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1. Introduction

As with most economic research on urban labor markets, this paper begins with Marshall (1890).
His well-known taxonomy of the sources of external economies of scale includes knowledge
spillovers, input sharing, and - most importantly for our purposes - labor market pooling. The
latter refers to the advantages for workers and firms deriving from sharing a labor market that is
territorially limited to a small area: the local labor market. For instance, in a thicker local labor
market workers might be able find a job faster. Similarly, firms might also fill their vacancies faster.
In addition, firms and workers are more likely to find better matches for each other in terms of skills
and experience. Moreover, workers might acquire more knowledge through learning spillovers.
At the same time, job opportunities in competing firms might discourage firms to invest in their
workers’ training.

This paper employs a unique Italian data source to take a comprehensive approach to labor
market pooling. The paper looks across all industries from the perspectives of both workers
and firms and it considers many different aspects of labor market pooling, including turnover,
matching, hold up and learning. To our knowledge, this is the first time such variables are used
in a study of the economic effects of agglomeration. Our main data sources are the 2006 Survey
of Household Income and Wealth (shiw) and the 2007 Survey on Industrial and Service Firms
(sisf). These Bank of Italy Surveys are described in greater detail below. They are valuable for our
purposes because they provide information on aspects of labor market pooling such as turnover,
the suitability of a worker for his or her job, on-the-job learning, training, and so on. This type of
information is not available from the standard administrative sources used by previous research
on the subject. We match this data with data from the Italian National Institute of Statistics to
assess the thickness of the labor market in which firms and workers operate and to control for
other aspects of these locations.

In order to establish a context for our investigation of labor market pooling, we begin by
estimating models of the urban wage premium and of the relationship between agglomeration
and firm output per worker. Our results here are consistent with the pattern of results from other
empirical work on agglomeration. There is consistent evidence of an urban wage premium. In
addition, firm output per worker is positively related to population density.

The labor market pooling results that we find are, when taken as a whole, largely consistent
with the theoretical literature. There is a general positive relationship of turnover to density, which
is consistent with theories of agglomeration and uncertainty. The paper also finds evidence of
on-the-job learning that is consistent with theories of labor pooling, labor poaching, and hold up.
In addition, the paper provides evidence consistent with agglomeration improving job matches.
Overall, we find evidence of a variety of channels for labor market pooling.

We also note that these effects are rather modest, which can be interpreted in a number of ways.
One possibility is that greater urban density improves the workings of local labour markets but
only modestly so. Another is that the weak relationship may, in some cases, reflect a complicated
equilibrium relationship between labor pooling and density. For instance, we find a relatively
weak relationship between a worker’s self-reported appropriate experience for a job and density.
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This should arguably reflect the combination of two different effects: the influence of a thick
market on the worker-job match (which would tend to find better fit with higher density) and
the tendency of jobs requiring specialized skills to locate in thick markets (which would tend
to have the opposite effect). Another possible interpretation of the modest coefficients is that
labor market pooling operates differently across different industries. For instance, it is common
to consider the relationship between agglomeration and turnover for high-technology industries.
If the relationship is strong in this sector but not in others, then estimating over all industries
will produce aggregate coefficients that fail to capture the relationships at work in individual
sectors. More generally, if agglomeration effects are particular to sectors or industries, imposing
the specification that effects are the same across sectors can fail to uncover agglomeration effects.
Unfortunately, our data do not allow us to say more about the sources of the small coefficients.
We hope further research will be able to shed more light on this issue. For now we offer the
following conclusion. We find evidence consistent with a variety of local labour market pooling
mechanisms. However, the effects we evidence are small and appear to account for only a small
fraction of agglomeration economies.

The remainder of the paper is organized as follows. Section 2 provides the literature con-
text. Section 3 discusses theories of labor market pooling. Section 4 presents the details of the
paper’s data sources. Section 5 includes the results of the estimates of the agglomeration-wage
and agglomeration-productivity relationship. Section 6 contains the estimates of the relation-
ship between agglomeration and turnover, learning, matching, and other aspects of labor mar-
ket pooling. Section 7 assesses the importance of our measures of labor market pooling in the
agglomeration-wage and agglomeration-productivity relationship. Section 8 concludes.

2. Related literature

Marshall’s insights have motivated a long line of research on labor market pooling as a micro-
foundation for agglomeration economies. This section provides a snapshot on the theoretical and
empirical contributions of the literature.

Theoretical research on labor market pooling formalizes the elements of Marshall’s analysis
and also extends them in various directions. Helsley and Strange (1990) show how the matching
of workers who are heterogeneous in their skills and firms who are heterogeneous in their labor
demands can generate an agglomeration economy. Krugman (1991) models the effects of shocks
on workers and firms. Overman and Puga (2010) extend this approach to derive the specific
prediction that industries facing stronger idiosyncratic shocks will exhibit a greater tendency to
agglomerate and that agglomeration will be associated with worker turnover. Matouschek and
Robert-Nicoud (2005), Combes and Duranton (2006), and Almazan, de Motta, and Titman (2007)
all consider the tension between the beneficial turnover considered by Marshall and the risks that
firms and workers face that others – either their opposites or their rivals – will expropriate value
created by specific investments. In particular, a firm may be reluctant to train its workers if this
training would provoke either opportunism by its employees or poaching by its rivals. More recent
theoretical papers on labor pooling include Gerlach, Rønde, and Stahl (2009), who consider the
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interaction between labor pooling and innovation, and Picard and Wildasin (2011), who consider
the interaction with input sharing. A survey of the larger microfoundations literature, including
labor market pooling, can be found in Duranton and Puga (2004).

The empirical literature on labor market pooling is a part of the very large literature that
considers agglomeration economies more generally. This literature has established a robust re-
lationship between various sorts of agglomeration and productivity. Although much of this liter-
ature has focused on manufacturing industries, the relationship is also present in service sectors.
Theories of agglomeration economies capturing all three of Marshall’s microfoundations all predict
this agglomeration-productivity relationship. As a result of this “Marshallian equivalence” (see
Duranton and Puga, 2004), there remains a lot of uncertainty about the relative strengths of the
various agglomeration forces. Looking at coagglomeration patterns across a range of industries,
Ellison, Glaeser, and Kerr (2010) find that firms drawing from the same sorts of labor pool tend
to coagglomerate. Jofre-Montseny, Marín-López, and Viladecans-Marsal (2011) carry out a similar
exercise and also find evidence consistent with labor market pooling.1

There is also a smaller but growing empirical literature that has looked specifically at labor
market pooling. Papers in this literature have uncovered a number of instances where Marshallian
labor market pooling seems to be at work. Fallick, Fleischman, and Rebitzer (2006), for instance,
show that mobility rates in California’s computer clusters, including the Silicon Valley, are high.
Freedman (2008) finds that agglomeration in the software publishing industry to be associated with
more turnover in the sense that job durations are shorter and mobility is greater. Wheeler (2008)
finds the agglomeration-turnover relationship to be strongest for young workers. With regard
to matching, Andersson, Burgess, and Lane (2007) find evidence of stronger positive assortative
matching in larger markets, while Di Addario (2011), using Italian data, finds a greater rate of
transitions from unemployment to employment. Glaeser and Maré (2001), Wheeler (2006), and De
La Roca and Puga (2012) all provide evidence that the urban wage premium rises with a workers
tenure in a city, a finding consistent with learning. Bacolod, Blum, and Strange (2010) provide some
direct evidence of skill acquisition in cities. Finally, Overman and Puga (2010) show that industries
more subject to shocks are more likely to cluster, a result consistent with the labor market pooling
reducing risk.

3. Local labor markets: theories

This section does not break new theoretical ground. Its purpose is to outline a heuristic theory of
labor market pooling that can be used to understand the patterns in the data. Suppose that there
exist two classes of agent: workers and entrepreneurs. The latter are the creators and managers of
the firms that employ the workers.

Workers choose locations to maximize expected lifetime utility. There are many components to
the worker’s objective: the worker’s current wage and cost of living, the learning that takes place,
the impacts of learning on future wages. Workers have heterogeneous skills and experience, which

1For further references, see the surveys by Rosenthal and Strange (2004), Glaeser and Gottlieb (2009), and Puga
(2010).
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impacts the productivity of their match with an employer. This differentiation is both vertical (in
the sense that some workers are better matches with all potential employers) and horizontal (in
the sense that some workers are better matches with particular employers). The key labor market
equilibrium condition is that no worker of a given type can obtain a higher level of expected utility
in another city.

Entrepreneurs choose whether or not to become active in a given location.2 This depends on
the expected profit of the created enterprise. There are many risks that an entrepreneur faces.
The latent profitability of the enterprise and entrepreneur are uncertain at the time of entry.
The challenges and opportunities that will confront the firm are also uncertain. And there is an
uncertain element to the profit contribution from the match with a particular worker, which may
depend on the training that the firm gives to the worker. Ex post, some firms will survive, while
others will fail depending on how these uncertainties are resolved. The key equilibrium condition
for entrepreneurs is that entry drives profit to zero.

Cities have many impacts on workers, firms, and the labor markets that connect them. Workers
may learn more in cities, developing skills that are valuable to their employers. Workers and firms
may find closer matches in cities, increasing productivity. Workers in cities may be more mobile
between firms, allowing firms to be more flexible and to grow more quickly in response to positive
shocks. All of these are instances of agglomeration economies.

In addition to agglomeration economies, in this situation we also have sorting of both workers
and firms, with workers migrating between cities and entrepreneurs choosing whether or not to
become active according to city characteristics. We also have selection, where some matches of
workers and firms survive.

This heuristic analysis has a number of predictions that can be taken to data. First, wages and
other productivity measures will be positively associated with agglomeration. An observed rela-
tionship between agglomeration and wages or productivity could, of course, reflect any combina-
tion of agglomeration spillovers or sorting or selection. Second, turnover will tend to be greater in
thicker markets. Third, agglomeration will have an ambiguous effect on learning, with knowledge
spillovers encouraging learning and holdup discouraging learning. Fourth, agglomeration will
have an ambiguous effect on measures of the match quality between worker and firm, since any
better matching that cities provide will attract jobs where matching is more difficult. We now turn
to the data that we use to evaluate these predictions.

4. Data

We turn attention to our data. Our two main sources of data are the 2006 Survey of Household
Income and Wealth (shiw) and the 2007 Survey on Industrial and Service Firms (sisf). Both surveys
are conducted by the Bank of Italy. Appendix A provides further details about them.

2An alternative approach would be to suppose that entrepreneurs are mobile or “footloose.” This will give a different
allocation of firms across space, but there would still be an equal profit condition, and this would mean that the analysis
would be essentially similar. Compare for instance Venables (2011) (with mobile workers) with Nocke (2006) or Baldwin
and Okubo (2006) (with mobile entrepreneurs/firms).
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These surveys regularly collect standard information about households and firms in the manner
of, for instance, the us Current Population Survey for households. These two surveys are also
supplemented by special sections. The 2006 shiw and the 2007 sisf each contain a section of
questions about local labor markets. These questions were designed jointly between us and the
survey administrators at the Statistics Department of the Bank of Italy to investigate the function-
ing of local labor markets. The household survey contains 12 questions about the working of local
labor markets and the firm survey contains another 5.3 A full list of these questions is reported
in Appendix B. Using the two surveys together allows us to consider jointly the worker and firm
sides of local labor markets while matching these outcomes with information about local labor
markets.

Our sample includes 4,367 workers (excluding government employees) and 3,660 firms. Ap-
pendix C documents a number of data issues. In particular, the questions pertaining to labor
market issues were often asked to only a subsample of firms or workers. To link workers and
firms we make use of confidential information about the municipality of residence for workers
and location for firms.

Workers and firms are distributed over 226 and 439 local labor markets which we refer to as
‘cities’. Cities are functional areas based on the self-containment of commuting flows. They are
defined by the Italian National Institute of Statistics (istat) on Census commuting data at the
municipality level. Appendix D provides additional details. The agglomeration measure we
use is the log of 2001 city population density, provided by istat. For instrumental variable (iv)
estimations we use long lagged values of density from 1871 and 1921. In this we follow the
literature and use the fact that local employment is to a large extent historically pre-determined
while local productivity is likely to have changed a lot over time.

We also make use of measures of industrial agglomeration. Some cities are identified as in-
dustrial districts (ids), based on istat’s Cluster Mapping Project (icmp). Details are provided in
Appendix D.

Table 1 reports some summary statistics for the answers to the questions from the two surveys
and for other variables we use. Throughout the paper, household variables (collected through the
shiw) are labelled with h and firm variables (collected through the sisf) with f. The questions
pertaining to the functioning of local labor markets are organized around three themes:

Turnover and flexibility. To assess whether denser markets are associated with greater labor
market flexibility, workers are asked if they changed employer or type of work in the recent past
(h2). As discussed above, within denser areas job changes are more likely within occupations, a
question allows us to disentangle changes in employer that do not carry with them changes in
the type of job (h3). On the firm side, the sort of turnover associated with labor market pooling
is voluntary. We therefore measure turnover by the percentage of terminations due to voluntary

3The original design of the local labor market sections of these two surveys contained more questions. For instance,
questions on labor market prospects for workers or questions about the poaching of employees by competition were
proposed. Unfortunately, these questions could not be included because, as the pilot showed, they were extremely
difficult to answer. Cost-effectiveness considerations required to cut them off. In addition, we also discarded a small
number of questions included in the surveys because of a small number of observations.
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Table 1: Summary statistics for our main variables

Question Variable Obs. Mean Std. Dev. Min. Max.

Panel A. Household survey (SHIW)

H1 log wage 4367 2.01 0.42 0.16 3.87
H2 Change of employer or type of work 1287 0.09 0.28 0 1
H3 Change of employer but not of type of work 117 0.47 0.50 0 1
H4 Workplace learning 1287 0.02 0.14 0 1
H5 Useful past experience 945 0.48 0.49 0 1
H6 Training by firm 1287 0.28 0.45 0 1
H7 Skill transferability 1287 0.84 0.35 0 1
H8 Difficulty of finding a replacement by employer 1287 0.10 0.31 0 1
H9 Difficulty of finding an equivalent job 1287 0.15 0.36 0 1
H10 Worker specialization 1606 0.07 0.26 0 1
H11 Appropriate experience 1606 0.83 0.37 0 1
H12 Appropriate education 1606 0.73 0.43 0 1

log density 4367 5.71 1.08 3.13 8.28
Industrial district 4367 0.26 0.43 0 1
South 4367 0.25 0.43 0 1
Male 4367 0.64 0.47 0 1
Education (years) 4367 10.77 3.44 0 20
Experience (years) 4367 21.05 11.02 1 49

Panel B. Firm survey (SISF)

F1 log output per worker 3660 5.34 0.78 3.30 7.37
F2 Share of terminations voluntary 2750 0.67 0.39 0 1
F3 Share of vacancies filled from same sector 2452 0.46 0.40 0 1
F4 Number of days to train key workers 2553 17.18 23.71 0 160
F5 Appropriate experience and education 2946 0.72 0.45 0 1

of new key workers

log density 3660 5.68 1.06 2.53 8.28
Industrial district 3660 0.28 0.45 0 1
South 3660 0.31 0.46 0 1
Age 3660 32.51 24.41 1 272
Status: limited liability 3660 0.95 0.22 0 1
Part of a group 3649 0.42 0.49 0 1

Sources: Bank of Italy, Survey on Italian Households’ Income and Wealth 2006 and Survey of Industrial and
Service Firms 2007.

resignations (f2), as reported by the owner or the manager of the firm. Relatively few workers
report changing jobs (9%), so the overall magnitude of turnover is moderate.4 The worker survey
reports that roughly half of the job changes entail a different employer but not a different type of
work. The firm survey shows that 67% of terminations are voluntary. All this paints a picture with
relatively modest labor market fluctuations. We return to this below.

4See Shimer (2005) for us figures.
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Learning and holdup. To gauge the importance of density for learning, workers are asked whether
they acquired their skills informally from colleagues inside or outside the firm (h4) and whether
they find it useful for their current job any previous experience gained in the same field (h5). The
possibility of hold-up problems is investigated by looking at the training provided by firms (h6)
and skill transferability (h7). By the same token, firms are requested to report the percentage of
vacancies filled in by workers with previous experience in the same sector (f3) and the amount
of formal training they provide to their workers (f4). The responses here show training taking
place within the employee-employer relationship. They also show that past worker experience is
relevant to the worker’s current job. It is striking, however, that only 2% of workers say that they
have learned from informal contacts within the firm. We return to this issue below as well.

Matching. The theories discussed above also highlight that workers and firms will both face less
risk in finding a job and filling a vacancy in a denser labor market. We ask workers to assess the
ease of replacement faced by their employer, should the worker quit (h8). We also ask workers
how easy would be for them to find another job similar in terms of salary or overall quality,
should they lose their current job (h9). Relatively few workers –10% and 15% respectively – report
substantial difficulty in these employment transitions. The degree of job specialization is measured
by the answers from a question that requires workers to compare their level of specialization
with that of other people in Italy who perform the same job (h10). Even fewer workers (7%)
report having highly specialized jobs. The quality of matches is captured by two questions on the
appropriateness for the job of, respectively, work experience (h11) and educational qualification
(h12). A large majority of workers consider themselves to be well-matched according to these two
measures (83% and 73% respectively). Similarly, firms are requested to assess the suitability of their
workers in terms of experience and education (f5). The answers here are quantitatively consistent
with those for the parallel questions in the worker survey. Overall, the survey responses seem to
show labor to be relatively unspecialized, with good matches of workers to jobs.

We also use a number of control variables in our regressions to alleviate possible concerns about
selection in our samples of workers and firms.5 At worker level, our controls include gender,
education, experience, and its square. In a robustness check, we make use of the (confidential) data
on the birthplace, which allows us to identify the movers (i.e., those who moved away from their
birthplace). At the firm level, controls include: age of the firm, legal status (limited or unlimited
liability) and being part of a broader corporate structure. In the robustness checks, we also look
more specifically at manufacturing firms and small and medium enterprises (smes).

5. Agglomeration

Our interest in labor market pooling arises from its role in the generation of agglomeration
economies. Before turning to labor market pooling in the next section, this section considers
agglomeration economies. The specific focus is on the relationship between agglomeration and
outcome measures such as wages and output to workers.

5Sample selection remains a concern if it is driven by an unobservable characteristic that is correlated with an
observable of interest. It is econometrically equivalent to the issues of simultaneity and missing variables that we
discuss below.
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Our main estimating equation for worker i is

Yi = β0 + Bc(i) β1 + Xi β2 + εi, (1)

where our dependent variable Yi is here the log of the hourly wage of worker i, Bc(i) is a vector of
characteristics for city c where worker i works, and Xi is a vector of individual characteristics.6

Finally, εi is an error term that needs to be clustered by city given that city level explanatory
variables apply to all workers within a city (Moulton, 1990).7

Table 2 reports results for eight wage regressions. In column 1, we regress log wages on the log
of city density alone.8 In column 2 we add dummy variables for being classified as an industrial
district and being located in the South of Italy. These are standard controls for Italian data. In
column 3, we also add four standard individual controls: a male dummy, years of education,
labor market experience, and its square. In columns 4 to 7, we retain the same specification as in
column 3 but consider different subsamples of observations; males in column 4, workers above
the age of 40 in column 5, workers with more than 13 years of education (which corresponds to
higher education) in column 6, and workers who do not live in their place of birth in column
7 (movers). Finally, in column 8 we recognize that density and wages might be simultaneous
determined since we expect places that pay higher wages to be more densely populated. Following
earlier literature (e.g. Ciccone and Hall, 1996, Combes, Duranton, Gobillon, and Roux, 2010), we
instrument contemporaneous density with long population density lags, namely log 1871 and log
1921 population density.9

In column 1, the estimate for the elasticity of wages with respect to density is 0.040. Con-
trolling for other local characteristics and for individual characteristics lowers this estimate to
0.027. Columns 4 to 7 show that agglomeration effects appear stronger for old workers and
university educated workers. However for none of these subsamples is the difference relative
to whole sample statistically significant. Finally, in column 8, instrumenting for density yields

6Location controls include population density (our variable of interest), being part of an industrial district, and a
South of Italy dummy. Individual controls include gender, education, experience, and its square.

7Furthermore, we did not make use of sample weights in the estimations reported in the paper. We duplicated
all our estimations using sample weights. We also tried to weight our estimations so that the shiw and sif samples
would match the distribution of area employment in Italy. Finally, we also replicated all our estimation excluding all
observation from areas with less than 25,000 inhabitants. For these three robustness checks, the results are essentially
the same as those reported here.

8We use density rather than total population because this variable more robust to the way boundaries are drawn.
In particular, municipalities are part of the same local labor market only when both the share of working residents
working locally and the share of employees residing locally is at least 75%. This is a restrictive definition relative to
other countries as some ‘suburban’ municipalities may form a separate local labour market even though they belong to
the same metropolitan areas in many other dimension. This should also ease comparisons since density is used more
often than population in the recent literature (see Combes, Duranton, and Gobillon, 2011, for a longer discussion of
these issues). In particular density is less sensitive to the modifiable areal unit problem (maup) than population.

9In our context, these density lags provide strong predictors for contemporaneous density. To be valid these
instruments need to be correlated with wages only through contemporaneous density. The argument that ‘residual
productivity’ (i.e., the error term in the wage regression) should be uncorrelated with our instruments rely on the
fundamental changes that have affected the Italian economy since 1871 and 1921. Other research has also shown that
these historical instruments yield results similar to alternative instruments based on geology (Combes et al., 2010). Of
course, the validity of an instrument is always potentially problematic. This and other issues in the estimation of (1) are
discussed in Combes et al. (2011).
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Table 2: Wage equations

(1) (2) (3) (4) (5) (6) (7) (8)
Raw Geog Geog+Indiv Males Old HighEd Movers IV

log density 0.040a 0.035a 0.027a 0.026a 0.035a 0.049b 0.027b 0.022a

(0.015) (0.0081) (0.0066) (0.0078) (0.0080) (0.023) (0.012) (0.0085)
Indus. district -0.028 -0.0016 -0.0038 -0.0048 0.067 0.0096 0.0024

(0.021) (0.018) (0.022) (0.024) (0.053) (0.026) (0.018)
South -0.18a -0.14a -0.14a -0.13a -0.16b -0.15a -0.13a

(0.026) (0.024) (0.025) (0.027) (0.071) (0.046) (0.024)
Male 0.15a 0.18a 0.14a 0.19a 0.15a

(0.012) (0.019) (0.045) (0.018) (0.012)
Education 0.041a 0.043a 0.044a 0.059 0.042a 0.041a

(0.0024) (0.0030) (0.0035) (0.036) (0.0038) (0.0025)
Experience 0.026a 0.027a 0.017b 0.045a 0.022a 0.026a

(0.0024) (0.0032) (0.0076) (0.0090) (0.0040) (0.0025)
Experience2 (X100) -0.038a -0.037a -0.024c -0.073a -0.033a -0.037a

(0.0055) (0.0069) (0.0013) (0.027) (0.0091) (0.0056)

Observations 4,367 4,367 4,367 2,804 2,293 398 1,162 4,252
R2 0.01 0.04 0.19 0.18 0.19 0.28 0.21 -

Notes: The dependent variable is log wage (question H1). All regressions include a constant. Robust
standard errors clustered by city in parentheses. a, b, c: significant at 1%, 5%, 10%. Columns 1 to 7 are
estimated with OLS. Column 8 is estimated by TSLS using 1871 and 1921 populations as instruments. The
first-stage statistic for these two instruments is 136, and the p-value of the overidentification test is 0.27.

a slightly lower point estimate of 0.022. This estimate implies that a one standard deviation
increase in log density (i.e., +1.09) leads to a relatively modest 2.4% increase in wages. Turning
to the other coefficient, we find a negative wage penalty for the South of Italy and an absence of
significant results for being part of an industrial district. For individual characteristics, we find –
unsurprisingly – higher wages for male workers, more educated workers, and more experienced
workers.10

Next, we conduct a similar exercise using firm level data and estimate regressions correspond-
ing to (1) on the firm side. For firm j, our estimating equation is

Yj = β0 + Bc(j) β1 + Xj β2 + εj, (2)

and our dependent variable Yi is now the log of output per worker i, Bc(j) is still a vector of
characteristics for city c where firm j is located, and Xj is a vector of characteristics of firm j.

Table 3 report results for the estimation of equation (2). The structure of this table mirrors that
of table 2. Column 1 uses only log density as explanatory variable. Column 2 adds again dummy
variables for the South of Italy and industrial district. In column 3, the firm characteristics we

10The measured returns to education in table 2 are on the low side relative to estimates for other countries. This
finding is not unique to our work (see for instance Di Addario and Patacchini, 2008, Dalmazzo and de Blasio, 2011, for
work with a regional focus) and may be related, among other things to the fact that the skills provided by the public
education system are different from those demanded by the firms (see for instance Tarantola, 2011).
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Table 3: Output per worker

(1) (2) (3) (4) (5) (6) (7) (8)
Raw Geog Geog+Firm Old Group SME Manuf IV

log density 0.062c 0.065a 0.036c 0.052b 0.030 0.057a 0.053a 0.033c

(0.033) (0.022) (0.019) (0.025) (0.028) (0.017) (0.013) (0.019)
Indus. district 0.024 0.034 0.012 0.057 0.0012 -0.020 0.038

(0.039) (0.037) (0.063) (0.050) (0.042) (0.036) (0.039)
South -0.26a -0.17a -0.098 -0.17a -0.20a -0.24a -0.17a

(0.044) (0.041) (0.081) (0.065) (0.042) (0.035) (0.042)
Age 0.0016a 6.0e-07 0.0012c 0.0015b 0.0015a 0.0014b

(0.00057) (0.00096) (0.00066) (0.00071) (0.00050) (0.00057)
Limited liability 0.35a 0.039 0.48a 0.15 -0.18c 0.38a

(0.099) (0.14) (0.15) (0.10) (0.094) (0.099)
Group 0.29a 0.31a 0.30a 0.37a 0.30a

(0.026) (0.058) (0.031) (0.030) (0.027)

Observations 3,660 3,660 3,649 908 1,518 2,777 2,645 3,551
R2 0.01 0.03 0.08 0.06 0.03 0.07 0.13 -

Notes: The dependent variable is log output per worker (question F1). All regressions include a constant.
Robust standard errors clustered by city in parentheses. a, b, c: significant at 1%, 5%, 10%. Columns 1 to 7
are estimated with OLS. Column 8 is estimated by TSLS using 1871 and 1921 populations as instruments.
The first-stage statistics for these two instruments is 196 and the p-value of the overidentification test is
0.095.

consider are: age, a dummy variable for limited liability status, and a dummy variable for being
part of a group.11 In columns 4 to 7, we consider different subsamples; firms older than 40 years,
firms that are part of a larger group of firms, small and medium enterprises with employment
below 100, and manufacturing firms. Finally, in column 8 we instrument log density as previously.

In column 1, the estimate for the elasticity of output per worker with respect to density is 0.062.
Controlling for other local characteristics raises this estimate marginally while the introduction of
establishment level characteristics lowers it to 0.036. Columns 4 to 7 show that agglomeration
effects appear stronger for old establishments, smes, and manufacturing establishments. The
estimates for establishments that are part of a group is insignificant. Dealing with the endogeneity
of log density in column 8 again lowers the estimate to 0.033. Consistent with table 2, productivity
per worker is much lower in the South of Italy whereas being part of an industrial district makes
no significant difference. We also find that establishments that are part of a group and old
establishments are more productive. For the limited liability status dummy, the picture is more
mixed.

Overall these results are consistent with previous findings of the literature. Relative to results
for France (e.g., Combes et al., 2010) and the us (e.g., Ciccone and Hall, 1996, Glaeser and Resseger,
2010), the estimated elasticity of wages with respect to density is slightly lower. It is about one to

11We do not consider firm size since it could be a consequence of being more productive.
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two percentage points lower than in these other countries. Relative to existing agglomeration find-
ings on Italian data (de Blasio and Di Addario, 2005, Di Addario and Patacchini, 2008, Mion and
Naticchioni, 2009), we find slightly higher coefficients, by about one percentage point.12 Overall
we take these magnitudes as very close given differences in the data being used and differences in
the estimation. Many detailed aspect of the wage findings are also in line with existing results.13

The results from table 3 are more difficult to compare since output per worker is seldom used in
the recent literature. The estimates for the density elasticity of output per worker are nonetheless
close to the estimates of the density elasticity of tfp in Combes et al. (2010).14

Compared to other countries, agglomeration effects are thus slightly lower when measured
on wages, while they seem to be about the same when measured on output per worker. A
possible explanation for this refers to the centralized bargaining system, which prevents wages
from reacting in full to local labor market conditions.15

Simple theoretical considerations suggest that when agglomeration increases productivity and
when local wages and local prices are set competitively, denser areas should exhibit higher wages
and higher prices for nontradables. Imposing uniform wages across locations can lead to a higher
pressure on local prices for nontradables, as these goods capitalize all the agglomeration gains
(Dalmazzo and de Blasio, 2011). Uniform wages can also reduce mobility across cities. This
is consistent with the fact that labour mobility is indeed low in Italy (Faini, Galli, Gennari, and
Rossi, 1997) and that economic activity in Italy is less concentrated than in some other countries.
For instance, the four most populated Italian cities host less than 20% of the national population
whereas in the uk or France, the same proportion is attained by the largest city only.16

Finally, we note that the regressions reported in tables 2 and 3 follow the current practice
in agglomeration work and focus mostly on gains from agglomerations that take place across
sectors (e.g., Ciccone and Hall, 1996, Combes et al., 2010). The generally insignificant coefficient
on industrial districts and the results in column 7 of table 3 (where we restrict our sample of
firms to manufacturing) relative to the other columns of the same table are not supportive of
major agglomeration effects within sectors. In regressions not reported here, we experimented
extensively with agglomeration effects at the sector level using the share of workers employed in

12If we consider only full-time workers, the coefficient on density decreases marginally. This is unsurprising. labour
flexibility is arguably part of the benefits from agglomeration. Excluding flexible contractual arrangements may lead to
the underestimation of the benefits from agglomeration.

13Among the features already documented in the references cited above and others: the halving of the density
elasticity when individual controls are induced, the small further decline of this elasticity when instrumenting by long
historical lags, the higher estimates for movers and more highly skilled workers, etc.

14In addition, the stronger agglomeration effects for firms that are smaller and not part of a group is also reminiscent
of results by Henderson (2003) and Rosenthal and Strange (2010).

15For instance, the imf recently mentioned that: “Italy’s wage setting system is an obstacle for growth” (imf, 2011).
16Clearly, the wage setting scheme might not be the only reason behind reduced mobility. As highlighted by Saraceno

(1994) and Alesina and Ichino (2009), a first reason is the “familism” of the provision of welfare-related services. The
family network in Italy offers most of the support for higher education, unemployment, and childcare and elderly-care.
Thus, the opportunity cost of migration are high in Italy relative to the us (where the family network is much weaker)
or other European countries (with a stronger welfare state not based on family ties). There is also evidence that labor
mobility has been discouraged by the generous provision of public funds (government social transfers, which include
unemployment benefits, social assistance, regular and invalidity pensions and health payments; Brunello, Lupi, and
Ordine, 2001) and public sector jobs (Alesina, Danninger, and Rostagno, 2001) deployed in lagging (Southern) regions
in the last decades.
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the same industry to capture them.17 We failed to find robust results supportive of agglomeration
effects taking mainly within broad sectors. This lack of result is consistent with recent literature
which finds evidence for agglomeration effects within sectors but finds that those between sectors
matter more (see, for instance, Combes, Duranton, and Gobillon, 2008, for a detailed comparison
between these two types of agglomeration effects and the robustness of urbanisation effects to
detailed sectoral controls).

6. Labor market pooling

Overview

In this section, we take advantage of the richness of the two surveys to explore the manifestation
of labor market pooling in Italy. As noted previously, our approach departs from prior work by
taking a comprehensive approach. We look across all industries, rather than focusing on a few.
We look at both workers and firms, rather than looking at only one side of the market. Most
importantly, we examine a number of possible ways that labor market pooling may manifest itself.

The approach is parallel to the previous section’s analysis of agglomeration. In the worker
sample, we estimate regressions of the form

Zi = β0 + Bc(i) β1 + Xi β2 + εi . (3)

This specification mirrors regression (1) but considers, as dependent variable Zi, a measure of
labor market pooling for worker i. We consider a number of aspects of labor market pooling. Zi

thus includes dummy variables such as the change of employer or type of work or both (h2 and
h3), workplace learning (h4), past experience (h5), training by the firm (h6), skill transferability
(h7), difficulty of replacing the worker or finding another job (h8 and h9), and measures of
specialization and the appropriateness of experience and education (h10-h12).

We are concerned primarily with the relationship of the labor market pooling variables with
agglomeration but, in estimating equation (3), we include the other controls from the wage models
reported in Table 2 as well. For questions from the worker sample, the tables in this section are
organized in a way that parallels Table 2. In column 1, we regress the labor market pooling measure
on city density. Column 2 adds the controls for a worker being located in an industrial district or
in the South. Column 3 again adds the individual controls. Columns 4-7 are estimates of the
specification in column 3 over subsamples of males, older workers, more educated workers, and
workers who have moved. Finally, column 8 is the long lagged instruments model. Estimation is
carried out by Probit and iv Probit for which we report marginal effects.

In the firm sample, we estimate equations of a similar form:

Zj = β0 + Bc(j) β1 + Xj β2 + εj, (4)

This specification mirrors regression (2) but considers, as dependent variable Zj, a measure of labor
market pooling for firm j. These include the share of terminations that are voluntary (f2), the share

17For instance, including a dummy variable for manufacturing does not change anything the our results.
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of vacancies filled from workers previously employed in the same sector (f3), and the numbers of
days to train and find key workers (f4 and f5).

In estimating (4), we include the other controls from Table 3. This produces results for firms that
are organized in a way that parallels table 3. Column 1 presents a simple regression using density
alone. Column 2 augments it with geographic controls. Column 3 also controls for firm age and
dummy variables for limited liability status and for belonging to a group. The rest of the columns
include regressions for the subsamples of older firms (more than 40 years), small and medium
sized enterprises (employment below 100), and manufacturing firms. The final column presents
the iv results using lagged densities, as above.

Turnover

Table 4 presents results that relate to the turnover element of labor market pooling. In this and in
other tables, because our focus is on agglomeration, we report only the density coefficients. The
only other agglomeration variable in the specifications is for a worker’s location in a designated
industrial district. This variable is in nearly every instance insignificant, so these coefficients are
not reported. The evidence of our estimation does not show the industrial districts to be related to
labor market pooling, either positively or negatively.18

Panel a presents models of the relationship between overall worker turnover and density. The
results are quite consistent across specifications. There is not a significant relationship between
worker job change and density. Looking across all industries in an Italian setting, we do not find
more job turnover in dense markets. In light of prior literature (e.g., Wheeler, 2008), this could be
due to the fact that workers experience greater turnover in denser cities early on in their career but
eventually find better job matches and experience less turnover.

The sort of turnover that is predicted by Marshallian theories is of a particular sort, with workers
moving jobs without changing houses. Panel b presents results on worker change of employer
without change of type of employment. In contrast to overall turnover, this sort of turnover is
positively and significantly related to density. Similarly, Panel c considers the firm-reported share
of terminations that were voluntary. This is also positively and significantly related to density.
Thus, although raw turnover does not show a strong relationship with agglomeration, the more
refined measures in Panels b and c do show a consistent relationship. This evidence is qualitatively
consistent with labor market pooling in the spirit of Marshall.

It is important, however, not to forget how little worker turnover there is in the Italian sample.
As noted earlier, only 9% of workers reported changing jobs or employers in the previous two
years. Of these, relatively few were turnovers that involved change of employer but not type of
work (only 117 instances, amounting to 47% of the turnovers). Likewise, for the firms, only 67%
of terminations were voluntary. Together, these results mean that although Marshallian turnover

18This result is consistent with the wage results of de Blasio and Di Addario (2005), who find no wage premium
associated with being located in an industrial district. It casts a shadow on the empirical relevance of labor market
advantages, which are regularly mentioned in the qualitative literature on Italian industrial districts originated from
Becattini (1978, 1979); see also Brusco and Paba (1997).
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Table 4: Turnover and flexibility

(1) (2) (3) (4) (5) (6) (7) (8)
Raw Geog Geog+Indiv Males Old HighEd Movers IV

Panel A. Dependent variable: Worker job change
(Question H2), probit and IV probit

log density -0.0048 -0.0035 -0.0027 -0.0087 -0.0042 0.025 -0.019 0.0077
(0.0088) (0.0091) (0.0092) (0.011) (0.0083) (0.023) (0.016) (0.011)

Observations 1,287 1,287 1,287 806 721 100 383 1,251
pseudo-R2 0.00 0.00 0.01 0.01 0.02 0.12 0.03 -

Panel B. Dependent variable: Worker change of employer but no change of type of work
(Question H3), probit and IV probit

log density 0.11b 0.12b 0.13b 0.10 0.25b -0.00062 0.043 0.14b

(0.058) (0.057) (0.060) (0.070) (0.11) (0.0020) (0.076) (0.069)
Observations 117 117 117 79 46 11 43 110
pseudo-R2 0.03 0.04 0.06 0.10 0.20 1.00 0.09 -

Panel C. Dependent variable: Firm share of terminations voluntary
(Question F2), OLS and TSLS

Raw Geog Geog+Firm Old Group SME Manuf IV

log density 0.030a 0.034a 0.035a 0.042a 0.027a 0.041a 0.023a 0.050a

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Observations 2,750 2,750 2,743 691 1,165 2,066 1,987 2,666
R2 0.01 0.02 0.03 0.05 0.02 0.05 0.03 -

Notes: All regressions include a constant and follow the specifications of tables 2 and 3. Robust standard
errors clustered by city in parentheses. a, b, c: significant at 1%, 5%, 10%. In panels A and B, columns 1 to 7
are estimated with probit. Column 8 is estimated by IV probit using 1871 and 1921 populations as
instruments. Marginal effects reported for all probit regressions. In panel C, columns 1 to 7 are estimated
with OLS. Column 8 is estimated by TSLS using 1871 and 1921 populations as instruments.

does increase with density, the magnitude of this turnover is modest. When this is combined
with prior persuasive evidence of job-hopping in certain industries and certain places (e.g., Fallick
et al., 2006, Freedman, 2008), this suggests that the agglomeration-turnover relationship often
highlighted in the literature is a particular one. It does not seem to apply in all situations.

Learning and holdup

Table 5 presents results that relate to the learning element of labor market pooling. Panel a presents
estimates of models where the dependent variable is workplace learning. The results here are
only weakly consistent with Marshall’s insights on knowledge spillover in that learning increases
with density in all specifications except for the older worker sample (age over 40). That there
is less workplace learning by older workers is sensible and not really inconsistent with the idea
of learning in cities. However, the estimates are noisy and mostly insignificant, including the
preferred specification in column 3. In addition, very few workers report this sort of informal
learning, only 2% as noted in Table 2. So while the positive relationship of workplace learning
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to density is Marshallian, the lack of precision and the small number of workers impacted do not
provide strong support for the knowledge spillovers of this sort as an agglomeration economy that
operates across industries.

Panel b reports results for models of the importance of past experience in the same field. Across
most of the models, density is significant and positive. This can be interpreted as evidence of prior
learning in cities. However, the weak results in Panel a and the low rate of learning from other
workers suggest that the learning is not very Marshallian. It is worth pointing out that the density
coefficients are largest for the samples of educated workers and movers in columns 7 and 8 of the
table. While this coefficient of 0.095 is not statistically different from the full sample coefficient in
column 3 of 0.079, the larger coefficient for movers is at least somewhat suggestive of a role for
sorting of high skill worker into larger cities.

Panels c and d of Table 5 address holdup. Panel c presents models of worker training by firms,
while Panel d presents models of worker skill transferability. As noted in Combes and Duranton
(2006), there is tension between a firm’s desire to draw from a large labor pool and its aversion to
competition with other firms for skilled workers. To the extent that a firm has trained an employee
and the employee has thus acquired skills that are potentially transferable to other local employers,
then the firm risks what Combes and Duranton (2006) call “labor poaching.” This will discourage
firms from training workers in ways that develop transferable skills. Panel c’s results on training
are consistent with firms wanting to avoid this sort of hold up. Worker training by the firm is
consistently negatively and significantly related to density. Which means that while workers seem
to have obtained useful past experience (Panel b), they have obtained the experience neither from
other workers (Panel a) nor from training provided by employers (Panel c). In Panel d we see
a relationship between density and worker skill transferability that is insignificant in all of the
models.

The firm results presented in the last two panels of the table are noisier, but they ultimately
tell a rather similar story. In Panel e, we observe a positive relationship between density and the
firm’s share of vacancies filled with workers with same sector experience. The coefficients are all
insignificant, with the notable exception of the sample of firms that belong to a group (which likely
reflects within-group labor market practices). Likewise, Panel f shows an insignificant positive
relationship between the firm training days for a new key worker and density. The difference
between this and the clear negative worker training results from Panel c might possibly hinge on
the difference between "key" workers and the rest of the workforce.

Matching

We now discuss the matching aspect of labor market pooling. The main idea is that agglomeration
allows a better match between firms and workers, to the benefit of both. As noted in Section 3,
while one expects matches to be better in thick markets, one also expects jobs where matching is
difficult to be found in cities. This means that the theoretical relationship between the surveys’
measures of matching and density are theoretically ambiguous.
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Table 5: Learning and holdup

(1) (2) (3) (4) (5) (6) (7) (8)
Raw Geog Geog+Indiv Males Old HighEd Movers IV

Panel A. Dependent variable: Worker workplace learning
(Question H4), probit and IV probit

log density 0.0081c 0.0052 0.0047 0.0072a 0.00063 0 0.000088 0.0071c

(0.0041) (0.0032) (0.0030) (0.0027) (0.0048) (0) (0.0045) (0.0041)
Observations 1,287 1,287 1,287 806 543 55 214 1,251
pseudo-R2 0.01 0.06 0.08 0.09 0.01 0.90 0.07 -

Panel B. Dependent variable: Useful past experience
(Question H5), probit and IV probit

log density 0.076a 0.076a 0.079a 0.073a 0.061a 0.096c 0.095b 0.079a

(0.018) (0.018) (0.018) (0.021) (0.018) (0.055) (0.033) (0.021)
Observations 945 945 945 594 553 80 304 913
pseudo-R2 0.01 0.01 0.02 0.01 0.01 0.11 0.02 -

Panel C. Dependent variable: Worker training by firm
(Question H6), probit and IV probit

log density -0.022 -0.028c -0.031c -0.033b -0.025 -0.081 -0.033 -0.034
(0.020) (0.017) (0.017) (0.015) (0.022) (0.069) (0.028) (0.021)

Observations 1,287 1,287 1,287 806 721 100 383 1,251
pseudo-R2 0.00 0.01 0.04 0.05 0.06 0.07 0.03 -

Panel D. Dependent variable: Worker skill transferability
(Question H7), probit and IV probit

log density 0.012 0.010 0.011 0.0077 0.012 -0.00040 -0.0089 0.020
(0.015) (0.015) (0.014) (0.013) (0.014) (0.030) (0.020) (0.013)

Observations 1,287 1,287 1,287 806 721 100 383 1,251
pseudo-R2 0.00 0.02 0.05 0.04 0.04 0.03 0.07 -

Panel E. Dependent variable: Firm share of vacancies filled by workers with same
sector experience (Question F3), OLS and TSLS

Raw Geog Geog+Firm Old Group SME Manuf IV

log density 0.010 0.0081 0.011 0.0053 0.026b 0.0074 0.018 0.0060
(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.01)

Observations 2,452 2,452 2,443 604 1,014 1,878 1,767 2,376
R2 0.00 0.01 0.01 0.02 0.01 0.01 0.02 -

Panel F. Dependent variable: Firm training days for a new key worker
(Question F4), OLS and TSLS

log density 0.26 0.32 0.36 0.97 0.38 0.81 -0.14 0.45
(0.48) (0.49) (0.49) (1.01) (0.56) (0.53) (0.56) (0.64)

Observations 2,553 2,553 2,548 614 1,060 1,955 1,839 2,484
R2 0.00 0.00 0.00 0.01 0.00 0.00 0.01 -

Notes: All regressions include a constant and follow the specifications of table 2 and 3. Robust standard
errors clustered by city in parentheses. a, b, c: significant at 1%, 5%, 10%. In panels A to D, columns 1 to 7
are estimated with probit. Column 8 is estimated by IV probit using 1871 and 1921 populations as
instruments. In panels E and F, columns 1 to 7 are estimated with OLS. Column 8 is estimated by TSLS
using 1871 and 1921 populations as instruments. 16



Some of the previous results can also be interpreted as bearing on matching. The results on
the relationship of agglomeration to useful past experience in Panel b of the previously discussed
Table 5 clearly bear on matching as well as the learning that we have previously discussed. The
results show a consistent positive relationship between a worker’s useful experience and density.
This is consistent with the idea that agglomeration improves matches.

Table 6 presents further results on the matching of workers to firms. Panel a presents results on
the difficulty an employer is expected by a worker to encounter in finding a replacement. This is
negatively related to density in all the models but one. The relationship is significant in all but the
samples of highly educated workers and movers.

The rest of the worker estimates typically feature signs that are consistent with matching but
with small coefficients. Panel b presents models of a worker’s difficulty of finding an equivalent
job. Although the coefficients here are all negative, none are significant. Panel c presents results of
models of the relationship of a worker’s specialization to density. Again, although the results are
all negative, they are also all insignificant. In a similar spirit, the results in Panel d show a positive
but insignificant relationship between a worker’s appropriate experience and agglomeration. The
only exception to this pattern of predicted signs but noisy measurement is in Panel e. Here, a
worker’s appropriate education is negatively but insignificantly associated with density.

The firm results in Panel f also address a worker’s possession of appropriate education and
experience for the job. This is positively related to density, but the coefficients are small and
insignificant.

Taken as a group, these results offer some support for the idea that matching is improved by
agglomeration, but like the results on knowledge spillovers, the support is weak. For two of
the relevant survey questions, the results are significant and consistent with prediction. For five
questions, the results are consistent with prediction, but insignificant. In only one case, results are
inconsistent with prediction and insignificant. In no case do we have significant coefficients that
are at odds with the predictions of matching models.

7. Labor market pooling and agglomeration

In this section we return to the agglomeration-wage relationship and to the agglomeration-
productivity explored in section 5 but consider density and our measures of labor market pooling
jointly as explanatory variables. This allows us to assess the association between specific dimen-
sions of labour market pooling and wages or output per worker. We estimate regressions of the
following form:

Yi = β0 + Bc(i) β1 + Xi β2 + Ziβ3 + εi, (5)

where Yi is the wage of worker i, Bc(i) is a set of characteristics of city c where worker i works, Xi is
a set of individual characteristics, and Zi is a labor market pooling variable measured for worker
i. We also estimate the corresponding regressions for output per worker

Yj = β0 + Bc(j) β1 + Xj β2 + Zjβ3 + εj, (6)
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Table 6: Matching

(1) (2) (3) (4) (5) (6) (7) (8)
Raw Geog Geog+Indiv Males Old HighEd Movers IV

Panel A. Dependent variable: Difficulty of worker replacement for employer
(Question H8), probit and IV probit

log density -0.019c -0.017c -0.018b -0.025b -0.012 0.020 -0.029 -0.028b

(0.010) (0.0093) (0.0091) (0.010) (0.0099) (0.016) (0.019) (0.012)
Observations 1,287 1,287 1,287 806 721 100 383 1,251
pseudo-R2 0.00 0.01 0.02 0.03 0.04 0.12 0.03 -

Panel B. Dependent variable: Worker difficulty of finding equivalent job
(Question H9), probit and IV probit

log density -0.012 -0.0093 -0.013 -0.017 -0.0095 -0.010 -0.032 -0.022
(0.012) (0.012) (0.012) (0.013) (0.015) (0.034) (0.020) (0.016)

Observations 1,287 1,287 1,287 806 721 100 383 1,251
pseudo-R2 0.00 0.00 0.03 0.03 0.02 0.14 0.09 -

Panel C. Dependent variable: Worker specialisation
(Question H10), probit and IV probit

log density -0.0020 -0.0049 -0.0066 -0.0062 -0.0012 0.0055 -0.0041 -0.0038
(0.0076) (0.0076) (0.0074) (0.0085) (0.0073) (0.031) (0.015) (0.0097)

Observations 1,606 1,606 1,606 1,015 914 140 458 1,558
pseudo-R2 0.00 0.01 0.00 0.03 0.06 0.05 0.02 -

Panel D. Dependent variable: Worker appropriate experience
(Question H11), probit and IV probit

log density 0.0079 0.0086 0.0087 0.0092 0.0011 -0.010 0.023 0.0033
(0.012) (0.012) (0.012) (0.011) (0.015) (0.026) (0.023) (0.014)

Observations 1,606 1,606 1,606 1,015 914 140 458 1,558
pseudo-R2 0.00 0.00 0.00 0.01 0.01 0.05 0.03 -

Panel E. Dependent variable: Worker appropriate education
(Question H12), probit and IV probit

log density -0.014 -0.0085 -0.0088 -0.0083 -0.0099 0.029 0.0073 -0.011
(0.015) (0.015) (0.015) (0.014) (0.019) (0.033) (0.026) (0.016)

Observations 1,606 1,606 1,606 1,015 914 140 458 1,558
pseudo-R2 0.00 0.00 0.00 0.00 0.00 0.05 0.01 -

Panel F. Dependent variable: Appropriate education and experience of new key workers
(Question F5), probit and IV probit

Raw Geog Geog+Firm Old Group SME Manuf IV

log density 0.0094 0.012 0.0086 0.010 0.0070 -0.0014 0.017 -0.00052
(0.019) (0.015) (0.015) (0.020) (0.021) (0.015) (0.019) (0.017)

Observations 2,946 2,946 2,939 731 1,222 2,252 2,143 2,862
pseudo-R2 0.00 0.00 0.01 0.02 0.02 0.01 0.00 -

Notes: All regressions include a constant and follow the specifications of table 2 and 3. Robust standard
errors clustered by city in parentheses. a, b, c: significant at 1%, 5%, 10%. In all panels A to E, columns 1 to 7
are estimated with probit. Column 8 is estimated by IV probit using 1871 and 1921 populations as
instruments. In panel F, columns 1 to 7 are estimated with OLS. Column 8 is estimated by TSLS using 1871
and 1921 populations as instruments. 18



where the our dependent variable Yi is now the log of output per worker i, Bc(j) is still a vector
of characteristics for city c where firm j is located, Xj is a vector of characteristics of firm j, and
Zi is a labor market pooling variable now measured for firm j. These two specifications basically
augment specifications (1) and (2) with a labour market pooling variable.

In the different specifications reported in panels a and b of table 7, we consider all our measures
of labor pooling at the worker level in turn. In the specifications reported in panel c of table 7,
we also consider all our measures of labor pooling at the worker level. As can be seen from the
results, only about half the labor pooling variables are significant in our estimation of equation (5)
for workers. On the other hand, all the labor pooling variables are significant in our estimation
of equation (6) for firms. Turning to the coefficient on density, it is significant in all cases but
one. This coefficient is either slightly lower or of the same magnitude the same coefficient in the
corresponding regression without any labour market pooling variable in column 3 of table 2 for
the worker regressions of panels a and b. The standard errors are nonetheless generally higher
due to the smaller samples of workers which were surveyed with the labour pooling questions.
In panel c for the firm level regressions, the coefficient on density is insignificant and about one
percentage point lower than in the corresponding regression in column 3 of table 3. Like with
workers, the higher standard errors are caused in part by the fact that only a subsample of firms
was surveyed on labour pooling issues. Some caution is obviously needed when interpreting these
regressions since labour pooling variables measuring for instance a change of employer is likely to
be determined simultaneously with the wage.

By estimating the relationship between our labour market variables and wages and knowing
the relationship between density and our labour market variables from the tables above, we can
assess how much of the relationship between density and wages (output per worker) is accounted
for by these labour market variables. For instance, we know from column 3 of panel c of table
4 that an increase in log density by one point is associated with an increase of 0.035 in the share
of voluntary turnover for firms. In column 1 of panel c of table 7, we report that the share of
voluntary turnover for firms is positively associated with log output per worker with a coefficient
of 0.13 for the former variable. Hence, an increase in log density by one point is associated with
an increase in log output per worker of 0.035 × 0.13 = 0.0046. This represents about 13% of the
total effect of log density reported in column 3 of table 3. The same calculation can be repeated to
assess the role of the other labor market variables of 7. By doing that, we find that overall the labor
market variables explain only a limited share of the urban wage/productivity premia.19

8. Conclusion

This paper looks at several different aspects of labor market pooling across a range of industries
and from the perspectives of both firms and workers. The focus is on the microfoundations of
agglomeration economies.

19We also performed a principal component analysis to obtain a synthetic indicator of labor market pooling channels
and use it as alternative explanatory variable in the estimation of equations (5) and (6). The results confirm those
presented in this section.
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Table 7: Labour market pooling and wages / output per worker

(1) (2) (3) (4) (5) (6)

Panel A. Dependent variable: log wage
Labor market pooling variable: job change emp. change learning useful exp. training skill trans.

(H2) (H3) (H4) (H5) (H6) (H7)

Labor market pooling variable -0.13a 0.15c 0.014 0.0069 0.072a 0.025
(0.043) (0.079) (0.060) (0.031) (0.020) (0.026)

log density 0.016c 0.0081 0.016c 0.034a 0.018b 0.016c

(0.0082) (0.044) (0.0084) (0.012) (0.0085) (0.0084)
Observations 1,287 117 1,287 945 1,287 1,287
R2 0.24 0.13 0.23 0.16 0.24 0.23

Panel B. Dependent variable: log wage
Labor market pooling variable: difficu. find eq. spec. approp. approp.

replac. job exp. edu.
(H8) (H9) (H10) (H11) (H12)

Labor market pooling variable -0.027 -0.023 0.020a 0.017 0.053a

(0.036) (0.029) (0.0054) (0.024) (0.020)
log density 0.016c 0.016c 0.026b 0.025b 0.026b

(0.0085) (0.0084) (0.011) (0.010) (0.011)
Observations 1,287 1,287 1,606 1,606 1,606
R2 0.23 0.23 0.20 0.19 0.20

Panel C. Dependent variable: log output per worker
Labor market pooling variable: volunt. same training approp.

turnover exp. days exp./edu.
(F2) (F3) (F4) (F5)

Labor market pooling variable 0.13a -0.15a 0.0018a 0.063c

(0.039) (0.039) (0.00058) (0.033)
log density 0.018 0.025 0.027 0.029c

(0.020) (0.023) (0.020) (0.017)
Observations 2,743 2,443 2,548 2,939
R2 0.09 0.08 0.07 0.07

Notes: All regressions are estimated with OLS and include a constant. Robust standard errors clustered by
city in parentheses. a, b, c: significant at 1%, 5%, 10%. In panels A to B, the specification is the same as that
of column 3 of table 2 with one additional labour market pooling variable. In panel C, the specification is
the same as that of column 3 of table 3 with one additional labour market pooling variable.
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The paper’s findings are broadly consistent with the many different dimensions of labor market
pooling that have been discussed in the theoretical literature. The paper demonstrates a general
positive relationship of turnover to density. It also offers evidence of on-the-job learning that is
consistent with theories of labor pooling, labor poaching, and hold up. In addition, the paper
provides evidence consistent with agglomeration improving job matches.

The results, however, are relatively modest. The paper shows that labor market pooling gains
are unlikely to account for a significant share of the agglomeration benefits accruing to worker
and firms. These results have several possible explanations. As noted above, this pattern may
reflect, at least in part, the complex equilibrium relationships associated with agglomeration. It is
also possible that labor market pooling is, at least in the Italian markets that we examine, not an
important source of agglomeration economies. Or that there are different sources of agglomeration
economies in different industries, making it difficult to identify a clear pattern of labor market
pooling across all industries. The data do not allow us to determine which of these possible
explanations are correct.

There is one strong suggestion that comes from the weak results, and that is that economists
should attend to the specifics of industries in looking for evidence of the microfoundations of
agglomeration economies. The various microfoundations proposed by Marshall and his successors
may all be valid in certain situations but not in others. This means both that approaches that
focus on particular and narrowly defined industries make a lot of sense and that one should be
cautious in generalizing the results of these approaches. Similarly, policymakers should probably
also be careful not to draw overly general lessons from the agglomeration successes of particular
industries.
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Appendix A. The Bank of Italy’s Surveys

The Survey of Household Income and Wealth (SHIW)

This survey is conducted every 2 years by the Bank of Italy on about 8,000 households (24,000

individuals), distributed over about 300 Italian municipalities. The shiw gathers information on
income, savings, wealth and other socio-economic indicators.

The questionnaire for the 2006 wave (including its special section on local labor markets) can be
downloaded at: http://www.bancaditalia.it/statistiche/indcamp/bilfait/docum/ind_06/

Questionario/Quest_ing2006.pdf

Interviews are carried out by external professional interviewers. For the 2006 wave, details
on methodology (sample design, questionnaire and data collection, data editing and imputation,
non response, data quality, etc) are provided at: http://www.bancaditalia.it/statistiche/

indcamp/bilfait/boll_stat/en_suppl07_08.pdf

The survey results are regularly published in the Bank of Italy’s Reports. The data is freely
available in an anonymous form for further elaboration and research. A full list of academic
paper based on shiw) data is available. Details can be found at: http://www.bancaditalia.it/
statistiche/indcamp/bilfait.

The Survey on Industrial and Service Firms (SISF)

This survey is conducted annually by the Bank of Italy on about 3,000 industrial firms, 465 con-
struction companies and 1,083 non-financial private service firms (representing 8.1%, 6.5% and
3.8% of their respective total reference populations). The sisf gathers information on status, organ-
ization, performance, and other economic indicators. The survey results are regularly published in
the Bank of Italy’s Reports. The data can be freely accessed, through the Remote Processing System
bird, for further elaboration and research. A full list of academic paper based on sisf data is avail-
able. Details can be found at: http://www.bancaditalia.it/statistiche/indcamp/indimpser.

The questionnaire of the 2007 wave (including its special section on local labor markets)
can be downloaded at: http://www.bancaditalia.it/statistiche/indcamp/indimpser/boll_
stat/sb42_08/en_suppl_42_08.pdf

Interviews are carried out by Bank of Italy’s employees (mostly by economists). The respondent
is usually either the owner of the firm or a member of its top management, except for very
large firms. Details on the methodology (sample design; data collection, questionnaire and re-
sponse behaviour; data quality, checks and imputation of missing data; etc) are provided for
the 2007 wave at: http://www.bancaditalia.it/statistiche/indcamp/indimpser/boll_stat/
sb42_08/en_suppl_42_08.pdf.
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Appendix B. List of variables

Dependent variables from SHIW

H1 Wages.
Log of hourly wages in Euro. Hourly wages are calculated by dividing the annual earnings (from
any activity as payroll employee or ‘fake’ self-employed (see below for more details on the issue
of fake self-employed), including fringe benefits, net of taxes and social security contributions) by
the total amount of hours worked in a year (average hours worked per week × months worked ×
4.3333).

H2 Change of employer or type of work.
Dummy variable that equals one if the worker changed employer or type of work in the last two
years. It is taken from answers to the question “Have you changed employer or type of work in
the last two years?” (question numbered R2.7 in the questionnaire).

H3 Change of employer but not of type of work.
Dummy variable that equals one if the worker changed employer but not type of occupation. It is
taken from the question “What have you changed? Employer, type of work, or both?” (question
R2.9).

H4 Learning.
Dummy variable that equals one if the worker acquired her skills informally from colleagues inside
or outside the firm. It is taken from the question "Last year, by which of the following means did
you acquire skills to improve your job performance?” (question R2.15).

H5 Useful past experience.
Dummy variable that equals one if the worker’s previous experience in the same field is useful
for the job held at the survey date. It is taken from answers to the question “Did you gain your
previous experience in the same field you work in now?” (question R2.20).

H6 Training by firm.
Dummy variable that equals one if the worker received training by the firm. It is taken from the
question “Last year, by which of the following means did you acquire skills to improve your job
performance?” (question R2.15).

H7 Skill transferability.
Dummy variable that equals one if the worker’s skills are totally or partially transferrable. It is
taken from the question “If you were to leave your present employer, could the skills you have
acquired be used in another job?” (question R2.16).

H8 Difficulty of finding a replacement by employer.
Dummy variable that equals one if the replacement of a worker is very difficult. It is taken from
answers to the question “If you were to leave your job, how difficult/easy would it be for your
employer to find a replacement (on a scale from 1 to 10)?” (question R2.17). The questionnaire
variable has been re-scaled to ease interpretation. The re-scaled variable goes from 1 (very easy) to
10 (very difficult). The dummy variable is equal to 1 if the re-scaled variable takes a value higher
than 9.
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H9 Difficulty of finding an equivalent job.
Dummy variable that equals one if finding a new similar job in terms of salary or overall quality
is very difficult. It is taken from answers to the question “If you were to lose your job, how
difficult/easy would it be for you to find a similar job in terms of salary and overall quality (on
a scale from 1 to 10)?” (question R2.14). The questionnaire variable has been re-scaled to ease
interpretation. The re-scaled variable goes from 1 (very easy) to 10 (very difficult). The dummy
variable is equal to 1 if the re-scaled variable takes a value higher than 9.

H10 Specialization.
Dummy variable that equals one if the worker judges her level of specialization as very high. It is
taken from answers to the question "Comparing yourself with other people in Italy who perform
the same job, how specialized is your work (on a scale from 1 to 10)?” (question R2.21). The
questionnaire goes from 1 (not at all specialized) to 10 (very specialized). The dummy is equal to 1

if the questionnaire variable takes a value higher than 9.

H11 Appropriate experience.
Dummy variable that equals one if the worker’s experience is appropriate for the employer re-
quests. It is taken from answers to the question “In your opinion, does your job demand more
work experience than you have, less work experience, the same amount of work experience?”
(question R2.19).

H12 Appropriate skills.
Dummy variable that equals one if the worker’s educational qualification is appropriate for the job.
It is taken from answers to the question “Do you think your educational qualification is appropriate
for the job you do?" (question R2.17).

Dependent variables from SISF

F1 Output per worker.
Log of the ratio between firm revenue in thousands of Euro (variable name: V210) and average
workforce (variable name: V34) (see Bugamelli, Cristadoro, and Zevi, 2009, for further discussion).

F2 Share of terminations voluntary.
Share of terminations due to voluntary resignations (variable name: OCC2).

F3 Share of vacancies filled from the same sector.
Share of vacancies filled in by workers with previous experience in the same sector (variable name:
OCC1).

F4 Number of days to train a key worker.
Number of days of formal training received on average by the firm’s key worker (variable name:
OCC6).

F5 Appropriate education and experience of new key workers.
Dummy variable that equals one if the worker’s experience and education are enough for the job.
It is taken from the question “Do you consider that, on average, your key workers are suitable for
the tasks required from them?"; variable name: OCC5).
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Explanatory variables

Males (SHIW).
Dummy variable that equals one for males.

Education (SHIW).
Number of years of studies required to achieve the highest qualification earned by the worker.
The length of education is derived by assigning: 2 years to no qualification; 5 years to elementary
school; 8 years to middle school; 16 years to an associate degree or other short course university
degree; 18 years to a bachelor’s degree; 20 years to a postgraduate qualification.

Experience (SHIW).
Difference between worker’s age at the survey date and the age at first job held, which is available
from the shiw.

South (SHIW and SISF).
Dummy variable that equals one for residence in the South of Italy. South of Italy includes Abruzzi,
Molise, Campania, Puglia, Basilicata, Calabria, Sicily, and Sardinia.

Density (SHIW and SISF).
Log of population density. Density is computed as the ration between population and area (km2)
in 2001.

Industrial district (SHIW and SISF).
Dummy variable that equals one for industrial districts.

Age (SISF).
Age of the firm at the survey date.

Status: limited liability (SISF).
Dummy variable that equals one for limited liability firms.

Group (SISF).
Dummy variable that equals one if the firm is part of a group, i.e., a set of firms directly or indirectly
controlled - through one or more chains of control by the same legal persons or the same public
entity.

Manufacturing (SISF).
Dummy variable that equals one if the firm belongs to the manufacturing sector.

Appendix C. Data issues

Fake self-employed

A potential issue with the sample of workers is the presence of fake self-employed in the labor
market. For tax reasons and taking advantage of loopholes in labor market regulations, a number
of workers that are registered as self-employed are in fact payroll employees.

It could be that the presence of fake self-employed is higher in denser areas (therefore, limiting
our sample to registered payroll employees might bias our results). In the 2006 shiw questionnaire
we introduced three questions to identify fake self-employed (see questions: R2.4, R2.5, and
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R2.6). Basically, self-employed workers that i) work for just one firm/client; ii) at the firm/client’s
premises; and iii) observing the same working hours as the regular employees of their firm/client
are taken to be fake self-employed and we treat them as regular payroll workers.

In questions h2, h3, h4, h6, h7, h8, and h9 we use answers from the sample of payroll em-
ployees and fake self-employed. In questions h10, h11, and h12 we use answers from all working
individuals.

Key workers

A potential issue with the answers from sisf is that some questions need to distinguish between
different types of workers. As firms employ different typologies to classify workers, we decided to
identify those whom managers or owners believe make a significant difference to product quality
or to competitiveness. This group is labelled ‘key workers’ and it is defined as workers. Questions
f4 and f5 refer to key workers.

Sample sizes

For shiw, we consider only workers aged between 24 and 60 and delete workers with a log
wage above 3.92 or below 0.14 (corresponding to 1% extreme values). The sample size differs
by question. Wages (h1) are constructed on all employed persons independently of the fact
that they answered the special section questions (number of observations: 4,367). Questions
on turnover (h2), learning (h4), training by the firm (h6), skill transferability (h7), difficulty of
finding a replacement by the employer (h8) and difficulty of finding an equivalent job (h9) are
asked to payroll employees and fake self-employed (number of observations: 1,287). Questions on
appropriate experience (h11) and appropriate education (h12) are asked to all working individuals
(number of observations: 1,606). Questions on useful past experience (h5) are asked to all working
individuals who had more than one job in their lifetime (number of observations: 945). Questions
on the change of employer (h3) are asked only to people who changed job in the last two years
(number of observations: 117).

For sisf we delete observations with extreme values of log output per worker below 3.30 and
above 7.38. We end up with 3660 observation. The number of observations fluctuates between
2452 and 2946 when we focus on local labor market variables.

Appendix D. Territorial units of reference

Local labor markets (or ‘cities’)

Local labor markets are defined by the Italian National Institute of Statistic (istat, 1997). They are
aggregations of two or more neighbouring municipalities based on daily commuting flows from
place of residence to place of work as recorded in the 2001 Population Census. Local labor markets
are thus largely ‘self-contained’: within a given unit, both the share of working residents working
locally and the share of employees residing locally must be at least 75%.
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This definition is consistent with standard definitions of cities in urban economics that define
them through commuting patterns. In much of text we thus refer to these spatial units as cities.
This definition is also consistent with the notion of ‘functional region’, defined as ‘a territorial
unit resulting from the organization of social and economic relations in that its boundaries do not
reflect geographical particularities or historical events’ (oecd, 2002). Italian local labor market also
roughly follow the criteria used to define Metropolitan Statistical Areas in the us, Travel to Work
Areas in the uk, or Metropolitan areas and employment areas in France.

Italian local labor markets span the entire national territory. In 2001, 686 of them were defined.
They had an average population of 83,084 and a standard deviation of 222,418.

Industrial districts (IDs)

Through the istat Cluster Mapping Project (icmp) 156 cities (out of 686) are identified as ids.
Basically, ids are cities with a prevailing specialization and a higher concentration of employment
in small-sized manufacturing firms. To identify ids, the icmp uses four criteria (which all have
to be met): (i) The share of manufacturing employment in total (non-farm) employment must be
higher than the corresponding share at the national level. (ii) The share of small and medium
enterprise manufacturing employment in total (non-farm) employment must be higher than the
corresponding share at the national level. (iii) For at least one sector, the specialization index
(the ratio between the share of sector employment in total manufacturing employment and the
corresponding share at the national level) must be greater than one. (iv) In at least one sector
for which the specialization index is greater than one, the share of small and medium enterprise
employment in total employment must be higher than the corresponding share at the national
level.
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