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Abstract. Changes in residual volatility in vector autoregressive (VAR)
models can be used for identifying structural shocks in a structural VAR
analysis. Testable conditions are given for full identification for the case
where the volatility changes can be modelled by a multivariate GARCH pro-
cess. Formal statistical tests are presented for identification and their small
sample properties are investigated via a Monte Carlo study. The tests are
applied to investigate the validity of the identification conditions in a study
of the effects of U.S. monetary policy on exchange rates. It is found that the
data do not support full identification in most of the models considered, and
the implied problems for the interpretation of the results are discussed.
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1 Introduction

In structural vector autoregressive (SVAR) analysis, identifying the struc-
tural shocks properly is typically one of the main problems. Several proposals
have been made on how to proceed in specifying the shocks since the publica-
tion of the seminal article by Sims (1980) who argued convincingly in favour
of the VAR approach. Recently it has been suggested that changes in volatil-
ity may be used for identification in SVAR models. For example, Rigobon
(2003) and Lanne and Lütkepohl (2008) use changes in the unconditional
variance of the reduced form residuals for identification while Normandin
and Phaneuf (2004), Bouakez and Normandin (2010), and Lanne, Lütkepohl
and Maciejowska (2010) take advantage of conditional heteroskedasticity in
this context.

Conditional heteroskedasticity can be modelled in different ways. Whereas
Lanne et al. (2010) assume that it is driven by a Markov process, Normandin
and Phaneuf (2004), Bouakez and Normandin (2010) and a number of other
authors use multivariate generalized autoregressive conditional heteroskedas-
ticity (GARCH) processes. For these processes formal conditions for identi-
fication are available (see Sentana and Fiorentini (2001) and Milunovich and
Yang (2013)). In practice it is not straightforward to check these conditions,
as they are expressed in terms of true/population quantities while in reality
we observe their estimated counterparts. An additional complication results
from the fact that under the null hypothesis the model is unidentified, which
rules out tests based on estimated structural coefficients. Therefore the stan-
dard approach in applied work is to use informal checks. In this paper we
argue that in particular in macroeconometric studies it cannot be taken for
granted that the identification conditions are satisfied and therefore infor-
mal arguments may not be sufficient to actually ascertain identification of
the model. We point out, that formal statistical tests have to be used for
investigating identification and argue that the tests proposed by Lanne and
Saikkonen (2007) can be used for that purpose in the current SVAR setting.
We also construct an alternative test that can be used in this context. We
explore the small sample size and power properties of the alternative tests
when applied in the present situation. Given the relatively low power of the
tests in the present context, we discuss testing strategies that are informa-
tive on the issue of interest here, namely the identification of the structural
shocks.

The study makes the following contributions. First, we present the model
setup and clarify the identification conditions in such a way that we can use
the Lanne-Saikkonen and related tests for the present purpose. Second, we
provide three alternative tests that may be used to test the sufficient identifi-
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cation condition in the SVAR-GARCH context. We explore the small sample
properties of the tests in a Monte Carlo simulation experiment and derive
strategies for testing for identification in SVAR-GARCH models. Third, we
use these strategies in an empirical application investigating the importance
of U.S. monetary policy shocks for exchange rates. It is based on a study by
Bouakez and Normandin (2010) who also use the SVAR-GARCH approach
in their analysis but do not perform formal statistical tests for identification
of their shocks. We argue that there are no compelling reasons for taking
identification for granted in this particular framework and we present evi-
dence that in some of the models used by Bouakez and Normandin (2010)
it is indeed not supported by the data. We discuss the implications of these
findings for the effects of monetary policy on exchange rates.

The study is structured as follows. In Section 2 the model setup is pre-
sented and the formal identification conditions are stated. The statistical
tests for identification are discussed in Section 3 and the Monte Carlo ex-
periment investigating their small sample properties is reported in Section 4.
The empirical application is discussed in Section 5 and conclusions follow in
Section 6.

2 The Model

2.1 Reduced Form and Structural Form

The reduced form of our model is a K-dimensional vector autoregressive
(VAR) process,

yt = ν + Π1yt−1 + · · ·+ Πpyt−p + ut, (1)

where ν is a K-dimensional constant term, the Πj (j = 1, . . . , p) are (K×K)
coefficient matrices and ut is the serially uncorrelated error term with mean
zero and unconditional covariance matrix Σu.

The structural errors, denoted by εt, are obtained by a linear transforma-
tion from ut,

εt = B−1ut or ut = Bεt. (2)

Of course, the structural errors are also white noise and, hence, serially un-
correlated. In addition, they are assumed to be instantaneously uncorrelated
and their variances are standardized to unity, that is, εt ∼ (0, IK). Conse-
quently, the transformation matrix B must be such that BB′ = Σu.

The B matrix is the matrix of instantaneous effects of the structural
shocks on the observed variables yt. Uniqueness of the B matrix and, hence,
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identification of the shocks is often ensured by zero restrictions on B that
amount to specifying that specific shocks have only a delayed effect on some
of the variables. Such restrictions are quite common in a conventional SVAR
analysis. Alternatively, exclusion restrictions on the instantaneous relations
between the variables are sometimes imposed on B−1 in order to ensure
uniqueness of the matrix B. Restrictions on the long-run effects of the shocks
are also frequently used for identification. In any case, a uniquely identified
model requires a sufficient set of restrictions on B.

In structural VAR analysis the identifying restrictions are typically kept
to a minimum and are, hence, just-identifying at best. In that case they
cannot be tested against the data. In the following we take advantage of
conditional heteroskedasticity to obtain a unique B matrix or at least get
some additional identifying information that can be helpful in assessing con-
ventional identifying restrictions.

2.2 Identification via GARCH

Suppose ut has a GARCH structure so that

ut = B

[
Λ

1/2
t|t−1 0

0 IK−r

]
et, (3)

where the et are independently, identically distributed, i.e., et ∼ iid(0, IK),
and

Λt|t−1 =

 σ2
1,t|t−1 0

. . .

0 σ2
r,t|t−1

 (4)

is an (r× r) diagonal matrix with univariate GARCH processes on the diag-
onal. In other words, the distribution of ut conditional on past information
has mean zero and covariance matrix

Σt|t−1 = B

[
Λt|t−1 0

0 IK−r

]
B′.

Thus, the reduced form error GARCH structure is driven by r nontrivial
GARCH components. This setup explicitly allows for the possibility of hav-
ing fewer GARCH components than variables and, hence, accounts for the
fact that some variables used in VAR analysis may be conditionally ho-
moskedastic while others are conditionally heteroskedastic.
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To write down the GARCH components, we partition B = [B1 : B2] such
that B1 is (K × r) and B2 is (K × (K − r)) and let

A =

[
A1

A2

]
= B−1

be its inverse, partitioned such that A1 is (r×K) and A2 is ((K − r)×K).
Thus,

A1ut = Λ
1/2
t|t−1e1t and A2ut = e2t.

We assume that all the GARCH components are univariate GARCH(1,1)
processes, that is,

σ2
k,t|t−1 = (1− γk − gk) + γk(akut−1)

2 + gkσ
2
k,t−1|t−2, k = 1, . . . , r,

where ak is the kth row of A1 and γk > 0, gk ≥ 0, γk + gk < 1 so that the
GARCH(1,1) processes are nontrivial for k = 1, . . . , r.

Sentana and Fiorentini (2001) and Milunovich and Yang (2013) show
that if r ≥ K− 1, the matrix B is unique up to permutations of the columns
and column sign changes. Thus, the objective is to determine the number
r of GARCH components. If it turns out to be at least K − 1 then the
GARCH structure delivers fully identified structural shocks. Of course, in the
present context, full identification means full local identification because the
shocks are identified only up to sign changes and ordering. Therefore we use
the terminology ‘full identification’ rather than the more conventional ‘just-
identification’. Notice that global identification can be achieved by fixing
the sign of one element in each column of B and by ordering the shocks in
some unique way. The standardization of the signs means that the signs of
shocks hitting the system are specified and the ordering has to be done by
the analyst who has to decide where to position, for example, the monetary
policy shock. Thus, this type of local identification is all we need for the
present purposes. In the related literature sometimes the restrictions are
imposed on B−1. Often the uniqueness conditions include normalizing the
main diagonal elements of this matrix to one (see, e.g., Milunovich and Yang
(2013)).

Under our assumptions, the unconditional covariance matrix of ut is

Σu = BB′.

Following Lanne and Saikkonen (2007) we use a polar decomposition of B =
CR, where C is a symmetric, positive definite (K×K) matrix and R = [R1 :
R2] is an orthogonal (K×K) matrix partitioned conformably with B so that
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Bi = CRi, i = 1, 2. Thus, BB′ = CC so that C = Σ
1/2
u is the unique square

root matrix of Σu. The conditional covariance matrices can be written as

Σt|t−1 = Σu + CR1(Λt|t−1 − Ir)R′1C

and

u′tΣ
−1
t|t−1ut = u′tΣ

−1
u ut + u′tC

−1R1(Λ
−1
t|t−1 − Ir)R

′
1C
−1ut.

Thus, the Gaussian log-likelihood function of the model is

logL =
T∑
t=1

log ft|t−1(yt)

with

ft|t−1(yt) = (2π)−K/2 det(Σt|t−1)
−1/2 exp

(
−1

2
u′tΣ

−1
t|t−1ut

)
= (2π)−K/2 det(Σu)

−1/2 exp

(
−1

2
u′tΣ

−1
u ut

) r∏
k=1

σ−1k,t|t−1

× exp

(
−1

2
u′tC

−1R1(Λ
−1
t|t−1 − Ir)R

′
1C
−1ut

)
.

Obviously, the log-likelihood depends on ν,Π1, . . . ,Πp, C, R1, and the GARCH
parameters only, and not on R2. This is important because, if there are just
r GARCH components, R2 is not identified.

Estimation of high dimensional multivariate GARCH models by numeri-
cal optimization is time-consuming. Luckily the log-likelihood function fac-
tors into two parts: (i) a function of C, and (ii) a function of C, R1 and
Λt|t−1, such that one may break down the estimation in two main steps.
First, C is obtained as the unique square root of Σu, which is estimated as
a sample covariance matrix. Second, conditional on the estimated C, the
rows of R1 and the GARCH equation parameters are estimated separately
for k = 1, . . . , r. In fact, each equation k + 1 is estimated conditionally on
the previously estimated equation k. The exact procedure by which this is
accomplished is described in Section 4 of Lanne and Saikkonen (2007). Al-
though this approach is inefficent, it allows for relatively quick estimation
of large systems and yields consistent estimates which may be used in the
identification tests described next.
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3 The Identification Tests

Lanne and Saikkonen (2007) propose two different types of test statistics for
testing hypotheses regarding the number of GARCH components r. Both test
statistics can be viewed as LM type statistics because they require estimation
only under H0 : r = r0. The latter fact is important because otherwise
potentially unidentified models have to be estimated. The parameters of a
model with given r are estimated by ML or some other, possibly less efficient
procedure that provides estimators of C and R1 with

√
T convergence rate.

We denote the estimators by C̃ and R̃1, respectively, and define

R̃2 = R̃1⊥(R̃′1⊥R̃1⊥)−1/2,

where R̃1⊥ denotes an orthogonal complement of R̃1, and

Ã2 = R̃′2C̃
−1.

Recall that if B is not identified, the same is true for B−1. In that case Ã2

estimates some linear combination of the last K−r rows of B−1. However, if
A2ut does not have GARCH, the same is true for any linear transformation.
Hence, we estimate A2ut by Ã2ut and base a test of H0 : r0 = r on this
quantity because under this null hypothesis A2ut has no GARCH. In the
following we continue to use the symbol ut for the residuals of the VAR model
for simplicity. In practice they are, of course, replaced by the residuals from
estimating the reduced-form VAR(p) in (1).

Following an idea of Ling and Li (1997), Lanne and Saikkonen (2007)
propose a test statistic based on the autocovariances of quantities

ξt = u′tÃ
′
2Ã2ut − T−1

T∑
t=1

u′tÃ
′
2Ã2ut.

More precisely, they consider the test statistic

Q1(H) = T

H∑
h=1

[γ̃(h)/γ̃(0)]2 (5)

and show that it is asymptotically χ2(H) distributed if the null hypothesis
is true. Here

γ̃(h) = T−1
T∑

t=h+1

ξtξt−h.
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As mentioned before, the ut are replaced by estimated VAR residuals in
practice. For our purposes a critical question is what are the actual small
sample size and power properties when these tests are applied to macro data,
for example.

Lanne and Saikkonen (2007) also propose another test based on the au-
tocovariance matrices of the quantities

ϑt =vech(Ã2utu
′
tÃ
′
2)− T−1

∑T
t=1vech(Ã2utu

′
tÃ
′
2),

where vech denotes the half-vectorization operator that stacks the elements
of a symmetric ((K − r) × (K − r)) matrix from the diagonal downwards
in a 1

2
(K − r)(K − r + 1)-dimensional column vector. In this case, the test

statistic has the form

Q2(H) = T
H∑
h=1

tr[Γ̃(h)′Γ̃(0)−1Γ̃(h)Γ̃(0)−1], (6)

where

Γ̃(h) = T−1
T∑

t=h+1

ϑtϑ
′
t−h for h = 0, 1, . . . ,

and Γ̃(h) = Γ̃(−h)′ for h < 0. Lanne and Saikkonen (2007) show that this
statistic has an asymptotic

χ2
(
1
4
H(K − r)2(K − r + 1)2

)
distribution under H0.

A related test statistic is obtained by using the usual multivariate ARCH
LM test based on the auxiliary model

ηt = δ0 +D1ηt−1 + · · ·+DHηt−H + ζt, (7)

where ηt = vech(Ã2utu
′
tÃ
′
2), δ0 is a 1

2
(K − r)(K − r + 1)-dimensional fixed

vector, the Di, i = 1, . . . , H, are (1
2
(K−r)(K−r+1)× 1

2
(K−r)(K−r+1))

parameter matrices and ζt is an error term. The standard LM statistic for
testing the null hypothesis

H0 : D1 = · · · = DH

is

LM(H) = 1
2
T (K − r)(K − r + 1)− T tr[Σ̃ζΓ̃(0)−1], (8)
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where Σ̃ζ is the estimated residual covariance matrix from model (7) (see
Doornik and Hendry (1997)). Just like Q2(H), this test statistic is used with
critical values from a

χ2
(
1
4
H(K − r)2(K − r + 1)2

)
distribution. An F version,

FARCH(H) = LM(H)/[1
4
H(K − r)2(K − r + 1)2],

to be used with critical values from an

F (1
4
H(K − r)2(K − r + 1)2, T )

distribution was also proposed (see Lütkepohl (2004)). For the present pur-
poses SVAR-GARCH models can only be used when large sample sizes T
are available. For such sample sizes the differences between the χ2 and F
versions of the LM statistic should be minor. We have confirmed that with
simulations related to those reported in the next section. Therefore we focus
on the χ2 version in the following. Clearly, the large number of degrees of
freedom in these tests make them most attractive for small H and we will use
H = 1 exclusively. If there is higher order ARCH, then there are typically
also first order effects that can be captured by using H = 1.

For our purposes tests of the null hypothesis H0 : r = K − 2 are of
particular interest because rejecting it and finding that the true rank is at
least K−1 implies full identification of the structural shocks via the GARCH
structure. Any conventional restrictions, for example, zero restrictions on the
instantaneous effects matrix B, then become over-identifying even if they are
just-identifying in a conventional framework. In the next section we explore
the small sample properties of the alternative test statistics with a special
focus on testing H0 : r = K − 2.

4 Monte Carlo Investigation of the Tests

4.1 Monte Carlo Design

We assess the finite sample performance of the previously discussed tests by
conducting Monte Carlo simulations of three- and five-dimensional processes,
that is, K = 3 or 5. The objective is to see which one of the tests is best
suited for investigating identification in SVAR models. Three sample sizes
of T = 300, 700, and 1500 observations are used. For a limited set of Monte
Carlo designs we also considered the sample size T = 5000 to get a better

9



insight into the convergence to the asymptotic properties of the tests. We
do not report the results for T = 5000 but refer to them where appropriate.
Each experiment consists of 2000 replications.

All data generating processes (DGPs) are VAR(0) specifications, that is,
we focus only on the innovations. They are generated as follows:

1. Independent random variables are drawn from a standard normal dis-
tribution and stacked into the vector et = (e1,t, . . . , eK,t)

′.

2. GARCH processes are generated as

σ2
k,t|t−1 = (1− γ − g) + γε2k,t−1 + gσ2

k,t−1|t−2,

where εk,t = ek,tσk,t|t−1 for k = 1, . . . , K. In other words, all GARCH
components have the same parameter values in a particular design.
Four sets of GARCH parameters are used:

(γ, g) = (0.05, 0.65), (0.10, 0.70), (0.15, 0.75), (0.17, 0.80).

Notably the last two sets of parameter values result in rather persistent
processes as they are occasionally observed in practice.

3. A sequence of Λ
1/2
r,t|t−1 is generated as Λ

1/2
r,t|t−1 = diag(σ1,t|t−1, . . . , σr,t|t−1)

for r = 1, . . . , K.

4. A sequence of data vectors u
(r)
t = (u

(r)
1,t , . . . , u

(r)
K,t)

′ is computed according
to equation (3) using each Λr,t|t−1 from Step 3, and the B matrix given
by2

B =


0.9 0.6 −1.1 0.1 −1.2
−0.7 1 0.7 0.7 0.7
−1.5 −0.5 1.2 −1.2 −0.4

0.4 0.5 −0.2 0.5 0.4
−0.5 1 0.5 0.9 1


for 5-dimensional processes and its upper left-hand (3 × 3) submatrix
for 3-dimensional processes.

For each data set u
(r)
t , r = 1, . . . , K, we compute the test statistics Q1(1),

Q2(1), and LM(1) as given in (5), (6), and (8), respectively. We follow Lanne
and Saikkonen (2007) in setting H = 1 when computing the test statistics.
With this choice, even higher order ARCH effects can be picked up as long
as they induce first order autocorrelation in the squared residuals.

2The elements of B are chosen arbitrarily but such as to ensure a range of nonzero
instantaneous effects of the shocks on the variables and invertibility of the matrix.
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4.2 Size and Power for Three-dimensional Processes

We consider the size and power of the tests by computing the rejection fre-
quencies using the asymptotic χ2 distributions discussed in Section 3, and
nominal sizes of 10% and 5%. Table 1 reports the estimated test sizes for
the three-dimensional processes, calculated as relative rejection frequencies
of the true null hypothesis.

The results in Table 1 show that the rejection frequencies depend on the
sample size, the GARCH parameters and the number r of actual GARCH
components in the process. In particular, we note the following:

• For testing H0 : r = 1, the Q1(1) and Q2(1) tests tend to reject more
often than specified by the nominal size. The tendency does not disap-
pear in Table 1 with increasing sample size. Thus, even for T = 1500
the tests tend to over-reject. We therefore explored the situation with
even larger samples and a subset of DGPs and found that even for
T = 5000 there is a slight tendency to over-reject. The rejection fre-
quencies do not increase with the sample size as can be conjectured
from Table 1. However, the asymptotic χ2 distribution appears to be
a good finite sample approximation for very large samples only.

• For H0 : r = 1, Q2(1) tends to be slightly more liberal than Q1(1), that
is, Q2(1) tends to reject more often than Q1(1). Since both tests have
a tendency to over-reject in most cases, Q1(1) is somewhat preferable
to the multivariate test version Q2(1) judging only by the test sizes.

• The Q1(1) and Q2(1) tests are identical except for rounding error if
K− r = 1. Thus, not surprisingly, the rejection frequencies for the two
tests are almost identical for testing H0 : r = 2.

• The rejection frequencies for the LM(1) test tend to be lower than
those of the Q1(1) and Q2(1) tests. As a consequence, LM(1) is the
most conservative test in situations where the rejection frequencies are
below the nominal sizes and its tendency for over-rejection is smaller
in cases where the tests reject too often.

• The rejection frequencies depend on the GARCH parameters but are
not monotone with respect to the persistence (measured by γ + g) of
the processes. For example, looking at the results for a nominal size of
10% and a sample size of T = 700, all tests reject most often for the
intermediate parameters (γ, g) = (0.10, 0.70).

Summarizing the results for the test sizes, all three tests do not distort the
size dramatically for large samples. Since the multivariate test version Q2(1)
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tends to over-reject more than Q1(1) the latter test is slightly preferable to
the former. A good balance between over- and under-rejection is achieved
with the LM(1) test.

Of course, the size of a test is just one criterion. Therefore we present
power results in Table 2. With respect to the issue of identification the
question of primary importance is if there are more than K − 2 GARCH
components. in that case the structural shocks are fully identified via the
volatility structure. Therefore we present results for the null hypothesis
H0 : r = 1(= K − 2) in Table 2. Rejecting the null hypothesis implies that
full identification is found. The following results can be deduced from Table
2:

• Not surprisingly, those tests that over-reject (that is, those tests that
actually have a larger size than the nominal one) also tend to reject
more often when the null hypothesis is false and, hence, they have
seemingly more power. In particular, Q2(1) rejects more often than
Q1(1) which in turn tends to reject more than LM(1).

• The power of all three tests tends to increase with the persistence (γ+g)
and is rather low for processes with low persistence (small γ+ g). This
can be seen in Table 2 for GARCH parameters (γ, g) = (0.05, 0.65)
and (γ, g) = (0.10, 0.70). For the first set of parameters the power
is even low for the largest sample size T = 1500. Thus, using these
tests it is quite possible to miss a GARCH component that has low
persistence. In practice, however, quite persistent processes are often
observed which is good news for the power of the tests.

• The power increases with the sample size and the number of GARCH
components for all three tests. Q2(1) retains higher rejection frequen-
cies than Q1(1) even in the samples of T = 1500 observations for most
null hypotheses.

Thus, overall for three-dimensional processes there is not much to choose
between the tests for our purposes. In terms of meeting the nominal size,
Q1(1) and LM(1) have advantages whereas Q2(1) rejects more often when the
alternative is true. The latter result has to be qualified, however, because we
are not considering size-adjusted rejection frequencies and Q2(1) often over-
rejects under H0. Of course, the small sample properties of the tests may
well depend on the dimension of the process as well. Therefore we present
results for five-dimensional processes next.
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4.3 Size and Power for Five-dimensional Processes

Relative rejection frequencies of the tests for five-dimensional processes are
presented in Tables 3 and 4. Because the critical question for full identifica-
tion of the shocks for a five-dimensional process is whether there are at least
four GARCH components, we focus on tests of the null hypothesis H0 : r = 3.
If that hypothesis is rejected and the true number of GARCH components
r > 3, then we have full identification. Thus, to avoid sequential testing, one
may be inclined to focus only on this null hypothesis in the present context.
In Tables 3 and 4 relative rejection frequencies are presented for true numbers
of GARCH components of r = 1, . . . , 5. Thus, the tables give an impression
of test sizes in small samples for r = 3 and of test power for r = 4 and 5.
For r = 1, 2 we now look at situations where the true number of GARCH
components is smaller than the one specified under H0.

In Table 3 we present results for processes with lower persistence [(γ, g) =
(0.05, 0.65) and (0.10, 0.70)] while rejection frequencies for more persistent
processes [(γ, g) = (0.15, 0.75) and (0.17, 0.80)] are given in Table 4. The
following observations emerge from the tables:

• In general LM(1) has lower rejection frequencies than Q1(1) which in
turn tends to reject less frequently than Q2(1). In particular, for small
samples of T = 300 this ordering is not always valid, however. For
situations where the true r is lower than specified in H0 (r = 1 or
2) the LM(1) test tends to reject less frequently than the correspond-
ing nominal sizes indicate. Thus, Q1(1) and Q2(1) come closer to the
nominal sizes for these cases. On the other hand they tend to over-
reject when the null hypothesis is true, that is, r = 3. They also reject
more frequently for r > 3 and thus have power greater than LM(1) in
most cases. Note, however, that this is not size-adjusted power and is
hence not surprising given the higher rejection frequencies for true null
hypotheses.

• Comparing only Q1(1) and Q2(1) it appears again that the former has
some advantages in terms of keeping the size. One may in fact prefer
Q1(1) over Q2(1) because of its better size properties. This result is
analogous to the three-dimensional case.

• The low power for GARCH processes with lower persistence in Table
3 is quite striking. In particular, for (γ, g) = (0.05, 0.65) in Table 3,
the power remains low even for larger samples of size T = 1500. The
chances to find the GARCH components are low if they are not very
persistent. For more persistent processes the problem is alleviated, as
can be seen in Table 4.

13



4.4 Estimating the Number of GARCH Components

So far we have focussed on testing for full identification. If the tests do
not support full identification, then one may want to explore the number of
GARCH components and test sequentially larger numbers r starting with
H0 : r = 1. The procedure stops when a given null hypothesis cannot be
rejected. Thereby we get an estimate of the number of GARCH components.
Even if the number is smaller than K − 1, that can be useful information
because even a smaller number of GARCH components provides some iden-
tifying information. We will now explore the ability of the tests to estimate
the true number of GARCH components in such a sequential procedure.

We use a constant significance level of 5% for all tests.3 Tables 5 and 6
display relative frequencies of the numbers of GARCH components estimated
in this way for five-dimensional processes with GARCH parameters (γ, g) =
(0.1, 0.7) and (γ, g) = (0.17, 0.80), respectively, and three sample sizes, T =
300, 700, 1500. Thus, in Table 5 we consider processes for which the power of
the tests is relatively low whereas it is a bit higher for the processes in Table
6.

Considering the diagonal entries across all panels of Table 5, we observe
that overall Q2(1) outperforms Q1(1) and LM(1) in terms of estimating the
true number of GARCH components correctly. In fact, sometimes Q2(1)
chooses the correct number of GARCH components more than twice as often
as Q1(1) and it is also considerably superior to LM(1). The latter criterion
clearly outperforms Q1(1). It cannot be overlooked however, that all three
criteria are doing poorly in finding the right model if the sample size is
small (T = 300) or even moderate (T = 700). Even for the largest sample
size (T = 1500) they are not very reliable in finding the correct number
of GARCH components if that number is greater than 1. For sample sizes
T = 700 and 1500, there appears to be a U-shaped pattern in the frequencies
across diagonal entries, with the best outcomes reached for r = 1 and 5
GARCH components, and the worst for r = 2, 3 or 4.

All numbers below the diagonals in the panels of Table 5 are remarkably
close to zero. Thus, all three testing procedures rarely over-estimate the true
number of GARCH components. In contrast, under-estimating r is quite
common, as can be seen by looking at the above-diagonal elements in all
panels of Table 5.

If the persistence of the GARCH components increases, the ability of the
three testing procedures to locate the correct model increases substantially,

3 A sequential procedure such as the one used here estimates the true number of
GARCH components consistently provided the significance level αT is adjusted with in-
creasing sample size such that limT→∞

logαT

T = 0, as discussed in Hosoya (1989).
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as can be seen in Table 6. Even there the performance of the procedures is far
from satisfactory for samples as small as T = 300 observations. For example,
for T = 300, Q1(1), Q2(1), and LM(1) find a correct number of 4 GARCH
components in 11.4%, 25.0%, and 14.4%, respectively, of the replications of
our simulation experiment. The corresponding numbers for T = 1500 are
93.0%, 94.1%, and 93.6%, respectively, and, thus, are substantially better.
Notice, however, that even in Table 6 the above-diagonal elements of the
panels tend to be markedly larger than the below-diagonal elements for sam-
ples smaller than T = 1500. Hence, under-estimation of the true number of
GARCH components is more common than over-estimation of r.

Overall these results reflect the poor power of the tests for processes with
low persistence in the GARCH structure. Also, the preferable performance of
Q2(1) is driven by its tendency to over-reject. Hence, it is effectively working
with a different significance level and, thus, the larger number of rejections,
which in turn imply larger estimated values of r, is no surprise. In fact, the
results indicate that using a larger significance level for the tests may result
in larger probabilities to find the correct number of GARCH components.

We have also performed simulations with processes with even lower per-
sistence [(γ, g) = (0.05, 0.65)] and with (γ, g) = (0.15, 0.75) to confirm that
the results are in line with those for the processes shown in Tables 5 and 6.
As expected, the performance of the testing procedures is worst for the pro-
cess with least persistence and they have the highest probability of finding
the correct number of GARCH components for the most persistent process.
Therefore we do not present tables with detailed results.

Thus, the overall picture evolving from the simulations based on five-
dimensional DGPs is similar to the three-dimensional case. In other words,
LM(1) has lower rejection frequencies than Q1(1) which in turn rejects less
frequently than Q2(1). Since the tests tend to over-reject, this gives a slight
advantage to LM(1) in terms of precision in meeting the nominal test size.
In turn, LM(1) is somewhat conservative in many situations and therefore
its power is also somewhat lower than that of the other two tests. The most
liberal test based on Q2(1) has the best chances of finding the correct number
of GARCH components in the sequential testing procedure. Since none of the
three tests is uniformly superior, it is perhaps best to perform different tests
and keep their small sample properties in mind when interpreting the results.
Given the generally low power of the tests it can be concluded that rejecting
under-identified models is strong evidence against them and in favour of full
identification if that is the alternative.
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5 An Application

We apply the above discussed tests to investigate identification of the SVAR-
GARCH models used in a recently published paper by Bouakez and Nor-
mandin (2010) who examine the importance of U.S. monetary policy shocks
for exchange rate dynamics. We use this example as an illustration of our
tests and their implications for structural analysis. We are fully aware that
the example system has features that are not covered by the previous anal-
ysis. For example, the VAR processes for our example systems may have
unit roots. We ignore such additional complications and focus on the struc-
tural identification issues. Clearly, Bouakez and Normandin (2010) perform
a much richer economic analysis that we do not question with our investiga-
tion.

The baseline model is 8-dimensional. It includes variables of a stan-
dard U.S. monetary system for identifying the monetary policy shocks and
variables representing the foreign exchange market of a number of countries.
More precisely, they use the following variables for the U.S. and G7 countries:

qt – log of U.S. industrial production index,

pt – log of U.S. consumer price index,

cpt – log of world export commodity price index,

nbrt – log of U.S. nonborrowed reserves,

trt – log of U.S. total reserves,

fft – federal funds rate,

drt – difference between foreign short-term interest rate and U.S. three-
months Treasury Bill rate,

ext – log of exchange rate (U.S. dollars per one unit of foreign currency).

Conventional identification restrictions are often imposed on B−1 in the set-
ting B−1ut = εt, where ut = (uq,t, up,t, ucp,t, unbr,t, utr,t, uff,t, udr,t, uex,t)

′ and
εt is an 8-dimensional vector of structural shocks. Different sets of con-
ventional identifying restrictions on B−1 are reviewed by Bouakez and Nor-
mandin (2010). They summarize them in three groups:

Equilibrium restrictions: Based on Bernanke and Mihov (1998) the model
for the market for bank reserves being in equilibrium implies restric-
tions on B−1.
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Targeting restrictions: Depending on which monetary targeting indica-
tor is used, competing sets of restrictions are imposed to specify the
targeting variable of the monetary authority.

Orthogonality restrictions: The policy variables nbrt, trt, fft, drt, ext are
restricted to have no contemporaneous effect on the goods variables
qt, pt, cpt. Moreover, the Fed is assumed to respond with a delay to
changes in the interest rate differential and exchange rates. Hence, the
instantaneous effects of drt and ext on nbrt, trt, and fft are restricted
to zero.

Bouakez and Normandin (2010) use the GARCH setup to investigate the
validity of these sets of conventional restrictions. Specifically, they con-
sider monthly observations for periods 1982:11 - 1998:12 for the euro area
countries France, Italy, and Germany and for 1982:11 - 2004:10 for the re-
maining countries, Canada, Japan, and UK. They fit VAR(6) models with
seven GARCH(1,1) components and argue that their models fully identify
the shocks.

Their argument in favour of having a fully identified model relies on a
criterion given by Sentana and Fiorentini (2001). These authors define the
(T ×K) matrix Γ such that its kth column consists of the conditional vari-
ances of the kth structural shock, (σ2

k,1|0, . . . , σ
2
k,T |T−1)

′, and show that full
identification is equivalent to Γ′Γ having full rank. Bouakez and Normandin
(2010) do not check the rank of the actual matrix Γ′Γ but replace the true
conditional variances by estimated quantities. They find that the estimated
matrix has full rank. However, a formal statistical test of the rank condition
would have to test the rank of the true underlying Γ matrix so that their
rank check is not a formal statistical test. In fact, estimating the elements of
a reduced-rank matrix unrestrictedly typically results in a full rank matrix
even if the true matrix of interest has reduced rank, see e.g. Cragg and Don-
ald (1997). Thus, a formal statistical test is called for. It can be performed
as discussed in the previous sections and we will return to that shortly.

Before we perform formal identification tests it may be worth pointing
out some conclusions drawn by Bouakez and Normandin (2010). Under the
assumption of fully identified shocks via the GARCH structure the equilib-
rium, targeting, and orthogonality restrictions are over-identifying, of course,
and, hence, can be tested against the data. They find that the equilibrium re-
strictions cannot be rejected for any of the six G7 countries considered while
the targeting and orthogonality restrictions are rejected for all countries.

Because these results rest on the assumption of full identification via the
GARCH structure we will now apply our tests to explore this condition. No-
tice that for some but not for all of the variables included in the models
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GARCH errors are quite plausible. In particular, GARCH is often found
in financial market variables observed at monthly frequency. On the other
hand, one would not necessarily expect GARCH in variables such as indus-
trial production (qt) or the consumer price index (pt). In fact, many of the
estimated GARCH parameters in Table 1 of Bouakez and Normandin (2010)
are not significant in the sense that they are smaller than twice their stan-
dard errors. Thus, one may wonder about the validity of the identification
conditions for the shocks.

We use the same data and models and apply our three tests for the
number of GARCH components.4 Estimation is done by the Gaussian ML
procedure discussed in Section 2.2 in Ox 7.0, using the MaxSQP function,
which implements a sequential quadratic programming technique to maxi-
mize a non-linear function subject to non-linear constraints. The non-linear
constraints are introduced by the sequential estimation of the columns of R1

and the GARCH parameters. Prior to the maximization of the log-likelihood
function, a VAR(6) model is fitted by OLS for each country and the resid-
uals are then used in the subsequent analysis. The resulting p-values are
presented in Table 7 together with the estimated persistences of the GARCH
components. Recall that for full identification we have to have more than 6
GARCH components. Hence we should reject H0 : r = 6. Looking at the cor-
responding p-values based on the asymptotic χ2 distributions in Table 7 it is
clear that all tests for all countries except for Japan result in p-values that do
not justify rejection of the null hypothesis at conventional significance levels.
In particular, all p-values are greater than 10%. The single exception is the
model for Japan for which Q1(1) has a p-value of 0.047 and also the p-values
of LM(1) and Q2(1) are around 5%. Thus, only for Japan more than six
GARCH components can be justified on the basis of our tests. Taking into
account the low power of the tests, the result for Japan can in fact be seen
as strong evidence in favour of full identification. Of course, the low power
of the tests may also be used as an argument in favor of larger significance
levels. Indeed the p-value of a Q1(1) test of H0 : r = 6 for Germany is just a
little larger than 10%. Hence, one could also argue that there is evidence of
full identification for Germany.

In Table 7 we present p-values for null hypotheses ranging from r = 1 to
r = 7 and it turns out that only rather small numbers of GARCH compo-
nents can be justified by our test results for most countries. For example,
H0 : r = 4 is not rejected for Canada while H0 : r = 3 is not rejected for
France and Italy at conventional significance levels. Considering the proper-
ties of the tests it may also be worth pointing out that some of the estimated

4We thank Hafedh Bouakez for providing the data.
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GARCH components in the models underlying the test results are highly
persistent with estimated γ + g > 0.9. The estimated persistence of the rth
GARCH process for each of the models is also reported in Table 7. Since
the estimated GARCH components are not updated when r increases, the
persistence of all the estimated GARCH components is in fact seen in Table
7. For example, the two GARCH components for France for r = 2 have
persistence γ1 + g1 = 0.986 and γ2 + g2 = 0.990. Given the size of these per-
sistence estimates and based on our simulation results one would expect to
have a chance to find more GARCH components if they are actually driving
the volatility in the DGPs. On the other hand, the sample sizes are even
smaller than in the Monte Carlo simulations and we know from the simula-
tions that the tests may not have much power for small samples. Despite this
limitation of the tests they clearly cannot be used to support the assumption
of full identification via the GARCH structure for most of the countries, the
exceptions being Japan and perhaps Germany.5

Therefore it may be worth discussing the implications of not having full
identification. First, given that there are some GARCH components in all of
the country models, there is some identifying information from the GARCH
structure. Hence it is not surprising that some of the conventional restric-
tions are rejected by Bouakez and Normandin (2010). In other words, even
without full identification there is enough curvature in the likelihood to re-
ject the targeting and orthogonality restrictions. These rejections are clear
evidence against the targeting and orthogonality restrictions even without
a fully identified model. On the other hand, not rejecting the equilibrium
restrictions may just be a consequence of lack of identification and, hence,
lack of sufficient curvature in the likelihood.

Since the equilibrium restrictions were not rejected, Bouakez and Nor-
mandin (2010) use them in an impulse response analysis based on a B matrix
which is otherwise identified by the GARCH structure. Even with the equi-
librium restrictions imposed the shocks will not be unique without additional
restrictions from the GARCH structure, of course. Given that the GARCH
structure is not economically motivated, it is not clear that the shocks ob-

5Since our tests have little power in small samples, we have extended the samples for
Canada, Japan, and the UK to May 2013. Also for the extended samples seven GARCH
components are not supported for Canada and the UK while for Japan the evidence in
favour of more than six GARCH components vanishes. More precisely, the p-values for
H0 : r = 6 increase above 50% for Japan. This may be partly due to the fact that the
extended data series are not identical to those used in the original study by Bouakez and
Normandin (2010). Therefore we do not report detailed results. For France, Germany,
and Italy an extension of the sample size is not possible because the currencies ceased to
exist in 1999 when the euro replaced them.
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tained in this way correspond to meaningful economic shocks. Under the
assumptions of Bouakez and Normandin (2010), the GARCH structure iden-
tifies not only one shock and the problem arises which one of the shocks
deserves the label ‘monetary policy shock’. They make the choice on the ba-
sis of assumptions on the Fed’s feedback rule and find that the responses to
monetary policy shocks obtained in their setting are quite different from what
is reported in other studies based on conventional identifying restrictions.

If, however, their assumption of having fully identified shocks via the
GARCH structure is incorrect, then not rejecting the equilibrium restric-
tions may just be a consequence of lack of identification and imposing the
restrictions may be as problematic as in a conventional setting. Moreover,
without fully identified shocks via GARCH, it is not clear whether the im-
pulse responses depicted in Figures 2 and 3 of Bouakez and Normandin (2010)
reflect realistically what is going on in the economy and in particular in the
exchange market. Thus, their conclusion that an expansionary monetary pol-
icy shock leads to a ‘delayed overshooting of the nominal exchange rate, with
a peak occurring at around 10 months after the shock and to large deviations
from UIP’ [uncovered interest rate parity] (p. 152) is on firm grounds only
for the Japanese and perhaps the German system. For all other systems the
situation is much less clear in the light of the problematic identification as-
sumptions. Even the Japanese and German cases rest on the assumption that
none of the other shocks qualifies as a monetary policy shock which cannot
be concluded from the identifying information obtained from the GARCH
structure alone.

6 Conclusions

This study contributes to the growing literature on identification of struc-
tural shocks in SVAR analysis via changes in volatility. We consider GARCH
models for the changes in volatility and argue that formal statistical tests for
identification are important in this context while informal criteria that have
been used in the past are in general insufficient. We point out that tests
proposed by Lanne and Saikkonen (2007) are suitable for testing for identi-
fication in the present context and we explore their small sample properties
and compare them to another test we consider as a plausible alternative.
We find that the small sample properties of all three tests compared in our
simulation study depend on the sample size, the persistence properties and
structure of the underlying GARCH process. In small samples they may all
have relatively little power and tend to favour under-identified models over
fully identified models. Given their dependence on unknown properties of the
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DGP and the fact that none of them is uniformly dominating its competi-
tors, it may be a good strategy to apply all of them. Since they all have low
power, if they reject an under-identified model in favour of a fully identified
model this is strong evidence of having full identification in samples of the
size typically available in macroeconometric studies.

We have reconsidered a study investigating the effects of U.S. monetary
policy on exchange rates for which the SVAR-GARCH approach to identi-
fication of structural shocks has been used. We argue that variables such
as industrial production and the consumer price index may not have inde-
pendent GARCH components. Hence, using them in a VAR system may
result in GARCH residuals that are driven by a smaller number of GARCH
components. This is precisely the situation where fully identified shocks are
not obtained from the GARCH structure. We apply our formal statistical
tests for identification. Depending on the significance level used, we confirm
full identification only for one or two out of six countries. To demonstrate
how the approach can be used in such a case we discuss in detail which of
the conclusions of the previous study can be maintained and which ones are
problematic. In particular, it is argued that the previous conclusions re-
garding the responses of the exchange rates to a monetary policy shock are
problematic if the shocks are not fully identified.
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Table 1: Estimated Sizes of the Tests for Three-Dimensional Processes

Nominal Size
GARCH 10% 5%
parameters H0 T LM(1) Q1(1) Q2(1) LM(1) Q1(1) Q2(1)
γ = 0.05 r = 1 300 0.073 0.100 0.110 0.044 0.054 0.063
g = 0.65 700 0.083 0.108 0.119 0.052 0.051 0.068

1500 0.110 0.124 0.149 0.062 0.066 0.097

r = 2 300 0.073 0.089 0.089 0.034 0.045 0.046
700 0.095 0.119 0.119 0.049 0.063 0.063
1500 0.101 0.133 0.133 0.058 0.072 0.072

γ = 0.10 r = 1 300 0.084 0.115 0.131 0.054 0.062 0.080
g = 0.70 700 0.104 0.125 0.139 0.072 0.068 0.097

1500 0.111 0.141 0.157 0.081 0.082 0.108

r = 2 300 0.083 0.096 0.096 0.048 0.060 0.060
700 0.099 0.127 0.127 0.066 0.079 0.079
1500 0.112 0.138 0.138 0.077 0.087 0.087

γ = 0.15 r = 1 300 0.087 0.111 0.125 0.056 0.061 0.076
g = 0.75 700 0.092 0.118 0.124 0.063 0.062 0.081

1500 0.083 0.122 0.119 0.049 0.059 0.070

r = 2 300 0.085 0.108 0.109 0.053 0.064 0.064
700 0.080 0.107 0.107 0.050 0.061 0.062
1500 0.082 0.103 0.106 0.046 0.055 0.055

γ = 0.17 r = 1 300 0.081 0.116 0.121 0.055 0.058 0.075
g = 0.80 700 0.081 0.120 0.113 0.052 0.061 0.071

1500 0.073 0.108 0.110 0.041 0.053 0.060

r = 2 300 0.092 0.110 0.111 0.050 0.061 0.061
700 0.072 0.094 0.095 0.045 0.054 0.054
1500 0.079 0.098 0.097 0.041 0.051 0.051
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Table 2: Estimated Powers of the Tests for Null Hypothesis H0 : r = 1 Based
on Three-Dimensional Processes

Nominal Size
GARCH 10% 5%
parameters true r T LM(1) Q1(1) Q2(1) LM(1) Q1(1) Q2(1)
γ = 0.05 2 300 0.098 0.126 0.135 0.063 0.069 0.089
g = 0.65 700 0.141 0.161 0.195 0.088 0.093 0.127

1500 0.230 0.225 0.303 0.157 0.149 0.211

3 300 0.124 0.162 0.170 0.083 0.099 0.112
700 0.229 0.275 0.293 0.164 0.191 0.211
1500 0.421 0.418 0.509 0.319 0.387 0.390

γ = 0.10 2 300 0.200 0.182 0.258 0.142 0.109 0.184
g = 0.70 700 0.406 0.345 0.478 0.325 0.254 0.384

1500 0.745 0.619 0.815 0.683 0.515 0.755

3 300 0.334 0.384 0.410 0.261 0.280 0.316
700 0.679 0.736 0.772 0.601 0.644 0.686
1500 0.949 0.964 0.981 0.922 0.940 0.959

γ = 0.15 2 300 0.410 0.387 0.494 0.334 0.297 0.404
g = 0.75 700 0.776 0.700 0.843 0.718 0.613 0.784

1500 0.974 0.956 0.992 0.963 0.924 0.987

3 300 0.674 0.703 0.764 0.602 0.625 0.693
700 0.962 0.981 0.992 0.950 0.967 0.984
1500 0.996 1.000 1.000 0.996 1.000 1.000

γ = 0.17 2 300 0.557 0.533 0.638 0.492 0.448 0.571
g = 0.80 700 0.920 0.892 0.958 0.898 0.853 0.937

1500 0.994 0.997 0.999 0.994 0.993 0.999

3 300 0.825 0.848 0.895 0.787 0.791 0.856
700 0.984 0.999 1.000 0.983 0.994 0.999
1500 0.995 1.000 1.000 0.995 1.000 1.000
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Table 3: Relative Rejection Frequencies of the Tests for Null Hypothesis
H0 : r = 3 Based on Five-Dimensional Processes with Low Persistence

Nominal Size
GARCH 10% 5%
parameters true r T LM(1) Q1(1) Q2(1) LM(1) Q1(1) Q2(1)
γ = 0.05 1 300 0.053 0.108 0.080 0.030 0.052 0.042
g = 0.65 700 0.060 0.095 0.082 0.035 0.050 0.047

1500 0.084 0.080 0.086 0.029 0.043 0.044

2 300 0.054 0.092 0.079 0.026 0.045 0.040
700 0.058 0.093 0.086 0.030 0.043 0.044
1500 0.077 0.111 0.112 0.042 0.063 0.065

3 (size) 300 0.056 0.092 0.087 0.033 0.043 0.046
700 0.071 0.091 0.111 0.041 0.044 0.062
1500 0.104 0.119 0.151 0.065 0.064 0.090

4 (power) 300 0.076 0.095 0.112 0.047 0.049 0.068
700 0.100 0.107 0.135 0.060 0.053 0.087
1500 0.139 0.156 0.201 0.086 0.085 0.130

5 (power) 300 0.072 0.100 0.109 0.044 0.050 0.063
700 0.129 0.137 0.177 0.074 0.084 0.110
1500 0.228 0.295 0.310 0.165 0.205 0.225

γ = 0.10 1 300 0.047 0.093 0.071 0.026 0.047 0.038
g = 0.70 700 0.058 0.098 0.089 0.036 0.047 0.050

1500 0.058 0.093 0.089 0.025 0.050 0.040

2 300 0.064 0.099 0.093 0.035 0.045 0.052
700 0.069 0.100 0.101 0.040 0.048 0.060
1500 0.062 0.092 0.094 0.035 0.052 0.051

3 (size) 300 0.087 0.103 0.120 0.055 0.052 0.073
700 0.100 0.123 0.141 0.063 0.072 0.091
1500 0.110 0.129 0.149 0.080 0.085 0.098

4 (power) 300 0.129 0.128 0.172 0.086 0.068 0.115
700 0.264 0.246 0.340 0.201 0.167 0.254
1500 0.601 0.517 0.701 0.531 0.416 0.618

5 (power) 300 0.193 0.214 0.249 0.141 0.141 0.182
700 0.492 0.548 0.584 0.401 0.458 0.492
1500 0.900 0.922 0.954 0.866 0.879 0.920
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Table 4: Relative Rejection Frequencies of the Tests for Null Hypothesis
H0 : r = 3 Based on Highly Persistent Five-Dimensional Processes

Nominal Size
GARCH 10% 5%
parameters true r T LM(1) Q1(1) Q2(1) LM(1) Q1(1) Q2(1)
γ = 0.15 1 300 0.054 0.098 0.081 0.026 0.044 0.041
g = 0.75 700 0.060 0.088 0.082 0.033 0.044 0.048

1500 0.059 0.101 0.088 0.031 0.052 0.050

2 300 0.059 0.106 0.090 0.035 0.049 0.052
700 0.067 0.104 0.104 0.038 0.051 0.057
1500 0.061 0.092 0.095 0.035 0.040 0.049

3 (size) 300 0.096 0.111 0.142 0.062 0.056 0.088
700 0.093 0.114 0.131 0.059 0.065 0.088
1500 0.078 0.108 0.106 0.051 0.065 0.068

4 (power) 300 0.268 0.247 0.346 0.207 0.171 0.268
700 0.690 0.605 0.769 0.619 0.512 0.700
1500 0.965 0.930 0.987 0.947 0.897 0.978

5 (power) 300 0.486 0.540 0.592 0.407 0.444 0.499
700 0.917 0.947 0.965 0.893 0.909 0.947
1500 0.996 1.000 1.000 0.995 0.999 1.000

γ = 0.17 1 300 0.051 0.107 0.078 0.024 0.057 0.035
g = 0.80 700 0.056 0.091 0.088 0.030 0.041 0.048

1500 0.055 0.094 0.082 0.023 0.044 0.043

2 300 0.061 0.097 0.092 0.030 0.046 0.049
700 0.063 0.096 0.101 0.034 0.050 0.054
1500 0.063 0.102 0.097 0.031 0.051 0.047

3 (size) 300 0.094 0.110 0.138 0.063 0.061 0.088
700 0.082 0.114 0.118 0.049 0.065 0.071
1500 0.067 0.096 0.096 0.038 0.055 0.056

4 (power) 300 0.421 0.390 0.510 0.348 0.305 0.440
700 0.873 0.837 0.923 0.834 0.774 0.889
1500 0.990 0.992 1.000 0.989 0.986 0.999

5 (power) 300 0.725 0.746 0.814 0.674 0.660 0.752
700 0.975 0.997 0.996 0.972 0.989 0.995
1500 0.997 1.000 1.000 0.997 1.000 1.000
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Table 7: p-Values for the Identification Tests Applied to the Data from
Bouakez and Normandin (2010)

H0 Test Canada France Germany Italy Japan UK

r = 1
LM(1) 0.000 0.001 0.000 0.024 0.000 0.011
Q1(1) 0.174 0.370 0.001 0.062 0.083 0.331
Q2(1) 0.000 0.001 0.000 0.012 0.000 0.001
γ1 + g1 0.986 0.983 0.983 0.990 0.990 0.989

r = 2
LM(1) 0.027 0.014 0.000 0.037 0.000 0.007
Q1(1) 0.183 0.457 0.005 0.049 0.000 0.311
Q2(1) 0.024 0.010 0.000 0.020 0.000 0.000
γ2 + g2 0.990 0.988 0.903 0.956 0.793 0.981

r = 3
LM(1) 0.027 0.874 0.000 0.223 0.004 0.009
Q1(1) 0.046 0.871 0.008 0.222 0.051 0.345
Q2(1) 0.029 0.821 0.000 0.137 0.001 0.001
γ3 + g3 0.792 0.671 0.814 0.882 0.984 0.528

r = 4
LM(1) 0.150 0.673 0.679 0.696 0.025 0.104
Q1(1) 0.139 0.467 0.412 0.353 0.050 0.180
Q2(1) 0.127 0.581 0.650 0.501 0.019 0.012
γ4 + g4 0.930 0.855 0.990 0.728 0.857 0.683

r = 5
LM(1) 0.390 0.948 0.475 0.665 0.008 0.429
Q1(1) 0.214 0.675 0.146 0.924 0.018 0.198
Q2(1) 0.335 0.917 0.447 0.607 0.006 0.088
γ5 + g5 0.207 0.912 0.963 0.985 0.952 0.984

r = 6
LM(1) 0.689 0.751 0.380 0.511 0.057 0.714
Q1(1) 0.617 0.712 0.105 0.320 0.047 0.161
Q2(1) 0.632 0.669 0.348 0.455 0.051 0.607
γ6 + g6 0.971 0.739 0.746 0.319 0.990 0.990

r = 7
LM(1) 0.528 0.941 0.488 0.200 1.000 0.204
Q1(1) 0.445 0.940 0.447 0.173 0.699 0.202
Q2(1) 0.448 0.940 0.448 0.173 0.699 0.206
γ7 + g7 0.194 0.900 0.392 0.579 0.246 0.363
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