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Abstract: The measurement error problem in linear time series regression, with focus on
the impact of error memory, modeled as finite-order MA processes, is considered. Three
prototype models, two bivariate and one univariate ARMA, and ways of handling the prob-
lem by using instrumental variables (IVs) are discussed as examples. One has a bivariate
regression equation that is static, although with dynamics, entering via the memory of
its latent variables. The examples illustrate how ‘structural dynamics’ interacting with
measurement error memory create bias in Ordinary Least Squares (OLS) and illustrate
the potential of IV estimation procedures. Supplementary Monte Carlo simulations are
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Introduction

Estimation of coefficients in time-series regression models where autoregression and

errors in variables (EIV) jointly occur, is interesting in several contexts. Motivating

examples that involve such variables are: a stock of finished goods or of fixed cap-

ital constructed from cumulated flows, in which case improper measurements may

produce serially correlated errors, and a flow variable, e.g., income and sales, for

which improper periodization of transactions may create serial correlation between

errors which are close in time. Grether and Maddala (1973), Pagano (1974), and

Staudenmayer and Buonaccorsi (2005) consider distributed lag models where errors

in variables and serially correlated disturbances interact.1 In the present paper, the

bias of Ordinary Least Squares (OLS) estimators for dynamic equations is considered

in cases where both disturbances and errors may have memory. Further we examine

the potential inconsistency of Instrumental Variables (IV) estimators when lagged

values of the regressors are used as IVs. Like the studies mentioned, the present

paper is concerned with strict time series data, although not with Maximum Likeli-

hood estimation. The main attention is given to applications of IV procedures. Our

approach may therefore be called an ARMA-EIV-IV approach.

It is well known that related problems arise in panel data, and explorations

of IV estimation in pure time-series contexts may give insights relevant for panel

data situations. Relative to time series situations, panel data create additional

possibilities for ensuring consistency in estimation and raise some new problems.

For example, designing IV procedures when there is a ‘two-dimensional’ (unit-time)

variation, across unit and time, requires that unobserved unit-specific heterogeneity,

in the behaviour of the units or in the data measurement process, be handled. The

latter may call for procedures that combine variables in levels and in differences,

using IVs in levels for variables in differences, or doing the opposite, as exemplified

in Biørn (1996, 2015) and Biørn and Han (2013).

IV procedures valid for the standard situation in time series regression with

memory-free errors can be modified to handle finite memory, e.g. formalized as

moving average (MA) processes, by reducing the IV set. The essence of this re-

duction is to ensure that all remaining IVs ‘get clear of’ the memory of the error

process so that the IVs are uncorrelated with the errors/disturbances (the orthog-

onality condition), while being correlated with the variables for which they serve

(the rank condition). This double claim restricts the admissible signal and noise

memories, which will be exemplified throughout the paper.

To illustrate the potential of the ARMA-EIV-IV approach we will consider three

models, mimicking prototype cases. All models have ‘dynamic elements’, although

with different ‘focus’. Only two have more than one ‘structural variable’ with ob-

servable counterparts. The models can be labeled as follows: The first contains a

bivariate static equation with memory in both error and disturbance (Section 1), the

second is a univariate ARMA model with white noise or MA(1) error (Section 2),

1Maravall and Aigner (1977), Maravall (1979) and Nowak (1993) discuss identification problems for such models.
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and the third is an ARMAX model2 with an MA(1) error (Section 3). Results from

supplementary simulation experiments will be presented along with the models and

methods.

1 Bivariate EIV model with memory in error and disturbance

Model 1 describes a static time series regression equation with finite memory not

only of the latent regressor ξt, but also of the measurement error in the regressor ϵt
and of the disturbance vt (which may also include a measurement error in the regres-

sand), equal to Nξ, Nϵ and Nv, respectively. All variables are assumed (covariance)

stationary. The model is:

(1.1)
yt= βξt + vt
xt= ξt + ϵt,
ξt⊥ ϵt ⊥ vt,

E(ξt)=0, E(ξtξt−s)=σξξ(s), s = 0, 1, . . . , Nξ,

E(vt)=0, E(vtvt−s)=σvv(s), s = 0, 1, . . . , Nv,

E(ϵt)=0, E(ϵtϵt−s)=σϵϵ(s), s = 0, 1, . . . , Nϵ,

where ⊥ denotes ‘orthogonal to’.3 For simplicity, ξt is assumed to have zero expec-

tation and hence, that the equation’s intercept is zero. At the moment, we do not

impose any further restrictions on these sets of autocovariances. It follows that

yt = βxt + vt − βϵt,(1.2)

E(ytyt−s) ≡ σyy(s) = β2σξξ(s) + σvv(s),

E(ytxt−s) ≡ σyx(s) = βσξξ(s),(1.3)

E(xtxt−s) ≡ σxx(s) = σξξ(s) + σϵϵ(s), s = 0, 1, 2, . . . ,

where ≡ denotes ‘equal by definition’. For this model, we consider OLS and IV

estimation.

The plims of the direct and the reverse OLS estimators based on (1.2),

β̂OLSx =

∑
t ytxt∑
t x

2
t

,(1.4)

β̂OLSy =

∑
t y

2
t∑

t xtyt
,(1.5)

are, when relying on the usual convergence in moments assumptions, see Fuller (1987,

p. 11), respectively:

β̄x(0) = plim(β̂OLSx ) =
E(ytxt)

E(x2t )
=
σyx(0)
σxx(0)

= βk−1
x(0),(1.6)

β̄y(0) = plim(β̂OLSy ) =
E(y2t )

E(xtyt)
=
σyy(0)
σxy(0)

= βky(0),(1.7)

where

2As usual, ARMAX is a shorthand for ARMA augmented with exogenous variables.
3It is assumed that σ

ξξ(s)
=0 for s>Nξ, σϵϵ(s)=0 for s>Nϵ, and σvv(s)=0 for s>Nv .
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kx(0) =
σxx(0)
σξξ(0)

= 1+
σϵϵ(0)
σξξ(0)

,

ky(0) =
σyy(0)
β2σξξ(0)

= 1+
σvv(0)
β2σξξ(0)

.

The factors k−1
x(0) and ky(0) represent the measurement error bias (simultaneity bias)

of, respectively, the direct and the reverse OLS estimators. In most textbook

expositions of OLS applied to EIV models memory-free errors and disturbances,

Nv=Nϵ=0, are assumed.

Allowing for Nν>0, Nϵ>0, we next consider estimators using, respectively, xt−s
and yt−s (s>0) as IVs for xt in (1.2):

β̂IVx(s) =

∑
t ytxt−s∑
t xtxt−s

,(1.8)

β̂IVy(s) =

∑
t ytyt−s∑
t xtyt−s

.(1.9)

From (1.3), again relying on usual convergence in moments assumptions, we obtain

β̄x(s) = plim[β̂IVx(s)] =
E(ytxt−s)

E(xtxt−s)
=
σyx(s)
σxx(s)

= βk−1
x(s), s = 0, 1, 2, . . . ,(1.10)

β̄y(s) = plim[β̂IVy(s)] =
E(ytyt−s)

E(xtyt−s)
=
σyy(s)
σxy(s)

= βky(s), s = 0, 1, 2, . . . ,(1.11)

where

kx(s) =
σxx(s)
σξξ(s)

= 1 +
σϵϵ(s)
σξξ(s)

, σξξ(s) ̸= 0 =⇒ s < Nξ,(1.12)

ky(s) =
σyy(s)
β2

= 1 +
σvv(s)
β2σξξ(s)

, σξξ(s) ̸= 0 =⇒ s < Nξ.(1.13)

The factors k−1
x(s) and ky(s), which do not exist unless σξξ(s) ̸=0, represent the mea-

surement error bias (simultaneity bias) of the respective estimators. Therefore,

xt−s (s>0) is a valid IV for xt means : {kx(s)=1, β̄x(s)=β} ⇐⇒ σϵϵ(s)=0 & σξξ(s) ̸= 0,

yt−s (s>0) is a valid IV for xt means : {ky(s)=1, β̄y(s)=β} ⇐⇒ σvv(s)=0 & σξξ(s) ̸= 0,

so that for (1.2)

β̂IVx(s), with Nξ ≥ s > Nϵ, is consistent for β.

β̂IVy(s), with Nξ ≥ s > Nv, is consistent for β.

Hence, the memory configuration of the signal, noise and disturbance is essential for

the existence of consistent estimators, and hence for identifiability of β.

Let β̂ be any estimator of β and let β̄ denote plim(β̂). The corresponding

ordinary and asymptotic residuals can be written as

êt ≡ yt − β̂xt = βξt + vt − β̂(ξt+ϵt) = (β−β̂)ξt − β̂ϵt + vt,(1.14)

ēt ≡ yt − β̄xt = βξt + vt − β̄(ξt+ϵt) = (β−β̄)ξt − β̄ϵt + vt.(1.15)
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From (1.10) and (1.11) it follows, in particular, that β̂ = β̂IVx(s) and β̂ = β̂IVy(s) have

asymptotic residuals that can be written as:

e[xs]t ≡ yt − β̄x(s)xt = β[(1−k−1
x(s))ξt − k−1

x(s)ϵt] + vt,(1.16)

e[ys]t ≡ yt − β̄y(s)xt = β[(1−ky(s))ξt − ky(s)ϵt] + vt, s = 0, 1, 2, . . . ,(1.17)

and hence,
e[xs]t − vt = β[(1−k−1

x(s))ξt − k−1
x(s)ϵt],

e[ys]t − vt = β[(1−ky(s))ξt − ky(s)ϵt].

Combining the latter equations with (1.1), we find that the asymptotic residuals

have autocovariances of order τ given by, respectively,

cov(e[xs]t, e[xs]t−τ ) = β2[(1−k−1
x(s))

2σξξ(τ)+k
−2
x(s)σϵϵ(τ)]+σvv(τ),(1.18)

cov(e[ys]t, e[ys]t−τ ) = β2[(1−ky(s))2σξξ(τ)+k2y(s)σϵϵ(τ)]+σvv(τ).(1.19)

Therefore, if β̂IVx(s) and β̂
IV
y(s) are inconsistent for β, as consequences of, respectively,

s≤Nϵ and s≤Nv, they produce serially correlated residuals when ξt is autocorrelated.

This holds even if ϵt and vt are white noise (Nv=Nϵ=0), since then

cov(e[xs]t, e[xs]t−τ ) = β2(1−k−1
x(s))

2σξξ(τ),

cov(e[ys]t, e[ys]t−τ ) = β2(1−ky(s))2σξξ(τ),

so that the covariances have the same sign as σξξ(τ). Grether and Maddala (1973)

pointed out this implication of autocorrelated signals for asymptotic OLS residuals,

e[x0]t (in our notation), in a static measurement error model. Equations (1.18)–(1.19)

generalize this result to hold for inconsistent IV estimators as well.

Monte Carlo simulation results, with R=100 replications, are given below.4 Ta-

ble 1 illustrates the effect of changes in the distribution of the disturbance vt (also

including possible measurement error in the regressand) on the distribution of β̂IVx(s)
and β̂IVy(s). The table shows the mean (mean), (empirical) standard deviation (stdev),

maximum, minimum (max, min) and the relative root mean square error (relmse).

The range spanned by max and min, the stdev and the relmse of the estimates

are larger the more strongly backdated the IV is and the larger the variance of the

disturbance (error in the regressand). Under the assumptions made in Examples 1.1

and 1.2, including zero memory of the error in the regressor (Nv = 0), all IV esti-

mates using x-IVs, i.e., β̂IVx(s) for s = 1, 2, 3, 4, 5, are consistent. Their mean are very

close to the input value in the simulations, β = 0.8, i.e., the bias is small, but β̂IVx(5)
have large relmse, respectively, 20% (Example 1.1) and 28% (Example 1.2) about

twice the relmse for β̂IVx(4). Turning to the estimates based on y-IVs, we find notable

changes in the results. In Example 1.1, β̂IVy(1) is inconsistent, with mean 0.8343, while

β̂IVy(s) for s = 2, 3, 4, 5 are consistent and have mean close to 0.8 (between 0.790 and

0.802). When in Example 1.2 the memory of the error in yt is increased from Nϵ=1

4The simulations are based on program modules constructed in the Gauss software code. The time series length
used is 200, of which the last T =100 are used as estimation sample. The author is grateful to Xuehui Han for her
excellent job with the programming of the routines for the Monte Carlo simulations.
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to Nϵ = 4, only β̂IVy(5) is consistent, but its relmse is as large as 53%. The point

estimate, 0.8512, however, is not markedly different from those of the inconsistent

estimators, which have much smaller relmse and max-min range.

Table 2 illustrates how a changed distribution of the measurement error in the re-

gressor, ϵt, notably its spread, impacts the distribution of the two sets of estimators.

Relative to Examples 1.1 and 1.2 the memory of the error in the regressor, Nϵ, is

increased from 0 to 4, while the error in the regressand (including the disturbance),

Nv, is set to 0 throughout. In Example 1.3, var(ϵt) is 1.5, and in Examples 1.4

and 1.5 it is raised to 3.75 and 7.5, respectively. All β̂IVy(s) (with s = 1, . . . , 5) are

now consistent, because of the assumed zero memory of vt, while among β̂IVx(s) only

the one with s=5 has this property. However, the stdev and relmse of the latter

are substantial, even in the case with the lowest error spread, the latter is as large

as 59%, making its point estimate, 0.88, practically ‘insignificant’. That a ‘weak

IV problem’ arises in this case is confirmed from the last column of Table 3. The

inconsistent estimators β̂IVx(s) for s = 1, 2, 3, 4 have all much smaller relmse. The

same is true for β̂IVy(s) for s = 1, 2, 3, 4, all of which are consistent. Regarding the

sign of the bias, i.e., the difference between the mean estimates of β and the input

value β = 0.8, an interesting result is that for s = 1, 2, 3, 4, all β̂IVx(s) have a negative

bias and all β̂IVy(s) have a positive bias. However, in all cases the bias of β̂IVy(s) changes

its sign when the IV-lag, s, is increased from 4 to 5. For β̂IVx(s) the bias changes

sign when s is increased from 4 to 5 in Examples 1.3 and 1.5, although not in the

intermediate case, Example 1.4.

Table 1:
Model 1: Simulated IV estimates. Impact of changed vt distribution.

β = 0.8, Nξ = 8, σξξ(s) = Nξ+1−s (s = 0, 1, . . . , Nξ). T =100, R=100

s = 1 s = 2 s = 3 s = 4 s = 5

Example 1.1: Nv = 1, Nϵ = 0, var(ξt) = 45, var(vt) = 0.65, var(ϵt) = 0.1.
(σvv(0), σvv(1)) = (0.625, 0.25). σϵϵ(0) = 0.1

β̂IV
x(s)

mean 0.7900 0.7920 0.7898 0.7964 0.8103
stdev 0.0417 0.0508 0.0639 0.0799 0.1579
max 0.9417 0.9688 1.0691 1.1320 1.8715
min 0.6916 0.6758 0.6524 0.6531 0.5343

relmse 0.0537 0.0643 0.0809 0.0999 0.1978

β̂IV
y(s)

mean 0.8343 0.7904 0.7907 0.7966 0.8021
stdev 0.0461 0.0506 0.0640 0.0847 0.1269
max 1.0309 0.9318 0.9969 1.1345 1.2730
min 0.7317 0.6805 0.6472 0.6058 0.4541

relmse 0.0718 0.0644 0.0809 0.1059 0.1586

Example 1.2: Nv = 4, Nϵ = 0, var(ξt) = 45, var(vt) = 1.5, var(ϵt) = 0.1.
(σvv(0), σvv(1), σvv(2), σvv(3), σvv(4)) = (0.5, 0.4, 0.3, 0.2, 0.1). σϵϵ(0) = 0.1

β̂IV
x(s)

mean 0.8041 0.8039 0.8035 0.8045 0.8194
stdev 0.0548 0.0637 0.0810 0.1094 0.2252
max 0.9474 0.9695 1.0028 1.1367 2.3284
min 0.6513 0.6145 0.5452 0.4000 0.0372

relmse 0.0687 0.0798 0.1014 0.1369 0.2825

β̂IV
y(s)

mean 0.8699 0.8599 0.8486 0.8336 0.8512
stdev 0.0561 0.0638 0.0819 0.1136 0.4241
max 0.9974 1.0073 1.0408 1.2138 4.4434
min 0.7359 0.7116 0.6253 0.4598 0.2810

relmse 0.1121 0.1094 0.1191 0.1480 0.5340
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Table 2:
Model 1: Simulated IV estimates. Impact of changed ϵt spread.

β = 0.8, Nξ = 8, σξξ(s) = Nξ+1−s, (s = 0, 1, . . . , Nξ). T =100, R=100

s = 1 s = 2 s = 3 s = 4 s = 5

Example 1.3: Nv = 0, Nϵ = 4, var(ξt) = 45, var(vt) = 0.5, var(ϵt) = 1.5.
σvv(0) = 0.5. (σϵϵ(0), σϵϵ(1), σϵϵ(2), σϵϵ(3), σϵϵ(4)) = (0.5, 0.4, 0.3, 0.2, 0.1)

β̂IV
x(s)

mean 0.7572 0.7614 0.7705 0.7821 0.8829
stdev 0.0442 0.0547 0.0720 0.1311 0.4674
relmse 0.0769 0.0837 0.0972 0.1654 0.5933

β̂IV
y(s)

mean 0.8012 0.8023 0.8070 0.8085 0.7861
stdev 0.0488 0.0581 0.0789 0.0996 0.5123
relmse 0.0610 0.0726 0.0990 0.1249 0.6406

Example 1.4: Nv = 0, Nϵ = 4, var(ξt) = 45, var(vt) = 0.5, var(ϵt) = 3.75.
σvv(0) = 0.5. (σϵϵ(0), σϵϵ(1), σϵϵ(2), σϵϵ(3), σϵϵ(4)) = (1.25, 1.00, 0.75, 0.50, 0.25)

β̂IV
x(s)

mean 0.7051 0.7124 0.7277 0.7714 0.7882
stdev 0.0755 0.0956 0.1170 0.1904 0.4237
relmse 0.1515 0.1621 0.1720 0.2407 0.5298

β̂IV
y(s)

mean 0.8049 0.8027 0.8029 0.8239 0.7175
stdev 0.0778 0.1017 0.1273 0.2435 0.8519
relmse 0.0974 0.1272 0.1592 0.3058 1.0698

Example 1.5: Nv = 0, Nϵ = 4, var(ξt) = 45, var(vt) = 0.5, var(ϵt) = 7.5.
σvv(0) = 0.5. (σϵϵ(0), σϵϵ(1), σϵϵ(2), σϵϵ(3), σϵϵ(4)) = (2.5, 2.0, 1.5, 1.0, 0.5)

β̂IV
x(s)

mean 0.6360 0.6577 0.6923 0.7523 1.0230
stdev 0.0903 0.1115 0.1439 0.2022 1.6571
relmse 0.2340 0.2259 0.2246 0.2597 2.0901

β̂IV
y(s)

mean 0.8160 0.8254 0.8433 0.9130 0.4770
stdev 0.1592 0.1999 0.2620 0.5341 6.5339
relmse 0.2000 0.2519 0.3319 0.6824 8.1774

Table 3:

Model 1: Examples 1.3–1.5, autocovariances: x vs. x−s and y−s. T =100, R=100

s = 1 s = 2 s = 3 s = 4 s = 5

Example 1.3: mean corr(x, x−s) 0.8711 0.7449 0.6181 0.4978 0.3822
mean corr(x, y−s) 0.8093 0.6971 0.5869 0.4802 0.3806

Example 1.4: mean corr(x, y−s) 0.8701 0.7380 0.6093 0.4832 0.3593
mean corr(x, y−s) 0.7888 0.6839 0.5807 0.4796 0.3786

Example 1.5: mean corr(x, x−s) 0.8569 0.7158 0.5793 0.4404 0.3018
mean corr(x, y−s) 0.7348 0.6326 0.5330 0.4319 0.3321

2 ARMA model with white noise or MA measurement error

Model 2, unlike Model 1, is explicitly dynamic and has no exogenous variable. It

is a univariate ARMA(1,1)-model for a latent variable µt, observed through yt with,

in its simplest version, a white noise error δt:

(2.1)
µt = γµt−1 + vt + λvt−1, |γ| < 1,
yt = µt + δt,
E(µ0) = 0, vt ∼ IID(0, σ2

v), δt ∼ IID(0, σ2
δ ), vt ⊥ δt ⊥ µτ , ∀τ.

The observed and latent ‘structural’ variables satisfy, respectively,

(1−γL)yt = (1−γL)δt + (1+λL)vt,(2.2)

µt =
1+λL

1−γL
vt = vt +

γ+λ

1−γL
vt−1,(2.3)
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where L denotes the backshift operator. Hence, µt follows a geometric lag distribu-

tion whose first term is ‘free’ and whose remaining terms have a variance that is

(γ+λ)2 times the variance of the first. Since (2.1) and (2.3) imply

yt = δt+vt+(γ+λ)
∑∞

i=1γ
ivt−i,

yt follows a geometric lag distribution whose first term is ‘free’ and whose remaining

terms have a variances that are (γ+λ)2σ2
v/(σ

2
δ+σ

2
v) times the variance of the first.

Letting v∗t = vt+λvt−1 denote the model’s MA(1) part, it also follows that

(2.4) cov(yt−s, δt+v
∗
t )

{
̸= 0, s = 0,
= 0, s = 1, 2, . . . ,

while the variance and autocovariances of µt become

E(µtµt−s) =

 σµµ(0) = (1+χ2)σ2
v , s = 0,

σµµ(1) = [γ(1+χ2) + λ]σ2
v , s = 1,

σµµ(s) = γs−1[γ(1+χ2) + λ]σ2
v , s ≥ 2,

(2.5)

where
χ2 = var

[
γ+λ

1−γL

(
vt
σv

)]
=

(γ+λ)2

1−γ2
.

By combining (2.1) and (2.5) it follows that

E(ytyt−s) ≡ σyy(s) =


σµµ(0) + σ2

δ = (1+χ2)σ2
v + σ2

δ , s = 0,
σµµ(1) = [γ(1+χ2) + λ]σ2

v , s = 1,
σµµ(s) = γs−1[γ(1+χ2) + λ]σ2

v , s = 2, 3, . . . .
(2.6)

The OLS estimator of γ based on (2.2),

γ̂OLS =

∑
tytyt−1∑
ty

2
t−1

,

is inconsistent and from (2.6) we get

(2.7) γ̄(1) = plim[γ̂OLS] =
σyy(1)
σyy(0)

=
σµµ(1)

σµµ(0)+σ2
δ

=
γ(1+χ2) + λ

1+χ2 +
σ2
δ

σ2
v

.

The sign of the inconsistency depends on the AR parameter γ, the MA parameter

λ and the error variance σ2
δ . Therefore, the attenuation5 of γ̂OLS may be off-set by

the memory of v∗t , provided that λ and γ have equal sign, since we have

(2.8) γ̄(1)
>
=
<
γ ⇐⇒ λ

γ

>
=
<

σ2
δ

σ2
v

.

A special case is the familiar result λ= σ2
δ = 0 =⇒ γ̄(1) = γ: strict AR(1) with no

measurement error and white noise disturbance gives consistency of OLS. On the

other hand,

λ = −γ =⇒ µt = vt, yt = vt + δt =⇒ χ2 = 0, γ̄(1) = 0

5Term denoting the tendency of an OLS estimator in a one-regressor EIV model to be biased towards zero.
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is a boundary case with respect to attenuation, in the sense that the OLS estimator

is not only biased towards zero, its plim is zero.

Using in (2.2) yt−s (s≥2) as IV for yt−1, to obtain

γ̂IV(s) =

∑
tytyt−s∑
tyt−1yt−s

,

consistency is ensured, as (2.6) implies

(2.9) γ̄(s) = plim[γ̂IV(s) ] =
σyy(s)
σyy(s−1)

=
σµµ(s)
σµµ(s−1)

= γ, s = 2, 3, . . . .

This way of using IVs exploits that yt−s (s≥2) is correlated (more or less strongly

depending on γ, λ and s) with yt−1, and is uncorrelated with (1−γL)δt+(1+λL)vt
regardless of λ. It follows from (2.6) that corr(yt−1, yt−s) is smaller the smaller is γ

and the larger is s. This signalizes that the weaker is the autocorrelation and the

further a y is backdated, the weaker will it be as IV for the current y.

We can generalize (and often increase the model’s realism) by allowing for mem-

ory in the measurement error. Extending δt in (2.1) to an MA(1) process gives

(2.10)
µt = γµt−1 + vt + λvt−1, |γ| < 1,
yt = µt + δt + ψδt−1,

E(µ0) = 0, vt ∼ IID(0, σ2
v), δt ∼ IID(0, σ2

δ ), vt ⊥ δt.

It follows that (2.2) is generalized to

(2.11) (1−γL)yt = (1−γL)(1+ψL)δt + (1+λL)vt.

Since then
yt = δt+ψδt−1+vt+(γ+λ)

∑∞
i=1γ

ivt−i,

we obtain, letting v∗t = vt + λvt−1 and δ∗t = δt + ψδt−1 be the model’s two MA(1)

processes,

(2.12) cov(yt−s, δ
∗
t +v

∗
t )

{
̸= 0, s = 0, 1,
= 0, s = 2, 3, . . . .

Still (2.5) holds, while (2.6) is generalized to

E(ytyt−s) ≡ σyy(s) =


σµµ(0) + (1+ψ2)σ2

δ , s = 0,

σµµ(1) + ψσ2
δ , s = 1,

σµµ(s), s = 2, 3, . . . .

(2.13)

The resulting generalization of (2.7) and (2.9) is

γ̄(s)=
σyy(s)
σyy(s−1)

=



σµµ(1) + ψσ2
δ

σµµ(0) + (1+ψ2)σ2
δ

=
γ(1+χ2)+λ+ψ

σ2
δ

σ2
v

(1+χ2)+(1+ψ2)
σ2
δ

σ2
v

, s=1,

γσµµ(1)
σµµ(1) + ψσ2

δ

=
γ[γ(1+χ2)+λ]

γ(1+χ2)+λ+ψ
σ2
δ

σ2
v

, s=2,

σµµ(s)
σµµ(s−1)

= γ, s=3, 4, . . . .

(2.14)
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This model, with a one-period memory of the disturbance and the measurement

error, ensures consistent IV estimation for s≥3, because yt−s is correlated with yt−1

and is uncorrelated with the composite MA(2) process (1−γL)(1+ψL)δt+(1+λL)vt
– it gets clear of the memory of the latter process. If s = 2 and γ > 0, λ > 0, a

negative (positive) asymptotic bias occurs when ψ is positive (negative), since

γ̄(2)−γ =
−ψ σ2

δ

σ2
v

γ(1+χ2)+λ+ψ
σ2
δ

σ2
v

.

Therefore γ̂IV(2) exemplifies an attenuated IV estimator. For the OLS estimator γ̂OLS,

however, the sign of the bias depends on both λ and ψ. If γ > 0, λ > 0 we have the

following generalization of (2.8):6

(2.15) γ̄(1)
>
=
<
γ ⇐⇒ λ

γ

>
=
<

(
1 + ψ2 − ψ

γ

)
σ2
δ

σ2
v

.

Again, attenuation (of OLS) may be counteracted by the MA part of the error

processes. Now, however,

λ = −γ =⇒ µt = vt, yt = vt + δt + ψδt−1 =⇒ χ2 = 0, γ̄(1) =
ψσ2

δ

σ2
v+σ

2
δ (1+ψ

2)
,

so that λ = −γ represents a boundary case where the strength (and sign) of the

attenuation depends on the MA coefficient of the measurement error, ψ.

Tables 4 and 5 contain the expressions for γ̄(1) and γ̄(2) in the boundary cases

λ = 0 =⇒ µt = γµt−1 + vt,
γ = 0 =⇒ µt = vt + λvt−1,
λ = −γ =⇒ µt = vt,

for three combinations of σ2
δ and ψ: σ

2
δ =0 represents the no measurement error case

and ψ=0 represents the white noise measurement error case.

Table 6 contains numerical examples based on synthetic data for s = 2, 3, 4, 5 for

six selected parameter constellations. As only one replication is performed in each

case (R=1), these examples are strictly not Monte Carlo simulations. They invite

a few comments: The estimator in Example 2.a, where yt is free from measurement

error (σ2
δ = 0) and vt is white noise (λ = 0), is consistent even for s = 2, while

in Examples 2.b-2.f, γ̂IV(s) is consistent for s = 3, 4, 5 and inconsistent for s = 2; see

(2.14) and Table 5. This concurs with ‘level shift’ we notice in the estimate sequence

when s increases from 2 to 3.

Model 2 can be generalized further, specifying µt as an ARMA(n,m) process

and extending the measurement error from MA(1) to MA(k). This gives the model

6The boundary case γ = 0, which makes yt the sum of two MA(1) processes, yt = v∗t +δ
∗
t , and makes γ̄(1) a

variance-weighted average of the autocorrelation coefficients of v∗t and δ∗t , ρ
∗
v=λ/(1+λ

2) and ρ∗δ =ψ/(1+ψ
2):

γ̄(1) =
var(v∗t )ρ

∗
v + var(δ∗t )ρ

∗
δ

var(v∗t ) + var(δ∗t )
(γ=0).
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Table 4:
Model 2: OLS estimator plim: γ̄(1) = plim(γ̂OLS) in boundary cases

σ2δ =0 ψ=0 σ2δ >0, ψ ̸=0

λ=0,
[χ2= γ2/(1−γ2)] γ

γσ2v
σ2v+σ

2
δ (1−γ2)

γσ2v+ψσ
2
δ (1−γ2)

σ2v+σ
2
δ (1+ψ

2)(1−γ2)
γ=0,
(χ=λ)

λ

1+λ2
λσ2v

σ2v(1+λ
2)+σ2δ

λσ2v+ψσ
2
δ

σ2v(1+λ
2)+σ2δ (1+ψ

2)

λ=−γ,
(χ=0)

0 0
ψσ2δ

σ2v+σ
2
δ (1+ψ

2)

Table 5:
Model 2: IV estimator plim for s = 2: γ̄(2) = plim(γ̂IV(2) ) in boundary cases

σ2δ =0 ψ=0 σ2δ >0, ψ ̸=0

λ=0,
[χ2= γ2/(1−γ2)] γ γ

γσ2v
σ2v + ψσ2δ (1−γ2)

γ=0,
(χ=λ)

0 0 0

λ=−γ,
(χ=0)

0 0 0

Table 6:

Model 2: Impact of changed vt and δt distributions.

Artificial data. γ = 0.8. T =100. R=1

Example λ ψ σ2
v σ2

δ s Estimate

2.a 0.0 0.0 0.10 0.00 2 0.8357
3 0.8852
4 0.8961
5 0.8308

2.b 0.3 0.3 0.10 0.10 2 0.8401
3 0.9429
4 1.0021
5 0.9472

2.c 0.5 0.5 0.10 0.10 2 0.6634
3 0.9000
4 0.8890
5 0.7476

2.d 0.8 0.8 0.10 0.10 2 0.5056
3 0.5668
4 0.5738
5 0.6274

2.e 0.0 0.5 0.10 0.10 2 0.6232
3 1.0457
4 0.9307
5 0.6341

2.f 0.5 0.0 0.10 0.10 2 0.8770
3 0.8116
4 0.7865
5 0.7579
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(2.16)

µt = γ(L)µt + v∗t , |γ| < 1,

yt = µt + δ∗t ,

E(µ0) = 0, µ(L) = γ1L+· · ·+γnLn,
v∗t = λ(L)vt, λ(L) = 1+λ1L+· · ·+λmLm, vt ∼ IID(0, σ2

v),

δ∗t = ψ(L)δt, ψ(L) = 1+ψ1L+· · ·+ψkLk, δt ∼ IID(0, σ2
δ ).

It follows that (2.11) and (2.12) are extended to

[1−γ(L)]yt = [1−γ(L)]ψ(L)δt + λ(L)vt,(2.17)

cov(yt−s, δ
∗
t +v

∗
t )

{
̸= 0, s = 0, 1, . . . , k+n,
= 0, s = k+n+1, k+n+2, . . . .

(2.18)

Since yt−s is uncorrelated with [1−γ(L)]ψ(L)δt+λ(L)vt when s≥k+n+1, consistency is

ensured for s in this region. Choosing an IV for yt−1 among yt−2, . . . , yt−k−n violates

orthogonality.

3 ARMAX model with MA(1) measurement error

Model 3 has elements from both Model 1 and Model 2, although contains neither

as special cases. It augments the ARMA(1,1) part of the latent variable µt in (2.10)

by an exogenous, error-ridden regressor with latent part ξt, to give an ARMAX

mechanism for µt. The latent regressor ξt is MA(Nξ), while the measurement errors

in the regressand (including a disturbance in the equation) and the regressor are

both MA(1). Overall, this gives a model with three uncorrelated MA(1) processes:

(3.1)

µt = γµt−1 + βξt + vt + λvt−1, E(µ0)=0, vt ∼ IID(0, σ2
v), |γ|<1,

yt = µt + δt + ψδt−1, δt ∼ IID(0, σ2
δ ),

xt = ξt + ϵt + ϕϵt−1, ϵt ∼ IID(0, σ2
ϵ ),

E(µ0) = 0,

E(ξt) = 0, E(ξtξt−s) =

{
σξξ(s), s ≤ Nξ,
0, s > Nξ,

ξt ⊥ vt ⊥ δt ⊥ ϵt.

From (3.1), after elimination first of µt, next of ξt, we obtain, respectively,

(1−γL)yt = βξt + (1+λL)vt + (1−γL)(1+ψL)δt,(3.2)

(1−γL)yt = βxt + wt,(3.3)

where

(3.4) wt = (1+λL)vt − β(1+ϕL)ϵt + (1−γL)(1+ψL)δt.

Introducing

(3.5) τt =
1

1−γL
ξt,

which is an ARMA(1, Nξ) process, we obtain a generalization of (2.3) that can be

written as

11



(3.6) µt = βτt +
1+λL

1−γL
vt = βτt + vt +

γ+λ

1−γL
vt−1.

Since (3.1) and (3.5) imply

E(τtτt−s) ≡ σττ(s) =
γ|s|σξξ(0)
1−γ2

, s=0,±1,±2, . . . ,(3.7)

E(µtξt−s) ≡ σµξ(s) = βE(τtξt−s) = β
∑

i:|i−s|≤Nξ
γiσξξ(|i−s|), s=0,±1,±2, . . . ,(3.8)

it follows that (2.5) is generalized to:

(3.9) E(µtµt−s) ≡ σµµ(s) =


β2σττ(0) + [1+χ2]σ2

v , s = 0,

γβ2σττ(0) + [γ(1+χ2)+λ]σ2
v , s = 1,

γsβ2σττ(0) + γs−1[γ(1+χ2)+λ]σ2
v , s ≥ 2.

We further find that the observed variables in (3.3) have autocovariances and cross-

autocovarances given by

E(ytyt−s) =

 σµµ(0)+(1+ψ2)σ2
δ , s = 0,

σµµ(1)+ψσ
2
δ , s = 1,

σµµ(s), s = 2, 3, . . . ,
(3.10)

E(xtxt−s) =


σξξ(0)+(1+ϕ2)σ2

ϵ , s = 0,
σξξ(1)+ϕσ

2
ϵ , s = 1,

σξξ(s), s = 2, 3, . . . , Nξ,
0, s > Nξ,

(3.11)

E(ytxt−s) = σµξ(s) = β
∑

i:|i−s|≤Nξ
γiσξξ(|i−s|), s = 0,±1,±2, . . . ,(3.12)

and that the (non)orthogonality properties of this equation are

E(yt−swt) =

 λσ2
v+(ψ−γ)σ2

δ , s = 1,
−ψγσ2

δ , s = 2,
0, s = 3, 4, . . . ,

(3.13)

E(xt−zwt) =

 −β(1+ϕ2)σ2
ϵ , z = 0,

−βϕσ2
ϵ , z = 1,

0, z = 2, 3, . . . .
(3.14)

Since in (3.3) E(yt−1wt) ̸= 0 (s = 1) and E(xtwt) ̸= 0 (z = 0), we once again have

a measurement error bias (simultaneity bias) problem for OLS. Potential IVs for

(yt−1, xt) to handle this are: yt−3, yt−4, . . . and xt−2, xt−3, . . . , xt−Nξ
. As in Models 1

and 2, strongly backdated y-IVs – and, depending on σξξ(s), also strongly backdated

x-IVs – may be weak IVs.

An illustration: Relying on the usual convergence in moments assumptions, we find

that the estimators of γ and β obtained from (3.3) when instrumenting7 (yt−1, xt)

by (yt−s, xt−z) have plims

7We in this illustration confine attention to ‘exact identification’ cases, with only one IV allocated to each
instrumented variable.
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[
γ̄(sz)
β̄(sz)

]
=

[
E(yt−syt−1) E(yt−sxt)

E(xt−zyt−1) E(xt−zxt)

]−1 [
E(yt−syt)

E(xt−zyt)

]
Since this can be written as[

γ̄(sz)
β̄(sz)

]
=

[
γ

β

]
+

[
E(yt−syt−1) E(yt−sxt)

E(xt−zyt−1) E(xt−zxt)

]−1 [
E(yt−swt)

E(xt−zwt)

]
,

it follows in view of (3.13) that[
γ̄(sz)
β̄(sz)

]
=

[
γ

β

]
, s ≥ 3 Nξ ≥ z ≥ 2.

It is essential that σξξ(s) ̸=0. For (sz) = (21), (22), (23) we for example find that the

inconsistencies of the IV estimators can be expressed as[
γ̄(21)−γ
β̄(21)−β

]
=

[
σµµ(1) σµξ(2)
σµξ(0) σξξ(1)+ϕσ

2
ϵ

]−1 [ −ψγσ2
δ

−βϕσ2
ϵ

]
,[

γ̄(22)−γ
β̄(22)−β

]
=

[
σµµ(1) σµξ(2)
σµξ(1) σξξ(2)

]−1 [ −ψγσ2
δ

0

]
,[

γ̄(23)−γ
β̄(23)−β

]
=

[
σµµ(2) σµξ(2)
σµξ(2) σξξ(3)

]−1 [ −ψγσ2
δ

0

]
,

where σµξ(s) and σµµ(s) are given by (3.8) and (3.9), respectively. Obviously, the

sign and size of ψ, the MA-coefficient of the measurement error of yt affects the

inconsistency of the estimators of (β, γ).
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