5942 0.3767 0.3655 0.3487 0.3296
0.5 0.5 0.5087 0.4921 0.4631 0.4794 0.3091 0.2870 0.2641 0.2384

β2 0.1 0.1 0.2674 0.2682 0.2653 0.2687 0.2401 0.2350 0.2300 0.2219
0.5 0.1 0.2430 0.2298 0.2242 0.2260 0.1949 0.1777 0.1690 0.1611
0.1 0.5 0.3009 0.3070 0.3027 0.3189 0.1879 0.1917 0.1729 0.1615
0.5 0.5 0.2766 0.2644 0.2623 0.2736 0.1548 0.1423 0.1256 0.1233

λ 0.1 0.1 0.8168 0.8175 0.8195 0.8174 0.4840 0.4525 0.4333 0.3547
0.5 0.1 0.8376 0.8462 0.8513 0.8504 0.3811 0.3293 0.2904 0.2056
0.1 0.5 0.8019 0.8016 0.8039 0.7945 0.1117 0.0777 0.0442 -0.0538
0.5 0.5 0.8227 0.8300 0.8350 0.8285 0.0489 0.0153 -0.0158 -0.1229

Table 5: Changing equation and signal heterogeneity. Impact on estimate mean

(N,T ) = (100, 10). (β1, β2, λ)=(0.6, 0.3, 0.8). (χ̄1, χ̄2)=(5, 10). σ2
u=σ2

δ=σ2
ϵ =0.1.σ2

ψ = 1.0

(eq.) (exog.var.) (Nξ, Nη, Nν) = (Nξ, Nη, Nν) =

σ2
α σ2

χ (4,0,0) (4,1,0) (4,2,0) (4,2,2) (4,0,0) (4,1,0) (4,2,0) (4,2,2)

Equation in levels Equation in differences
β1 0.5 0.1 0.5676 0.5610 0.5586 0.5536 0.5009 0.4874 0.4805 0.4543

0.1 0.5 0.5163 0.5164 0.5079 0.5155 0.4916 0.4751 0.4720 0.4481
0.5 0.5 0.5185 0.5157 0.5085 0.5182 0.4990 0.4928 0.4804 0.4678

β2 0.5 0.1 0.2691 0.2653 0.2604 0.2736 0.2495 0.2435 0.2340 0.2319
0.1 0.5 0.1719 0.1678 0.1634 0.1635 0.2490 0.2404 0.2353 0.2163
0.5 0.5 0.1701 0.1718 0.1690 0.1692 0.2502 0.2501 0.2433 0.2383

λ 0.5 0.1 0.8155 0.8182 0.8203 0.8163 0.5320 0.5139 0.5059 0.4308
0.1 0.5 0.8572 0.8592 0.8617 0.8601 0.5048 0.4763 0.4589 0.3777
0.5 0.5 0.8579 0.8578 0.8602 0.8586 0.5368 0.5353 0.5190 0.4594
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So far sample size (N,T )=(100, 10) has been assumed in the simulations. As these pa-

rameters may crucially influence the size and other properties of the IV sets (see Section 2),

and very short panels are quite common, experiments with alternative values are inter-

esting both to assess sensitivity and to guide the choice of approach when using genuine

data, which will be exemplified in Section 5. Table 8 (which is an extract from Appendix

Table A.3) illustrates the impact on the simulated mean when N is reduced from 100 to

50 and T is reduced from 10 to 6. Overall, the sensitivity of the means is dramatic within

the intervals considered. When the equation is in levels, the bias tends to be smaller

for N = 100 than for N = 50, a result that does not invariably hold for the equation in

differences; examples are the memory configurations (Nξ, Nη, Nν) = (4, 1, 0) and (4, 2, 0).

Neither does the bias tend to vary monotonically with T for a fixed N . Corresponding

values of the kurtosis and the skewness of the estimates, for the equation in levels only,

are shown in Table 9 (which is an extract from Appendix Table A.4). Overall, it is the no

error memory case (column 1) that comes out with shape parameters in closest agreement

with the values under normality (kurtosis=3, skewness=0). This holds for both versions

of the equation and both for large and small signal spread. However – maybe contrary

to intuition – when assuming large signal spread, the score, by these criteria, is better

than when assuming small signal spread; the memory configuration (Nξ, Nη, Nν)=(4, 2, 0)

provides a clear example.

The orthogonality conditions underlying the GMM estimation have been tested for,

respectively, (7) and (8), by

JL = [
∑

i ŵ
′
LiZDi][

∑
iZ

′
DiŵLiŵ

′
LiZDi]

−1[
∑

iZ
′
DiŵLi],

JD = [
∑

iw
′
DiZLi][

∑
i Ẑ

′
LiŵDiŵ

′
DiZLi]

−1[
∑

iZ
′
LiŵDi],

see Hansen (1982), Newey (1985) and Arellano and Bond (1991), considering all experi-

ments with simulated means reported in Tables 3 through 7. Under the null JL and JD are

asymptotically distributed as χ2 with a number of degrees of freedom equal to the number

of overidentifying restrictions (equal to the number of orthogonality conditions minus the

number of unrestricted coefficients under the null). Also F-tests for ‘IV-strength’, based

on an extension of the Bun and Windmeijer (2010) suggestion of using a concentration

parameter to measure IV strength for a model with one endogenous regressor, are con-

ducted; see Biørn and Han (2013) for a description of this extension. All tests indicated

non-rejection of the orthogonality conditions and ‘acceptable strength’ of the IV set for

sample size (N,T ) = (100, 10), and are excluded for space reasons. Table 10 reports, as

the only example, the p-values for such tests related to the mean estimates in Table 8. We

see that the J -tests indicate non-rejection in all alternatives and acceptable IV-strength

in all alternatives except the level version with two-period error memory and time series

length T =6 (p-values around 0.2).
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Table 6: Changing autoregression and error memory. Impact on mean (β1, β2, λ) estimates

(N,T ) = (100, 10). (χ̄1, χ̄2)=(5, 10), σ2
u=σ2

δ=σ2
ϵ =σ2

χ=σ2
α=0.1

Input values (Nξ, Nη, Nν) =

β1 β2 λ (4,0,0) (4,1,0) (4,2,0) (4,0,0) (4,1,0) (4,2,0)

Eq. in levels; σ2
ψ=1.0 Eq. in levels; σ2

ψ=0.5
β1 0.3 0.6 0.0 0.2952 0.2812 0.2779 0.2892 0.2580 0.2644

0.6 0.3 0.0 0.5791 0.5647 0.5571 0.5652 0.5371 0.5318

0.3 0.6 0.2 0.2916 0.2793 0.2761 0.2844 0.2720 0.2599
0.6 0.3 0.2 0.5785 0.5662 0.5529 0.5604 0.5389 0.5273

0.3 0.6 0.8 0.2836 0.2758 0.2720 0.2600 0.2572 0.2559
0.6 0.3 0.8 0.5640 0.5609 0.5534 0.5407 0.5310 0.5110

β2 0.3 0.6 0.0 0.5885 0.5598 0.5588 0.5761 0.5366 0.5283
0.6 0.3 0.0 0.3004 0.2757 0.2812 0.2969 0.2658 0.2604

0.3 0.6 0.2 0.5832 0.5615 0.5571 0.5697 0.5306 0.5182
0.6 0.3 0.2 0.2967 0.2787 0.2755 0.2905 0.2611 0.2547

0.3 0.6 0.8 0.5587 0.5520 0.5438 0.5221 0.5132 0.4951
0.6 0.3 0.8 0.2697 0.2648 0.2636 0.2427 0.2400 0.2350

λ 0.3 0.6 0.0 0.0178 0.0661 0.0710 0.0381 0.1120 0.1189
0.6 0.3 0.0 0.0176 0.0690 0.0663 0.0322 0.1098 0.1241

0.3 0.6 0.2 0.2218 0.2528 0.2593 0.2404 0.2887 0.3086
0.6 0.3 0.2 0.2186 0.2510 0.2647 0.2384 0.2923 0.3092

0.3 0.6 0.8 0.8134 0.8162 0.8190 0.8259 0.8289 0.8339
0.6 0.3 0.8 0.8165 0.8185 0.8199 0.8293 0.8315 0.8365

Eq. in diff.; σ2
ψ=1.0 Eq. in diff.; σ2

ψ=0.5
β1 0.3 0.6 0.0 0.2819 0.2695 0.2624 0.2687 0.2385 0.2376

0.6 0.3 0.0 0.5673 0.5319 0.5237 0.5346 0.4831 0.4756

0.3 0.6 0.2 0.2813 0.2604 0.2554 0.2611 0.2342 0.2238
0.6 0.3 0.2 0.5594 0.5218 0.5089 0.5220 0.4680 0.4446

0.3 0.6 0.8 0.2400 0.2342 0.2222 0.2062 0.2037 0.1910
0.6 0.3 0.8 0.4843 0.4732 0.4560 0.4167 0.4061 0.3774

β2 0.3 0.6 0.0 0.5662 0.5296 0.5213 0.5290 0.4854 0.4719
0.6 0.3 0.0 0.2833 0.2675 0.2620 0.2659 0.2392 0.2393

0.3 0.6 0.2 0.5564 0.5209 0.5119 0.5260 0.4585 0.4461
0.6 0.3 0.2 0.2796 0.2612 0.2534 0.2567 0.2312 0.2125

0.3 0.6 0.8 0.4827 0.4676 0.4506 0.4170 0.4002 0.3839
0.6 0.3 0.8 0.2421 0.2321 0.2323 0.2106 0.1969 0.1868

λ 0.3 0.6 0.0 -0.0338 -0.1272 -0.1322 -0.0621 -0.2086 -0.2245
0.6 0.3 0.0 -0.0297 -0.1304 -0.1339 -0.0621 -0.2143 -0.2023

0.3 0.6 0.2 0.1439 0.0351 0.0073 0.0972 -0.0772 -0.1088
0.6 0.3 0.2 0.1486 0.0328 0.0120 0.0997 -0.0745 -0.1027

0.3 0.6 0.8 0.4782 0.4489 0.4047 0.3162 0.2665 0.2503
0.6 0.3 0.8 0.4887 0.4460 0.4274 0.3113 0.2736 0.2375

Table 7: Changing autoregression and error memory. Impact on mean of long-run effects

(N,T ) = (100, 10). (χ̄1, χ̄2)=(5, 10), σ2
u=σ2

δ=σ2
ϵ =σ2

χ=σ2
α=0.1

Input values (Nξ, Nη , Nν) =

β1 β2 λ
β1

1−λ
β2

1−λ
(4,0,0) (4,1,0) (4,2,0) (4,0,0) (4,1,0) (4,2,0)

Eq. in levels; σ2
ψ=1.0 Eq. in levels; σ2

ψ=0.5
β1

1−λ
0.3 0.6 0.0 0.3 0.6 0.3006 0.3010 0.2990 0.3006 0.2905 0.3007
0.6 0.3 0.0 0.6 0.3 0.5897 0.6082 0.5992 0.5848 0.6065 0.6115

0.3 0.6 0.2 0.375 0.750 0.3748 0.3736 0.3729 0.3747 0.3827 0.3771
0.6 0.3 0.2 0.750 0.375 0.7409 0.7585 0.7573 0.7368 0.7662 0.7720

0.3 0.6 0.8 1.5 3.0 1.5199 1.5017 1.5029 1.4933 1.5081 1.5427
0.6 0.3 0.8 3.0 1.5 3.0870 3.1140 3.1240 3.2066 3.2028 3.2312

β2
1−λ

0.3 0.6 0.0 0.3 0.6 0.5992 0.5996 0.6017 0.5989 0.6043 0.5996
0.6 0.3 0.0 0.6 0.3 0.3056 0.2954 0.3001 0.3064 0.2971 0.2952

0.3 0.6 0.2 0.375 0.750 0.7495 0.7517 0.7523 0.7499 0.7460 0.7490
0.6 0.3 0.2 0.750 0.375 0.3795 0.3710 0.3723 0.3809 0.3666 0.3644

0.3 0.6 0.8 1.5 3.0 2.9936 3.0039 3.0053 2.9994 2.9982 2.9813
0.6 0.3 0.8 3.0 1.5 1.4631 1.4480 1.4403 1.4024 1.3989 1.3876

Eq. in diff.; σ2
ψ=1.0 Eq. in diff.; σ2

ψ=0.5
β1

1−λ
0.3 0.6 0.0 0.3 0.6 0.2729 0.2404 0.2342 0.2535 0.1993 0.1970
0.6 0.3 0.0 0.6 0.3 0.5515 0.4732 0.4665 0.5042 0.4013 0.4007

0.3 0.6 0.2 0.375 0.750 0.3291 0.2724 0.2612 0.2903 0.2200 0.2067
0.6 0.3 0.2 0.750 0.375 0.6583 0.5448 0.5254 0.5821 0.4407 0.4115

0.3 0.6 0.8 1.5 3.0 0.4728 0.4467 0.4023 0.3087 0.2898 0.2762
0.6 0.3 0.8 3.0 1.5 0.9699 0.8909 0.8714 0.6200 0.5817 0.5321

β2
1−λ

0.3 0.6 0.0 0.3 0.6 0.5482 0.4727 0.4648 0.4992 0.4053 0.3910
0.6 0.3 0.0 0.6 0.3 0.2754 0.2381 0.2332 0.2509 0.1987 0.2020

0.3 0.6 0.2 0.375 0.750 0.6513 0.5445 0.5237 0.5845 0.4315 0.4112
0.6 0.3 0.2 0.750 0.375 0.3290 0.2725 0.2619 0.2864 0.2175 0.1966

0.3 0.6 0.8 1.5 3.0 0.9493 0.8949 0.8135 0.6272 0.5710 0.5555
0.6 0.3 0.8 3.0 1.5 0.4852 0.4364 0.4396 0.3128 0.2818 0.2621
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Table 8: Changing panel design. Impact on estimator mean
(β1, β2, λ)=(0.6, 0.3, 0.8). (χ̄1, χ̄2)=(5, 10). σ2

ψ = 1. σ2
u=σ

2
δ =σ

2
ϵ =σ

2
χ=σ

2
α=0.1

(Nξ, Nη , Nν) = (Nξ, Nη , Nν) =
N T (4,0,0) (4,1,0) (4,2,0) (4,2,1) (4,0,0) (4,1,0) (4,2,0) (4,2,1)

Equation in levels Equation in differences
β1 50 6 0.5648 0.5867 0.5687 0.5623 0.4758 0.4601 0.4697 0.4323

50 10 0.5620 0.5555 0.5500 0.5528 0.4670 0.4543 0.4445 0.4427

100 6 0.5692 0.5596 0.5594 0.5667 0.4856 0.4690 0.3902 0.5105
100 10 0.5642 0.5577 0.5550 0.5575 0.4818 0.4686 0.4575 0.4426

β2 50 6 0.2776 0.2738 0.2787 0.2841 0.2405 0.2395 0.2133 0.1905
50 10 0.2687 0.2647 0.2585 0.2657 0.2381 0.2275 0.2235 0.2219

100 6 0.2792 0.2648 0.2879 0.2828 0.2423 0.2415 0.0654 0.1900
100 10 0.2685 0.2680 0.2620 0.2645 0.2429 0.2382 0.2339 0.2218

λ 50 6 0.8141 0.8109 0.8124 0.8114 0.4619 0.4268 0.3586 0.3569
50 10 0.8168 0.8193 0.8223 0.8195 0.4339 0.4056 0.3965 0.3675

100 6 0.8117 0.8184 0.8107 0.8112 0.5070 0.4525 0.4363 0.4462
100 10 0.8166 0.8177 0.8200 0.8186 0.4845 0.4536 0.4207 0.3754

Table 9: Changing panel design. Impact on estimator kurtosis and skewness
(β1, β2, λ)=(0.6, 0.3, 0.8). (χ̄1, χ̄2)=(5, 10). σ2

ψ = 1. σ2
u=σ

2
δ =σ

2
ϵ =σ

2
χ=σ

2
α=0.1. Eq. in levels

(Nξ, Nη , Nν) = (Nξ, Nη , Nν) =
N T (4,0,0) (4,1,0) (4,2,0) (4,2,1) (4,0,0) (4,1,0) (4,2,0) (4,2,1)

Kurtosis Skewness
β1 50 6 3.2130 3.9024 15.2166 5.8204 0.0124 0.2100 -1.2840 0.1052

50 10 3.0628 3.4429 3.5627 3.1895 0.0239 -0.1351 0.1126 -0.0692

100 6 3.9867 3.8795 6.1599 4.4225 -0.4309 0.1094 -0.2658 -0.1308
100 10 3.3495 2.9267 3.2543 3.2395 -0.2088 -0.0641 -0.1296 -0.0954

β2 50 6 4.2630 4.1719 9.4146 6.3879 -0.3177 -0.1377 1.0640 0.0413
50 10 3.5539 2.9700 2.9294 3.3819 0.0338 0.0432 0.1765 -0.1490

100 6 3.1785 4.1242 7.8837 15.5332 -0.0591 -0.1471 -0.3890 1.4773
100 10 3.4851 3.3548 3.3736 3.3325 0.0883 0.1011 -0.1333 - 0.1513

λ 50 6 3.9074 4.1632 6.0577 5.2854 0.2513 -0.1218 -0.7680 -0.4497
50 10 2.9577 2.7043 3.0343 3.7450 0.0584 -0.0439 -0.0676 0.1925

100 6 3.1860 3.6477 7.3511 7.6515 0.0828 0.0191 0.5333 -0.5346
100 10 3.0391 3.4376 3.4329 3.0237 -0.0277 -0.0802 0.0499 0.1344

Table 10: Changing panel design. Impact on J - and F-tests
(β1, β2, λ)=(0.6, 0.3, 0.8). (χ̄1, χ̄2)=(5, 10). σ2

ψ = 1. σ2
u=σ

2
δ =σ

2
ϵ =σ

2
χ=σ

2
α=0.1

(Nξ, Nη , Nν) = (Nξ, Nη , Nν) =
N T (4,0,0) (4,1,0) (4,2,0) (4,2,1) (4,0,0) (4,1,0) (4,2,0) (4,2,1)

Equation in levels
p-value for J -test (orthogonality) p-value for F-test (IV-strength)

50 6 0.4501 0.4230 0.1657 0.1538 0.0000 0.0000 0.2278 0.2218
50 10 0.9991 0.7328 0.4168 0.4033 0.0000 0.0000 0.0000 0.0000

100 6 0.5260 0.4585 0.1622 0.1664 0.0000 0.0000 0.1973 0.1964
100 10 0.4028 0.4460 0.4960 0.4850 0.0000 0.0000 0.0000 0.0000

Equation in differences
p-value for J -test (orthogonality) p-value for F-test (IV-strength)

50 6 0.4052 0.5102 0.6625 0.6446 0.0336 0.0185 0.0406 0.0437
50 10 0.9980 0.7291 0.3850 0.3953 0.0000 0.0000 0.0000 0.0000

100 6 0.4253 0.5518 0.6695 0.6549 0.0219 0.0172 0.0257 0.0268
100 10 0.3608 0.3683 0.4488 0.4273 0.0000 0.0000 0.0000 0.0000
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5 Application: FDI impact on economic growth
Our application is concerned with measuring the contribution of FDI on growth. We

employ the dynamic model used by, inter alia, Basu and Guariglia (2007) and Doytch and

Uctum (2011) and a panel data set for 131 countries, and for examining specific issues

(see below) sets of only 25–30 countries. The empirical mode is specified as

(16) Yit = αi + Yi,t−1λ+Xitβ + Zitγ + εit,

corresponding to (3) and (14), with (yit, qit) and wit, as given by (2) and (15), in the

simulation model, corresponding to (Yit, Xit, Zit) and εit. The dependent variable for

country i at time t, Yit, is the log of real GDP per capita, Xit is the share of FDI in GDP,

and Zit is a vector of control variables: an indicator of political stableness, an indicator

of economic openness and the share of the population which belongs to the working age,

while εit is the disturbance term. The measurement error problem has been given attention

in the literature on the relationships between FDI and countries’ economic performance.

For example, Razin and Sadka (2012) noted that since different countries have different

recording and accounting practices relating to FDI measurement, measurement errors are

likely to arise when such data are compiled in a country panel. Neuhaus (2006) pointed

out that measurement error is a prevalent problem in a transition country when the FDI

impact on its economic growth is investigated. Some authors have tried to accommodate

persistence in the errors in this kind of study, e.g., Samad (2009) introduced an error-

correction mechanism in examining the causal relation between the FDI share in GDP

and per capita GDP.

Therefore, motivated by the increasing popularity of GMM in FDI-economic-growth

analysis, and our simulation results in section 4, we apply our AR-EIV-GMM approach on

a country panel data set in order to shed more light on this issue. The data set is from the

years 1996–2010. It is not a full 15-year panel, however, since for the years 1996–2002 only

biannual observations are available (1997, 1999 and 2001 are missing). For 2002–2010 (9

years) annual observations exist. Removing the countries with time series shorter than 12

observations, we have compiled a balanced data set of 1572 observations (N=131 countries

observed in T =12 years, although, as remarked, only the last 8 years are contiguous). All

observations are compiled from World Development Indicators, published by the World

Bank, including real GDP per capita in 2005 PPP, FDI and GDP in current USD, the

degree of openness, defined as the total share of export and import in GDP, and finally,

working age population, defined as the share of the persons in the population with ages

15–64 years. The political stability index is extracted from the World-Wide Governance

Indicators (WGI) dataset.

We first, as a benchmark estimation, run a fixed effect OLS regression with the ag-

gregate FDI share as one of the regressors. The result, presented in Table 11, columns 1

and 2, gives a FDI equation with an estimated autoregression parameter as high as, 0.85,

which is close to the value assumed in the above simulation experiments. Motivated by

our simulation results that estimation is likely to be less biased when based on an equation

in levels than on a corresponding equation in differences, we in the following prefer, in

making inference on the coefficient of the FDI share, to give priority to the equation in

levels. To handle the endogeneity problem we in addition use the GMM version suggested
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by Blundell and Bond (1998), in which the equation is transformed to first differences,

including the lagged left-hand side variables for selected periods in the IV set.8

Our dataset specifically allows testing hypotheses about the contributions of manufac-

turing FDI to GDP growth in both the manufacturing sector and the service sector, and

symmetrically, the contributions of service FDI to GDP growth in both sectors, including

cross-effects. However, at this disaggregate level the data is more limited with respect to

both country coverage and time series length. For examining the effects of manufacturing

FDI, data from N = 32 countries and T = 8 years are available, while for examining the

effects of service FDI, the data set includes N=29 countries and T =8 years.

As pointed in the previous literature, a problem with system GMM estimators is that

there is little guidance to determine whether or not the IV set is ‘excessive’. For example,

Doytch and Uctum (2011) had to experiment with different lags from the potential IV

set to obtain their final estimates. An advantage of the strategy proposed in the present

paper and used in compiling Tables 12–15 is that we from the different combinations of

the noise and signal memories assumed can first deduct potentially valid IV sets which

next in confrontation with the results of the J - and F-tests can lead us to the preferred

estimator.

As indicated by our MC simulations results in Section 4, the equation in difference

and IVs in levels tend to produce more negatively biased coefficient estimates for β1, β2, a

conclusion also suggested by Blundell and Bond (1998) for a model with no measurement

error. As shown in Table 12, for GMM estimates based on different memory lengths, the

estimate of the FDI coefficient for the equation in differences is much lower than those for

the equation in levels. Based on the recommendation from our MC simulation, we stick

to the equation in levels and only lags and leads of independent variables as the working

IVs to obtain the more reliable coefficient estimates. Among the combinations presented

in Table 12, we choose the one which best fits the data. We can use the J -test as well

a goodness-of-fit R2 measure for equations estimated by IVs based on prediction errors

(PS-R2), see Pesaran and Smith (1994), to make the judgment. Figures 1 and 2 visualize

comparisons between different versions. The combination (Nξ, Nη, Nν) = (4, 0, 0) is the

dominating case with highest PS-R2 statistic along with an acceptable p-value from the

J -test.

Compared with the FDI coefficient estimate in Table 11, 0.017, the memory constella-

tion (Nξ, Nη, Nν)=(4, 0, 0) for the level version in Table 12 gives a much higher estimate,

0.0388, also higher than the fixed-effect OLS estimate. This illustration therefore shows

how dynamic GMM estimation without considering memory in errors can bias the results.

An alternative estimation of Table 12 with observations from 2002–2010 gave largely sim-

ilar results.

To specifically investigate the effects of FDI on GDP growth, we have extracted the

subsample of Asian developing countries.9 The impacts of aggregate FDI, in Table 13, are

8The results in Table 11 are obtained by the ‘R’ software; R being a language and environment for statistical
computing and graphics, available as Free Software under the terms of the Free Software Foundation’s GNU General
Public License in source code form. See http://www.r-project.org/.

9The 24 Asian developing countries include: Azerbaijan, Bangladesh, Cambodia, China, Fiji, Georgia, India,
Indonesia, Kazakhstan, Korea, Rep., Lao PDR, Malaysia, Maldives, Mongolia, Nepal, Pakistan, Papua New Guinea,
Philippines, Samoa, Sri Lanka, Tajikistan, Thailand, Uzbekistan, Vietnam. This gives a balanced panel data set
for the years 2002–2009.
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much stronger than implied by the above results; its coefficient estimate increases from

0.0388 to 0.1674 and, with a standard error of 0.0595, the latter is clearly significant.

Recent studies, e.g. Doytch and Uctum (2011), have tended to disaggregate the effects

of FDI into different sectors. Following the line, we apply our Dynamic GMM to revisit

the effects at the disaggregated level. At a disaggregate level, however, the data sets are

much limited compared to the set used for analyzing the above aggregated FDI effects.10

Table 14 presents the estimated effects of manufacturing FDI on manufacturing GDP

growth (section A) and on service GDP growth (section B), modifying the interpretation

of X and Y in (16), accordingly. While the similar analysis in Doytch and Uctum (2011)

yields no significant effects of manufacturing FDI on GDP growth in either of the sectors at

the world wide level, our analysis shows a very different picture: the memory combination

(Nξ, Nη, Nν) = (4, 1, 0) has the highest fit along with acceptable J -test results. Manu-

facturing FDI comes out with significant positive effects on GDP growth in both sectors.

However, the cross-effect, also called spill-over effects, is much smaller, 0.3614 (section B)

against 0.6003 (section A). Next, we extend the analysis to represent the impact of service

FDI on both service and manufacturing GDP growth. Because of limited data availability

for Chile, Malaysia, and Slovenia we exclude these countries from the 32 countries pre-

viously examined. The results are reported in Table 15, sections A and B, respectively,

again with the modified interpretation of X and Y in (16). A surprising difference from

the above results is that for the impact of the service FDI, when using the equation in

difference with memory combination (Nξ, Nη, Nν)= (2, 0, 0), the equation yields the best

fit. Also contrary to the findings of of Doytch and Uctum (2011), we observe no negative

spill-over effect from the service FDI to manufacturing GDP growth. In our findings, both

the effects are significantly positive. However, both effects are much lower than the effects

of the manufacturing FDI. The contribution of the service FDI to the manufacturing GDP

growth is much lower than its contribution to the service GDP growth.

By comparing the memory combination (Nξ, Nη, Nν)=(4, 1, 0) for the contribution of

manufacturing FDI and (Nξ, Nη, Nν)=(2, 0, 0) for the service FDI, we conclude that the

‘cyclical pattern’ or ‘persistence’ in the behavior of the service FDI is much weaker than

that of the manufacturing FDI, which is consistent with the common expectation. Failing

to incorporate such an important feature in the GMM estimation might severely bias the

results, for example, the negative effects of service FDI on the manufacturing GDP growth

documented by Doytch and Uctum (2011).

As exemplified in our simulations the equation in difference with IVs in levels tends to

give more negatively biased coefficient estimates than the opposite constellation. Table 12

shows estimates for the dynamic FDI model under different assumptions about the memory

lengths, using IVs based on the exogenous variables. The coefficient estimate of FDI in

the equation in differences is much lower than in the equation in levels, which is consistent

the simulation results. Drawing on our simulation results, we use the equation in levels

and using as IVs only values of the assumed exogenous variables as the working horse in

10For examining the effects of manufacturing FDI on both GDP growth in manufacturing sector and service
sector, we have for the 8 years 2002–2009 observations for 32 countries, including Australia, Austria, Cambodia,
Chile, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Iceland, Indonesia, Ireland, Japan,
Lao PDR, Malaysia, Mexico, Netherlands, Norway, Philippines, Portugal, Singapore, Slovak Republic, Slovenia,
Spain, Sweden, Thailand, Turkey, the United Kingdom, the United States, and Viet Nam.
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coefficient estimation, giving the results in Table 12. Among the combinations presented,

we choose the combination which best fits the data, using the J -test and P&S R2 to

judge. Figure 1 visualize comparisons between different combinations. The constellation

(Nξ, Nη, Nν)=(4, 0, 0) gives the highest P&S R2 along with an ‘acceptable’ J -test result.

Table 11: FDI equation. OLS vs. GMM, 1572 obs

Fixed Effects, OLS Fixed effects, GMM

Est. (S.e.) Est. (S.e.)

ln(GDP(-1)) 0.846 (0.010) 0.650 (0.061)
FDI share 0.029 (0.013) 0.017 (0.013)
Political Stability 0.022 (0.004) 0.031 (0.011)
Openness 0.000 (0.000) 0.001 (0.000)
Working Age Population Share 0.006 (0.001) 0.029 (0.008)

Sargan Test: 123.52
(p=0.1784)

Second-order Autocorrelation Test: −0.4572
(p=0.3237)

Wald Test for Coefficients: 1062.84
(p=0.0000)

Motivated by results from Sargan tests and tests for second-order disturbance autocorrelation.
IVs: All values of X and Z lagged 5 periods.

Table 12: FDI coefficient GMM estimates from equation (16)

N = 131, T = 12 (years 1996,1998,2000,2002–2010)

(Nξ, Nη, Nν) =

(4,0,0) (4,1,0) (4,2,0) (3,0,0) (3,1,0) (2,0,0)

Equation in levels
Est. 0.0388 0.0361 0.0288 0.0408 0.0392 0.0302
S.e. 0.0276 0.0274 0.0213 0.0280 0.0295 0.0209

PS-R2 0.6674 0.6144 0.5572 0.6346 0.5779 0.5903
J -test 1.0000 0.9690 0.0921 0.9993 0.2033 0.4836

Equation in differences

Est. 0.0198 0.0271 0.0235 0.0198 0.0250 0.0236
S.e. 0.0136 0.0221 0.0205 0.0149 0.0220 0.0176

PS-R2 0.4216 0.4322 0.4097 0.4227 0.4301 0.4179
J -test 1.0000 0.9788 0.0606 1.0000 0.2424 0.4836

Table 13: FDI coefficient GMM estimate. Asian Developing Countries

N = 24, T = 9 (years 2002–2010)

(Nξ, Nη , Nν) =

(2,0,0) (2,1,0) (3,1,0) (4,1,0)

Equation in levels
Est. 0.1881 0.1920 0.1650 0.1674
S.e. 0.0884 0.0639 0.0644 0.0595
PS-R2 0.8390 0.7403 0.8142 0.8580
J -test 1.0000 0.9197 1.0000 1.0000

Equation in differences
Est. -0.3385 -0.5877 -0.4716 -0.3296
S.e. 0.2971 0.4061 0.3618 0.3141
PS-R2 0.5708 0.6053 0.5930 0.5803
J -test 1.0000 0.9197 1.0000 1.0000
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Table 14: Coefficient GMM estimates of Manufacturing FDI

N=32, T =8 (years 2002–2009)

(Nξ, Nη , Nν) =

(2,0,0) (2,1,0) (3,1,0) (4,1,0) (2,0,0) (2,1,0) (3,1,0) (4,1,0)

A. In equation explaining Manufacturing GDP

Equation in levels Equation in differences

Est. 0.2672 0.3961 0.6713 0.6003 0.2946 0.2046 0.1646 0.2244
S.e. 0.2001 0.3051 0.3292 0.3469 0.1703 0.2089 0.1753 0.1558
PS-R2 0.6444 0.4260 0.6063 0.6874 0.6910 0.6851 0.6742 0.6822
J -test 0.9999 0.2321 0.9828 0.9999 0.9999 0.2321 0.9837 0.9999

B. In equation explaining Service GDP

Equation in levels Equation in differences

Est. 0.1684 0.5018 0.5159 0.3614 -0.1702 -0.1452 -0.1580 -0.1759
S.e. 0.1249 0.3660 0.2227 0.2100 0.3907 0.3783 0.3475 0.3550
PS-R2 0.6422 0.4232 0.6039 0.6846 0.7372 0.7281 0.7252 0.7261
J -test 0.9999 0.2321 0.9828 0.9999 0.9995 0.2321 0.9830 0.9999

Table 15: Coefficient GMM estimates of Service FDI

N=29, T =8 (years 2002–2009)

(Nξ, Nη , Nν) =

(2,0,0) (2,1,0) (3,1,0) (4,1,0) (2,0,0) (2,1,0) (3,1,0) (4,1,0)

A. In equation explaining Service GDP

Equation in levels Equation in differences

Est. 0.0780 0.1851 0.1127 0.0356 0.2686 0.2766 0.2607 0.2379
S.e. 0.0404 0.0872 0.0839 0.0745 0.0926 0.0860 0.0827 0.0810
PS-R2 0.6460 0.4319 0.6214 0.7016 0.7605 0.7418 0.7337 0.7302
J -test 0.9999 0.3609 0.9944 0.9999 1.0000 0.3609 0.9944 0.9999

B. In equation explaining Manufacturing GDP

Equation in levels Equation in differences

Est. 0.0481 0.1985 0.1594 0.0842 0.1489 0.2186 0.1689 0.1364
S.e. 0.0614 0.1045 0.0774 0.0612 0.0674 0.0921 0.0659 0.0655
PS-R2 0.6470 0.4326 0.6221 0.7034 0.6951 0.6840 0.6975 0.6982
J -test 0.9999 0.3609 0.9944 0.9999 1.0000 0.3609 0.9938 1.0000
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Figure 1. Trends of J-test and P & R Squared with Different Memory Combinations 
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Appendix A: Supplementary tables

Table A.1: Changing noise variances and noise memory. Impact on estimate mean

(N,T ) = (100, 10). (β1, β2, λ)=(0.6, 0.3, 0.8). (χ̄1, χ̄2)=(5, 10). σ2
ψ=1, σ2

u=σ2
χ=σ2

α=0.1

(exog.) (endog.) (Nξ, Nη , Nν) =

σ2
ϵ σ2

δ (4,0,0) (4,1,0) (4,1,1) (4,2,0) (4,2,1) (4,2,2) (6,2,0) (6,2,1) (6,2,2)

Equation in levels
β1 0.1 0.1 0.5655 0.5594 0.5631 0.5536 0.5519 0.5591 0.5629 0.5620 0.5637

0.5 0.1 0.4896 0.4641 0.4704 0.4426 0.4464 0.4463 0.4710 0.4799 0.4774
0.1 0.5 0.5865 0.5749 0.5790 0.5717 0.5668 0.5942 0.5787 0.5866 0.5799
0.5 0.5 0.5087 0.4921 0.4888 0.4631 0.4728 0.4794 0.4904 0.4898 0.4920

β2 0.1 0.1 0.2674 0.2682 0.2674 0.2653 0.2633 0.2687 0.2713 0.2700 0.2835
0.5 0.1 0.2430 0.2298 0.2336 0.2242 0.2253 0.2260 0.2334 0.2342 0.2397
0.1 0.5 0.3009 0.3070 0.3157 0.3027 0.3191 0.3189 0.2990 0.3026 0.3177
0.5 0.5 0.2766 0.2644 0.2755 0.2623 0.2665 0.2736 0.2620 0.2692 0.2754

λ 0.1 0.1 0.8168 0.8175 0.8170 0.8195 0.8207 0.8174 0.8161 0.8162 0.8116
0.5 0.1 0.8376 0.8462 0.8437 0.8513 0.8505 0.8504 0.8440 0.8420 0.8403
0.1 0.5 0.8019 0.8016 0.7981 0.8039 0.7990 0.7945 0.8035 0.8006 0.7967
0.5 0.5 0.8227 0.8300 0.8263 0.8350 0.8316 0.8285 0.8304 0.8283 0.8256

Equation in differences
β1 0.1 0.1 0.4839 0.4687 0.4640 0.4610 0.4461 0.4415 0.4800 0.4671 0.4521

0.5 0.1 0.3867 0.3529 0.3502 0.3392 0.3223 0.3107 0.3618 0.3650 0.3511
0.1 0.5 0.3767 0.3655 0.3391 0.3487 0.3313 0.3296 0.3725 0.3569 0.3508
0.5 0.5 0.3091 0.2870 0.2705 0.2641 0.2550 0.2384 0.3007 0.2772 0.2633

β2 0.1 0.1 0.2401 0.2350 0.2278 0.2300 0.2230 0.2219 0.2385 0.2311 0.2316
0.5 0.1 0.1949 0.1777 0.1736 0.1690 0.1580 0.1611 0.1801 0.1789 0.1766
0.1 0.5 0.1879 0.1917 0.1738 0.1729 0.1668 0.1615 0.1845 0.1735 0.1708
0.5 0.5 0.1548 0.1423 0.1293 0.1256 0.1346 0.1233 0.1479 0.1408 0.1359

λ 0.1 0.1 0.4840 0.4525 0.4205 0.4333 0.3847 0.3547 0.4753 0.4422 0.3954
0.5 0.1 0.3811 0.3293 0.3050 0.2904 0.2554 0.2056 0.3438 0.3233 0.2814
0.1 0.5 0.1117 0.0777 0.0130 0.0442 -0.0087 -0.0538 0.1014 0.0453 0.0055
0.5 0.5 0.0489 0.0153 -0.0581 -0.0158 -0.0707 -0.1229 0.0466 -0.0127 -0.0771

Table A.2: Changing equation and signal heterogeneity. Impact on estimate mean

(N,T ) = (100, 10). (β1, β2, λ)=(0.6, 0.3, 0.8). (χ̄1, χ̄2)=(5, 10). σ2
u=σ2

δ=σ2
ϵ =0.1

(eq.) (exog.var.) (Nξ, Nη, Nν) =

σ2
α σ2

χ (4,0,0) (4,1,0) (4,1,1) (4,2,0) (4,2,1) (4,2,2)

Equation in levels; σ2
ψ =1.0

β1 0.5 0.1 0.5676 0.5610 0.5671 0.5586 0.5549 0.5536
0.1 0.5 0.5163 0.5164 0.5065 0.5079 0.5020 0.5155
0.5 0.5 0.5185 0.5157 0.5132 0.5085 0.5122 0.5182

β2 0.5 0.1 0.2691 0.2653 0.2671 0.2604 0.2618 0.2736
0.1 0.5 0.1719 0.1678 0.1700 0.1634 0.1660 0.1635
0.5 0.5 0.1701 0.1718 0.1658 0.1690 0.1772 0.1692

λ 0.5 0.1 0.8155 0.8182 0.8168 0.8203 0.8201 0.8163
0.1 0.5 0.8572 0.8592 0.8598 0.8617 0.8613 0.8601
0.5 0.5 0.8579 0.8578 0.8598 0.8602 0.8568 0.8586

Equation in levels; σ2
ψ=0.5

β1 0.5 0.1 0.5479 0.5404 0.5356 0.5308 0.5236 0.5296
0.1 0.5 0.4648 0.4525 0.4578 0.4317 0.4390 0.4369
0.5 0.5 0.4860 0.4710 0.4694 0.4705 0.4717 0.4661

β2 0.5 0.1 0.2468 0.2452 0.2501 0.2421 0.2420 0.2494
0.1 0.5 0.0957 0.0853 0.0947 0.0923 0.0828 0.0913
0.5 0.5 0.0968 0.0936 0.0972 0.1006 0.0912 0.1090

λ 0.5 0.1 0.8263 0.8284 0.8274 0.8305 0.8324 0.8285
0.1 0.5 0.8912 0.8968 0.8929 0.8978 0.9003 0.8976
0.5 0.5 0.8876 0.8915 0.8904 0.8885 0.8919 0.8867

Equation in differences; σ2
ψ=1.0

β1 0.5 0.1 0.5009 0.4874 0.4844 0.4805 0.4644 0.4543
0.1 0.5 0.4916 0.4751 0.4661 0.4720 0.4552 0.4481
0.5 0.5 0.4990 0.4928 0.4809 0.4804 0.4744 0.4678

β2 0.5 0.1 0.2495 0.2435 0.2389 0.2340 0.2372 0.2319
0.1 0.5 0.2490 0.2404 0.2326 0.2353 0.2249 0.2163
0.5 0.5 0.2502 0.2501 0.2398 0.2433 0.2424 0.2383

λ 0.5 0.1 0.5320 0.5139 0.4843 0.5059 0.4782 0.4308
0.1 0.5 0.5048 0.4763 0.4394 0.4589 0.4187 0.3777
0.5 0.5 0.5368 0.5353 0.4919 0.5190 0.4925 0.4594

Equation in differences; σ2
ψ=0.5

β1 0.5 0.1 0.4602 0.4541 0.4395 0.4392 0.4295 0.4212
0.1 0.5 0.4325 0.4082 0.4007 0.3995 0.3841 0.3657
0.5 0.5 0.4614 0.4571 0.4391 0.4564 0.4342 0.4271

β2 0.5 0.1 0.2269 0.2287 0.2182 0.2143 0.2075 0.2051
0.1 0.5 0.2184 0.2009 0.2004 0.2068 0.1889 0.1856
0.5 0.5 0.2303 0.2234 0.2216 0.2248 0.2239 0.2161

λ 0.5 0.1 0.4629 0.4706 0.4321 0.4719 0.4383 0.4029
0.1 0.5 0.3674 0.3205 0.2781 0.3081 0.2601 0.2091
0.5 0.5 0.4842 0.4882 0.4526 0.5009 0.4603 0.4156
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Table A.3: Changing panel design. Impact on estimate mean
(β1, β2, λ)=(0.6, 0.3, 0.8). (χ̄1, χ̄2)=(5, 10). σ2

u=σ
2
δ =σ

2
ϵ =σ

2
χ=σ

2
α=0.1

(Nξ, Nη, Nν) = (Nξ, Nη, Nν) =

N T (4,0,0) (4,1,0) (4,1,1) (4,2,0) (4,2,1) (3,1,1) (4,0,0) (4,1,0) (4,1,1) (4,2,0) (4,2,1) (3,1,1)

Equation in levels; σ2
ψ = 1 Equation in levels; σ2

ψ = 0.5
β1 50 6 0.5648 0.5867 0.5694 0.5687 0.5623 0.5438 0.5457 0.5499 0.5262 0.5492 0.5411 0.5313

50 8 0.5688 0.5580 0.5655 0.5492 0.5468 0.5638 0.5375 0.5258 0.5273 0.5270 0.5102 0.5256
50 10 0.5620 0.5555 0.5592 0.5500 0.5528 0.5573 0.5349 0.5240 0.5288 0.5198 0.5280 0.5096

100 6 0.5692 0.5596 0.5741 0.5594 0.5667 0.5703 0.5448 0.5291 0.5382 0.5550 0.5405 0.5301
100 8 0.5670 0.5584 0.5646 0.5546 0.5573 0.5567 0.5361 0.5207 0.5238 0.5120 0.5285 0.5234
100 10 0.5642 0.5577 0.5590 0.5550 0.5575 0.5576 0.5325 0.5268 0.5303 0.5145 0.5179 0.5191

β2 50 6 0.2776 0.2738 0.2705 0.2787 0.2841 0.2722 0.2543 0.2485 0.2666 0.2734 0.2817 0.2628
50 8 0.2700 0.2693 0.2667 0.2700 0.2655 0.2630 0.2463 0.2492 0.2442 0.2419 0.2496 0.2511
50 10 0.2687 0.2647 0.2707 0.2585 0.2657 0.2639 0.2419 0.2352 0.2462 0.2382 0.2373 0.2379

100 6 0.2792 0.2648 0.2875 0.2879 0.2828 0.2805 0.2619 0.2542 0.2623 0.3057 0.2716 0.2437
100 8 0.2705 0.2668 0.2667 0.2646 0.2704 0.2708 0.2587 0.2463 0.2476 0.2352 0.2419 0.2501
100 10 0.2685 0.2680 0.2696 0.2620 0.2645 0.2638 0.2464 0.2395 0.2431 0.2343 0.2411 0.2330

λ 50 6 0.8141 0.8109 0.8149 0.8124 0.8114 0.8188 0.8246 0.8255 0.8235 0.8173 0.8157 0.8240
50 8 0.8154 0.8173 0.8170 0.8183 0.8204 0.8188 0.8284 0.8294 0.8310 0.8314 0.8317 0.8292
50 10 0.8168 0.8193 0.8166 0.8223 0.8195 0.8190 0.8306 0.8342 0.8297 0.8342 0.8328 0.8361

100 6 0.8117 0.8184 0.8085 0.8107 0.8112 0.8115 0.8215 0.8269 0.8228 0.8055 0.8194 0.8304
100 8 0.8156 0.8182 0.8171 0.8192 0.8171 0.8171 0.8244 0.8310 0.8302 0.8365 0.8312 0.8296
100 10 0.8166 0.8177 0.8172 0.8200 0.8186 0.8196 0.8292 0.8323 0.8309 0.8361 0.8335 0.8359

Equation in differences; σ2
ψ = 1 Equation in differences; σ2

ψ = 0.5
β1 50 6 0.4758 0.4601 0.4599 0.4697 0.4323 0.4423 0.4130 0.3919 0.4002 0.4534 0.4328 0.3639

50 8 0.4680 0.4559 0.4554 0.4503 0.4297 0.4419 0.4065 0.3907 0.3782 0.3863 0.3752 0.3592
50 10 0.4670 0.4543 0.4545 0.4445 0.4427 0.4368 0.4014 0.3884 0.3811 0.3856 0.3673 0.3610

100 6 0.4856 0.4690 0.4733 0.3902 0.5105 0.4478 0.4333 0.4163 0.3936 0.4076 0.3958 0.3987
100 8 0.4798 0.4649 0.4641 0.4568 0.4502 0.4445 0.4224 0.3906 0.3851 0.3782 0.3799 0.3646
100 10 0.4818 0.4686 0.4592 0.4575 0.4426 0.4497 0.4142 0.3959 0.3908 0.3796 0.3680 0.3734

β2 50 6 0.2405 0.2395 0.2245 0.2133 0.1905 0.2135 0.2076 0.1930 0.2123 0.2034 0.1699 0.1944
50 8 0.2347 0.2336 0.2197 0.2327 0.2082 0.2160 0.2082 0.1932 0.1919 0.1891 0.1867 0.1822
50 10 0.2381 0.2275 0.2240 0.2235 0.2219 0.2228 0.2074 0.1964 0.1881 0.1897 0.1878 0.1843

100 6 0.2423 0.2415 0.2341 0.0654 0.1900 0.2241 0.2161 0.2178 0.1934 0.1597 0.1890 0.1967
100 8 0.2449 0.2317 0.2307 0.2270 0.2182 0.2227 0.2174 0.2009 0.1905 0.1907 0.1824 0.1886
100 10 0.2429 0.2382 0.2274 0.2339 0.2218 0.2192 0.2078 0.2066 0.1884 0.1898 0.1900 0.1821

λ 50 6 0.4619 0.4268 0.4002 0.3586 0.3569 0.3459 0.3101 0.2716 0.2408 0.3126 0.2464 0.2108
50 8 0.4392 0.4182 0.3809 0.3982 0.3550 0.3509 0.2735 0.2486 0.1955 0.2458 0.1990 0.1600
50 10 0.4339 0.4056 0.3785 0.3965 0.3675 0.3336 0.2569 0.2418 0.1920 0.2273 0.1713 0.1585

100 6 0.5070 0.4525 0.4260 0.4363 0.4462 0.3763 0.3497 0.2874 0.2771 0.2963 0.2162 0.2312
100 8 0.4865 0.4479 0.4147 0.4237 0.3961 0.3909 0.3263 0.2639 0.2383 0.2518 0.2242 0.1956
100 10 0.4845 0.4536 0.4107 0.4207 0.3754 0.3881 0.3109 0.2679 0.2244 0.2410 0.1926 0.1875

Table A.4: Changing panel design. Impact on estimator kurtosis and skewness
(β1, β2, λ)=(0.6, 0.3, 0.8). (χ̄1, χ̄2)=(5, 10). σ2

u=σ
2
δ =σ

2
ϵ =σ

2
χ=σ

2
α=0.1. Eq. in levels

(Nξ, Nη, Nν) = (Nξ, Nη, Nν) =

N T (4,0,0) (4,1,0) (4,1,1) (4,2,0) (4,2,1) (3,1,1) (4,0,0) (4,1,0) (4,1,1) (4,2,0) (4,2,1) (3,1,1)

Kurtosis; σ2
ψ = 1 Skewness; σ2

ψ = 1
β1 50 6 3.2130 3.9024 4.1109 15.2166 5.8204 3.1704 0.0124 0.2100 0.2318 -1.2840 0.1052 -0.2438

50 8 3.3029 3.3626 3.2671 3.7996 3.0529 3.4255 -0.2490 0.0402 0.0977 0.0603 -0.1599 -0.2708
50 10 3.0628 3.4429 2.7467 3.5627 3.1895 2.9626 0.0239 -0.1351 -0.0804 0.1126 -0.0692 -0.2246

100 6 3.9867 3.8795 3.9570 6.1599 4.4225 3.5931 -0.4309 0.1094 0.2740 -0.2658 -0.1308 -0.2720
100 8 3.0816 2.9307 3.4479 3.4187 3.2840 3.3587 -0.0612 0.0163 -0.0644 -0.0866 0.1018 0.1802
100 10 3.3495 2.9267 3.0394 3.2543 3.2395 3.0127 -0.2088 -0.0641 0.0918 -0.1296 -0.0954 -0.1198

β2 50 6 4.2630 4.1719 4.5439 9.4146 6.3879 3.8502 -0.3177 -0.1377 0.3430 1.0640 0.0413 0.0462
50 8 3.4231 3.5442 3.2667 3.8120 3.5242 3.4093 -0.0367 0.3113 -0.0261 0.0568 -0.0337 0.1358
50 10 3.5539 2.9700 2.7906 2.9294 3.3819 3.1476 0.0338 0.0432 -0.1399 0.1765 -0.1490 -0.2083

100 6 3.1785 4.1242 3.6586 7.8837 15.5332 4.0948 -0.0591 -0.1471 0.0504 -0.3890 1.4773 -0.1311
100 8 2.7475 3.0782 3.8561 3.2647 2.9940 3.2049 0.0217 -0.0517 0.1223 0.0891 0.0437 0.0481
100 10 3.4851 3.3548 3.0746 3.3736 3.3325 2.9374 0.0883 0.1011 -0.0492 -0.1333 - 0.1513 -0.1137

λ 50 6 3.9074 4.1632 4.7096 6.0577 5.2854 3.3926 0.2513 -0.1218 -0.4913 -0.7680 -0.4497 0.1350
50 8 2.9992 3.1523 3.0108 4.1339 3.5685 3.3069 0.1825 -0.0852 -0.1168 -0.1327 0.0296 0.0203
50 10 2.9577 2.7043 2.9417 3.0343 3.7450 3.5791 0.0584 -0.0439 0.0560 -0.0676 0.1925 0.1911

100 6 3.1860 3.6477 3.6690 7.3511 7.6515 4.2126 0.0828 0.0191 -0.0628 0.5333 -0.5346 0.2350
100 8 3.1628 2.9396 3.9672 3.3431 3.1359 3.0791 -0.0087 0.0706 0.0925 -0.0183 0.0533 -0.0179
100 10 3.0391 3.4376 3.1346 3.4329 3.0237 2.8965 -0.0277 -0.0802 -0.1091 0.0499 0.1344 0.1687

Kurtosis; σ2
ψ = 0.5 Skewness; σ2

ψ = 0.5
β1 50 6 3.2997 3.4037 3.5205 4.8552 12.8315 4.1596 0.1140 -0.1698 0.0975 -0.1243 -1.5710 0.2381

50 8 3.0225 3.0056 3.6066 3.1203 3.6236 3.1489 0.1335 -0.0428 0.0359 -0.1073 -0.2083 0.0345
50 10 2.8139 2.8669 2.9632 3.1138 3.2494 3.3134 0.0390 -0.0462 0.0862 0.0130 0.0523 -0.1500

100 6 3.2377 4.1899 4.7088 5.0447 12.5917 4.3113 -0.0005 -0.0070 0.2919 -0.2938 -1.4124 0.1176
100 8 3.0087 3.0061 3.0802 3.2459 3.8318 3.0765 -0.1318 0.0075 -0.0370 -0.0865 0.1473 -0.0675
100 10 3.6313 3.2869 2.9435 3.3155 3.0677 3.0735 -0.0692 0.0686 0.1086 0.0180 0.0508 -0.0533

β2 50 6 3.2536 3.3063 4.4908 4.6090 3.8464 3.2458 -0.0198 0.0591 0.3829 0.1373 -0.1657 -0.1794
50 8 3.0864 3.3442 3.3378 3.3633 3.0543 2.9220 -0.1221 -0.0804 -0.1096 0.2036 0.0768 0.1690
50 10 2.6795 2.6608 2.8581 3.7753 2.9201 3.5063 -0.0484 -0.1052 0.1513 -0.2758 -0.0954 0.0024

100 6 3.4091 3.8649 3.7824 5.0174 7.8856 3.5579 0.0322 0.2198 -0.2808 0.5211 -0.4455 -0.0641
100 8 2.9934 3.0532 3.0011 3.6663 3.1277 4.3054 0.0383 -0.0427 0.2615 0.2238 0.0218 0.3535
100 10 2.8199 3.0009 2.9323 3.0590 2.9597 2.9141 -0.0398 -0.1237 -0.0156 0.0651 0.0900 0.0777

λ 50 6 3.1886 4.6926 5.6037 4.5917 5.7766 3.2719 0.0622 0.0765 -0.4407 -0.0574 0.5147 0.1211
50 8 3.2587 3.3976 2.9753 3.6810 3.1351 2.9083 0.1962 0.1344 -0.0930 -0.2459 -0.1737 -0.1147
50 10 2.6542 2.6079 3.0096 3.5442 3.0225 3.2975 0.0939 0.0351 -0.0743 0.2960 -0.0121 0.0099

100 6 3.2311 3.8872 3.1932 4.3967 6.3012 3.8167 0.0339 -0.0755 0.1297 -0.2084 0.5436 -0.0753
100 8 3.1009 3.2616 2.8959 3.2205 3.1877 3.7831 0.0238 -0.0706 -0.1019 -0.2163 -0.0206 -0.2669
100 10 2.8978 3.1876 2.5711 3.0006 3.1844 3.1158 0.0982 0.0162 0.0470 0.0946 -0.0758 -0.0209
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