
Meermeyer, Martin

Working Paper

Creating reproducible publication quality graphics with
R: A tutorial

Schumpeter Discussion Papers, No. 2015-006

Provided in Cooperation with:
Schumpeter School of Business and Economics, University of Wuppertal

Suggested Citation: Meermeyer, Martin (2015) : Creating reproducible publication quality graphics
with R: A tutorial, Schumpeter Discussion Papers, No. 2015-006, University of Wuppertal,
Schumpeter School of Business and Economics, Wuppertal,
https://nbn-resolving.de/urn:nbn:de:hbz:468-20150723-095356-4

This Version is available at:
https://hdl.handle.net/10419/121426

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:hbz:468-20150723-095356-4%0A
https://hdl.handle.net/10419/121426
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

SCHUMPETER DISCUSSION PAPERS

Creating Reproducible Publication Quality Graphics

with R: A Tutorial

Martin Meermeyer

SDP 2015-006
ISSN 1867-5352

© by the author

Creating Reproducible Publication Quality

Graphics with R: A Tutorial

Martin Meermeyer

Abstract

The publication of results of an empirical analysis often includes graphical representa-
tions. One of the particular strengths of the statistical computing language and environ-
ment R are the graphical capabilities. Beside the relatively simple base graphic system
a number of more sophisticated alternative graphic systems are available within R. Com-
pared to these the base graphic system is easy to use but nevertheless highly customizable
and therefore advantageous for many research projects. However, even in the base graphic
system the number of graphical functions and parameters is large. Due to this it can be
hard to find the functions and parameters which must be used to customize a graphic
for publication purposes. This paper provides a brief tutorial for this along with a set of
simple rules how to structure the code to achieve a sufficient level of reproducibility for
a data analysis in general and for associate graphical results in specific. The paper sum-
marizes experiences from a R tutorial hold at the University of Wuppertal for a number
of times. The code snippets in the text and the code to reproduce the given examples in
the appendix is copy-and-paste-ready and can easily be adopted for own tasks.

Keywords: base graphic system, plots, legends.

1. Introduction

The statistical computing language and environment R (R Core Team 2015) provides three
major graphic systems. The base graphic system is a static device where graphical objects are
arranged by means of a paper and pencil model. Due to this it is very intuitive and easy to
learn. More flexible but yet more complicated graphic systems are the lattice graphic system
and the grid graphic system which are described in Sarkar (2008) and Wickham (2009). An
exhaustive reference for the base and the grid graphic system is Murrell (2011). Two detailed
references to solve technical problems which frequently occur in the preparation of graphics
in R are Abedin and Mittal (2014) and Chang (2012). Fundamental concepts on how to turn
data and statistics into graphical representations are described in Few (2012) and Robbins
(2013). Lewin-Koh (2015) provides an up to date overview of the different graphic systems and
graphic related packages which are available in R today. To get an idea of the wide range of
possibilities the R Graph Gallery (2015) hosts a large collection of examples from different
scientific fields.

Reproducibility is one of the key concepts of scientific research. One approach, which is espe-
cially useful if the research contains a data analysis, is literate programming where the code of
an scientific data analysis is embedded into the corresponding text in the word processor. An
extensive introduction into the concepts of reproducible research and literate programming is

SCHUMPETER DISCUSSION PAPERS 2015-006

2 Creating Publication Quality Graphics with R

Stodden, Leisch, and Peng (2014). With a focus on R and the popular IDE (Integrated Deve-
lopment Environment) RStudio Gandrud (2013) explains the implementation of reproducible
research for complex scientific projects using the knitr-architecture introduced by Xie (Xie
2013). At the present knitr is the most sophisticated system of literate programming. A dis-
advantage of literate programming is a compartively high degree of complexity of the required
tools. The acquisition of the skills to handle these tools successfully can be time consuming.
For scientific projects in which the methodological part is not dominating and which frequently
occur in academics, for instance in seminar, bachelor or master theses, employing such tools
is often not efficient. The aim of this paper is to show how a sufficient level of reproducibility
can be achieved by employing a few fundamental rules and techniques. The focus is on the
reproducible preparation of high quality plots and graphics for publication purposes, i. e. for
papers, theses and presentations, using solely functions from the base graphic system.

This paper does not provide an introduction to R and the base graphic system because there
already exists a number of high quality resources for that. Therefore it is assumed that the
reader is familiar with the basic concepts, for instance with the built-in documentation, the
import of data sets, with high-level and low-level plotting commands or how to query or set
graphical parameters using the function par(). Here only subjects which are not covered in
detail elsewhere are addressed. A cross-sectional dataset is used as example throughout this
paper. Plotting naturally ordered data, like time series or geographical data, is a topic of its
own and will not be discussed.

In the next section it is described how reproducibility can principally be ensured if a data
analysis is conducted with R. To exploit the graphical capabilities of R entirely it is essen-
tial that the data (notably the categorical variables) are properly coded which is covered
in section 3. Full control over the layout of a plot can only be achieved if its fundamental
dimensions are defined precisely. In section 4 it is explained how this can be done by using
separate graphic windows for each and every plot along with some advices how to deal with
these windows in practice. At the end of this section it is explained how the plots can be con-
veniently incorporated into text processing software in a way that is in accordance with the
principle of reproducibility. The usage of the base graphic system is endorsed in this paper.
Nevertheless, one disadvantage of this system compared to the more sophisticated graphic
systems is the handling of legends. Since this may be a primary reason to switch to another
graphic system a workaround to solve this issue is explained in section 5. In section 6 the key
aspects are summarized.

2. Ensuring reproducibility

To ensure the reproducibility of the results of a scientific data analysis carried out with R it
must be possible to generate the final results without any user interaction. To enforce this
principle any R-script should always be executed entirely with source() and be starting with
the following lines:

SCHUMPETER DISCUSSION PAPERS 2015-006

Martin Meermeyer 3

Clear R-workspace

rm(list=ls(all=TRUE))

Set location of R-script as working directory

path.act <- dirname(sys.frame(1)$ofile)

setwd(path.act)

Close all graphic devices

graphics.off()

Removing all objects from the workspace at the beginning in conjunction with the complete
execution of the code by source() will also help to avoid errors because the execution will fail
if something is wrong or missing. If the analysis requires the handling of very large data sets
or lengthy computations this can be of course cumbersome. In this case the analysis should
be split up to several consecutive scripts and the objects holding the intermediate or final
analytical results should be stored in and loaded from RData-files using the functions save()
and load(). In the last script the final results are then prepared for publication. If the work-
ing directory is set automatically as location of the R-scripts manual path specifications in
the scripts are usually unnecessary if the data set or the RData-files are stored in the same
location as the R-scripts. Note that the code to determine the location of the R-script only
works if the entire script is executed with source(). The call to close all open graphic devices
will be necessary to keep the desktop clean when the graphical output is created in the way
recommended in this paper.

If an additional package is needed to conduct an analysis or to prepare the output ,such a
package, say SemiPar, can be loaded by

Load required package or install it if it is missing

if(!require("SemiPar")) install.packages("SemiPar", dependencies=TRUE)

With the expression require("SemiPar") the specified package is tried to load. If this is
successful the function returns a TRUE and a FALSE otherwise. In the latter case the expression
to install the package is executed. Altogether the specified package is automatically installed
if it is not available in the local installation. This ensures that an analysis can be reproduced
on a factory fresh R-installation given that the specified package is available online. Note that
the automatic installation of packages from a remote resource can principally involve security
issues.

3. Preparing the data

One of the most convenient features of R in general and of R graphic systems in particular is
the handling of categorical data. To access this capability the categorical variables must be
appropriately coded as factors. In many data sets found in the social sciences the categorical
variables are represented by dummy variables for the different levels of the categorical variables
or by numeric values. In both cases it is necessary to recode the data. Recoding the data can
be performed within R itself, but it is often much more convenient to conduct this with an
arbitrary spreadsheet software and a few column-wise search and replace operations.

SCHUMPETER DISCUSSION PAPERS 2015-006

4 Creating Publication Quality Graphics with R

To show the benefits of an appropriate coding and for demonstration purposes throughout
this paper four variables from a data set regarding the union membership of U.S. workers with
534 observations are employed. The data were originally taken from Berndt (1991) and are
available in the package SemiPar (Wand 2014). From this data set the numeric variables wage
(hourly wage in USD) and age (age in years) as well as the categorical variables union.member
(levels: yes, no) and sector (levels: manufacturing, construction, other) are used:

data("trade.union")

tradeUnion <- trade.union[,c("wage","age","union.member","sector")]

In the original data set the categorical variables are coded with numbers, please refer to the
documentation of the data set for details. Using summary() to calculate the descriptive statis-
tics of the four variables yields:

wage age union.member sector

Min. : 1.000 Min. :18.00 Min. :0.0000 Min. :0.0000

1st Qu.: 5.250 1st Qu.:28.00 1st Qu.:0.0000 1st Qu.:0.0000

Median : 7.780 Median :35.00 Median :0.0000 Median :0.0000

Mean : 9.024 Mean :36.83 Mean :0.1798 Mean :0.2753

3rd Qu.:11.250 3rd Qu.:44.00 3rd Qu.:0.0000 3rd Qu.:0.0000

Max. :44.500 Max. :64.00 Max. :1.0000 Max. :2.0000

For the two categorical variables the descriptive statistics are almost meaningless. The only
exception is the mean of the variable union.member. Since this variable has exactly two levels
and the value of 1 represents the membership the mean is the proportion of union members
in the sample.

The recoding can be performed with the following two lines:

tradeUnion$union.member <- factor(tradeUnion$union.member, labels=c("no","yes"))

tradeUnion$sector <- factor(tradeUnion$sector, labels=c("other","manuf","constr"))

Note that the order of the labels must correspond to the order of the numeric coding. After
transforming the categorical variables into factors with self-explanatory labels the output from
summary() for the categorical variables is appropriate:

wage age union.member sector

Min. : 1.000 Min. :18.00 no :438 other :411

1st Qu.: 5.250 1st Qu.:28.00 yes: 96 manuf : 99

Median : 7.780 Median :35.00 constr: 24

Mean : 9.024 Mean :36.83

3rd Qu.:11.250 3rd Qu.:44.00

Max. :44.500 Max. :64.00

The order of the factor levels will affect the layout of plots and statistics. Here the order still
corresponds to the numbers which were originally used to represent the levels of the cate-
gorical variables. For data sets imported from textfiles the levels of the factors are ordered
alphabetically. Specifying a particular order for the levels can be achieved by

tradeUnion$union.member <- factor(tradeUnion$union.member, levels=c("yes","no"))

tradeUnion$sector <- factor(tradeUnion$sector, levels=c("constr","manuf","other"))

SCHUMPETER DISCUSSION PAPERS 2015-006

Martin Meermeyer 5

In the descriptive statistics, for instance, the different levels now appear in the specified order:

wage age union.member sector

Min. : 1.000 Min. :18.00 yes: 96 constr: 24

1st Qu.: 5.250 1st Qu.:28.00 no :438 manuf : 99

Median : 7.780 Median :35.00 other :411

Mean : 9.024 Mean :36.83

3rd Qu.:11.250 3rd Qu.:44.00

Max. :44.500 Max. :64.00

For bivariate plots an appropriate coding of categorical variables as factors is beneficial as
well. With the two fundamental types of variables, numeric and categorical, there are four
possible combinations for bivariate plots. The four default plot types are shown in Figure 1
using the four variables mentioned above. The scatterplot in panel (a) is appropriate to plot
a numeric variable against another numeric variable. The conditional boxplot in panel (b)
is a reasonable graphical representation of a numerical variable plotted against a factor. If
a factor is plotted against another variable spineplots are meaningful graphical representa-
tions. In panel (c) the default spineplot variant of a factor plotted against a numeric variable
is shown. Panel (d) shows the default spineplot variant of a factor plotted against another

● ●
●

●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
● ●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

● ●
● ●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

● ●

●●
●

●

●

● ●

●

●
●

●

●
● ●

●

●

●

●
●

●● ●

●

●
●

●

●

●
●

●●

●

●●

●

●

● ●

●
●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

● ●

●
●

●
●

●
●

●

● ●●

●

●
●

●●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●●
●

●

●

●
●

●●

●● ●

●
●

●

●
●●

● ●●

●
●

● ●●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
● ●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●●

●

●

●

●

20 30 40 50 60

0
10

20
30

40

(a) Scatterplot: numeric against numeric

ho
ur

ly
 w

ag
e

(U
S

D
)

age (years)

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●●

●

●
●

●●
●

constr manuf other

0
10

20
30

40

(b) Conditional boxplot: numeric against factor

ho
ur

ly
 w

ag
e

(U
S

D
)

sector

15 25 30 35 40 45 55

ye
s

no

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Spineplot: factor against numeric

un
io

n
m

em
be

r

age (years)
constr other

ye
s

no

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Spineplot: factor against factor

un
io

n
m

em
be

r

sector

Figure 1: The four standard bivariate plot types for cross-sectional data.

SCHUMPETER DISCUSSION PAPERS 2015-006

6 Creating Publication Quality Graphics with R

factor. Details on boxplots and spineplots will not be discussed here but can be found in the
documentation of the functions boxplot() and spineplot() and the references cited there.
The different plots can essentially be produced with the following 4 lines:

plot(wage ~ age, data=tradeUnion)

plot(wage ~ sector, data=tradeUnion)

plot(union.member ~ sector, data=tradeUnion)

plot(union.member ~ age, data=tradeUnion)

Obviously the appropriate plot types are chosen automatically. Note that Figure 1 is prepared
for printing here, the code to reproduce the figure is provided in section A.3. For the boxplot
and the spineplots also the functions boxplot() and spineplot() could be used alternatively.

4. Controlling plot dimensions and basic font size

For scientific plots visual clarity and parsimony are desirable properties, see Robbins (2013,
chap. 6) for more details on this. To achieve this the overall dimensions (size and aspect ratio)
and the font size for labels and annotations must be chosen appropriately. The size and aspect
ratio depend on the content of the plot and should correspond to the amount and type of
information it presents, i. e. the elements of a plot should neither look squeezed nor scattered.
The aspect ratio of scatterplots, for instance, is usually chosen as 1:1 whereas time series
plots are frequently plotted in a landscape format. In the latter case an aspect ratio that
corresponds to the golden ratio (1+

√
5)/2 ≈ 1.618 : 1 often provides an harmonic impression.

For conditional boxplots the width obviously depends on the number of the conditioning factor
levels. Hence, in most cases the size and the aspect ratio must be chosen individually based
on general principles and rules of thumb. Only for plots which contain continuous lines, for
instance termplots, smoothed curves or time series, there exists a data driven way to choose
the aspect ratio known as banking to 45 degrees. The idea is described in detail in Cleveland,
McGill, and McGill (1988), an example illustrating the benefits of this technique can be found
in Jacoby (1997, p. 85ff). The disadvantage of this technique is the lack of control over the
final size of the plot.

For labels and annotations in plots a font without serifs should be used. The font size should
be smaller or at least not larger than the size of the main text in the corresponding document.
If the font size itself does not represent an information (as in word clouds) the font sizes in
the plot should not vary or should be as small as possible if a variation could not be avoided.

To have full control over the dimensions of a plot and the pointsize for titles, labels and
annotations it is beneficial to set these in advance. In the base graphic system this can be
easily achieved by opening a separate window with the specified dimensions into which the
plot is directly drawn. These separate windows are a specific type of graphic devices in R.
Searching for Devices in the R help gives a list of alternative graphic devices. One of the
functions to create a new graphic window is x11(), which works properly on the three major
platforms Windows, Linux and Mac OS and in conjunction with the popular IDE RStudio. By
the following lines the dimensions as well as the pointsize can be specified directly:

SCHUMPETER DISCUSSION PAPERS 2015-006

Martin Meermeyer 7

Specify fundamental plot dimensions

width.cm <- 7

height.cm <- 7

pointsize <- 8

x11(width = width.cm/2.54,

height = height.cm/2.54,

pointsize = pointsize)

For users who run the RGui directly (in MDI- as well as in the SDI-mode) in conjunction
with an arbitrary code editor no special attention is needed when separate graphic windows
are created. If the IDE RStudio (or any other IDE with an embedded graphic device) is used
opening separate graphic windows with x11() can be inconvenient with the default settings.
The new graphic window will appear in the upper right hand corner of the primary screen.
The argument xpos of the function x11(), which is -20 by default, is responsible for the
horizontal position of the new graphic window on the primary screen. RStudio has a graphic
device of its own which is embedded in the window of RStudio. If the RStudio-window is
maximized on a single screen the new graphic window is usually covered by the window of
RStudio. Every time the script is executed the graphic window must be brought to the top
with a click on the corresponding icon in the task bar. This is bothersome and unfortunately
there is no other way to bring the graphic device to the top automatically at the present.
Depending on the available hardware there are two workarounds for this. On a single screen
the size of the RStudio window can be reduced so that the freshly opened device fits on the
free space of the screen. With xpos=-1 the new device will appear at the right margin of the
screen. With two screens available and the RStudio-window maximized on the primary screen
the new device can be shifted to the secondary screen by setting the argument xpos to a value
which is larger than the physical horizontal resolution of the primary screen. On Windows-
systems this only works if the secondary screen is arranged to the right of the primary screen
in the Windows screen management. Combined with the argument ypos new devices can be
freely arranged on the secondary screen. If a data analysis is carried out on different computers
it is convenient to define the default global horizontal position at the beginning of the script
as in the code of section A.1.

The standard layout of plots in R is prepared for screen displays. Due to this a lot of space is
wasted in terms of area in the plot which is literally empty. For printing purposes especially
the margins around the plot region, the length of the axis tickmarks and the perpendicular
distance of the axis tickmark labels can be reduced by setting the corresponding parameters
with the function par():

Specify global plot parameters

par(mar = c(3, 3, 2, 1), # Margins

mgp = c(1.5, 0.5, 0), # Distance of axis tickmark labels (second value)

tcl = -0.3) # Length of axis tickmarks

For details on the parameters refer to the documentation of par(). The unit of measurement
for this parameters is “the height of a line of text”. This relative size directly depends on
the pointsize specified in the call of x11(). Due to the relative sizes the proportions of the
plot are preserved even if the dimension of the plot or the pointsize are modified. When the
margins are reduced in size the main title of the plot and the axis titles are usually beyond the

SCHUMPETER DISCUSSION PAPERS 2015-006

8 Creating Publication Quality Graphics with R

margins. The perpendicular position of the axis titles can be controlled with the first value
of the graphical parameter mgp, but for the main title there is no such parameter. This can
be considered as a bug in the base graphic system. The low-level graphic function title()

allows for the exact control of the perpendicular distances and other aspects of the main and
axis titles. Alternatively, the function mtext() can be used to add main and axis titles to a
plot. The latter function is used in the following:

Annotations

main <- "(a) Scatterplot: numeric against numeric"

label.y <- "hourly wage (USD)"

label.x <- "age (years)"

Generate plot and add annotations

plot(wage ~ age, data=tradeUnion, xlab=NA, ylab=NA)

mtext(main, side=3, line=0.5)

mtext(label.y, side=2, line=1.5)

mtext(label.x, side=1, line=1.5)

Since the three titles are added separately the perpendicular positions of these can be set
independently from each other using the argument line. Note that the default axis titles
must be suppressed here by setting these to NA in the call of plot().

The effects of the graphical parameters are illustrated in Figure 2. The left hand side shows the
scatterplot from Figure 1 (a) which was plotted into a single quadratic device with a side length
of 7 cm and a pointsize of 8 using the default graphical parameters and the standard arguments
main, xlab and ylab for the main and axis titles in plot(). The scatterplot on the right hand
side was plotted into an identical device with the graphical parameters and functions used in
the two preceding code snippets. To highlight the distances to the margins a frame around
each plot was added here. Obviously the plot on the right hand side is appropriate for printing
whereas the left is not. The code to reproduce the figures can be found in section A.4.

● ●
●

●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●●●

●
●

●
●

●

●

●

●●

●●
●

●

●

●

●

●
●

● ●●
●

●
●

●

●
●

●

●

●

●

●

●●

●●

●

●

●
● ●

●●

●

●

●
●●

●
●

● ●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●
●

●

●
●

●
●

●

●

●
● ●

●

● ●
● ●

●

● ●
●

●
●

●
● ●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●●● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●●
●

●

● ●

●●
●

●

●

● ●

●

●
●

●

●
● ●

●

●

●

●
●

●● ●

●

●
●

●

●

●
●

●●

●
●●

●
●

● ●

●
●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●●
●

●
●

●

●

●

●

●●

●
●

●
●●

●

●

● ●

●
●

●
●

●
●

●

● ●●
●

●
●

●●

●

●

●

● ●●
●

●

●

●
●

●

●

●

● ●●
●

●

●

● ●

●

●

●

●●
●

●

●

●●
●●

●● ●

●
●

●

●
●●

● ●●
●

●

● ●●

●

●
●

●●

●
●

●

●

●
●

●
●

●
●●

●
●

●

● ●

● ●●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

● ● ●●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●●

●

●

●●
●

●

●

●

●●

●

●

●

●

20 30 40 50 60

0
10

20
30

40

(a) Scatterplot: numeric against numeric

age (years)

ho
ur

ly
 w

ag
e

(U
S

D
)

● ●
●

●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
● ●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

● ●
● ●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

● ●

●●
●

●

●

● ●

●

●
●

●

●
● ●

●

●

●

●
●

●● ●

●

●
●

●

●

●
●

●●

●

●●

●

●

● ●

●
●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

● ●

●
●

●
●

●
●

●

● ●●

●

●
●

●●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●●
●

●

●

●
●

●●

●● ●

●
●

●

●
●●

● ●●

●
●

● ●●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
● ●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●●

●

●

●

●

20 30 40 50 60

0
10

20
30

40

(a) Scatterplot: numeric against numeric

ho
ur

ly
 w

ag
e

(U
S

D
)

age (years)

Figure 2: A scatterplot with standard and adjusted graphical parameters.

SCHUMPETER DISCUSSION PAPERS 2015-006

Martin Meermeyer 9

To insert the plots into a document these must be stored as graphic files. The appropriate
function depends on the operating system and the desired graphics format. On Windows-sys-
tems the function savePlot() can be directly used to save the content of a graphic window
in an arbitrary format, refer to the documentation of this function for details:

Specify filename/filetype and save plot

filename <- "fig-2x2-expl"

filetype <- "pdf"

savePlot(filename=filename, type=filetype)

On Linux- and Mac OS-machines savePlot() can only be used to store a plot in a raster
graphics format like PNG, BMP or JPG. For PDF-files the function dev.copy2pdf() and
for EPS-files the function dev.copy2eps() must be used on these systems. For the sake of
clarity it is reasonable to shift the code lines with the definition of the filename and filetype
to the top of the code. The examples code in the appendix is structured like this.

Since the plots are stored separately these can usually be incorporated into the document by
the text processing software automatically. By this every change in the plots due to any kind
of modification in the analysis itself or in the preparation of the plots will directly become
visible within the document. This mechanism ensures the reproducibility of the graphical
results of an analysis. If the document preparation system LATEX is used it is convenient to
print the code which incorporates the figure into the document directly to the console. When
the name of the figure is specified in advance it can be used as filename as well as label for
the figure:

LaTeX-Code to include the figure

cat(fill=TRUE)

cat("\\begin{figure}[ht]", fill=TRUE)

cat("\\centering", fill=TRUE)

cat("\\includegraphics{",filename,"}", sep="", fill=TRUE)

cat("\\caption{XXX}", sep="", fill=TRUE)

cat("\\label{", filename, "}", sep="", fill=TRUE)

cat("\\end{figure}", fill=TRUE)

cat(fill=TRUE)

For the text processor Microsoft Word it is convenient to incorporate compatible graphic files
with the field function INCLUDEPICTURE. An empty field can be added at the cursor position
by pressing CTRL+F9 and the required field command which needs to be inserted into it can
be printed to the console:

Microsoft Word field function to include the figure

cat(fill=TRUE)

cat("INCLUDEPICTURE \".\\\\", filename, ".", filetype,

"\" \\d \\x \\y", sep="", fill=TRUE)

cat(fill=TRUE)

After pasting the field command into the empty field it must be refreshed by pressing F9.
The plot will directly appear if the field values are set to be visible in the document. If the
document is in the mode to show the field functions instead of the field values the mode must
be switched by pressing ALT+F9 to make the plot visible.

SCHUMPETER DISCUSSION PAPERS 2015-006

10 Creating Publication Quality Graphics with R

5. Adding separate legends to plots

The base graphic system is often sufficient to prepare the graphics from a scientific analysis.
Compared to the more sophisticated graphic systems there are nevertheless some shortcom-
ings. One of these is the handling of legends. Compared to the lattice graphic system the
legends in the base graphic system are intended to be printed within the plot itself by the
low-level graphic function legend(). For many types of plots this is not a satisfying solution
since there may be not enough space for a legend or it may be necessary to check that the
legend does not cover other graphical objects. Therefore, in this section it is described how to
place a legend separately by using solely functions from the base graphic system. For illustra-
tion the scatterplot of the wage against the age of the workers (see Figure 1 (a)) is augmented
by the information regarding the affiliation to a sector. The affiliation is represented with
different characters and the definition of the characters is provided in terms of a legend. The
resulting plot is shown in Figure 3. The complete code to reproduce this figure is given in
section A.5. In the following only the key parts of the code are explained in detail.

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

20 30 40 50 60

0
10

20
30

40
ho

ur
ly

 w
ag

e
(U

S
D

)

age (years)

● constr
manuf
other

Figure 3: Legend added to a separate region

To add a separate legend firstly the entire space of the graphic window is divided into two
regions using the function layout(). The first region is for the plot itself and the second for
the legend. With this function the graphic window can be flexibly split into different regions
which can be addressed separately by arbitrary high-level plotting commands. The basic
usage is described in the documentation of layout() and in detail in Murrell (2011, section
3.3.2). In conjunction with predefining the size of a graphic window it is problematic to specify
the region dimensions in absolute widths with layout(). If, for instance, the graphic window
is 9 cm in width providing the arguments that the device should be split into two regions with
widths of 7 and 2 cm produces an error. To avoid this, the specification of the region widths
in the call of layout() must be reduced by approximately 0.1 cm. Corrections in absolute
units like this must be adjusted each time when the size of the graphic window is modified
and are therefore inconvenient. In the following code the width of the region for the legend
is specified in centimeters first and then translated into a relative layout specification:

SCHUMPETER DISCUSSION PAPERS 2015-006

Martin Meermeyer 11

Divide device into 2 regions for the plot (1) and the legend (2)

width.legend.cm <- 2

fraction.legend <- round((width.legend.cm/width.cm)*100, digits=0)

layoutvec <- rep(c(1,2), times=c(100 - fraction.legend, fraction.legend))

layoutmatrix <- matrix(layoutvec, 1, 100)

layout(layoutmatrix)

First the relative width of the region for the legend is expressed by a percentage integer value.
This value is used to build a vector which represents the horizontal division of the graphic
window and this vector is transformed into a matrix which is necessary to pass it to layout().
Reverting the order of layoutvec by

layoutvec <- rev(layoutvec)

will yield the legend to be placed to the left of the plot. It is reasonable to shift the code line
with the definition of the legend width to the top of the code. This is done in the code to repro-
duce Figure 3 in section A.5.

By calling the function layout() the graphical parameter for the overall font magnification
cex is set to 0.66. To maintain the original font size this parameter has to be set back to a
value of 1 after the call of layout(). Graphical parameters which are set by par() affect each
single region defined by layout(). Since graphical objects which have already been added to
the plot remain unchanged due to the underlying paper and pencil model of the base graphic
system, the graphical parameters controlled by par() can be set for each single region sepa-
rately. Altogether par() should be called after layout() and before the first high-level plot-
ting command. If changes of graphical parameters are necessary in subsequent regions par()
must be called prior to the corresponding high-level plotting commands.

To add the legend to a separate region via the low-level plotting command legend() a high-
level plotting command must be called beforehand to address the second region. This can be
done by plotting an arbitrary single point with plot type "n" (nothing). To keep the region
empty the axes and axis titles must also be suppressed in plot(). Before this dummy plot
is produced the left and right margin of the second region are set to 0. After that the legend
can be added to the dummy plot as usual:

Add legend in region 2

par(mar=c(3,0,1,0))

plot(x=1, y=1, type="n", axes=FALSE, xlab=NA, ylab=NA)

legend(x="left", pch=c(1:3), legend=levels(tradeUnion$sector))

Here, the legend is left aligned and vertically centered in reference to the box around the plot.
To achieve this the top and bottom margin of the legend region must be identical to those of
the plot region. With two additional lines of code this can be done automatically, in sec-
tion A.6 the code for this is provided.

SCHUMPETER DISCUSSION PAPERS 2015-006

12 Creating Publication Quality Graphics with R

6. Summary

Reproducibility is a key feature of any scientific data analysis. Using the techniques described
in this paper reproducibility can be guaranteed for the analysis itself as well as for the graphical
results. A technique using single graphic windows for each new plot is advocated here to con-
trol the overall dimensions and the layout of plots precisely. The plots are produced solely
with functions from the base graphic system of R which is considered to be sufficient for many
problems. The advantage of the base graphic system in comparison to the more complex
graphic systems is its simplicity due to the underlying paper and pencil model. A particular
disadvantage of the base graphic system is the handling of legends which can be circumvented
as described in the last section. Using the copy-and-paste ready code in the appendix the
figures shown in this paper can be reproduced directly. At the same time it is easy to adopt
and modify this code for own tasks.

References

Abedin J, Mittal HV (2014). R Graphs Cookbook. 2nd edition. Packt Publishing Ltd.

Berndt ER (1991). The Practice of Econometrics: Classic and Contemporary. Addison-
Wesley, Reading, MA.

Chang W (2012). R Graphics Cookbook. O’Reilly Media.

Cleveland WS, McGill ME, McGill R (1988). “The Shape Parameter of a Two-Variable
Graph.” Journal of the American Statistical Association, 83(402), 289–300.

Few S (2012). Show Me the Numbers: Designing Tables and Graphs to Enlighten. 2nd edition.
Analytics Press.

Gandrud C (2013). Reproducible Research with R and R Studio. CRC Press.

Jacoby WG (1997). Statistical Graphics for Univariate and Bivariate Data. Sage.

Lewin-Koh N (2015). CRAN Task View: Graphic Displays & Dynamic Graphics & Graphic
Devices & Visualization. URL http://cran.r-project.org/web/views/Graphics.html.

Murrell P (2011). R Graphics. 2nd edition. CRC Press.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

R Graph Gallery (2015). URL http://rgraphgallery.blogspot.de/.

Robbins NB (2013). Creating More Effective Graphs. Chart House.

Sarkar D (2008). Lattice: Multivariate Data Visualization with R. Springer Science & Business
Media.

Stodden V, Leisch F, Peng RD (2014). Implementing reproducible research. CRC Press.

SCHUMPETER DISCUSSION PAPERS 2015-006

http://cran.r-project.org/web/views/Graphics.html
http://www.R-project.org/
http://rgraphgallery.blogspot.de/

Martin Meermeyer 13

Wand M (2014). SemiPar: Semiparametic Regression. R package version 1.0-4.1, URL
http://CRAN.R-project.org/package=SemiPar.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer Science & Business
Media.

Xie Y (2013). Dynamic Documents with R and knitr. CRC Press.

SCHUMPETER DISCUSSION PAPERS 2015-006

http://CRAN.R-project.org/package=SemiPar

A. Code Examples

To facilitate the copy-and-paste of code the headline is suppressed in the appendix. After
pasting the code into an editor or IDE the white spaces may be lost and with these the
indentions and vertical alignments. To avoid redundancies the code is organized in blocks.
The code in the sections A.1 and A.2 must always be executed before using the code to
reproduce the figures in the sections A.3, A.4 and A.5. The code in subsection A.6 can be
used to replace the corresponding block of code in subsection A.5.

A.1. Basic header

Clear R-workspace

rm(list=ls(all=TRUE))

Set location of R-script as working directory

path.act <- dirname(sys.frame(1)$ofile)

setwd(path.act)

Close all graphic devices

graphics.off()

Standard horizontal graphic window position

global.xpos <- -20

A.2. Code to prepare the data set

Load required package or install it if it is missing

if(!require("SemiPar")) install.packages("SemiPar", dependencies=TRUE)

Load data set and select variables

data("trade.union")

tradeUnion <- trade.union[,c("wage","age","union.member","sector")]

Build factors

tradeUnion$sector <- factor(tradeUnion$sector, labels=c("other","manuf","constr"))

tradeUnion$union.member <- factor(tradeUnion$union.member, labels=c("no","yes"))

Reorder factor levels

tradeUnion$sector <- factor(tradeUnion$sector, levels=c("constr","manuf","other"))

tradeUnion$union.member <- factor(tradeUnion$union.member, levels=c("yes","no"))

A.3. Code to reproduce Figure 1

Specify filename, filetype and fundamental plot dimensions

filename <- "fig-2x2-expl"

filetype <- "pdf"

width.cm <- 14

height.cm <- 14

pointsize <- 8

SCHUMPETER DISCUSSION PAPERS 2015-006

Create new graphic window

x11(width = width.cm/2.54, # width in inch

height = height.cm/2.54, # height in inch

pointsize = pointsize, # pointsize in big points (1/72 inch)

xpos = global.xpos) # horizontal position of device

Split window into four independent plot regions

layoutmatrix <- matrix(c(1,2,

3,4), ncol=2, byrow=TRUE)

layout(layoutmatrix)

Specify plot parameters for actual region

par(cex = 1, # global font magnification

mar = c(3,3,2,2), # margins

mgp = c(1.5,0.5,0), # distance of axis tickmark labels (2nd)

tcl = -0.3) # length of axis tickmarks

Scatterplot

Annotations

main <- "(a) Scatterplot: numeric against numeric"

label.y <- "hourly wage (USD)"

label.x <- "age (years)"

Plot and annotations

plot(wage ~ age, data=tradeUnion, xlab=NA, ylab=NA)

mtext(main, side=3, line=0.5)

mtext(label.y, side=2, line=1.5)

mtext(label.x, side=1, line=1.5)

Conditional Boxplot

Annotations

main <- "(b) Conditional boxplot: numeric against factor"

label.y <- "hourly wage (USD)"

label.x <- "sector"

Plot and annotations

plot(wage ~ sector, data=tradeUnion, xlab=NA, ylab=NA)

mtext(main, side=3, line=0.5)

mtext(label.y, side=2, line=1.5)

mtext(label.x, side=1, line=1.5)

Spineplot

Annotations

main <- "(c) Spineplot: factor against numeric"

label.y <- "union member"

label.x <- "age (years)"

Plot and annotations

plot(union.member ~ age, data=tradeUnion, xlab=NA, ylab=NA)

mtext(main, side=3, line=0.5)

mtext(label.y, side=2, line=1.5)

mtext(label.x, side=1, line=1.5)

SCHUMPETER DISCUSSION PAPERS 2015-006

Spineplot

Annotations

main <- "(d) Spineplot: factor against factor"

label.y <- "union member"

label.x <- "sector"

Plot and annotations

plot(union.member ~ sector, data=tradeUnion, xlab=NA, ylab=NA)

mtext(main, side=3, line=0.5)

mtext(label.y, side=2, line=1.5)

mtext(label.x, side=1, line=1.5)

Save plot in the current working directory

savePlot(filename=filename, type=filetype)

A.4. Code to reproduce Figure 2

Standard design and titles with standard interfaces

Specify filename, filetype and fundamental plot dimensions

filename <- "fig-comp-standard-graph-1"

filetype <- "pdf"

width.cm <- 7

height.cm <- 7

pointsize <- 8

Create new graphic window

x11(width = width.cm/2.54, # width in inch

height = height.cm/2.54, # height in inch

pointsize = pointsize, # pointsize in big points (1/72 inch)

xpos = global.xpos) # horizontal position of device

Annotations

main <- "(a) Scatterplot: numeric against numeric"

label.y <- "hourly wage (USD)"

label.x <- "age (years)"

Plot and annotations

plot(wage ~ age, data=tradeUnion, main=main, xlab=label.x, ylab=label.y)

Save plot in the current working directory

savePlot(filename=filename, type=filetype)

Parsimonious design and titles with mtext()

Specify filename, filetype and fundamental plot dimensions

filename <- "fig-comp-standard-graph-2"

filetype <- "pdf"

width.cm <- 7

height.cm <- 7

pointsize <- 8

SCHUMPETER DISCUSSION PAPERS 2015-006

Create new graphic window

x11(width = width.cm/2.54, # width in inch

height = height.cm/2.54, # height in inch

pointsize = pointsize, # pointsize in big points (1/72 inch)

xpos = global.xpos) # horizontal position of device

Specify plot parameters for actual region

par(cex = 1, # global font magnification

mar = c(3,3,2,1), # margins

mgp = c(1.5,0.5,0), # distance of axis tickmark labels (2nd)

tcl = -0.3) # length of axis tickmarks

Plot and annotations

plot(wage ~ age, data=tradeUnion, xlab=NA, ylab=NA)

mtext(main, side=3, line=0.5)

mtext(label.y, side=2, line=1.5)

mtext(label.x, side=1, line=1.5)

Save plot in the current working directory

savePlot(filename=filename, type=filetype)

A.5. Code to reproduce Figure 3

Specify filename, filetype and fundamental plot dimensions

filename <- "fig-legend"

filetype <- "pdf"

width.cm <- 9

width.legend.cm <- 2

height.cm <- 7

pointsize <- 8

Create new graphic window

x11(width = width.cm/2.54, # width in inch

height = height.cm/2.54, # height in inch

pointsize = pointsize, # pointsize in big points (1/72 inch)

xpos = global.xpos) # horizontal position of device

Divide device into 2 regions: 1) plot, 2) legend

fraction.legend <- round((width.legend.cm/width.cm)*100, digits=0)

layoutvec <- rep(c(1,2), times=c(100 - fraction.legend, fraction.legend))

#layoutvec <- rev(layoutvec) # Legend on the left

layoutmatrix <- matrix(layoutvec, 1, 100)

layout(layoutmatrix)

Specify plot parameters for actual region

par(cex = 1, # global font magnification

mar = c(3,3,1,1), # margins

mgp = c(1.5,0.5,0), # distance of axis tickmark labels (2nd)

tcl = -0.3) # length of axis tickmarks

Annotations

main <- NA

label.y <- "hourly wage (USD)"

label.x <- "age (years)"

SCHUMPETER DISCUSSION PAPERS 2015-006

Plot and annotations in region 1

plot(wage ~ age, data=tradeUnion, pch=as.numeric(tradeUnion$sector), xlab=NA, ylab=NA)

mtext(main, side=3, line=0.5)

mtext(label.y, side=2, line=1.5)

mtext(label.x, side=1, line=1.5)

Add legend in region 2

par(mar=c(3,0,1,0))

plot(x=1, y=1, type="n", axes=FALSE, xlab=NA, ylab=NA)

legend(x="left", pch=c(1:3), legend=levels(tradeUnion$sector))

Save plot in the current working directory

savePlot(filename=filename, type=filetype)

A.6. Code to set vertical margins of the legend region automatically

Add legend in region 2

old.mar <- par("mar")

par(mar=c(old.mar[1],0,old.mar[3],0))

plot(x=1, y=1, type="n", axes=FALSE, xlab=NA, ylab=NA)

legend(x="left", pch=c(1:3), legend=levels(tradeUnion$sector))

par(mar=old.mar)

Affiliation:

Martin Meermeyer
Institut für Empirische Wirtschafts- und Sozialforschung
Westfälische Hochschule - Campus Bocholt
Münsterstraße 265
46397 Bocholt, Germany
E-mail: m.meermeyer@gmail.com

SCHUMPETER DISCUSSION PAPERS 2015-006

mailto:m.meermeyer@gmail.com

	deckblatt_2015_006
	SDP_Meermeyer_RGraphics.pdf

