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ABSTRACT 
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Learning More from Instrumental Variables* 

 
We provide simple tests for selection on unobserved variables in the Vytlacil-Imbens-Angrist 
framework for Local Average Treatment Effects. The tests allow researchers not only to test 
for selection on either or both of the treated and untreated outcomes, but also to assess the 
magnitude of the selection effect. The tests are quite simple; undergraduates after an 
introductory econometrics class should be able to implement these tests. We illustrate our 
tests with two empirical applications: the impact of children on female labor supply from 
Angrist and Evans (1998) and the training of adult women from the Job Training Partnership 
Act (JTPA) experiment. 
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1. Introduction 

In the 20 years since the publication of Imbens and Angrist (1994), applied researchers have 

embraced the interpretation of Instrumental Variables (IV) estimators, particularly with binary 

instruments, as measuring the impact of treatment on the subset of respondents who comply with 

the instrument, which Imbens and Angrist term a Local Average Treatment Effect, or LATE.  

The LATE framework allows researchers to consistently estimate models in which individuals 

may differ in the effects of treatment.  But the LATE framework comes with some costs.  First, 

the LATE approach requires that we assume that instruments have a “monotonic” impact on 

behavior.  Informally, instruments must induce all agents to behave in a weakly uniform manner 

when subjected to a change in the value of the instrument.  Thus, if the instrument induces some 

agents to enter the treatment, then the instrument must not induce any agent to leave the 

treatment.  Second, because the impact of treatment may be heterogeneous across agents, the 

traditional Durbin-Hausman-Wu test for the equivalence of IV and OLS estimates is not valid in 

a LATE framework.  Indeed, the relationship between the Ordinary Least Squares (OLS) and IV 

estimates is completely uninformative about the existence of selection within the LATE 

framework.  Thus, researchers face the paradox of using IV estimation to correct for selection on 

untreated outcomes, but with no clear evidence to demonstrate that such selection exists.   

 To see why, consider the framework of Angrist, Imbens, and Rubin (1996) in which there 

is a binary instrument, {0,1}iZ ∈ .  Without loss of generality, let 1iZ =  increase the likelihood of 

treatment.  They show that we may divide agents into three mutually exclusive sets: the “Always 

takers,” the “Never takers,” and the “Compliers.”  These are defined as: 

{ : ( 1) ( 0) 1}i i i iA i D z D z= = = = =   

{ : ( 1) ( 0) 0}i i i iN i D z D Z= = = = =  
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{ | ( 1) 1; ( 0) 0}i i i iC i D z D z= = = = =  . 

In this framework, the Wald estimator defines a LATE estimator where 

( ) ( )
( ) ( ) ( )1 0

| 1 | 0
|

| 1 | 0
i i i iW

i i
i i i i

E Y z E Y z
E Y Y C

E D z E D z
= − =

∆ = = −
= − =

 

where 1iY  is the potential outcome of the thi   agent if treated, 0iY  is the potential outcome of the 

thi  agent if not treated, and 1 0(1 )i i i i iY DY D Y= + −   is the observed outcome. 

 We would say that there is selection on unobserved variables if either of these two 

conditions fail: 

( ) ( ) ( )0 0 0| | |E Y N E Y C E Y A= =   

( ) ( ) ( )1 1 1| | |E Y N E Y C E Y A= =  

That these three conditions are unrelated to the equivalence OLS and IV estimates may be easily 

demonstrated with the following example.  Suppose ( ) ( ) ( ) 1
3P C P A P N= = =  .  Further, let 

( )1 | 1E Y A = , ( ) ( )1 0| | 0E Y C E Y C= = , and 0( | ) 1E Y N =  .  In this case, the OLS estimate of the 

impact of treatment is exactly zero.  The IV estimate, however, is also exactly zero, but 

( ) ( )1 1| |E Y A E Y C> and ( ) ( )0 0| |E Y N E Y C> , so clearly there is selection on 1Y  and 0Y .  How 

then do we test for such selection? 

 In this paper, we provide a set of simple tests for the presence of selection bias.   Drawing 

on the work of Black, Sanders, Taylor, and Taylor (2015), the tests come in two forms.  First, 

conditional on covariates, we compare the outcomes of the set of agents who comply with the 

instruments when not treated to the set of agents who never take treatment.  Second, we compare 

the mean outcomes of agents who comply with the instrument when treated to the set of agents 

who always take treatment.  Mechanically, these tests are implemented by estimating outcome 



3 
 

equations for those who are untreated, or treated, as a function of the covariates and the 

instruments (or the probability of selection).   With a simple Wald-like adjustment, our tests 

allow researchers to assess the economic magnitude of the selection bias as well. 

 Our tests are similar to those in Heckman’s (1979) seminal paper on the normal selection 

model.  In the two-step estimator for the normal selection model with a common treatment 

effect, the inverse Mill’s ratio represents the control function, and the coefficient on the inverse 

Mill’s ratio identifies the correlation between the errors of the outcome equation and the 

selection equation.  Under the null hypothesis of no selection on unobserved variables, a simple 

test for selection is to see if the coefficient on the inverse Mill’s ratio differs from zero.  In more 

general selection models, the exact form of the control function is unknown, and the control 

function is estimated semiparametrically.   

 Not surprisingly given their close relationship to Heckit, aficionados of latent index 

models have recognized the utility of testing for the existence of selection bias.  For instance, 

Blundell, Dearden, and Sianesi (2005) compare estimates from OLS, matching, IV, and latent 

index models.  They note that the coefficients on their control functions constitute a test for 

selection, or, in the nomenclature of matching, violation of conditional independence.   

Our paper is closely related to Heckman, Schmierer, and Urzua (HSU, 2010) who derive 

both parametric and nonparametric tests for the correlated random effects model. Formally, HSU 

develop a test for whether the idiosyncratic return to treatment is independent of treatment status 

conditional on the covariates. Drawing on the work of Heckman and Vytlacil (2005, 2007a,b), 

HSU (2010) propose parametric and nonparametric tests that regress  the realizations of the 

dependent variable against the estimated propensity score (which includes the instruments) to see 
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if the realizations of the outcome variables are linear functions of the propensity score.1   But as 

HSU note, the nonparametric tests suffer from low power in sample sizes common in empirical 

studies.  In addition, our tests are considerably easier to implement than their nonparametric 

tests, which generally require the use of the bootstrap procedures of Romano and Wolf (2005) 

and Romano and Shaikh (2006) for the step-down method of multiple hypothesis testing.  Our 

tests also provide more insight into the precise nature of the selection problem because we allow 

for selection on one or both of 1Y  and 0Y .    

Bertanha and Imbens (2014) consider similar tests in the context of fuzzy regression 

discontinuity designs.  They do not, however, relate their discussion to general tests for selection 

on unobserved variables for IV.  Similarly, Huber (2013) provides an analysis of noncompliance 

in experiments virtually identical to ours, but does not extend the analysis to other IV settings.  

Angrist (2004) proposes a test that compares the estimated treatment effect for compliers to an 

estimate obtained from using the always takers and never takers.  His test does not distinguish 

among selection on one or both of 1Y  and 0Y and assumes the magnitude of the treatment effect 

does not vary with covariates.  

 While the LATE revolution has led to a more sophisticated interpretation of IV estimates, 

there has not been much emphasis on testing whether the use of IV methods is necessary.   This 

is peculiar.  Heckman, Ichimura, Smith, and Todd (1998) find that most of the difference 

between simple nonexperimental and experimental estimates of the treatment effect in the Job 

Training Partnership Act (JTPA) data results from the lack of common support and the 

distributional differences in covariates, with selection on unobserved variables accounting for 

                                                 
1 Heckman and Vytlacil (2005) show that if 0 1( , )Y Y are independent conditional on X  then the 
marginal treatment effects (MTEs) are constant.  
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only about seven percent of the difference.  Blundell, Dearden, and Sianesi (2005) find, when 

estimating their “single treatment” model using the very rich National Child Development 

Survey data, that there is little evidence that their matching estimates suffer from any selection 

bias.  Similarly, when their outcomes are measured identically, Diaz and Handa (2006) report 

that propensity score matching estimates matched the experimental evidence from the famous 

PROGRESA experiment.  While by no means conclusive, matching on a rich set of covariates 

motivated by theory and the institutional context, and limiting the samples to where one has 

common support between treated and nontreated agents, appears to reduce dramatically any 

biases in many substantive contexts.  Indeed, given the well-documented increase in the variance 

of estimates when using IV estimation, one may be willing to live with a modest bias if the 

resulting variance is drastically reduced, much as in nonparametric estimation, one is willing to 

live with a larger bias in return for variance reduction.  

 In the next section of our paper, we outline the necessary restrictions to implement 

matching and OLS.  In section three, we outline the necessary assumptions for Imbens and 

Angrist’s IV estimation and the latent index approach of Vytlacil (2002).  In section four, we 

outline a simple test for violation of the conditional independence assumption.  In section five, 

we provide our empirical applications, and in section six we offer concluding remarks. 

 

2. Matching and Ordinary Least Squares and Selection on Observed Variables 

In this section, we briefly present the standard evaluation framework for thinking about 

estimating the causal impact of treatment.  The presentation here is largely based on Heckman, 

Ichimura, and Todd (1997, 1998), Heckman and Smith (1998), and Heckman, LaLonde, and 
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Smith (1999). 

Let {0,1}iD ∈ index whether the thi  agent receives treatment or not. Each agent has two 

potential outcomes 0 1( , )i iY Y , where 0iY is the agent’s outcome if not treated, and 1iY  is the agent’s 

outcome if treated.  We define the causal impact of the treatment on the thi  agent as  

1 0i i iY Yδ = − .      (1) 

The fundamental problem of evaluation is that we observe only one of the two potential 

outcomes; researchers must estimate the other, which is often referred to as the “missing 

counterfactual.” 

 One intuitive class of estimators for generating the missing counterfactuals is matching 

estimators.  Matching estimators rely on the assumption that researchers have sufficiently rich 

covariates that any differences in the decision of the agents to take treatment are independent of 

the agents’ potential outcomes conditional on the covariates.  Let X denote those covariates.  

Formally, matching estimators rely on two assumptions.  The first is the Common Support 

Assumption (CSA) or 

0 Pr( 1| ) 1D X< = < .     (CSA)   

The CSA simply requires that if, for example, you are going to match a treated agent to someone 

who did not take treatment, there must be someone in the set of untreated agents with 

approximately the same realization of the covariates.  Of course, the CSA is a testable 

assumption.  When it is violated, as is often the case, researchers generally change their 

definition of the relevant population to the population over which the CSA holds, reflecting the 

limited variation that the data provide.2 

                                                 
2 Crump, Hotz, Imbens, and Mitnik (2009) argue that the efficiency bounds of semiparametric 
and parametric estimators imply that estimation using propensity score matching estimators 
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  More vexing, however, is the next assumption necessary for the use of matching 

estimation: the Conditional Independence Assumption (CIA).  Indeed, there are various “flavors” 

of the CIA depending on the parameter that the researcher wishes to estimate.   The strongest of 

the flavors is: 

0 1( , )i iY Y  || |i iD X        (CIA) 

This version of the CIA allows researchers to estimate the Average Treatment Effect, or  

( )1 0E Y Y∆ = − ,      (2) 

using matching methods.  The CIA for 0Y  assumes 

0iY  || |iD X  .      (CIA0) 

This version of the CIA allows the estimation of  

( )1 0 | 1ATET E Y Y D∆ = − = .     (3) 

Because researchers observe 1iY   for those who are treated, estimation of the ATET∆ only requires 

the weaker (CIA0) rather than the (CIAATE).  Similarly, when estimating the average treatment 

effect for the nontreated, researchers need only assume  

1iY  || |iD X ,      (CIA1) 

which allows the estimation of 

( )1 0 | 0ATEN E Y Y D∆ = − = .     (4) 

Of course, the (CIA) is the union of the (CIA1) and (CIA0). 

                                                 
should be limited to the regions of “thick” overlap.  They suggest the range [0.1, 0.9] is an 
adequate approximation of the optimal range for many applications.  Black and Smith (2004) 
consider an even more limited interval of overlap. 
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 For semiparametric or nonparametric matching models, it is common to specify the 

functions that determine the potential outcomes 0 1( , )i iY Y   as 

1 1 1( )i i iY g X ε= +        (5) 

0 0 0( )i i iY g X ε= +        (6) 

where 0 1( ( ), ( ))g g⋅ ⋅ are unknown conditional mean functions and 0 1( , )i iε ε summarize the residual 

uncertainty associated with the unobserved variables.   With the CSA and appropriate version of 

the CIA, researchers may use a variety of methods to estimate the unknown conditional mean 

functions; see for instance Imbens (2004), Heckman, LaLonde, and Smith (1999), Smith and 

Todd (2005), Huber, Lechner, and Wunsch (2013), and Busso, Dinardo, and McCrary (2014). 

A commonly used alternative to matching methods is to use Ordinary Least Squares 

(OLS) to estimate parametric linear models.  Researchers specify the functional form of the 

conditional mean function as 

1 1( )i ig X X β′=        (7) 

0 0( )i ig X X β′= .      (8) 

In these models, the researcher may avoid making the CSA by instead making assumptions about 

the functional form.   

 The common criticism of matching and OLS estimates is that they rely on the overly 

strong CIA.  To avoid making the CIA, applied researchers have turned to Instrumental 

Variables (IV) estimation. While traditional IV methods require that the treatment effect be the 

same for everyone, Imbens and Angrist (1994) demonstrate that with stronger assumptions IV 

estimation allows for heterogeneous treatment effects. Researchers now routinely invoke the 

LATE framework when using IV analysis.   



9 
 

It is difficult to overemphasize the importance of this advance.  Models without 

heterogeneous treatment effects seem incapable of explaining the complexity of human behavior.  

With heterogeneous treatment effects, much more plausible and interesting models may be 

considered and estimated, including the justifiably famous Roy (1951) model.  Indeed, Heckman, 

Urzua, and Vytlacil (2006) term these heterogeneous impacts “essential heterogeneity.” 

 

3. The IV and Control Function Approach to Selection on Unobserved Variables 

Imbens and Angrist (1994) provide assumptions that allow for the estimation of heterogeneous 

treatment effects with IV methods.  We wish to consider the possible decisions of the thi agent 

for any value of iZ , which is the set { ( ) | }D z z∈ .  We may now state the assumptions of the 

LATE estimator as the Existence of Instruments (EI) and Monotonicity (M).  Formally,     

 

0 1( , ,{ ( ) | })i iY Y D z z∈  || |Z X  and Pr( 1| , )D X Z z= =   is a nontrivial function of z      (EI)         

0 1,z z∀ ∈  either 0 1( ) ( )i iD z D z i≥ ∀ or 0 1( ) ( )i iD z D z i≤ ∀ .    (M) 

 

The M assumption requires that all agents respond to the instrument in the same direction, not 

that the function Pr( 1| , )D X Z z= = be monotone in z  ; this led Heckman, Urzua, and Vytlacil 

(2006) to rename the condition uniformity, although the somewhat confusing monotonicity was 

too well-established to be displaced.  The M assumption is of course restrictive.  Should the M 

assumption fail while the EI assumption holds, IV estimation provides of mixture of treatment 

effects associated with agents who both enter and leave the treatment as the instrument varies.  
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To keep the notation simple, for the remainder of the paper we will let {0,1}iZ ∈ ; our arguments, 

however, generalize to continuous instruments. 

 Imbens and Angrist noted that the latent index models pioneered by Heckman and 

various co-authors imply the (EI) and (M) conditions.  In an important paper, Vytlacil (2002) 

shows the equivalence of the two approaches.  Latent index models may be used to circumvent 

the problems associated with selection on unobserved variables.  In our notation, one may define 

the expectations of the errors in our equations (5) and (6) as zero, or ( ) ( )1 0 0i iE Eε ε= = .  This 

is, of course, a convenient normalization with any nonzero mean being absorbed into the 

conditional mean functions.  When we observe only a portion of our potential outcomes, we no 

longer know that the conditional expectations ( )1 | 1i iE Dε =  and  ( )0 | 0i iE Dε =  equal zero.  To 

see why, we follow Vytlacil (2002) and let 

( )( )1 , 0i i i iD h Z X U= + ≥  and ( ),i ih Z X   be a nontrivial function of z   (V1) 

iZ  || ( )1 0, , |i i i iY Y U X        (V2) 

where 1( )⋅ is an indicator function for the condition holding, iU   is a random variable, and 

( ),i ih Z X  is the index function.   

 With assumptions (EI) and (M) (or the equivalent assumptions (V1) and (V2) for latent 

index models), we may write 1( | 1)i iE Dε = and 0( | 0)i iE Dε = as 

( ) ( )( )1 1 1| 1 , ,i i i i i iE D c X P X Z eε = = +      (9) 

( ) ( )( )0 0 0| 0 , ,i i i i i iE D c X P X Z eε = = +      (10) 
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where ( ) ( ), Pr 1 | ,i i i i iP Z X D Z X≡ =  is the probability of selecting treatment and ( )1c ⋅  and ( )0c ⋅  

are the control functions that model the conditional mean so that we now have 

( ) ( )1 0 0i iE e E e= = .3    

 With the control function approach, it is a bit easier to interpret the independence 

assumption, 0 1( , ,{ ( ) | })i iY Y D z z∈  || |Z X , that is embedded in the assumption (EI).  The 

independence assumption simply requires that iZ  be independent of  ( )1 0, ,i i iU Y Y  conditional on 

iX .  Given the equivalence of the LATE and control function assumptions, we refer to the (EI) 

and (M) assumptions, or (V1) and (V2), as the Vytlacil-Imbens-Angrist (VIA) assumptions. 

 

4. Testing for Conditional Independence under the VIA Assumptions 

A. Instrumental Variables 

In this section, we develop a simple, easily applied test for selection on unobserved variables.   

As noted above, the various (CIA) assumptions allow researchers to ignore the possibility of 

selection on unobserved variables, although they are generally invoked without examining 

whether there is evidence for selection on unobserved variables. In contrast, the VIA 

assumptions allow us to consistently estimate LATEs for those individuals who comply with the 

instruments.  In the case of a parametric model with a single instrument that is linear in 

parameters we would augment equations (7) and (8) to obtain 

( )1 1 1| 1i i i iE Y D X Zβ α= = +      (11) 

( )0 0 0| 0i i i iE Y D X Zβ α= = + .      (12) 

                                                 
3 The probability of treatment ( ) ( ), Pr 1 | ,i i i i iP X Z D X Z≡ =  is not the propensity score used in 
matching estimators as it depends on the instruments Z ; see Heckman and Navarro (2004) for a 
discussion of the information sets necessary for the use of matching.  
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With nonbinary instruments researchers may wish to add higher order terms – i.e. replace iZ   

with (Z )if .  With multiple instruments, researchers would probably want to replace iZ with the 

estimated propensity score, ˆ ( , )i ip X Z  and adjust the standard errors for generated regressors as 

in Murphy and Topel (2002).4   In the case of matching estimators, we would augment equations 

(5) and (6) and specify the conditional mean functions as 

( ) ( )1 1 1| , 1i i i i iE Y X D g X Zα= = +      (13) 

( ) ( )0 0 0| , 0i i i i iE Y X D g X Zα= = + .     (14) 

To clarify the relationship among the various forms of the CIA and the test we are 

implementing, it is useful to outline the samples being used and hypotheses involved when 

estimating these auxiliary regressions.  Formally, we estimate (12) or (14) using the sample of 

untreated observations to test 

H0: CIA0 holds, or 0 0α =  

HA: CIA0 does not hold, or 0 0α ≠ .  

Similarly, we estimate equations (11) and (13) using the sample of treated observations to test 

H0: CIA1 holds, or 1 0α =  

HA: CIA1 does not hold, or 1 0α ≠ .  

To develop some intuition for the tests, assume that ( ) ( )1 0i i i iD z D z= ≥ = .  As in 

Angrist, Imbens, and Rubin (1996), we may divide agents under the VIA into three types: the 

“always takers”, the “never takers”, and the “compliers” that we defined in the introduction.  The 

test given in either equation (11) or equation (13) simply compares ( )1 | ,E Y x A  to ( )1 | ,E Y x C .  

As Black, Sanders, Taylor, and Taylor (2015) note, this is easily done because 

                                                 
4 See Joo and LaLonde (2014) for more discussion and a test that relies on the control functions. 



13 
 

( ) ( )1 1| , 0 | ,E Y x z E Y x A= =  and ( ) ( )1 1| , 1 | ,E Y x z E Y x A C= = ∪ .  Thus, at X x= , we have 

that 1 1
1

Pr( | )( ( | , ) ( | , ))( )
Pr( | ) Pr( | )

C x E Y x C E Y x Ax
C x A x

α −
=

+
.  The regression coefficient in either equation (11) 

or equation (13) then simply integrates over the realizations of X , or ( )1 1 ( )x dF xα α= ∫  for 

some function ( )F x .  Put differently, the tests look for evidence of a nonconstant control 

function in equation (9): i.e., evidence that unobserved variables are affecting the outcomes.  A 

parallel argument applies to 0α . 

The finding that either 0 0α ≠  or 1 0α ≠  constitutes evidence either of selection or of 

violation of the exclusion restrictions (i.e., the failure of EI).  If one is willing to maintain the 

assumption that iZ  is an exclusion restriction, however, then there is simple, compelling 

evidence for violation of the CIAs when rejecting the null hypotheses.  Indeed, we view the 

simplicity of our tests as their greatest virtue.   

The tests also allow researchers to assess whether any selection arises on 0Y , which 

represents a violation of CIA0, or whether any selection arises on 1Y , which represents a 

violation of CIA1, or both.  In addition, as with the tests for selection in Heckman (1979), our 

tests allow researchers to determine the sign of the relevant selection biases and their 

magnitudes.  This allows researchers to provide a much more nuanced discussion of the nature of 

the agents’ choice problems.  Given the equivalence that Vytlacil (2000, 2002) demonstrates, it 

is perhaps not surprising that we may learn much more about the selection problem using IV 

methods than we learn from current practices. 
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In the next two subsections, we show how these tests may be adapted to two other 

common settings in applied research: fuzzy regression discontinuity designs, and experiments 

with imperfect compliance. 

 

B. Fuzzy Regression Discontinuity 

In regression discontinuity designs, a running variable S results in a discrete jump in the 

probability of getting treatment at a given point.  We assume that the jump in the probability of 

treatment occurs at 0S = .  For our test, we need to assume that the regression discontinuity is a 

fuzzy design so that the probability of treatment is such that  

{ } { }
0 0

lim Pr( 1 | , ) lim Pr( 1 | , ) 1
S S

D X S D X S k
↑ ↓

= − = = < . 

As emphasized by Imbens and Lemieux (2008) and Lee and Lemieux (2010), when faced with a 

fuzzy RD, researchers estimate a LATE at 0S =   using IV. 

Because there is a discrete change in the probability of treatment, if there is selection on 

unobserved variables we would expect the control function to jump as well.  Hence, if there is 

selection on unobserved variables, we should see a jump in the value of 0( | , 0)E Y S D =   as S 

crosses zero, while the (CIAATET) assumption would require 0( | , 0)E Y S D = to be a smooth 

function as S crosses zero.  This suggest a simple test of the form 

0 0 0( | 0) ( ) 1[ 0]i iE Y D g X Sα= = + ≥       (15) 

with the null hypothesis being that 0 0α =  or the corresponding 

1 1 1( | 1) ( ) 1[ 0]i iE Y D g X Sα= = + ≥      (16) 

with the null hypothesis being that 1 0α = .  For estimating equation (15) only observations that 

are not treated are used, which implies that the sample is a mixture of compliers and never 
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takers.  Similarly, for estimating equation (16) only observations that are treated are used, which 

implies that the sample is a mixture of compliers and always takers.   

In an important paper, Bertanha and Imbens (2014) consider similar tests for fuzzy 

regression discontinuity designs.  Indeed, they state, “As a matter of routine, we recommend that 

researchers present graphs with estimates of these two conditional expectations in addition to 

graphs with estimates of the expected outcome conditional on the forcing variable alone.”  We 

concur. 

 

C. Experiments with Imperfect Compliance 

As Heckman (1996) emphasizes, experimental assignment of treatment may be thought of as an 

instrument for treatment.  Because many social experiments have imperfect compliance (e.g., 

Heckman, Hohmann, Smith, and Khoo (HHSK), 2000), with both treatment group dropout and 

control group substitution into similar treatments provided elsewhere, one could easily 

implement our tests to see if there is selection on 1Y  or 0Y  in experiments.  For instance, HHSK 

report that only between 49 and 59 percent of the Job Training Partnership Act (JTPA) treatment 

groups received services while between 27 and 40 percent of the control groups received 

services. 

 With this much dropout and substitution, applied researchers will often rely on the Bloom 

(1984) estimator. To use the Bloom estimator, the researcher need only use the random 

assignment to the treatment group as an instrument for the receipt of treatment.  This results in an 

instrumental variables estimator that uses a binary instrument and hence uses a Wald estimator 

that recovers the LATE for those who comply with the experimental protocol.  Huber (2013) 
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provides an analysis of noncompliance in experiments that is virtually identical to our analysis, 

but does not extend it to other IV settings. 

 

D. Recovering Estimates of the Magnitude of the Selection Bias 

 To recover estimates of the magnitude of the selection bias, continue to assume that 1Z =  

encourages treatment, and ignore covariates for notational simplicity.  We have 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )0 0 0

Pr Pr
| 0 | |

Pr Pr Pr Pri
C N

E Y z E Y C E Y N
C N C N

= = +
+ +

   (17) 

while 

0 0( | 1) ( | )E Y z E Y N= =       (18) 

so that  

( ) ( ) ( )
( ) ( ) ( ) ( )( )0 0 0 0 0

Pr
| 1 | 0 | |

Pr Pr
C

E Y z E Y z E Y N E Y C
C N

α ≡ = − = = −
+

.   (19)  

Thus, a measure of the selection bias for 0Y , which we denote 0B , is simply 

( ) ( )
( )0 0

Pr Pr
Pr

C N
B

C
α

+
=  .    (20) 

 Similarly, we have 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )1 1 1

Pr Pr
| 1 | |

Pr Pr Pr Pri
C A

E Y z E Y C E Y A
C A C A

= = +
+ +

   (21) 

while 

1 1( | 0) ( | )E Y z E Y A= =      (22) 

so that 

( ) ( ) ( )
( ) ( ) ( ) ( )( )1 1 1 1 1

Pr
| 1 | 0 | |

Pr Pr
C

E Y z E Y z E Y C E Y A
C A

α ≡ = − = = −
+

.   (23) 
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A measure of the selection bias for 1Y , which we denote 1B , is simply 

( ) ( )
( )1 1

Pr Pr
Pr

C A
B

C
α

+
=      (24) 

To implement these measures empirically, we may use the OLS estimates of 0 1( , )α α .  

We know that Pr( ) Pr( 1| 0)A D z= = =   and Pr( ) Pr( 0 | 1)N D z= = = so we have sample 

analogues of all the terms on the right-hand side of equations (20) and (24). 

 

5. Empirical Applications 

A. Angrist and Evans (1998) data 

Our first application is taken from Angrist and Evans (1998).  This paper uses data from the 1980 

and 1990 US Censuses to measure the causal impact of children on a family’s labor supply.  

Because fertility is likely to be endogenous with respect to women’s labor supply decisions, 

Angrist and Evans devised an ingenuous instrumental variables strategy. Limiting their sample to 

women who have at least two children, Angrist and Evans noticed that women whose first two 

children are the same sex are more likely to have additional children than women whose first two 

children are of opposite sexes. For instance, in the 1980 Census, married women whose first two 

children are of the same sex are about 6 percentage points more likely to have additional children 

than women whose first two children are of opposite sexes.  For our analysis, we focus on the 

labor supply decisions of women in the 1980 Census, corresponding to the estimates in column 

(2) of their Table 7.5   

 In many ways, this design is ideal. Because of the random nature of child sex 

determination, the sample is split approximately equally between families whose first two 

                                                 
5 We thank Bill Evans for providing us with the data. 
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children are of the same sex and those whose children are of opposite sexes. In these data, 51.1% 

of the children born are male, and 50.6% of families’ first two children are of the same sex.  

Formally, the system that Angrist and Evans estimate is: 

'
i i i iy x morekidsβ δ ε= + +        (25) 

'
i i i imorekids x b samesex uγ= + +       (26) 

where the covariates ix  include the age of the mother, the age of the mother at first birth, 

indicators for whether the mother is black or whether the mother is nonblack and nonwhite 

(white is the omitted category), an indicator for whether the mother is Hispanic, an indicator for 

whether the first child was a boy, and an indicator for whether the second child was a boy. The 

instrument, samesex, is an indicator for whether the first two children were either both boys or 

both girls. For dependent variables, we use a subset of those explored by Angrist and Evans:  

whether the mother worked in the previous year, the number of weeks worked in that year, 

typical hours worked in that year, and her income from working. All variables include zeros 

when the women did not work in the previous  year. The sample is limited to women 21 to 35 

years of age; see Angrist and Evans (1998) for more details. 

 In Table 1, we replicate the Angrist and Evans results in the 1980 Census; see their Table 

7, columns (1) and (2). We also use a semiparametric approach and estimate 

( )i i i iy g x morekidsδ ε= + +       (27) 

( )i i i imorekids h x samesex uγ= + +      (28) 

where{ ( ), ( )}g h⋅ ⋅ are unknown functions. Because our data are discrete, we estimate ( )ig x by 

fully interacting X .  Our parametric results – both the OLS and Two-Stage-Least-Squares 

(TSLS) estimates – exactly match the Angrist and Evans findings. Moreover, the semiparametric 

estimates are virtually identical to the parametric estimates of Angrist and Evans, which is not 
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too surprising given that the sex of women’s offspring is independent of all of our observed 

characteristics. 

 For this IV approach to be interpretable as a LATE, of course, we need to assume the 

VIA conditions. Angrist and Evans documented that the instrument does indeed raise fertility.  In 

addition, we need to assume that the instrument is an exclusion restriction in the sense that 

having the first two children be the same sex does not directly affect the women’s labor supply 

decisions, and we need to assume the monotonicity (or uniformity) condition so that having two 

children of the same sex reduces no one’s fertility.  With these assumptions, we may now 

implement our parametric tests of the CIAs using: 

0 0 0i i i iy x samesexβ α ε′= + +        (29) 

1 1 1i i i iy x samesex vβ α′= + +        (30) 

and semiparametric tests using 

0 0 0( )i i i iy g x samesexα ε= + +       (31) 

1 1 1( )i i i iy g x samesex vα= + +  .     (32) 

where for our semiparametric analysis we need to drop the indicator for the second child being a 

boy to avoid making the samesex variable perfectly collinear with the ix  vector.  Equations (29) 

and (31) are estimated on the sample of 236,092 women who have two children, and equations 

(30) and (32) are estimated on the sample of 158,743 who have three or more children.   

 Our results are presented in Table 2.  For the case (CIAATET), the data strongly reject the 

null that 0 0α = .  For each of the four outcomes, we reject the null hypothesis at a five-percent 

confidence level.  Indeed, for two of the four outcomes we reject the null in excess of a one-in-a-

thousand confidence level.  In each case, the estimated 0α   is positive, indicating that the 

compliers (those who limit their fertility when having a boy and a girl) have higher earnings, 
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hours worked, weeks worked, and are more likely to work conditional on our covariates relative 

to the never takers. 

 In contrast, we find very little evidence against the (CIAATEN).  Relative to our estimates 

of 0α , our estimates of 1α  are statistically insignificant and economically very small.  Thus, we 

find no evidence of a selection effect when estimating the missing counterfactual 1Y .   Frankly, 

we find this result stunning.  The US Census data have large sample sizes but suffer a paucity of 

covariates, with the data including only broad demographic controls.  Before undertaking this 

analysis, we fully expected to show a two-sided selection problem.  The data disagreed.   

 Angrist (2004) tests for selection on weeks worked (as well as other outcomes we do not 

consider) using his test and finds evidence of selection.  His test considers the joint hypothesis of 

no selection on 0 1( , )i iY Y , however, so our test allows for a bit more nuanced understanding of the 

impact of selection. 

In terms of the magnitude of the selection effects we use the nonparametric estimates in 

column (3) of Table 2. We see that never takers are five percentage points more likely to have 

worked last year compared with the compliers, they worked three weeks more than the 

compliers, worked two hours per week more, and earned $1,965 more per year than the 

compliers.  Comparing the compliers to the always takers, we find that compliers were one 

percent more likely to work last year, they worked 0.4 extra week per year, they worked a tenth 

of an hour more per week, and earned $38 dollars less per year than the never takers.  Obviously, 

the compliers represent a poor comparison group for the never takers, but the compliers do not 

seem substantially different than the always takers.   
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B. Eberwein, Ham, and LaLonde (1997) data 

When there is control group substitution and treatment group dropout in an experiment, 

researchers will often estimate two treatment parameters: the intent-to-treat parameter, estimated 

as the differences in the dependent variables between the treatment and control groups, and the 

impact of treatment for those who comply with the treatment protocol, estimated using Bloom’s 

(1984) estimator.  Bloom’s estimator corresponds to TSLS where assignment to the treatment 

group is an instrument for the receipt of treatment.  Because assignment to the treatment group is 

independent of the potential outcomes ( )0 1,Y Y , the assignment represents an exclusion restriction 

that functions as an instrument under the VIA assumptions. 

We examine the impact of training for a sample of adult women who took part in the Job 

Training Partnership Act (JTPA) experiment; see e.g. Bloom et al. (1997) for a discussion of the 

experiment and analysis of the results.  Our sample, the same one used by Eberwein, Ham, and 

LaLonde (1997), is restricted to the set of women recommended for classroom training (the CT-

OS treatment stream in the jargon of the experiment).  We measure treatment as the onset of 

classroom training within nine months of randomization.6 

 For our outcome variable, we use an indicator for whether the participant was employed 

in the eighteenth month after random assignment.  We also know whether the individual was 

assigned to the treatment group or the control group.  There was much non-compliance in this 

sample.  Only about 65 percent of the treatment group reported received classroom training in 

the first nine months after random assignment.  There was much substitution as well; about 34 

                                                 
6 We rely on self-reported training and ignore other services, such as job search assistance, 
received by some members of both the treatment group and the control group. See Smith and 
Whalley (2015) for a depressing exploration of the concordance of administrative and self-
reported measures of training in the JTPA study data.  
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percent of the control group receive classroom training in the first nine months after random 

assignment. 

 In Table 3, we provide two sets of estimates of the intent-to-treat parameter.  In column 

(1) we provide the simple difference estimates given by 

i i iy Rβ δ ε= + + ,      (33) 

where iy is an indicator for whether the participant is employed, iR  is an indicator for whether 

the participant was assigned to the treatment group during random assignment, iε  is the error 

term, and ( ),β δ  are parameters to be estimated.  The intent-to-treat parameter, δ , equals 0.041 

and is statistically significant at the five-percent level.  This relatively modest effect, however, 

hides a larger impact of treatment for people who complied with the treatment protocol, which 

equals 0.136 and again is statistically significant at the five-percent level.  The reason for the 

differential, of course, is that random assignment only increases the rate of treatment about 

0.305, which is the coefficient on random assignment from the first-stage of our TSLS Bloom 

estimator. 

 Nothing in this analysis, however, informs whether there is selection on unobserved 

variables into treatment.  Toward that end, we next estimate the following equations 

0 0 0 0i i iy Rβ α ε= + +       (34) 

1 1 1 1i i iy Rβ α ε= + +       (35) 

where ( )0 1,i iy y  are the outcomes of those not receiving training and receiving training.  Equation 

(34) is estimated on the 1,233 adult women who do not receive training, while equation (35) is 

estimated on the 1,501 who do receive training.  We find little evidence that the compliers with 

the protocol have different 0Y   than those who never take training.  The coefficient on being 



23 
 

assigned to the treatment group in equation (34) is small, 0.006, and statistically insignificant at 

the five-percent level.  In contrast, the coefficient on being assigned to the treatment group in 

equation (35) is large, 0.068, and statistically significant.  These estimates imply that while the 

always takers have a mean employment rate of 0.50, the compliers when treated have a mean 

employment rate of 0.65.  Thus, the always takers are adversely selected with respect to the 

likelihood of employment.   

 Showing large selection on unobserved variables without covariates, however, is hardly 

surprising.  Thus, we augment our equations with a vector of education, demographic, and pre-

random assignment labor market and transfer payment recipiency variables; see the footnotes to 

Table 3 for a complete list of the covariates.  Their inclusion (as expected) has only modest 

effects on the intent-to-treat and LATE estimates, although some may be dismayed that the 

estimates no longer clear the five-percent hurdle.  For our tests for the presence of selection on 

unobserved variables, there is also little change in our estimates.  In the 1Y  regression, the 

coefficient on the assignment indicator for those receiving treatment falls from 0.068 to 0.062 

and remains significant at the five-percent level. Despite the inclusion of detailed information on 

labor supply in the 12 months prior to random assignment and other controls, the coefficient on 

the assignment to the treatment group is reduced only about nine percent.  The observed 

variables examined here account for little of the selection. 

 

6. Conclusion 

In this paper, we have derived a simple test for selection on unobserved variables when using 

instrumental variables.  The test is simple; any well-trained undergraduate can implement it.  

Using a Wald-like estimator, one can use these estimates to assess the magnitude of the selection 
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bias as well.  This allows researchers a much better understanding of the precise nature of 

selection on unobserved variables. 

 Our two empirical applications nicely demonstrate what can be learned from these tests.  

First, we revisit the Angrist and Evans (1998) analysis of the impact of children on married 

women’s labor supply using the sex composition of the first two children as an instrument.  To 

our considerable surprise, we find little evidence of selection into having three children despite 

the relatively modest set of covariates available in the census.  In contrast, those who complied 

with the instrument and had a third child seem extremely different from those who always stop at 

two children.  The labor market earnings of never takers are about $2,000 more per year than the 

earnings of women who complied with the instruments.  Surprisingly, we find that there are no 

(statically or substantively) significant differences between the always takers and the compliers. 

 Our second application also contained a surprise.  We reanalyzed the probability of 

employment for adult women in the JTPA experiment 18 months after random assignment.  

While the impact of treatment on the treated showed a sizeable impact on the probability of 

employment (0.136), the selection of participants into treatment status was even larger than the 

treatment effect.  Those who complied with the treatment protocol had a much higher 

employment rate when treated (0.145 higher) than those women who always took treatment, a 29 

percent higher rate of employment.  Even after conditioning on an extensive set of predetermined 

covariates, the selection effect remained a bit larger than the impact of treatment itself. 

 The ability to assess the magnitude of the potential selection bias is an important feature 

of our approach.  Statisticians and economists have long recognized that there is a fundamental 

tradeoff in, say, nonparametric estimation between variance and bias.  When deciding on 

whether to use IV estimators or estimators that rely on selection on observed variables, however, 
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there has not been a similar discussion.  This omission arises undoubtedly because of the lack of 

a simple means to assess the magnitude of the selection biases.  With our simple methods of 

assessing the bias, perhaps we may improve these discussions.  

 Since the publication of Vytlacil (2002), we have understood the equivalence between the 

assumptions necessary for IV and latent index model estimation.  But IV estimation has always 

seemed to provide less information about the nature of the selection bias than control function 

estimation.  In this paper, however, we showed that simple auxiliary regressions will produce 

rich insights into the nature and magnitude of the selection bias when using IV estimation. 
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Table 1: Causal Impact of Having More than Three Children on Mother’s Labor Supply, 
Angrist and Evans 1998 
 
 More kids 

coefficient, 
parametric 
OLS model 

 

More kids 
coefficient, 

parametric IV 
model 

 

More kids 
coefficient, 

semiparametric 
model 

More kids 
coefficient, 

semiparametric IV 
model 

Worked last 
year 
 
 

-0.176*** 

(0.00162) 
-0.120*** 

(0.0249) 
-0.174*** 

(0.00164) 
-0.117*** 

(0.0250) 

Weeks worked 
 
 

-8.97*** 

(0.0707) 
-5.66*** 

(1.108) 
-8.90*** 
(0.0727) 

-5.53*** 

(1.109) 

Hours worked 
 
 

-6.66*** 

(0.0611) 
-4.59*** 

(0.9452) 
-6.59*** 
(0.0620) 

-4.45*** 

(0.9461) 

Income 
 
 

-3,768*** 

(33.45) 
-1,960*** 
(541.5) 

-3,739 
(35.47) 

-1,915*** 
(542.0) 

First Stage: 
Same sex 
coefficient 
 

--- 0.062*** 
(0.0015) 

 

---- 0.062*** 
(0.0015) 

N 394,835 394,835 394,835 394,835 
 
*5 percent significance level, ** 1 percent significant level, *** 0.1 percent significance level 
 
Notes:  Covariates in the parametric model include age of the mother, the age of the mother at first birth, indicators for whether 
the mother is black or non-black and nonwhite, an indicator for whether the mother is Hispanic, an indicator for whether the first 
child was a boy, and an indicator for whether the second child was a boy. For the semiparametric model, we drop the indicator 
for the second child being a boy to avoid perfect colinearity with the instrument, an indicator that both of the first two children 
are the same sex.  The semiparametric IV regression model uses a fully saturated model in the covariates and an additively 
separable term for having more children.  The F-statistics on the instrument for the parametric model is 1,711.  For the 
semiparametric model it is 1,702.  For the semiparametric model, 72 cases have predicted values of one for the probability of 
having more children and 168 have a predicted probability of zero.  Our parametric estimates exactly match those of Angrist and 
Evans, Table 7, columns (1) and (2).  
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Table 2: Test of CIA using Angrist and Evans (1998) Data 
 OLS 

 
Semiparametric 

Worked last year (CIAATET) 
test 

(CIAATEN) 
test 

(CIAATET) 
test 

(CIAATEN) 
test 

 
Dependent variable 
 

0Y   1Y   0Y  1Y   

Coefficient on instrument 
(standard error) 
[bias] 
 

0.0046* 

(0.00197) 
[0.047] 

0.0015 
(0.0025) 
[0.011] 

0.0051** 

(0.0020) 
[0.052] 

0.0017 
(0.0025) 
[0.012] 

N 
 

236,092 158,743 236,092 158,743 

Weeks worked (CIAATET) 
test 

(CIAATEN) 
test 

(CIAATET) 
test 

(CIAATEN) 
test 

 
Dependent variable 
 0Y   1Y   0Y  1Y  

Coefficient on instrument 
(standard error) 
[bias] 
 

0.297*** 

(0.0902) 
[3.01] 

0.053 
(0.1043) 
[0.37] 

0.315*** 

(0.0903) 
[3.19] 

0.063 
(0.1047) 
[0.44] 

N 236,092 158,743 236,093 158,743 
 
   
Hours worked (CIAATET) 

test 
(CIAATEN) 

test 
(CIAATET) 

test 
(CIAATEN) 

test 
 

Dependent variable 
 0Y   1Y   0Y  1Y  

Coefficient on instrument 
(standard error) 
[bias] 
 

0.205** 

(0.0753) 
[2.08] 

-0.0004 
(0.0925) 
[0.00] 

0.221** 

(0.0753) 
[2.24] 

0.016 
(0.0927) 
[0.11] 

N 236,092 158,743 236,093 158,743 
 
   
Income (CIAATET) 

test 
(CIAATEN) 

test 
(CIAATET) 

test 
(CIAATEN) 

test 
 

Dependent variable 
 0Y   1Y   0Y  1Y  

Coefficient on instrument 
(standard error) 
[bias] 
 

188*** 

(45.43) 
[1,904] 

-7.01 
(48.28) 
[-49] 

194*** 

(45.40) 
[1,965] 

-5.49 
(48.41) 
[-38] 

N 236,092 158,743 236,092 158,743 
 

*5 percent significance level, ** 1 percent significant level, *** 0.1 percent significance level  
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Table 3: Impact of Training for Adult Women Selected for Classroom training in the 
National JTPA Study 
 (1) 

 
(2) 

Covariates 
 

No Yes 

Mean of employment for control group 
 

0.505 0.505 

Mean training for control group 
 

0.344 0.344 

Intent to treat 
(standard error) 
(n=2,374) 
 

0.041** 

(0.0203) 
0.037* 

(0.0198) 

Bloom estimator   
First-stage treatment indicator 
(standard error) 
[F-statistic on instrument] 
(n=2,374) 

0.305*** 

(0.0194) 
[246] 

0.305*** 

(0.0191) 
[246] 

Impact of classroom training on compliers 
(standard error) 
[n=2,374] 

0.136** 

(0.0670) 
0.122* 

(0.0650) 

Treatment group indicator for 0Y regression 
(standard error) 
[bias]  
(n=1,233) 

0.006 
(0.0285) 
[0.013] 

 

0.005 
(0.0273) 
[0.011] 

Treatment group indicator for 1Y  regression 
(standard error)  
[bias] 
(n=1,501) 

0.068** 

(0.0318) 
[0.145] 

0.062** 

(0.0313) 
[0.132] 

 
Note:  Dependent variable is an indicator variable for whether the participant is employed 18 months after random assignment.  
The treatment indicator is one when the participant is assigned to the treatment group.  The classroom training variable is an 
indicator for whether the participant received classroom training in the first 9 months after random assignment.  For the 
specification with covariates, the set of covariates include age and the square of age and a vector of indicator variables.  The 
indicator variables are whether the participant has never been married, whether the participant is currently married, whether the 
participant is a non-Hispanic black, whether the participant is Hispanic, whether the participant is another race/ethnicity (white, 
non-Hispanic is the excluded category), whether the participant has less than a high school degree, whether the participant has a 
GED, whether the participant has more than a high school degree (high school degree is the excluded category), whether the 
participant was on AFDC at the time of random assignment, whether the participant was on food stamps at the time of random 
assignment, whether the participant was on AFDC for two years or more, whether the participant had children under five years of 
age in the household, whether the participant had children under 18 in the household, whether the participant reported problems 
with her English skills, whether the participant reported never working for pay, whether the participant reported never working 
full time, whether the participant worked in the previous 12 months prior to random assignment, a cubic in the fraction of the 
year that the participant worked prior to random assignment, and 15 indicators for the site of the experiment.  To avoid dropping 
observations, if a variable was missing we set its value to zero and added an indicator variable equal to one when the variable was 
missing. 
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