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Site assessment, turbine selection, and
local feed-in tariffs through the wind

energy index*

Matthias Rittera** Lars Deckertb

Since wind energy is rapidly growing, new wind farms are installed world-
wide and a discussion is going on concerning the optimal political framework
to promote this development. In this paper, we present a wind energy index,
which is supportive for wind park planners, operators, and policy-makers.
Based on long-term and low-scale reanalysis wind speed data from MERRA
and true production data, it can predict the expected wind energy production
for every location and turbine type. After an in-sample and out-of-sample
evaluation of the index performance, it is applied to assess the wind energy
potential of locations in Germany, to compare different turbine types and to
derive the required compensation in terms of locally different feed-in tariffs.
We show that in many parts of South Germany, profitability of new wind
parks cannot be achieved given the current legal situation.

Keywords: Wind power, renewable energy, onshore wind, MERRA, feed-in tariff
JEL classification: Q42, Q47

1. Introduction
As a clean and renewable energy source, wind energy has experienced a rapid growth in
the last decades: The global cumulative installed capacity of wind energy rose from 6
GW in 1996 to 370 GW in 2014 and is expected to almost double to 666 GW until 2019
(GWEC, 2014, 2015). The newly installed capacity in 2014 amounts to 51 GW worldwide,
mainly driven by China (45.1%), Germany (10.2%) and the U.S. (9.4%).

*The financial support from the German Research Foundation (DFG) via the CRC 649 ‘Economic Risk’,
Humboldt-Universität zu Berlin, is gratefully acknowledged. Moreover, the authors cordially thank
the participants of the International Conference on Applied Energy (ICAE) 2015 in Abu Dhabi for
their helpful comments.
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Germany.
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This rapid growth requires an extensive search for locations suitable for wind energy
production. On the one hand, topographical aspects and legal frame conditions play an
important role, but local wind conditions and timing decide about the financial success of
a wind park project since governmental subsidies often depend on the year of commission.
One way of assessing the local wind conditions is using classical wind speed maps,

which show the long-term average wind speeds for specific locations (e.g., U.S. (Archer
and Jacobson, 2003) and Germany (Deutscher Wetterdienst, 2009)). They are, however,
only a rough indicator for the local wind energy potential because of the non-linear relation
between wind speed and wind energy: A stable average wind speed of 3 m/s, which is
lower than the typical cut-in wind speed that lets turbine start rotating, leads to zero
production, whereas the same average wind speed with high fluctuations yields a much
higher production.
When a record of high-frequency wind speed data measured at the turbine location is

available, the wind power production can be estimated by the wind power curve, which
converts wind speeds into the corresponding wind energy production (e.g., Brown et al.,
1984; Sanchez, 2006). For example, Himri et al. (2008) apply wind speed data measured
every three hours at three locations in Algeria and derive the power curve and the resulting
energy yield using RetScreen software. Dahmouni et al. (2011) estimate the net energy
output at one location in Tunisia by measuring the wind every 10 minutes in different
heights and combining it with the power curve provided by the turbine producer. D’Amico
et al. (2015) use 10 minutes data from a local weather station and the turbine producer’s
power curve to derive a wind energy production indicator. However, from the perspective
of installing a turbine at a new location, long-term high-frequency measurements of wind
speed at various locations and heights are very time-consuming and costly and can hardly
be conducted to compare potential locations.
As an alternative to the power curve, the wind power density (WPD) is often applied,

which is the amount of energy that can be extracted out of the wind from a physical
viewpoint. For example, Karsli and Geçit (2003) derive the wind power potential of one
location in Turkey from hourly wind measurements via the WPD. This approach is also
applied by Ohunakin (2011) using the Weibull analysis and by Gunturu and Schlosser
(2012) and Hallgren et al. (2014) using meteorological reanalysis data. Gunturu and
Schlosser (2012) criticize, however, that the WPD overestimates the real on-site produc-
tion and should be used only as an illustrative point. Hence, the linkage between wind
speed at a higher scale (e.g., hourly averages) and true production deserves further in-
vestigation, and the expected energy production at potential locations has to be derived
using different tools.
In this paper, we present a new way of assessing the long-term wind energy potential of

a new location by applying a wind energy index, which exploits worldwide available high-
frequency reanalysis wind speed data and derives the turbine-specific relation between
reanalysis wind speed data and true production data by using true wind energy production
data. When aggregating the low-scale wind energy production to higher time scales, the
wind energy index can predict the long-term wind energy potential of every location
worldwide.
Besides the assessment of the wind energy potential of a new location, the wind energy

index is also able to conduct a turbine type comparison for a given location to support
the selection of the most suitable turbine type. So far, the turbine type is for example
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selected based on the capacity factor, i.e., the averaged produced power, which is derived
from the local Weibull wind distribution and the wind power density, compared with
the rated power (Jowder, 2009). Perkin et al. (2015) discuss several other approaches
and derive a theoretically optimal power curve for the local wind conditions based on
Blade Element Momentum theory and multiple Evolutionary Computing algorithms and
then search for the best suitable real turbine. Both of these approaches require again
local high-frequency wind data, whereas our approach has the advantage that—after the
function for each turbine type is derived once—the performance of different turbine types
at a location can easily be derived from reanalysis wind speed data.
To support future wind power development, there are three different compensation

schemes, which are widely discussed in the literature: feed-in tariffs, tradable green cer-
tificates, and auctions. Butler and Neuhoff (2008) compare the support schemes of the
UK and Germany and find out that the German feed-in tariff mechanism leads to lower
costs for consumers than the Renewables Obligation certificates scheme in the UK. Del
Río and Linares (2014) argue that regulators do not necessarily know the real costs and
hence set the feed-in tariffs too high. They suggest to use appropriately designed auctions
instead, which is also planned in Germany after 2016.
The wind energy index suggested in this paper can also be used to derive the minimum

compensation per MWh that is required to build a profitable wind park. As a third
application, we compare the expected revenues of a planned wind park with its investment
and operating costs. The resulting required compensation per MWh can either form the
basis for an auction or can be used to derive location-dependent feed-in tariffs. Hence,
the wind energy index can serve as a supportive tool for wind park planners and policy-
makers.
The remainder of the paper is organized as follows. In Section 2, we describe the

methodology, i.e., the derivation and validation of the wind energy index as well as its
application to site assessment, turbine type selection, and local feed-in tariffs. In Section 3,
we exemplarily apply this approach to two different turbine types based on data for eight
German wind parks. Section 4 provides further discussions and conclusions.

2. Methods
2.1. Framework
The wind energy index presented here is based on Ritter et al. (2015). The paper at hand
focuses on a further validation and application of this index, so the framework is only
briefly presented.
Deriving the wind energy index consists of several steps. First, reanalysis wind speed

data are chosen for the underlying database. They have the advantage of being easily
available worldwide on a high spatial and temporal resolution. For this reason, they are
recently more and more applied in wind power analysis (e.g., Kubik et al., 2013; Carvalho
et al., 2014; Staffell and Green, 2014). The reanalysis data used in this study come
from Modern-Era Retrospective Analysis for Research and Applications (MERRA) data
provided by NASA (Rienecker et al., 2011), which provide a higher resolution and a good
fit compared to other alternative datasets (Carvalho et al., 2014). The spatial resolution
of the grid data is 1/2◦ latitude times 2/3◦ longitude (about 45 km × 54 km in Germany),
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the temporal resolution is hourly since 1979. The wind data are divided into a northward
and an eastward wind component at three different heights (2 m, 10 m, and 50 m above
ground) (Lucchesi, 2012).
In the next two steps, the local wind speed data at the turbine’s location and hub height

are derived from the MERRA wind speed data. The wind speed components of the four
nearest MERRA grid points at the three heights are horizontally interpolated weighted by
their horizontal distance. Hence, northward and eastward components in 2 m, 10 m, and
50 m at the turbine’s location are obtained, which can be put together to absolute wind
speeds at the three heights. At this point, even the wind direction could be inferred, which
is not required for our approach. Then, the three wind speeds are vertically extrapolated
to the turbine’s hub height using the log wind profile (e.g., Gunturu and Schlosser, 2012):

Vz =
(
u∗

κ

)
log

[
(z − d)
z0

]
, (1)

where Vz denotes the wind speed at height z, u∗ the friction velocity, κ the von Kármán
constant (∼0.41) used for fluid modelling, d the displacement height, and z0 the surface
roughness. The three unknown parameters u∗, d, and z0, are calculated for each time step
by solving the three dimensional equation system for the wind speeds at height z = 2 m,
10 m, and 50 m. Then, plugging in the turbine height for z results in a value for the wind
speed at the turbine’s location and hub height.
After deriving the local wind speeds, they have to be transformed into wind energy

production. We model the relation between derived wind speed and the resulting energy
production from a statistical perspective. A function type capturing the boundedness and
the typical ‘S’ shape of the production function is the class of logistic functions. A special
type also allowing for asymmetry is the five parameter logistic (5PL) function (Gottschalk
and Dunn, 2005)

f(x; a, b, c, d, g) = d+ a− d(
1 + (x

c
)b
)g (2)

with a, b, d ∈ R and c, g ∈ R+. The parameters d and a describe the lower and upper
bounds, respectively, and are set here to the minimal and maximal production of the tur-
bine. The parameters b, c and g determine the slope of the function, where g particularly
controls the asymmetry (symmetric for g = 1). Similar to classical power curves provided
by the turbine producer, we assume that this function is equal for all turbines of the same
type and does not depend on time or location.1 Hence, plugging in the wind speeds Vz
into the estimated function allows for estimating the wind power production at a new
location where only wind speed data from MERRA are available.

2.2. Wind energy index
The aforementioned framework allows for estimating hourly wind energy production for
an unobserved location. To assess the potential of this location, we suggest the wind

1A discussion and verification of this assumption is provided later in Sections 2.2 and 3.3.
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energy index, which aggregates the hourly values to higher scales:

I(τ1, τ2) =
τ2∑
t=τ1

f5PL(Vz(t)), (3)

where: Vz(t) indicates the hourly wind speed at the turbine location and turbine height
obtained according to Section 2.1; f5PL(·) describes the fitted five parameter logistic func-
tion for the corresponding turbine type; and τ1 and τ2 denote the start and end date of
the index accumulation. The estimated hourly production can be summed up for different
time horizons, such as daily, monthly, or yearly, depending on the aim and the availability
of data. For a whole year, for example, t goes from τ1 = 1 to τ2 = 8760 (= 365× 24).
To validate the performance, we compare the outcomes of the wind energy index from

Eq. (3) with the true production on different aggregation levels, i.e., hourly, daily, or
monthly, by using two evaluation measures. First, we measure their dependence with
Pearson’s correlation coefficient ρ, defined as the ratio between the covariance and the
standard deviations:

ρ
(
ÎMτ , IMτ

)
=

cov
(
ÎMτ , IMτ

)
σ
(
ÎMτ

)
σ (IMτ )

(4)

where: ÎMτ =
(
ÎMτi

)
i=1,...,N

and IMτ = (IMτi )i=1,...,N denote the estimated and true pro-
ductions for time periods i, respectively; N indicates the total number of observations at
this aggregation level and Mτ the level of aggregation, i. e., hourly, daily, or monthly. We
refrain from applying a yearly scale because our production data do not last long enough.
Second, we validate the accuracy by the root-mean-square error (RMSE) defined as:

RMSEMτ =

√√√√ 1
N
·
N∑
i=1

(
ÎMτi − IMτi

)2
. (5)

Once the 5PL production function is determined for a certain turbine type based on all
available data, we assume that this relation holds for all locations with the same turbine
type. To verify this assumption, we conduct a leave-one-out cross validation: Instead of
using all n locations with the same turbine type, we use only n−1 locations for estimating
the production function. The left-out location then simulates a new, unobserved location
and is used to test the estimated function. This procedure is repeated n times so that
each location is left-out once.

2.3. Application I: Site assessment
The primary purpose of the wind energy index is the assessment of the wind energy
potential of a certain location X for a certain turbine type. Given that true production
data are available for this turbine type for another location Y , the production function
f5PL can be estimated. Then, wind speed data for location X derived from MERRA can
be plugged into the function to obtain the yearly wind energy index from Eq. (3). To
estimate the long-term potential of a location, we average the values of the yearly wind
energy index over an adequately long period. The best length of the period, however,
is not easy to determine. If it is too short, the results might be strongly influenced by
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fluctuations. If it is too long, trends or structural breaks in wind speed data due to
climate change or reanalysis data developments can bias the results. The optimal length
is widely discussed in the literature, varying from a minimum of ten years (Jimenez et al.,
2012), 15–20 years (Liléo et al., 2013), and 25 years (Brower et al., 2013). In this study,
we assess the potential of a location by averaging the yearly wind energy index over the
last 20 years:

Īyearly = 1
20

20∑
i=1

Îyearly
i (6)

In practice, a time trend could also be considered when predicting the long-term potential
of a single location to account for the expected wind development, e.g., due to climate
change.

2.4. Application II: Turbine selection
When a wind park is planned, the selection of the optimal turbine is an important decision.
One way of choosing a turbine is comparing the power curves provided by the turbine
producers. They indicate the turbine’s production for different wind speeds, so together
with a distribution of the local wind speeds, it can be derived which turbine fits better to
low-wind or high-wind regions. The wind energy index, however, is able to forecast the
expected yearly production for each turbine type given the local wind conditions. Then,
the expected production of turbine type A, Īyearly

A , can be compared with the expected
production of turbine type B, Īyearly

B . If Īyearly
A is larger than Īyearly

B , this indicates that the
turbine is better suitable for the given location and the difference can be compared with
the difference in the costs of the turbines.

2.5. Application III: Local feed-in tariffs
A third practical application of the wind energy index is the derivation of the minimum
price per MWh that is necessary to build a profitable wind park. This price can be the
realized price from direct marketing of wind power or the statutory feed-in tariff. To
calculate the minimum required compensation per MWh, x, the investment costs for the
wind park have to equal the discounted expected yearly income reduced by the yearly
operational costs:

CAPEX =
T∑
t=1

1
(1 + r)t

(
x · n · Īyearly −OPEXt

)
(7)

CAPEX stands for capital expenditures and includes the investment costs for the tur-
bines, construction, cabling, substation, compensation areas, project development, con-
struction management, financing, and the profit of the wind park planner. In the empirical
analysis, we will include a sensitivity analysis for different amounts of the profit. OPEXt

denotes operational expenditures and includes yearly costs for rent, maintenance, insur-
ance, management, accounting, electricity, as well as demolition in the last year of use.
Both, CAPEX and OPEXt describe the total costs for the whole wind park. T denotes
the life-span of the wind park, n the number of turbines planned for the wind park, and
r the yearly discount rate.
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The wind energy index is then used to estimate the total yearly income of a wind park
as the product of the expected yearly production, Īyearly, the number of turbines, and
the compensation per MWh. For our example, we assume that the expected production
Īyearly is independent of time, but changing wind conditions due to climate change or
ageing effects of the turbines could also be considered (Staffell and Green, 2014). Solving
Eq. (7) for x then leads to the minimum compensation required for recouping the capital
and operational expenditures and running a profitable wind park. The wind energy index
is the sole driver of the spatial differences of the minimum compensation since we assume
that the capital and operational costs are location independent, opposite to the wind
energy production.2 This assumption might be violated for regions with higher rental
prices or rough terrains, but this can be neglected here since we are interested in a general
picture of the spatial differences.

3. Empirical analysis
3.1. Data
The wind energy production data used in this study come from eight wind parks in
Germany of two turbine types: Five wind parks A1–A5 consist of turbines of type A,
namely Enercon E-82 with a capacity of 2.3 MW, and three wind parks B1–B3 of type
B, namely Vestas V112 with a capacity of 3.0 MW. The number of turbines, the turbine
heights and the lengths of the data records are given in Table 1, whereas their rough
locations in Germany can be found in Fig. 5.3 The frequency of the production data is
10 minutes for a minimum of 18 months (type A) or 11 months (type B). We cleaned the
data according to the error code provided by each turbine to estimate the true relation
between wind speed and production ignoring technical issues. Because the number of
turbines per wind park varies from 1 to 8 (type A) and 3 to 8 (type B) influencing one
another’s wind conditions and efficiency, we average their production for each wind park
to obtain representative data for the whole park. Table 2 depicts the average production
per turbine in each wind park on an hourly, daily, and monthly scale. Moreover, the
shares of missing values for each scale and wind park are given.
For the wind speeds, we use data from the “MERRA IAU 2d atmospheric single level

diagnostics (AT1NXSLV)”, which are available at times 12:30 a.m., 1:30 a.m., 2:30 a.m.,
. . . , 11:30 p.m. for each day since 1979. The variables U2M, V2M, U10M, V10M, U50M,
and V50M indicate the eastward and northward wind speeds measured in m/s at heights
of 2 m, 10 m, and 50 m above the ground surface. To cover all of Germany, grid points
with a latitude between 5.33◦ E and 16◦ E and a longitude between 47◦ N and 56◦ N are
used as depicted in Fig. 5.

3.2. In-sample estimation
In the in-sample estimation, the relation between the derived hourly MERRA wind speed
and the true hourly production is estimated for each wind park separately. This illustrates

2Some operational costs such as rent, however, also vary with location, but only because they depend
on the production, that is, the wind energy index. Details will be shown in Section 3.

3The names and exact locations of the wind parks are concealed for confidentiality reasons.
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Wind park # Turb. Height Start End
A1 6 138 16.01.2012 30.06.2014
A2 3 138 01.01.2013 30.06.2014
A3 6 138 01.01.2013 30.06.2014
A4 1 138 15.11.2011 30.06.2014
A5 8 138 20.12.2011 30.06.2014
B1 8 119 31.07.2013 30.06.2014
B2 3 140 07.08.2013 30.06.2014
B3 3 119 19.12.2013 30.06.2014

Table 1: List of available production data

Hourly Daily Monthly
Wind park Mean NaN Mean NaN Mean NaN
A1 0.53 1.90% 12.55 2.68% 383.11 3.33%
A2 0.50 0.64% 11.94 0.73% 362.04 0.00%
A3 0.58 3.01% 13.91 3.48% 421.84 0.00%
A4 0.67 0.22% 16.06 0.10% 492.29 3.13%
A5 0.43 2.20% 10.41 3.14% 313.23 3.23%
B1 0.93 2.74% 22.47 2.39% 672.19 8.33%
B2 0.99 4.34% 23.97 3.66% 728.54 9.09%
B3 0.72 5.18% 17.22 6.70% 494.35 14.29%

Table 2: Mean production values (in MWh) and share of missing values on different time
scales
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Figure 1: In-sample: Hourly MERRA wind speed vs. true hourly production and best
fitting 5PL functions

the general suitability of this function type for converting wind speed into production, but
it also reveals the differences between the wind parks. The best fitting 5PL function is
depicted in Fig. 1 exemplarily for wind parks A1 and B1. The corresponding parameters
for the 5PL function for all wind parks are shown in Table 3. They are rather stable for
all turbines of type A, opposite to type B, where the parameters vary more. A reason
might be that the turbines of type A all have the same height, whereas the turbines of
type B have two different heights. Moreover, the data record for type B turbines is much
shorter, resulting in less stable estimates.
Plugging in MERRA wind speeds into the fitted 5PL function then leads to estimated

values for hourly production (‘MERRA production’). A direct comparison of the hourly
values is depicted in Fig. A.9 in the appendix, showing a high variance. On the daily
scale, the variance decreases and the values lie closer on the diagonal (Fig. A.10 in the
appendix). The monthly scale even amplifies this effect (Fig. A.11 in the appendix). This
is also confirmed by increases in the correlations (see Table 4), from 0.83 (hourly), to 0.94
(daily), and 0.97 (monthly) for wind park A1. This can be explained by an averaging
effect of estimation errors. The RMSE for wind park A1 increases from 0.34 (hourly), to
4.28 (daily), and 36.61 (monthly), but this increase results from different magnitudes of
production on different time scales: They correspond to 63%, 33%, and 9% of the total
average production in these periods. The good fit of the monthly scale is confirmed by
Fig. 2, where the monthly true and MERRA productions are depicted for wind parks A1
and B1. The average ratio of the RMSE to the monthly production for all wind parks
amounts to around 10%.

3.3. Out-of-sample estimation
To evaluate the performance of the wind energy index for an unobserved location, we
conduct a leave-one-out cross validation. If wind parks A1 and B1 are chosen to be the
left-out locations for the two turbine types, the relation between MERRA wind speeds
and production is derived from the other remaining data, i.e., wind parks A2–A5 and
B2–B3, respectively (see Fig. 3). Then, the MERRA wind speeds for locations A1 and
B1 are plugged into the estimated 5PL function to derive the MERRA production for
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Wind park a b c d g

A1 2.364 -7.229 15.052 0 0.340
A2 2.264 -6.691 16.519 0 0.334
A3 2.363 -6.039 16.718 0 0.377
A4 2.365 -7.219 15.200 0 0.306
A5 2.360 -6.315 17.020 0 0.370
A All 2.365 -6.686 15.982 0 0.345
B1 3.075 -5.778 14.157 0 0.389
B2 3.075 -5.558 13.825 0 0.422
B3 3.075 -4.421 13.209 0 0.598
B All 3.075 -5.246 13.739 0 0.454

Table 3: Estimated parameters of the 5PL function

Hourly Daily Monthly
Wind park Mean Corr. RMSE Mean Corr. RMSE Mean Corr. RMSE
A1 0.54 0.83 0.34 12.93 0.94 4.28 396.47 0.97 36.61
A2 0.51 0.81 0.32 12.17 0.93 4.06 369.27 0.95 49.49
A3 0.57 0.84 0.31 13.77 0.94 3.74 417.59 0.97 30.38
A4 0.69 0.82 0.39 16.48 0.92 5.18 500.73 0.98 38.46
A5 0.44 0.84 0.26 10.49 0.94 3.26 322.60 0.96 33.06
B1 0.94 0.84 0.48 22.62 0.94 6.01 708.05 0.97 51.69
B2 1.01 0.83 0.53 24.16 0.93 6.84 728.84 0.95 73.59
B3 0.75 0.78 0.57 18.09 0.89 8.34 593.47 0.93 77.46

Table 4: Results of in-sample estimation
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Figure 2: In-sample: Monthly MERRA production and true production

10



Hourly MERRA wind speed [m/s]
0 5 10 15 20 25

H
ou

rly
 e

ne
rg

y 
pr

od
uc

tio
n 

[M
W

h]

0

0.5

1

1.5

2

2.5

3

Wind parks A2-A5

Hourly MERRA wind speed [m/s]
0 5 10 15 20 25

H
ou

rly
 e

ne
rg

y 
pr

od
uc

tio
n 

[M
W

h]

0

0.5

1

1.5

2

2.5

3

Wind parks B2-B3

Figure 3: Out-of-sample: Hourly MERRA wind speed vs. true hourly production and
best fitting 5PL functions for left-out wind parks A1 and B1

Hourly Daily Monthly
Wind park Mean Corr. RMSE Mean Corr. RMSE Mean Corr. RMSE
A1 0.50 0.83 0.34 12.01 0.94 4.58 368.28 0.97 44.81
A2 0.55 0.81 0.33 13.22 0.93 4.22 401.10 0.95 60.05
A3 0.63 0.84 0.32 15.23 0.94 4.06 462.01 0.97 51.32
A4 0.57 0.82 0.41 13.58 0.92 5.95 412.68 0.98 87.21
A5 0.53 0.84 0.29 12.68 0.94 4.25 389.72 0.96 80.37
B1 0.92 0.84 0.48 21.98 0.94 6.00 688.49 0.97 50.52
B2 0.98 0.83 0.53 23.60 0.93 6.87 711.93 0.95 70.69
B3 0.82 0.78 0.58 19.75 0.89 8.57 645.79 0.93 102.54

Table 5: Results of out-of-sample estimation

A1 and B1 and to compare it with the true production. This is repeated so that each
location is once left-out.
The graphical comparison for wind parks A1 and B1 on hourly, daily and monthly

scales are shown in Fig. A.12–A.14 in the appendix, whereas Table 5 lists the results for
all wind parks and scales. The correlation between the MERRA production and the true
production remains almost the same compared to the in-sample results. Not surprisingly,
the RMSE increases for the out-of-sample case: On the monthly scale, it now corresponds
to around 15% of the production on average. However, this size is still satisfying and
would probably further decrease with a larger database and on a yearly scale because
of the averaging effect. The results indicate that the 5PL function is rather stable for
different data sets and that the wind energy index is suitable for assessing the potential
of unobserved locations.

3.4. Site assessment
The main purpose of the wind energy index is assessing the long-term wind energy poten-
tial of a given location and turbine type based on MERRA data. Since MERRA data are
available worldwide, the index can be applied for every location after the 5PL function
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Figure 4: Out-of-sample: Monthly MERRA production and true production

is derived for the corresponding turbine type. The 5PL parameters for all available data
of turbine types A and B can be found in Table 3. To illustrate the index and compare
the regional differences, we derive the wind energy potential for whole Germany based
on MERRA data from 1995 to 2014. Fig. 5 depicts the expected production in Germany
for turbine types A and B with hub heights of 139 m and 140 m, respectively.4 It clearly
shows that the wind energy production is much lower in Southern Germany compared
to Northern Germany. This could also be derived from classical wind maps, but our ap-
proach also allows for a quantification of the expected production. Please note that the
wind energy index only accounts for the local wind conditions, whereas structural or legal
aspects are neglected here. For example, the extreme cases, the Alps and the North Sea,
in practice would never be considered for these turbine types.
The wind energy index is also able to estimate the fluctuation of the wind energy

production at every location. Since the index is calculated based on the yearly production
of the last twenty years, its variation can easily be calculated. Fig. 6 depicts the coefficient
of variation for each location, i.e., the standard deviation normalized by the location’s
mean. It shows that not only the production increases from South to North, but the
variation and hence the risk decrease at the same time.

3.5. Turbine comparison
A comparison of the maps in Fig. 5 for the two turbine types also reveals that the pro-
duction of type B is always higher compared to type A. This is not surprising since the
installed capacity of turbine B is higher (3 MW) than the one of type A (2.3 MW). Tur-
bine B, however, is more expensive to build, so a quantitative comparison of the difference
is useful, which can also be achieved by the wind energy index.
Fig. 7 shows a direct comparison of the expected productions of type A and type B as

the amount of additional production of turbine B compared to the production of type A.
A value of 40% near the coast means that a turbine of type B produces here 40% more
energy than a turbine of type A. In the south, this difference ranges up to almost 60%,
so type B would produce 60% more energy than type A under the same wind conditions.

4Theoretically, the index could be calculated for every location at an arbitrary resolution. For reducing
the computational effort, however, we calculate the index only for the MERRA grid points and
interpolate the values using Natural Neighbour interpolation in ArcGIS 10.2.
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Figure 7: Difference of expected production between turbine type B and type A

Regarding the fact that the differences between the construction and operational costs
for the two turbines are almost equal for all locations, the differences in the expected
production support the decision for the optimal turbine for a given location.

3.6. Local feed-in tariffs
A third application of the wind energy index is the derivation of the minimum compensa-
tion that is required per MWh to make a wind park project profitable. The compensation
could be a local feed-in tariff or the expected spot price from direct marketing. For this
purpose, all costs (CAPEX and OPEX) have to be compared with the revenues (Eq. (7)).
The latter ones are given by the expected production from the wind energy index5 mul-
tiplied with the number of turbines and the compensation. For our example, we set the
number of turbines to five and assume that the compensation is constant over time. The
wind park is expected to run for 25 years.
A list of the investment costs CAPEX for turbine types A and B can be found in

Table 6, distinguished in costs per turbine and per wind park. As mentioned in the
5We reduce the values of the wind energy index by 6% to account for technical issues such as errors,
availability, and network losses (see for example Aquila Capital (2013) for details). The wind park
efficiency (shadowing effects) are already considered in the wind energy index since the average of all
turbines in a wind park is used.
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CAPEX Type A Type B
e/turbine e/park e/turbine e/park

Turbine 2,900,000 4,000,000
Construction 175,000 225,000
Cabling internal 100,000 100,000
Cabling external 750,000 750,000
Substation 488,750 637,500
Compensatory measures 75,000 75,000
Project development 150,000 150,000
Construction management 60,000 60,000
Bank 360,877.5 467,055
Other 50,000 50,000
Developer profit 300,000 300,000
Total 20,409,627.5 26,414,555

Table 6: Turbine- and park-related investment costs for the two turbine types

OPEX Type A Type B
Year 1 Year 25 Year 1 Year 25

Rent 117,917 151,608 227,820 292,912
Maintenance 72,968 629,812 95,175 821,494
Management 42,113 67,737 81,364 130,870
Insurance 17,250 27,746 22,500 36,190
Electricity 23,000 36,994 30,000 48,253
Accounting 30,000 48,253 30,000 48,253
Substation 28,750 46,243 37,500 60,316
Aval 5,000 5,000 5,000 5,000
Demolition 500,000 500,000

Table 7: Operative costs exemplarily for year 1 and 25 for the two turbine types

previous section, the costs for turbine type B are higher than for type A, as is the expected
production. The developer profit is set to 300,000 e per turbine, which corresponds to
7.4% (type A) or 5.7% (type B) of the total investment. Later, we will also analyze the
sensitivity of the results on the developer profit.
The operating costs OPEX are depicted in Table 7 for the two turbine types, exemplarily

for the first and the last year. The rent corresponds to 7% of the total revenue for the first
ten years and increases to 9% afterwards. Maintenance is modeled with 5e/MWh with
a yearly increase of 8%, a 50% reduction for the first year, and a cap after 21 years. The
other operating costs are set to 2.5% of the revenues for management, 1,500e per installed
MW for insurance, 2,000e per MW for electricity, 6,000e per turbine for accounting, and
28,750e per year for the substation. Those costs are expected to increase by 2% per year.
The aval amounts to 5,000e per year, the demolition of the wind park to 100,000e per
turbine.
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Figure 8: Spatial distribution of local feed-in tariffs for profitable construction of five
turbines of type A or B, as well as locations 1 and 2 used in the comparison of
different developer profits

According to Eq. (7), the sum of the net operating cash flows, i.e., the total yearly
revenues minus the operative costs, discounted by a yearly discount rate of 5%, has to be
equal to the investment costs. With this relation, the required compensation per MWh
expected production can be derived for each location. Fig. 8 shows the resulting feed-in
tariff or spot price for each location in Germany. The minimum compensation for turbine
type A ranges from more than 50e near the coast to more than 100e in the South.
Please note that the extreme cases with values of up to 200e or higher near the Alps
arise only from the bad wind conditions. Extra costs for example for construction in the
mountains are not considered here. For turbine type B, the required compensations are
generally lower because of the much higher production compared to the slightly higher
costs. With this type, wind energy production in some regions in the South can still be
profitable with a feed-in tariff of less than 90e. This is an important threshold because
the statutory feed-in tariff in Germany amounts to 89e/MWh (initial compensation) or
49.5e/MWh (basic compensation) (§49, EEG (2014)). The initial compensation is paid
for a minimum of five years and is extended depending on the reference production of
the site. For regions with worse wind conditions, the period of the higher compensation
can be prolonged to up to twenty years. Hence, these maps show that under the current
legal situation, profitability of a wind park cannot be achieved in some parts of Germany,
depending on the turbine type.
While the wind park operator earns 5% of the investment, the wind park planner’s profit

was set to 300,000e per turbine. Now, we want to analyze the sensitivity of our results on
this number. For this purpose, three scenarios are applied with 300,000e, 600,000e, and
1,000,000e profit per turbine as a compensation for the planning risk (see Table 8). These
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Scenario 1 Scenario 2 Scenario 3
Developer profit/turbine (e) 300,000 600,000 1,000,000

Type A
Investment costs/turbine (e) 4,081,926 4,387,326 4,794,526
Developer margin 7.35% 13.68% 20.86%
Feed-in tariff (e/MWh)
– Location 1 75.81 80.09 85.80
– Location 2 90.72 96.02 103.08
Type B
Investment costs/turbine (e) 5,282,911 5,588,311 5,995,511
Developer margin 5.68% 10.74% 16.68%
Feed-in tariff (e/MWh)
– Location 1 55.04 57.91 61.74
– Location 2 64.36 67.87 72.54

Table 8: Three scenarios for different developer profits and the resulting feed-in tariffs for
exemplary locations 1 and 2

values correspond to 7.35%, 13.68%, and 20.86% (type A) or 5.68%, 10.74%, and 16.68%
of the investment costs, respectively. To illustrate the results, two exemplary locations are
chosen, one more in the North of Germany in Lower Saxony with good wind conditions
(Location 1) and one in the center in Thuringia with worse wind conditions (Location 2,
see Fig. 8). For turbine type A, the feed-in tariffs then increase from 75.81e (Scenario 1)
to 80.09e (Scenario 2) and 85.80e (Scenario 3) for Location 1 and hence come close
to the critical value of 89e, which is currently the maximum feed-in tariff in Germany.
For Location 2 with worse wind conditions, the required compensations increase even
stronger: from 90.72e to 96.02e and 103.08e for the three scenarios. Hence, the increase
of the developer profit leads to an increase of the compensation between 5e and 7e. For
turbine type B, the required feed-in tariffs are generally lower. For the three scenarios,
they increase by between 3e and 5e (see Table 8). It follows from these numbers that
the size of the developer profit has a significant influence on the required compensation
and can easily turn a wind park project into a non-profitable investment.

4. Discussion and conclusion
In this paper, we present the design and exemplary application of the wind energy index.
This novel approach can predict the expected wind energy production of a location as
long as true production data of the same turbine type are available for at least one other
location. Because it is based on MERRA wind speed data, which are available worldwide,
the index can easily be applied globally. This paper provides an in-sample and out-of-
sample evaluation of the index for eight wind parks in Germany with two turbine types.
Nevertheless, a larger database for different turbines is required to increase the reliability
and practicability of the wind energy index. Also, a further refinement of the index
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could be analyzed, for example with location-dependent parameters for the 5PL function
according to the surface roughness.
The main contribution of this paper lies in the three applications of the wind energy

index. The primary application is the pre-assessment of potential wind turbine locations.
When planning a wind farm and searching for a location, the wind energy index can be a
first step to compare several locations before conducting on-site wind measurements for
the selected location. Second, the wind energy index can also be used to choose the best
turbine type. Opposite to the power curves provided by the turbine producers, our index
can directly estimate the production difference and hence the resulting profit given the
local wind conditions.
The third and most interesting application, however, is the derivation of the minimal

compensation that is required to make a wind park project profitable. On the one hand,
a wind park planner can calculate if the statutory feed-in tariffs or the expected spot
prices from direct marketing are sufficient for the planned project. On the other hand,
policy-makers can use these maps to think about new regulations with spatially differ-
ent feed-in tariffs. In Germany, for example, an amendment of the Renewable Energy
Act (Erneuerbare-Energien-Gesetz) is planned for 2017 to replace the fixed feed-in tariff
scheme by tendering. Then, our approach can support the bidders to find the required
compensation.
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Figure A.9: In-sample: Hourly MERRA production vs. true hourly production
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Figure A.10: In-sample: Daily MERRA production vs. true daily production

Monthly MERRA production [MWh]
0 200 400 600 800 1000 1200

M
on

th
ly

 p
ro

du
ct

io
n 

[M
W

h]

0

200

400

600

800

1000

1200
Wind park A1

Monthly MERRA production [MWh]
0 200 400 600 800 1000 1200

M
on

th
ly

 p
ro

du
ct

io
n 

[M
W

h]

0

200

400

600

800

1000

1200
Wind park B1

Figure A.11: In-sample: Monthly MERRA production vs. true monthly production
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Figure A.12: Out-of-sample: Hourly MERRA production vs. true hourly production
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Figure A.13: Out-of-sample: Daily MERRA production vs. true daily production
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Figure A.14: Out-of-sample: Monthly MERRA production vs. true monthly production
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