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CHOICE-SET FORMS
ARE DUAL TO

OUTCOME-SET FORMS

Peter A. Streufert
Department of Economics

University of Western Ontario

Abstract. Alós-Ferrer and Ritzberger (2013) specify each node
in a game tree as the set of outcomes that yet remain conceiv-
able. In contrast, Streufert (2015a) specifies each node as the set
of choices that have already been made. This symmetry suggests
that the two formulations are “dual” in some sense.

In this paper I develop this duality. In particular, I define suit-
able conversion procedures, and show that there is a one-to-one
correspondence between choice-set forms and outcome-set forms.
The analysis encompasses discrete forms with finite or infinite hori-
zons.

1. Introduction

1.1. Motivation

Von Neumann and Morgenstern (1944, Sections 9 and 10) specify

each node in a game tree as a set of outcomes. Recently, this outcome-

set formulation has been insightfully extended to the infinite horizon

by the discrete extensive forms of Alós-Ferrer and Ritzberger (2013

henceforth AR). [The present paper always assumes discreteness. Still

more general outcome-set formulations that do not satisfy discreteness

are developed in Alós-Ferrer and Ritzberger (2005, 2008).]

Date: September 6, 2015. Keywords: extensive form, game form. JEL Clas-
sification: C72. Contact information: pstreuf@uwo.ca, 519-661-2111x85384, De-
partment of Economics, University of Western Ontario, London, Ontario N6A 5C2,
Canada.

I thank the referees for their helpful guidance. I also thank seminar par-
ticipants at Arizona State University, and conference partipants at the Midwest
Economic Theory Conference in Indianapolis.
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2 1. Introduction

In contrast, Streufert (2015a henceforth S1) specifies each node in

a game tree as a set of choices (i.e. agent-specific actions). These

choice-set forms appear to be “dual” to the outcome-set forms of AR.

Specifically, in a choice-set form, the initial node is the empty set.

Thereafter every node is a superset of its predecessors. Symmetrically,

in an outcome-set form, the initial node is the set of all conceivable

outcomes. Thereafter every node is a subset of its predecessors.

This paper develops this duality. Specifically, I show how to convert

a choice-set form into an outcome-set form. Then I show the senses

in which the original choice-set form and its conversion are equivalent.

Further, in the reverse direction, I show how to convert an outcome-

set form into a choice-set form. Then I show the senses in which the

original outcome-set form and its conversion are equivalent. Finally,

I demonstrate that these two conversion processes are inverses, and

consequently, that there is a meaningful one-to-one correspondence be-

tween choice-set forms and outcome-set forms. This duality is the main

result.

AR show that outcome-set forms cannot accommodate absent-mind-

edness. Similarly, S1 shows that choice-set forms cannot accommodate

absent-mindedness. These two facts accord with the above duality. In

contrast, absent-mindedness can be accommodated by the extensive

forms of Osborne and Rubinstein (1994 henceforth OR). Accordingly, I

show that OR forms without absent-mindedness, choice-set forms, and

outcome-set forms are all in one-to-one correspondence with one an-

other. This triple equivalence follows easily from a theorem of S1 and

the duality of this paper.

1.2. Overview

Section 2 sets the stage by recalling the definition of a choice-set

form from S1, and by recalling the definition of a concise AR∗ outcome-

set form from Streufert (2014b henceforth S2). S2’s theorems show

that concise AR∗ outcome-set forms and AR discrete extensive forms

are equally general (though the latter can specify simultaneous moves

without multiple information sets).

Section 3 defines two conversion procedures. The first converts a

no-trivial-move choice-set form into a concise AR∗ outcome-set form.

Essentially, the terminal choice-set nodes of the original form become
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the outcomes of the new outcome-set form. The second procedure con-

verts a concise AR∗ outcome-set form into a no-trivial-move choice-set

form. Essentially, the outcome-set choices in the original form become

the choices in the new choice-set form. The well-definition and attrac-

tive properties of these two procedures are established in Theorems 1

and 2, respectively.

Section 4 shows that the two procedures are inverses of one another.

The situation is complicated because both procedures agglomerate old

objects to define new objects. For instance, the first procedure uses

sets of choices to define outcomes, and the second procedure uses sets

of outcomes to define choices. I compose the two procedures in order

to prove that they are inverses. Accordingly, the first procedure fol-

lowed by the second procedure uses collections of sets of old choices

to define new choices. Yet, it turns out that this double procedure

merely renames the choices of the old choice-set form. Accordingly,

Theorem 3 defines as “equal” two choice-set forms that are equivalent

by renaming choices. Similarly, it defines as “equal” two concise AR∗

outcome-set forms that are equivalent by renaming outcomes. Then

it establishes a bijection, from the class of no-trivial-move choice-set

forms, onto the class of concise AR∗ outcome-set forms. In this precise

sense, choice-set forms are dual to outcome-set forms. This is the main

result.

Section 5 recalls S1’s result that the class of no-absent-minded OR

forms is in one-to-one correspondence with the class of choice-set forms.

That result and this paper’s Theorem 3 are two links in a triple equiv-

alence between no-absent-minded OR forms, choice-set forms, and AR∗

outcome-set forms. Corollary 5.1 combines the two to provide the

third link. In particular, it shows that the class of no-trivial-move no-

absent-minded OR forms is in one-to-one correspondence with the class

of concise AR∗ outcome-set forms. The generality of the former relative

to the latter is a secondary contribution of this paper.

2. Setup

Section 2.1 summarizes the relevant material from S1 about choice-

set forms. Then Section 2.2 summarizes the relevant material from

S2 about concise AR∗ outcome-set forms. Finally Section 2.3 discusses

some of the similarities between the two.
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2.1. Choice-set forms

Let C be an arbitrary set, and call a member c of the set C a choice.

A choice-set preform (S1 equation (8)) is a pair (C,N) such that

N is a nonempty collection of subsets of C ,(1a)

C ⊆∪N ,(1b)

NrT = { ∪T ∗ | T ∗ is an infinite chain in T } ,(1c)

(∀t6={})(∃!c) c∈t and tr{c}∈T , and(1d)

(∀t1, t2) F (t1)=F (t2) or F (t1)∩F (t2)=∅ ,(1e)

where

T := { n | n is finite } and(2)

F := { (t, c) | c/∈t and t∪{c}∈T } .(3)

Call a member n of the set N a node, and call F the feasibility corre-

spondence.

One node n[ is said to precede another node n if n[ ⊂ n. Equiva-

lently, n is said to succeed n[. By S1 Lemma B.5, {} must be a node,

and this node clearly precedes all other nodes. At the other extreme,

define a terminal node to be a node with no successor. By S1 Corol-

lary 5.2(c), the collection of nonterminal nodes equals F−1(C). This

result is displayed in the first two columns of the next-to-last row of

Table 1. Finally, define

p := { (t, tr{c}) | c∈t and tr{c}∈T } .(4)

By (1d), p is a function from Tr{{}}. Call p the immediate predecessor

function.

Let I be an arbitrary set, and call a member i of the set I a player.

A choice-set form (S1 equation (14)) is a pair ((Ci)i, N) such that

(∪iCi, N) is a choice-set preform (1) ,(5a)

(∀i6=j) Ci∩Cj = ∅ , and(5b)

(∀i)(∀t) F (t)⊆Ci or F (t)∩Ci=∅ .(5c)

A preform is a one-player form. Specifically, (C,N) is a choice-set

preform iff ((C), N) is a choice-set form, where (Ci)i = (C) is taken to

mean I = {1} and C1 = C. In this sense, definitions and results for

forms also apply to preforms.
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2.2. Concise AR∗ outcome-set forms

This subsection reviews S2’s definition of a concise AR∗ outcome-

set form. Such a form is essentially a reformulated discrete extensive

form (AR Definition 6) that has been restricted to satisfy conciseness

(S2 equation (13)). In particular, a concise AR∗ outcome-set form is

less general than an AR discrete extensive form in the sense that the

latter can specify simultaneous moves without multiple information

sets. However, S2 Theorems 1 and 2 show that the former is as general

as the latter in every other matter of interest to game theorists.

Let W be an arbitrary set, and call a member w of the set W an

outcome. An AR∗ outcome-set tree (S2 equation (1)) is a pair (W, Ṅ)

such that

Ṅ is a collection of subsets of W containing W but not ∅ ,(6a)

(∀ṅ1 6=ṅ2) ṅ1⊃ṅ2 or ṅ2⊃ṅ1 or ṅ1∩ṅ2=∅ ,(6b)

Ṅ ⊇ {{w}|w} ,(6c)

Ṅ ⊇ { ∩Ṅ∗ | Ṅ∗ is a nonempty chain in N } ,(6d)

and Ṅ ⊆ Ṫ∪{{w}|w} ,(6e)

where Ṫ is defined by

Ṫ := { ṅ | {ṅ[|ṅ[⊃ṅ} is finite } ,(7)

and {{w}|w} is the collection of singletons of the form {w}. A member

ṅ of the collection Ṅ is called a node.

One node ṅ[ is said to precede another node ṅ if ṅ[ ⊃ ṅ. Equivalently,

ṅ is said to succeed ṅ[. Note that W precedes all other nodes. At the

other extreme, define a terminal node to be a node with no successor.

By (6a) and (6c), it is immediate that the collection of terminal nodes

equals {{w}|w}. This immediate result is displayed by the appearance

of {{w}|w} in the last row of Table 1. Finally (by S2 Lemma A.1, or

by AR equation (2) without the convention concerning W ), define the

immediate predecessor function ṗ : Ṫr{W}→Ṫ by

ṗ(ṫ) := min{ṫ [|ṫ [⊃ṫ} .(8)
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An AR∗ outcome-set preform (S2 equation (8)) is a triple (W, Ṅ, Ċ)

such that1

(W, Ṅ) is an AR∗ outcome-set tree (6) ,(9a)

Ċ is a collection of nonempty subsets of W ,(9b)

(∀ṫ) ṗ−1(ṫ) = { ṫ∩ċ | ċ∈Ḟ (ṫ) } ,(9c)

(∀ṫ) the members of Ḟ (ṫ) are disjoint , and(9d)

(∀ṫ1, ṫ2) Ḟ (ṫ1)=Ḟ (ṫ2) or Ḟ (ṫ1)∩Ḟ (ṫ2)=∅ ,(9e)

where Ṫ and ṗ are derived from (W, Ṅ) by (7) and (8), and where Ḟ

is defined by

Ḟ := { (ṫ, ċ) | ċ 6⊇ṫ and (∃ṫ ]∈ṗ−1(ṫ)) ċ⊇ṫ ] } .(10)

A member ċ of the collection Ċ is called a choice.

Ḟ is called the feasibility correspondence. Its domain, denoted by

Ḟ−1(Ċ), is equal to the collection Ṅr{{w}|w} of nonterminal nodes

by S2 Lemma A.4 and S2 equation (4). This result is displayed by the

equality in the next-to-last row of Table 1. Finally, a preform (W, Ṅ, Ċ)

is said to be concise (S2 equation (13)) if

(∀ċ) ċ ⊆ ∪Ḟ−1(ċ) .(11)

Conciseness requires that every outcome in every choice is contained

in at least one node from which the choice is feasible.

Let I be an arbitrary set, and call a member i of the set I a player.

Then a concise AR∗ outcome-set form (S2 equation (20)) is a triple

(W, Ṅ, (Ċi)i) such that1

(W, Ṅ,∪iĊi) is a concise (11) AR∗ outcome-set preform (9) ,(12a)

(∀i6=j) Ċi∩Ċj = ∅ , and(12b)

(∀i)(∀ṫ) Ḟ (ṫ)⊆Ċi or Ḟ (ṫ)∩Ċi=∅ ,(12c)

where Ṫ is defined by (7) and where Ḟ is derived from (W, Ṅ,∪iĊi) by

(10). A preform is a one-player form. Specifically, (W, Ṅ, Ċ) is a concise

AR∗ outcome-set preform iff (W, Ṅ, (Ċ)) is a concise AR∗ outcome-set

1The S2 counterparts of conditions (9c), (9d), and (12c) constrain the node ṫ

to lie within the collection Ẋ defined in S2 equation (4). This difference is inconse-

quential because [1] ṫ /∈Ẋ implies both ṗ−1(ṫ)=∅ and Ḟ (ṫ)=∅ by S2 Lemma A.3(a)

and S2 Lemma A.4(b) and thus [2] the three conditions hold vacuously when ṫ /∈Ẋ.
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concise
choice-set AR∗ outcome-set

form form

((Ci)i, N) (W, Ṅ, (Ċi)i)

choice c∈C :=∪iCi ċ∈ Ċ :=∪iĊi
node n∈N ṅ∈ Ṅ
player i∈ I i∈ I
node with finitely many

predecessors
t∈T ṫ∈ Ṫ

feasibility correspondence F Ḟ
immediate-predecessor function p ṗ

collection of nonterminal nodes F−1(C) Ṅr{{w}|w} = Ḟ−1(Ċ)

collection of terminal nodes NrF−1(C) {{w}|w} = ṄrḞ−1(Ċ)

Table 1. See the second paragraph of Section 2.3.

form, where (Ċi)i = (Ċ) is taken to mean I = {1} and Ċ1 = Ċ. In this

sense, definitions and results for forms also apply to preforms.

2.3. Discussion

Choice-set forms and concise AR∗ outcome-set forms are fundamen-

tally different. The former specifies nodes and outcomes in terms of

choices. The latter specifies nodes and choices in terms of outcomes.

Nonetheless, there are many similarities.

These similarities are reflected in the notation of Table 1. Its first

three rows concern the primitive objects. Its next three rows concern

the derived objects. And finally, its last two rows summarize results

about terminal and nonterminal nodes. In particular, in a choice-set

form, F−1(C) is the set of nonterminal nodes by S1 Corollary 5.2(c).

Meanwhile, in a concise AR∗ outcome-set form, [a] {{w}|w} is the set

of terminal nodes by (6a) and (6c), and [b] Ḟ−1(Ċ) is the set of non-

terminal nodes by S2 Lemma A.4 and S2 equation (4).

Note that I conserve notation in two unconventional ways. [1] There

is no symbol (such as “X” or “Ẋ”) for the collection of nonterminal

nodes. Accordingly, there is no symbol (such as “Z” or “Ż”) for the

collection of terminal nodes. Rather, the last rows of Table 1 express

these two collections using symbols that have already been defined. [I

make just two exceptions. [a] Note 1 used the symbol “Ẋ” to make

connections with S2. [b] The next section will define the symbol “Z”
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as part of a conversion procedure. The symbol will not be used in any

other context.]

[2] Neither choice-set forms nor concise AR∗ outcome-set forms ex-

plicitly specify agents (i.e. information sets). Rather, both use their

feasibility correspondence to implicitly specify agents as the inverse

images of choices. In particular, S1 equation (12) derives agents in

a choice-set form, and S2 equation (10) derives agents in a concise

AR∗ outcome-set form. This innovation traces back to Alós-Ferrer and

Ritzberger (2005, Definition 7(i), page 791).

3. Conversion procedures

3.1. Converting choice-set forms to outcome-set forms

Consider a choice-set form ((Ci)i, N). Derive its C=∪iCi, T (2), and

F (3). Then ((Ci)i, N) is said to have no-trivial-moves if

(∀t) |F (t)| 6= 1 .(13)

The remainder of this paragraph interprets (13). By the definition of F ,

F−1(C) = { t | |F (t)|≥1 }. Further, by the next-to-last row of Table 1,

F−1(C) is the set of nonterminal nodes. Thus (13) is equivalent to

requiring that every nonterminal node has at least two feasible choices.

Hence (13) may be regarded as a trivial restriction.

Again consider a choice-set form ((Ci)i, N). Derive its C = ∪iCi
and F (3). By the last row of Table 1, the set of terminal nodes is

NrF−1(C). For notational convenience, let

Z := NrF−1(C) ,(14a)

and let z denote an element of Z. Next, for any node n, let

Zn := { z | n⊆z }(14b)

be the set of terminal nodes that equal or follow n. Lemma A.2(a)

shows that every Zn is nonempty. Note that (Zn)n is a function from

N into the power set of Z. Thus it maps a set of choices into a collection

of sets of choices. Its range is {Zn|n}. Further, for any choice c, let

Zc := { z | c∈z }(14c)

be the set of terminal nodes that contain c. Lemma A.3(a) shows that

every Zc is nonempty. Note that (Zc)c is a function from C into the

power set of Z. Thus it maps a choice into a collection of sets of choices.

Its range is {Zc|c}.
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Part (a) of the following theorem shows how a no-trivial-move choice-

set form can be converted into a concise AR∗ outcome-set form. The

remaining parts of the theorem describe the sense in which the original

choice-set form and the new outcome-set form are “equivalent” to one

another.

Theorem 1. Suppose ((Ci)i, N) is a choice-set form (5) with no-

trivial-moves (13). Derive C=∪iCi, T (2), F (3), and p (4). To

convert this form, let

W := Z , Ṅ := {Zn|n} , (Ċi)i := ({Zc|c∈Ci})i ,

where Z, (Zn)n, and (Zc)c are defined by (14). Then

(a) (W, Ṅ, (Ċi)i) is a concise AR∗ outcome-set form (12).

Further, derive Ċ=∪iĊi, Ṫ (7), ṗ (8), and Ḟ (10). Then the following

hold.

(b) (Zn)n is a bijection from N onto Ṅ . Further, Z{}=W .

(c) (Zc)c is a bijection from C onto Ċ.

(d) Ṫ = { Zt | t∈T }.
(e) ṗ = { (Zt] , Zt) | (t], t)∈p }.
(f) (∀t, c, t]) (c/∈t and t∪{c}=t]) iff (Zt=ṗ(Zt]) and Zt∩Zc=Zt]).

(g) Ḟ = { (Zt, Zc) | (t, c)∈F }. (Proof A.6.)

This and several other results are illustrated by the examples of

Figures 1 and 2. These examples show (a) how the nodes of Selten’s

horse game can be formulated in various ways as either choice sets or

outcome sets, and (b) how these various formulations can be converted

from one to another by means of this paper’s theorems.

More specifically, in Figure 1, each node and choice is labelled with

three rows. The top row corresponds to the one-player no-trivial-move

choice-set form ((C), N) that is defined by

C = {d1, a1, d2, a2, `, r} and(15)

N = {{}, {d1}, {a1}, {a1, d2},
{d1,`}, {d1,r}, {a1,d2,`}, {a1,d2,r}, {a1,a2}} .

In accord with Theorem 1, this top row is then converted into the one-

player concise AR∗ outcome-set form (Z, {Zn|n}, ({Zc|c})) that appears

in the middle row. For the sake of visual clarity, I have introduced the

symbols z1, z2, z3, z4, and z5 to abbreviate the five terminal nodes
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root node =
origin

{}
Z∅ = {z1, z2, z3, z4, z5}
Ċ{z1,z2,z3,z4,z5} = {}

{d1}
Z{d1} = {z1, z2}

Ċ{z1,z2} = {{z1, z2}}

z1 := {d1, ℓ}
Zz1 = {z1}

Ċ{z1} = {{z1, z2}, {z1, z3}}

z2 := {d1, r}
Zz2 = {z2}

Ċ{z2} = {{z1, z2}, {z2, z4}}

{a1}
Z{a1} = {z3, z4, z5}

Ċ{z3,z4,z5} = {{z3, z4, z5}}

{a1, d2}
Z{a1,d2} = {z3, z4}

Ċ{z3,z4} = {{z3, z4, z5}, {z3, z4}}

z3 := {a1, d2, ℓ}
Zz3 = {z3}

Ċ{z3} = {{z3, z4, z5},
{z3, z4}, {z1, z3}}

z4 := {a1, d2, r}
Zz4 = {z4}

Ċ{z4} = {{z3, z4, z5},
{z3, z4}, {z2, z4}}

z5 := {a1, a2}
Zz5 = {z5}

Ċ{z5} = {{z3, z4, z5}, {z5}}

d1

Zd1 = {z1, z2}
{z1, z2}

a1

Za1 = {z3, z4, z5}
{z3, z4, z5}

ℓ

Zℓ = {z1, z3}
{z1, z3}

r

Zr = {z2, z4}
{z2, z4}

a2

Za2 = {z5}
{z5}

d2

Zd2 = {z3, z4}
{z3, z4}

ℓ

Zℓ = {z1, z3}
{z1, z3}

r

Zr = {z2, z4}
{z2, z4}

Figure 1. A choice-set form (top row), converted into an
outcome-set form (middle row), and converted again into a
new choice-set form (bottom row). The two choice-set forms
are equivalent by renaming choices. (For readability, the
symbols z1, z2, z3, z4, and z5 abbreviate the terminal nodes
of the original choice-set form.)
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root node =
origin

help

{1,2,3,4,5}
Ċ{1,2,3,4,5} = {}
Z∅ = {Ċ{1}, Ċ{2},
Ċ{3}, Ċ{4}, Ċ{5}}

{1,2}
Ċ{1,2} = {{1,2}}

Z{{1,2}} = {Ċ{1}, Ċ{2}}

{1}
Ċ{1} =

{{1,2}, {1,3}}
ZĊ{1}

= {Ċ{1}}

{2}
Ċ{2} =

{{1,2}, {2,4}}
ZĊ{2}

= {Ċ{2}}

{3,4,5}
Ċ{3,4,5} = {{3,4,5}}

Z{{3,4,5}} =

{Ċ{3}, Ċ{4}, Ċ{5}}

{3,4}
Ċ{3,4} = {{3,4,5}, {3,4}}

Z{{3,4,5},{3,4}} = {Ċ{3}, Ċ{4}}

{3}
Ċ{3} =

{{3,4,5}, {3,4}, {1,3}}
ZĊ{3}

= {Ċ{3}}

{4}
Ċ{4} =

{{3,4,5}, {3,4}, {2,4}}
ZĊ{4}

= {Ċ{4}}

{5}
Ċ{5} =

{{3,4,5}, {5}}
ZĊ{5}

= {Ċ{5}}

{1,2}
{1,2}

Z{1,2} = {Ċ{1}, Ċ{2}}

{3,4,5}
{3,4,5}

Z{3,4,5} =

{Ċ{3}, Ċ{4}, Ċ{5}}

{1,3}
{1,3}

Z{1,3} = {Ċ{1}, Ċ{3}}

{2,4}
{2,4}

Z{2,4} = {Ċ{2}, Ċ{4}}

{5}
{5}

Z{5} = {Ċ{5}}

{3,4}
{3,4}

Z{3,4} = {Ċ{3}, Ċ{4}}

{1,3}
{1,3}

Z{1,3} = {Ċ{1}, Ċ{3}}

{2,4}
{2,4}

Z{2,4} = {Ċ{2}, Ċ{4}}

Figure 2. An outcome-set form (top row), converted into
a choice-set form (middle row), and converted again into an
outcome-set form (bottom row). The two outcome-set forms
are equivalent by renaming outcomes.
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of the original choice-set game. These five symbols are specific to this

particular example. Note that Z = {z1, z2, z3, z4, z5}.
Figure 2 illustrates a second, more difficult application of Theo-

rem 1. There the choice-set form of the middle row is converted into

the outcome-set form of the bottom row. This example will be defined

and discussed later.

The conversion procedure of Theorem 1 fails if the original choice-set

form has a trivial move. For example, consider the one-player choice-

set form ((C), N) defined by C = {a} and N = {{}, {a}}. Here the

conversion procedure would set both Z{} and Z{a} equal to {{a}}, in

contradiction to the bijection of Theorem 1(b). In general, the existence

of a trivial move means that some node has exactly one immediate

successor. In such a case, the node and its successor admit exactly the

same set of outcomes. As a result, the two distinct choice-set nodes

cannot be specified as two distinct sets of outcomes.

3.2. Converting outcome-set forms to choice-set forms

Consider a concise AR∗ outcome-set form (W, Ṅ, (Ċi)i) and let Ċ =

∪iCi. Then, for any node ṅ let

Ċṅ = { ċ | ċ⊇ṅ } .(16)

Thus Ċṅ is the set of choices on the way to the node ṅ. Note that

(Ċṅ)ṅ is a function from Ṅ into the power set of Ċ. Thus it takes a set

of outcomes into a collection of sets of outcomes. Its range is {Ċṅ|ṅ}.
Part (a) of the following theorem shows how a concise AR∗ outcome-

set form can be converted into a no-trivial-move choice-set form. The

remaining parts of the theorem show the sense in which the original

outcome-set form and the derived choice-set form are “equivalent”.

Theorem 2. Suppose (W, Ṅ, (Ċi)i) is a concise AR∗outcome-set form

(12). Derive its Ċ =∪iĊi, Ṫ (7), ṗ (8), and Ḟ (10). To convert this

form, let

(Ci)i := (Ċi)i and N := {Ċṅ|ṅ} .

where (Ċṅ)ṅ is defined by (16). Then

(a) ((Ci)i, N) is a no-trivial-move (13) choice-set form (5).

Further, derive C=∪iCi, T (2), F (3), and p (4). Then the following

hold.
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(b) (Ċṅ)ṅ is a bijection from Ṅ onto N . Further, ĊW = {}.
(c) T = { Ċṫ | ṫ∈Ṫ }.
(d) (∀ṫ, ċ, ṫ]) ( ṫ=ṗ(ṫ]) and ṫ∩ċ=ṫ]) iff ( ċ /∈Ċṫ and Ċṫ∪{ċ}=Ċṫ]).

(e) F = { (Ċṫ, ċ) | (ṫ, ċ)∈Ḟ }.
(f) p = { (Ċṫ] , Ċt) | (ṫ], ṫ)∈ṗ }. (Proof B.7.)

For example, the top row of the labels in Figure 2 corresponds to the

one-player concise AR∗ outcome-set form (W, Ṅ, (Ċ)) that is defined by

W = {1,2,3,4,5} ,(17)

Ṅ = {W, {1,2}, {3,4,5}, {3,4}, {1}, {2}, {3}, {4}, {5} } ,

and Ċ = { {1,2}, {3,4,5}, {3,4}, {5}, {1,3}, {2,4} } .

In accord with Theorem 2, this top row is then converted into the

one-player no-trivial-move choice-set form ((Ċ), {Ċṅ|ṅ}) that appears

in the middle row. Note that the choices are unaltered.

Figure 1 provides another example. There the outcome-set form in

the middle row is converted into the choice-set form of the bottom row.

Again the choices are unaltered. (The middle row was obtained in the

last subsection from the choice-set form in the top row.)

In general, Note 3 (on Lemma B.3) suggests that conciseness plays

a deep role in the well-definition of this conversion procedure. This

subtlety arises only in infinite-horizon forms.

4. The conversion procedures are inverses

4.1. Operator notation

Theorem 1(a) showed that any no-trivial-move choice-set form can

be converted into a concise AR∗ outcome-set form. Accordingly, we may

define the operator Ẑ that takes a no-trivial-move choice-set form to a

concise AR∗ outcome-set preform by the rule

Ẑ : ((Ci)i, N) 7→ (Z, {Zn|n}, ({Zc|c∈Ci})i) ,(18)

where Z, (Zn)n, and (Zc)c are defined by (14).

Conversely, Theorem 2(a) showed that any concise AR∗ outcome-set

form can be converted into a no-trivial-move choice-set form. Accord-

ingly, we may define the operator Ĉ that takes a concise AR∗ outcome-set

form into a no-trivial-move choice-set form by the rule
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Ĉ : (W, Ṅ, (Ċi)i) 7→ ((Ċi)i, {Ċṅ|ṅ}) ,(19)

where (Ċṅ)ṅ is defined by (16).

The remainder of this section develops the sense in which these two

operators are inverses of one another.

4.2. Away from and back to choice-set forms

Consider two choice-set forms ((Ci)i, N) and ((C ′i)i, N
′). The two

are said to be equivalent by renaming choices if there exists a bijection

δ :∪iCi→∪iC ′i such that

(∀i) δ(Ci) = C ′i and(20a)

{δ(n)|n∈N} = N ′ .(20b)

Thus, two one-player choice-set forms ((C), N) and ((C ′), N ′) are equiv-

alent by renaming choices if there is a bijection δ:C→C ′ satisfying

(20b). This is illustrated by example in the next three paragraphs.

Consider Figure 1. There the operator Ẑ takes the top row to the

middle row, and the operator Ĉ takes the middle row to the bottom row.

In particular, the top rows labelling the choices and nodes display the

one-player choice-set form ((C), N) defined in (15). Next, the middle

rows display Ẑ[((C), N)]. This is the one-player outcome-set form

(W, Ṅ, (Ċ)) := (Z, {Zn|n}, ({Zc|c})) ,
in which Z, (Zn)n, and (Zc)c are derived from ((C), N) by (14). Finally,

the bottom rows display Ĉ◦Ẑ[((C), N)]. This is the one-player choice-

set form

((C ′), N ′) := ((Ċ), {Ċṅ|ṅ}) ,

in which (Ċṅ)ṅ is derived from (W, Ṅ, (Ċ)) by (16).

The old (top-row) ((C), N) and new (bottom-row) ((C ′), N ′) are

equivalent by the choice-renaming function δ := (Zc)c. This δ can be

specified exhaustively by2

δ(d1) = Zd1 = {z1, z2} = {{d1,`}, {d1,r}}(21a)

δ(a1) = Za1 = {z3, z4, z5} = {{a1,d2,`}, {a1,d2,r}, {a1,a2}}(21b)

δ(d2) = Zd2 = {z3, z4} = {{a1,d2,`}, {a1,d2,r}}(21c)

2The symbols z1, z2, z3, z4, and z5 are defined to abbreviate the old termi-
nal nodes in this example (see the top row at each terminal node in Figure 1).
Accordingly, the third equality in each part of (21) is purely definitional.
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δ(a2) = Za2 = {z5} = {{a1,a2}}(21d)

δ(`) = Z` = {z1, z3} = {{d1,`}, {a1,d2,`}}(21e)

δ(r) = Zr = {z2, z4} = {{d1,r}, {a1,d2,r}} .(21f)

Thus each new choice is the set of old terminal nodes that follow after

the corresponding old choice. For example in (21a), the new choice

{z1, z2} = {{d1,`}, {d1,r}} is the set of old terminal nodes that follow

after the old choice d1.

Further, this δ is a bijection from C onto C ′. Its surjectivity simply

means that the right-hand sides of (21) correspond to the new choices

of C ′. Its injectivity is unsurprising because the values of δ are sets of

sets of the arguments of δ. Although (20a) is vacuous because there is

only one player, (20b) is tedious to verify. One must take every top-row

node n and verify that its bottom-row node is δ(n). For instance, [1]

consider the top-row node {a1,d2}, [2] note that (21b,c) imply

δ({a1,d2}) = {δ(a1), δ(d2)} = { {z3,z4,z5}, {z3, z4} } ,
and [3] note that the right-hand side is the corresponding bottom-row

node. More enlightening is to see in Figure 1 that each new node is

the set of new choices that lead to it. Similarly, each old node was the

set of old choices that led to it. This preservation of structure is the

essence of (20b).

The following lemma generalizes the example of Figure 1. It consid-

ers the general procedure of [1] converting away from a choice-set form

and then [2] converting back to a choice-set form. The lemma shows

that this general double procedure does nothing but rename choices.

Lemma 4.1. Let Φ := ((Ci)i, N) be a no-trivial-move (13) choice-

set form (5). Define the conversion operators Ẑ (18) and Ĉ (19). Then

Φ and Ĉ◦Ẑ[Φ] are equivalent (20) by the choice-renaming function δ :=

(Zc)c, where (Zc)c is defined by (14c). (Proof C.1.)

4.3. Away from and back to outcome-set forms

Consider two concise AR∗ outcome-set forms (W, Ṅ, (Ċi)i) and

(W ′, Ṅ ′, (Ċ ′i)i). The two are said to be equivalent by renaming out-

comes if there exists a bijection θ:W→W ′ such that

{θ(ṅ)|ṅ∈Ṅ} = Ṅ ′ and(22a)

(∀i) {θ(ċ)|ċ∈Ċi} = Ċ ′i .(22b)
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Thus two one-player concise AR∗ outcome-set forms (W, Ṅ, (Ċ)) and

(W ′, Ṅ ′, (Ċ ′)) are equivalent by renaming outcomes if there is a bijec-

tion θ:W→W ′ that satisfies (22a) and

{θ(ċ)|ċ∈Ċ} = Ċ ′ .(23)

This is illustrated by example in the next three paragraphs.

Consider Figure 2. The operator Ĉ takes the top row to the mid-

dle row, and the operator Ẑ takes the middle row to the bottom row.

In particular, the top rows display the one-player outcome-set form

(W, Ṅ, (Ċ)) defined in (17). Next, the middle rows display

Ĉ[(W, Ṅ, (Ċ))]. This is the one-player choice-set form

((C), N) := ((Ċ), {Ċṅ|ṅ})

in which (Ċṅ)ṅ is derived from (W, Ṅ, (Ċ)) by (16). Finally, the bottom

rows display Ẑ◦Ĉ[(W, Ṅ, (Ċ))]. This is the one-player outcome-set form

(W ′, Ṅ ′, (Ċ ′)) := (Z, {Zn|n}, ({Zc|c}))

in which Z, (Zn)n, and (Zc)c are derived from ((C), N) by (14).

The old (top-row) (W, Ṅ, (Ċ)) is equivalent to the new (bottom-row)

(W ′, Ṅ ′, (Ċ ′)) by the outcome-renaming function θ := (Ċ{w})w. This θ

can be specified exhaustively by

θ(1) = Ċ{1} = {{1,2}, {1,3}}(24a)

θ(2) = Ċ{2} = {{1,2}, {2,4}}(24b)

θ(3) = Ċ{3} = {{3,4,5}, {3,4}, {1,3}}(24c)

θ(4) = Ċ{4} = {{3,4,5}, {3,4}, {2,4}}(24d)

θ(5) = Ċ{5} = {{3,4,5}, {5}} .(24e)

Thus each new outcome is the set of old choices leading up to the

corresponding old outcome. For example in (24a), the new outcome

{{1,2}, {1,3}} is the set of old choices leading up to the old outcome 1.

This θ is a bijection from W onto W ′. Its surjectivity simply means

that the right-hand sides of (24) correspond to the new outcomes of

W ′. Its injectivity is unsurprising because the values of θ are sets of

sets of the arguments of θ. To verify (22a), consider every node in the

figure, let n be its first row, and verify that θ(n) is its third row. This

is easily done via the definition of θ at each outcome, that is, via the

first equality in each part of (24). To verify (23), consider every choice
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in the figure, let c be its first row, and verify that θ(c) is its third row.

This too is easily done via the definition of θ at each outcome.

The following lemma generalizes the example of Figure 2. It consid-

ers the general procedure of [1] converting away from an outcome-set

form and then [2] converting back to an outcome-set form. The lemma

shows that this general double procedure does nothing but rename out-

comes.

Lemma 4.2. Let Φ̇ := (W, Ṅ, (Ċi)i) be a concise AR∗ outcome-set

form (12). Define the conversion operators Ẑ (18) and Ĉ (19). Then

Φ̇ and Ẑ◦Ĉ[Φ̇] are equivalent (22) by the outcome-renaming function

θ := (Ċ{w})w in which (Ċṅ)ṅ is defined by (16). (Proof C.2.)

4.4. Theorem

Theorem 3. For the purposes of this theorem, say that

(i) two no-trivial-move (13) choice-set forms (5) are equal if they are

equivalent by choice renaming (20), and

(ii) two concise AR∗ outcome-set forms (12) are equal if they are

equivalent by outcome renaming (22).

Define the conversion operators Ẑ (18) and Ĉ (19). Then the follow-

ing hold.

(a) Ẑ and Ĉ are well-defined given the above concepts of equality.

(b) Ẑ is a bijection from the class of no-trivial-move choice-set forms

onto the class of concise AR∗ outcome-set forms.

(c) Ẑ−1 = Ĉ. (Proof C.5.)

Theorem 3 shows that there is a one-to-one correspondence between

the class of no-trivial-move choice-set forms and the class of concise AR∗

outcome-set forms. This, the natural results about Ẑ in Theorem 1(b–

g), and the natural results about Ĉ in Theorem 2(b–f), all substantiate

the notion that choice-set forms are dual to outcome-set forms. This

duality is the main contribution of this paper.

5. Corollary for OR∗ choice-sequence forms

S1 Theorem 2 shows that OR∗ choice-sequence forms with no-absent-

mindedness are in one-to-one correspondence with choice-set forms. An

OR∗ choice-sequence form (S1 equation (6)) is a slight reformulation of
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an Osborne-Rubinstein (OR) extensive form, and the definition of no-

absent-mindedness (S1 equation (16)) is taken directly from Piccione

and Rubinstein (1997).

Essentially, S1 Theorem 2 and this paper’s Theorem 3 together im-

ply a triple equivalence between (a) no-trivial-move OR∗ choice-sequence

forms with no-absent-mindedness, (b) no-trivial-move choice-set forms,

and (c) concise AR∗ outcome-set forms. This triple equivalence is illus-

trated by Figure 3.

To be precise, S1 Theorem 2 shows that the operator R̂ (S1 equation

(17)) is a bijection from (a) the class of OR∗ choice-sequence forms with

no-absent-mindedness onto (b) the class of choice-set forms. Mean-

while, this paper’s Theorem 3 shows that Ẑ is a bijection from (b’) the

class of no-trivial-move choice-set forms onto (c) the class of concise

AR∗ outcome-set forms.

The composition of these two bijections is complicated by two minor

issues. First, the range of R̂ [(b) above] is a strict superset of the

domain of Ẑ [(b’) above]. This happens because R̂ can accommodate

trivial moves while Ẑ cannot. To address this issue, say that an OR∗

no-trivial-move

OR∗ choice-sequence
forms

no-trivial-move

choice-set

forms

concise

AR∗ outcome-set

forms

no

absent-

minded-

ness

R̂∗

R̂−1
∗

Ẑ

Ĉ=Ẑ−1

Figure 3. R̂∗ is a restriction of the R̂ from S1 Theorem 2.
Theorem 1 concerns Ẑ, Theorem 2 concerns Ĉ, and Theorem 3
shows Ĉ=Ẑ−1. Corollary 5.1 concerns Ẑ◦R̂∗.
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choice-sequence form ((Ci)i, N̄) has no-trivial-moves if

(∀t̄) |F̄ (t̄)| 6= 1 ,(25)

where T̄ and F̄ are derived by S1 equation (2) and S1 equation (3). (25)

is directly comparable to (13) for choice-set forms. Corollary 5.1 will

then define R̂∗ to be the restriction of R̂ to the forms in its domain with

no-trivial-moves (thus the domain of R̂∗ becomes the class of no-trivial-

move OR∗ choice-sequence forms with no-absent-mindedness). This is

the R̂∗ that appears in Figure 3.

The second minor complication is that Ẑ is a bijection given Theo-

rem 3’s definitions of equality. In contrast, S1 Theorem 2 shows that

R̂ is a bijection without such qualifications. To introduce such quali-

fications in the context of R̂, say that two OR∗ choice-sequence forms

((Ci)i, N̄) and ((C ′i)i, N̄
′) are equivalent by choice renaming if there

exists a bijection δ from ∪iCi onto ∪iC ′i such that

(∀i) δ(Ci) = C ′i and(26a)

{ δ◦n̄ | n̄∈N̄ } = N̄ ′ .(26b)

(26) is directly comparable to (20) for choice-set forms.

Corollary 5.1. For the purposes of this corollary, say that

(i) two no-trivial-move (25) OR∗ choice-sequence forms (S1 equation

(6)) are equal if they are equivalent by choice renaming (26),

(ii) two no-trivial-move (13) choice-set forms (5) are equal if they

are equivalent by choice renaming (20), and

(iii) two concise AR∗ outcome-set forms (12) are equal if they are

equivalent by outcome renaming (22).

Define the conversion operators R̂ (S1 equation (17)) and Ẑ (18).

Further, let R̂∗ be the restriction of R̂ to the no-trivial-move (25) forms

in its domain. Then the following hold.

(a) R̂∗ is well-defined given the above concepts of equality.

(b) R̂∗ is a bijection, from the class of no-trivial-move OR∗ choice-

sequence forms with no-absent-mindedness (S1 equation (16)), onto the

class of no-trivial-move choice-set forms.

(c) Ẑ◦R̂∗ is a bijection, from the class of no-trivial-move OR∗ choice-

sequence forms with no-absent-mindedness, onto the class of concise

AR∗ outcome-set forms.

(d) (Ẑ◦R̂∗)−1 = R̂−1
∗ ◦Ẑ−1. (Proof C.9.)
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Corollary 5.1(c) shows that the class of no-trivial-move OR∗ choice-

sequence forms with no-absent-mindedness is in one-to-one correspon-

dence with the class of concise AR∗ outcome-set forms. This one-to-one

correspondence is portrayed by Figure 3.

As mentioned earlier, OR∗ choice-sequence forms are reformulations

of OR extensive forms. Meanwhile, S2’s theorems show that concise

AR∗ outcome-set forms are precisely as general as AR discrete extensive

forms (assuming that simultaneous moves are specified by multiple in-

formation sets). Thus Corollary 5.1(c) implies that no-trivial-move no-

absent-minded OR extensive forms are precisely as general as AR discrete

extensive forms. The remainder of this section places this equivalence

in the literature.

One direction of this equivalence is already known, namely, that

no-trivial-move no-absent-minded OR forms are no more general than

(discrete) AR forms. This was established by AR Example 10 and AR

Proposition 6(a). Further, it is also known that this statement fails

if either no-trivial-moves or no-absent-mindedness is relaxed, because

both these restrictions are implied by the definition of (discrete) AR

forms. The observation about no-trivial-moves was made in AR Exam-

ple 10, and the observation about no-absent-mindedness follows from

Alós-Ferrer and Ritzberger (2005, Proposition 13). But ultimately,

these two restrictions are of little concern: No-trivial-moves is trivial,

and no-absent-mindedness is minor.

Meanwhile, the reverse direction of the equivalence is new, namely,

that no-trivial-move no-absent-minded OR forms are at least as general

as (discrete) AR forms. This result is established by [1] Corollary 5.1(c)’s

statement that Ẑ◦R̂∗ is surjective and [2] the first two sentences of the

next-to-last paragraph. This result is a contribution to the literature

because it had been previously understood (e.g. AR Example 10) that

no-trivial-move no-absent-minded OR forms corresponded to a special

case of (discrete) AR forms.

Appendix A. For Theorem 1

Lemma A.1. Suppose (C,N) is a choice-set preform (1) with its

T (2). Further suppose a is a finite subset of n. Then min{t|a⊆t⊆n}
exists.
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Proof. On the one hand, suppose n∈T . Then by S1 Corollary 5.1,

{t|t⊆n} is a finite chain. Thus min{t|a⊆t⊆n} is the smallest member

of this chain that includes a. On the other hand, suppose n/∈T . Then

by S1 Corollary 5.3, {t|t⊂n} is an infinite chain in T whose union is n.

Thus min{t|a⊆t⊆n} is the smallest member of this chain that includes

the finite set a. 2

Lemma A.2. Let (C,N) be a no-trivial-move (13) choice-set pre-

form (1). Derive Z and (Zn)n by (14a–b). Then the following hold.

(a) (∀n) Zn 6= ∅.

(b) Zn1 ⊇ Zn2 iff n1 ⊆ n2.

(c) Zn1∩Zn2 =∅ iff (n1 6⊆n2 and n2 6⊆n1).

(d) (∀z) Zz = {z}.

Proof. Derive T (2) and F (3). Also note that

Z = NrF−1(C)(27)

= Nr{ n | (∃n]) n⊂n] }
= { n | (/∃n]) n⊂n] } ,

where the first equality is the definition of Z and the second follows

from S1 Corollary 5.2(c).

(a). Take any n. If n ∈ Z, then n ∈ Zn. If not, (27) implies the

existence of an n1 such n ⊂ n1, which starts the following iterative

process.

1. If n1 ∈ Z, then n1 ∈ Zn because n ⊂ n1 ∈ Z .

If not, (27) implies an n2 such that n1 ⊂ n2 .

2. If n2 ∈ Z, then n2 ∈ Zn because n ⊂ n1 ⊂ n2 ∈ Z .

If not, (27) implies an n3 such that n2 ⊂ n3 .

. . . .

This process will either terminate with some nk ∈ Z such that

n ⊂ n1 ⊂ n2 . . . ⊂ nk ,

or generate an infinite sequence (nk)k≥1 such that

n ⊂ n1 ⊂ n2 ⊂ . . . .

In the first contingency, nk ∈ Zn because n ⊂ nk ∈ Z. In the second

contingency, we have an infinite chain (nk)k≥1 such that n ⊂ ∪knk.
Since each nk has a successor, S1 Corollary 5.2(b) implies that each
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nk ∈ T . Thus (nk)k≥1 is an infinite chain in T . Hence by (1c), ∪knk
is an element of NrT . Since ∪knk /∈ T , S1 Corollary 5.2(b) implies

that ∪knk /∈ {n|(∃n])n⊂n]}. Thus by (27), ∪knk ∈ Z. Therefore since

n ⊂ ∪knk, ∪knk ∈ Zn.

(b). Obviously

n1 ⊆ n2

⇒ {z|n1⊆z} ⊇ {z|n2⊆z}
⇒ Zn1 ⊇ Zn2 ,

where the second implication holds by the definition of (Zn)n. I will

show the contrapositive of the converse. Accordingly, suppose that

n1 6⊆ n2. Thus n1∧n2 ⊂ n1, where n1∧n2 is a well-defined member

of T by S1 Corollary 5.4. So by S1 Corollary 5.2(a) at t=n1∧n2 and

n]=n1, we may define c1 ∈ F (n1∧n2)∩n1. Two cases then arise: [1]

n1∧n2 ⊂ n2 or [2] n1∧n2 = n2.

Case [1]. Suppose n1∧n2 ⊂ n2. Then S1 Corollary 5.2(a) at t=n1∧n2

and n] = n2 implies the existence of a c2 ∈ F (n1∧n2)∩n2. Note that

the definition of c1 implies that (n1∧n2)∪{c1} ⊆ n1. Similarly, the

definition of c2 implies that (n1∧n2)∪{c2} ⊆ n2. Thus, if c2 = c1, we

would have (n1∧n2)∪{c1} ⊆ n1∩n2, in contradiction to the definition

of ∧. Hence

c2 6= c1 .(28)

In a different vein, part (a) allows us to take some z2 ∈ Zn2 . Note

c2 ∈ n2 ⊆ z2 ,(29)

where the set membership follows from the definition of c2, and the set

inclusion follows from the definition of Zn2 .

S1 Lemma B.6 implies that |F (n1∧n2)∩z2| ≤ 1. Note that both c1

and c2 belong to F (n1∧n2) by their definitions. Thus the last two

sentences, (29), and (28) together imply that c1 /∈ z2. This implies

n1 6⊆ z2 because c1 ∈ n1 by the definition of c1. Hence z2 /∈ Zn1 . So by

the definition of z2, z2 ∈ Zn2rZn1 . Hence Zn2 6⊆ Zn1 .

Case [2]. Suppose n1∧n2 = n2. Then the definition of c1 implies that

c1 ∈ F (n2)∩n1. Because there are no-trivial-moves, there exists some

c∗ ∈ F (n2) such that

c∗ 6= c1 .(30)
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Let n∗ = n2∪{c∗}. Then part (a) allows us to take some z∗ ∈ Zn∗ . By

the last two sentences

c∗ ∈ n∗ ⊆ z∗ .(31)

S1 Lemma B.6 implies that |F (n2)∩z∗| ≤ 1. Note that both c1 and c∗

belong to F (n2) by early sentences in the last paragraph. Thus the last

two sentences, (31), and (30) imply that c1 /∈ z∗. This implies n1 6⊆ z∗

because c1 ∈ n1 by the definition of c1. Hence z∗ /∈ Zn1 . However, by

the definitions of n∗ and z∗, n2 ⊆ n∗ ⊆ z∗. Hence z∗ ∈ Zn2 . By the

last and the third-to-last sentences, z∗ ∈ Zn2rZn1 . Hence Zn2 6⊆ Zn1 .

(c). Suppose Zn1∩Zn2 = ∅. Then since Zn1 6= ∅ by part (a), Zn1 6⊆
Zn2 . Thus by part (b), n2 6⊆ n1. A symmetric argument shows n1 6⊆ n2.

Conversely, suppose that n1 6⊆ n2 and n2 6⊆ n1. Because n1 6⊆
n2, n1∧n2 ⊂ n1, where n1∧n2 is a well-defined member of T by S1

Corollary 5.4. Then S1 Corollary 5.2(a) at t=n1∧n2 and n]=n1 implies

the existence of a c1 ∈ F (n1∧n2)∩n1. Thus

(n1∧n2)∪{c1} ⊆ n1 .(32)

Similarly, because n2 6⊆ n1, n1∧n2 ⊂ n2. Then S1 Corollary 5.2(a)

implies the existence of a c2 ∈ F (n1∧n2)∩n2. Thus

(n1∧n2)∪{c2} ⊆ n2 .(33)

If c2 = c1, then (32) and (33) would imply (n1∧n2)∪{c1}⊆n1∩n2, in

contradiction to the definition of ∧. Thus

c2 6= c1 .(34)

I must show that Zn1∩Zn2 = ∅. To do this, I will show that z2 ∈ Zn2

implies z2 /∈ Zn1 . Accordingly, take any z2 ∈ Zn2 . Then

c2 ∈ n2 ⊆ z2 ,(35)

where the set membership holds by (33) and the set inclusion follows

from z2 ∈ Zn2 . Meanwhile, S1 Lemma B.6 implies |F (n1∧n2)∩z2| ≤ 1.

Note that both c1 and c2 belong to F (n1∧n2) by their definitions. Thus

the last two sentences, (35), and (34) together imply that c1 /∈ z2. This

implies n1 6⊆ z2 because c1 ∈ n1 by (32). Hence z2 /∈ Zn1 .

(d). Take any z. Note

Zz = { z′ | z⊆z′ }
= {z} ∪ { z′ | z⊂z′ }
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⊆ {z} ∪ { n | z⊂n }
= {z} ∪ ∅ ,

where the first equality is the definition of Zz and the last equality fol-

lows from (27). Conversely, {z} ⊆ { z′ | z⊆z′ } = Zz by the definition

of Zz. By the last two sentences, Zz = {z}. 2

Lemma A.3. Let (C,N) be a no-trivial-move (13) choice-set pre-

form (1). Derive Z, (Zn)n, and (Zc)c by (14). Then the following

hold.

(a) (∀c) Zc 6= ∅.

(b) c1 = c2 iff Zc1 = Zc2.

(c) c ∈ n iff Zc ⊇ Zn.

Proof. Derive T (2), F (3), and p (4).

(a). Take any c. By (1b), there exists n such that c ∈ n. Further,

by Lemma A.2(a), there exists z ∈ Zn. By the last two sentences,

c ∈ n ⊆ z. Hence z ∈ Zc.

(b). The ⇒ direction is obvious. To prove the contrapositive of the

⇐ direction, suppose that c1 6= c2.

On the one hand, suppose that (/∃z) {c1, c2} ⊆ z. Then Zc1∩Zc2 =

∅. Thus since Zc1 6= ∅ by part (a), Zc1 6= Zc2 .

On the other hand, suppose that (∃z) {c1, c2} ∈ z. Then Lemma A.1

at a={c1, c2} and n=z allows us to define

t12 := min{ t | {c1, c2}⊆t⊆z } .

By the definition of t12, c2 /∈ p(t12) or c1 /∈ p(t12). Without loss of

generality, assume the former and define t1 = p(t12). Then

c1 ∈ t1 and c2 ∈ F (t1) ,(36)

where the first half follows from the assumption c1 6= c2. By no-trivial-

moves (13), we may define c∗ such that

c∗ 6= c2 and c∗ ∈ F (t1) .(37)

So, by the definition of F we can construct the node t1∪{c∗}, and

further, by Lemma A.2(a), we may take z∗ ∈ Zt1∪{c∗}. Note

c1 ∈ t1 ⊆ z∗ ,(38)
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where the set membership follows from the first half of (36) and the

set inclusion follows from the definition of z∗. Meanwhile, by the sec-

ond halves of (36) and (37), both c2 and c∗ belong to F (t1). By S1

Lemma B.6, |F (t1)∩z∗| ≤ 1. By the definition of z∗, c∗ ∈ z∗. Thus,

the last three sentences and the first half of (37) imply

c2 /∈ z∗ .(39)

(38) and (39) imply that z∗ ∈ Zc1rZc2 . Hence Zc1 6= Zc2 .

(c). The⇒ direction is straightforward: by the definitions of Zc and

Zn,

c∈n ⇒ {z|c∈z}⊇{z|n⊆z} ⇒ Zc⊇Zn .

To prove the contrapositive of the ⇐ direction, suppose that c /∈ n.

Two cases arise. On the one hand, suppose that (/∃z) n∪{c}⊆z. Then

Zc∩Zn = ∅. Thus, since Zn 6= ∅ by Lemma A.2(a), Zn 6⊆ Zc.

On the other hand, suppose that (∃z) n∪{c}⊆z. Take such a z.

Since c /∈ n by assumption, n ⊂ z. Thus S1 Corollary 5.2(b) implies

n ∈ T . Hence Lemma A.1, at its a equal to n∪{c} and its n equal to

z, allows us to define

tnc := min{ t | n∪{c}⊆t⊆z } .

Since c /∈ n by assumption, n ⊂ tnc. Therefore [1] |n| < |tnc| and [2] S1

Corollary 5.1(a) implies that n = p|t
nc|−|n|(tnc). These two facts imply

that

n ⊆ p(tnc) .(40)

Hence the definition of tnc implies that

tncrp(tnc) = {c} .(41)

By (41), c ∈ F (p(tnc)). Further, by no-trivial-moves (13), we may

take c∗ 6= c such that c∗ ∈ F (p(tnc)). Construct the node p(tnc)∪{c∗}.
By Lemma A.2(a), we may take z∗ ∈ Zp(tnc)∪{c∗}. Note that

n ⊆ p(tnc) ⊆ p(tnc)∪{c∗} ⊆ z∗ ,(42)

where the first set inclusion is (40) and the last set inclusion follows

from the definition of z∗. Meanwhile, recall from the first two sentences

of this paragraph that c and c∗ are distinct members of F (p(tnc)). By

S1 Lemma B.6, |F (p(tnc))∩z∗| ≤ 1. By the definition of z∗, c∗ ∈ z∗.
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Thus by the last three sentences, c /∈ z∗. This and (42) imply that

z∗ ∈ ZnrZc. Hence Zn 6⊆ Zc. 2

Lemma A.4. Let (C,N) be a no-trivial-move (13) choice-set pre-

form (1), and derive its T (2), F (3), and p (4). Next, derive Z, (Zn)n,

and (Zc)c by (14). Further, let

W :=Z , Ṅ := {Zn|n} , and Ċ := {Zc|c} .

Then (a) (W, Ṅ) satisfies (6a,b). So by S2 Lemma A.1, derive Ṫ (7),

ṗ (8), and Ḟ (10). Then the following hold.

(b) (Zn)n is a bijection from N onto Ṅ . Further, Z{}=W .

(c) (Zc)c is a bijection from C onto Ċ.

(d) Ṫ = { Zt | t∈T }.
(e) ṗ = { (Zt] , Zt) | (t], t)∈p }.
(f) (∀t, c, t ]) (c/∈t and t∪{c}=t ]) iff (Zt=ṗ(Zt]) and Zt∩Zc=Zt]).

(g) Ḟ = { (Zt, Zc) | (t, c)∈F }.

Proof. (a). (6a). By definition, W = Z and Ṅ = {Zn|n}. Thus it

suffices to show that {Zn|n} is a collection of subsets of Z that contains

Z but not ∅. By definition, each Zn is a subset of Z. Further, since

{} ∈ N by S1 Lemma B.5, Z{} is well-defined and Z = {z|{}⊆z} =

Z{} ∈ {Zn|n}. Finally, since every Zn 6= ∅ by Lemma A.2(a), we have

∅ /∈ {Zn|n}.
(6b). Take any ṅ1 and ṅ2. By the definition of Ṅ , there exist n1 and

n2 such that ṅ1 = Zn1 and ṅ2 = Zn2 . Thus there are four possibilities:

n1 = n2 , or(43a)

n1 ⊂ n2 , or(43b)

n2 ⊂ n1 , or(43c)

(n1 6⊆ n2 and n2 6⊆ n1) .(43d)

If (43a) holds, then the definition of n1, n1=n2, and the definition of

n2 imply

ṅ1 = Zn1 = Zn2 = ṅ2 .(44a)

If (43b) holds, then the definition of n1, Lemma A.2(b), and the defi-

nition of n2 imply

ṅ1 = Zn1 ⊃ Zn2 = ṅ2 .(44b)
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Similarly, if (43c) holds, then the definition of n1, Lemma A.2(b), and

the definition of n2 imply

ṅ1 = Zn1 ⊂ Zn2 = ṅ2 .(44c)

And finally, if (43d) holds, then the definitions of n1 and n2 and

Lemma A.2(c) imply

ṅ1∩ṅ2 = Zn1∩Zn2 = ∅ .(44d)

Since (44a) or (44b) or (44c) or (44d) must hold, (6b) must hold.

(b). (Zn)n is surjective by the definition of Ṅ . (Zn)n is injective by

Lemma A.2(b). Further, Z{} = {z|{}⊆z} = Z = W by the definitions

of Z{} and W .

(c). (Zc)c is surjective by the definition of Ċ. (Zc)c is injective by

Lemma A.3(b).

(d). I argue

Ṫ = { ṅ | {ṅ[|ṅ[⊃ṅ} is finite }
= { Zn | {Zn[ |Zn[⊃Zn} is finite }

= { Zn | {n[|n[⊂n} is finite }
= { Zn | n ∈ T } .

The first equality holds by the definition of Ṫ , the second holds by the

first half of part (b), the third holds by Lemma A.2(b), and the last

holds by the definition of T .

(e). I argue

ṗ = { ( ṫ, min{ṫ[|ṫ[⊃ṫ} ) | ṫ6=W }
= { (Zt, min{Zt[|Zt[⊃Zt} ) | Zt 6=W }
= { (Zt, min{Zt[|Zt[⊃Zt} ) | t6={} }

= { (Zt, min{Zt[|t[⊂t} ) | t6={} }
= { (Zt, Zargmin{Z

t[
|t[⊂t} ) | t6={} }

= { (Zt, Zmax{t[|t[⊂t} ) | t 6={} }

= { (Zt, Zp(t) ) | t 6={} }

= { (Zt, Zt[ ) | (t, t[)∈p } .
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The first equality is the definition of ṗ, the second holds by the first

half of part (b), and the third holds by both halves of part (b). The

fourth equality holds by Lemma A.2(b), the fifth by manipulation, and

the sixth by Lemma A.2(b) once again. The seventh equality holds by

S1 Corollary 5.1(b), and the last equality holds because the domain of

p it Tr{{}}.

(f). Forward Direction. Take any t, c, and t] such that [1] c/∈t and [2]

t∪{c}=t]. By the definitions of Zt and Zc, by [2], and by the definition

of Zt] ,

Zt∩Zc = { z | t∪{c}⊆z } = { z | t]⊆z } = Zt] .(45)

In a different vein, [1] and [2] together are equivalent to c∈t] and

t=t]r{c}. Thus t = p(t]) by the definition of p. Hence part (e) implies

Zt = ṗ(Zt]). This and (45) were our goals.

Reverse direction. Take any t, c, and t] such that [1] Zt = ṗ(Zt]) and

[2] Zt∩Zc=Zt] . By part (e), [1] implies

t = p(t]) .(46)

Further, since Zt∩Zc = { z | t∪{c}⊆z } by the definitions of Zt and

Zc, [2] implies

{ z | t∪{c}⊆z } = Zt] .(47)

[The left-hand side could be written as Zt∪{c} if it had already been

proved that t∪{c} is a node.]

This paragraph shows

c /∈ t .(48)

Suppose c ∈ t. Then { z | t∪{c}⊆z } = Zt. Hence (47) implies Zt =

Zt] . Hence Lemma A.2(b) implies t = t]. This contradicts (46).

This paragraph defines and develops ztc. Because Zt] 6= ∅ by

Lemma A.2(a), we may take ztc ∈ Zt] . By (47) we have

t∪{c} ⊆ ztc .(49)

This and the next three paragraphs show that t∪{c} is a node. By

(49) and by Lemma A.1 at a=t∪{c} and n=ztc, we may let ttc be

min{to|t∪{c}⊆to⊆ztc}. By (48), t ⊂ ttc. Let t′ = p(ttc). Since both t

and t′ are predecessors of ttc by the last two sentences, S1 Corollary 5.1

implies that either [1] t ⊆ t′ or [2] t′ ⊂ t. Note that [2], t ⊂ ttc (3
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sentences ago), and t′ = p(ttc) (2 sentences ago) are contradictory.

Thus [1] holds:

t ⊆ t′ .(50)

Further, (50), t′ = p(ttc), and the definition of ttc imply

c ∈ F (t′) .(51)

By no-trivial-moves, there exists c′ ∈ F (t′)r{c}. By Lemma A.2(a),

we may take z′ ∈ Zt′∪{c′}. The remainder of this paragraph shows that

z′ /∈ { z | t∪{c}⊆z } .(52)

Suppose it were. Then both t′∪{c′} and t∪{c} would be subsets of

z′. Thus by (51) and the definition of c′, c and c′ would be distinct

elements of F (t′)∩z′. This would contradict S1 Lemma B.6.

This paragraph shows that t ⊂ t′ leads to a contradiction. Accord-

ingly, assume t ⊂ t′. By (49), by the definition of ztc, and by the

definitions of t′ and ttc, we have that t, t], and t′ are all subsets of

ztc. Thus by S1 Corollaries 5.1 and 5.3, {t, t], t′} is a chain. Thus

t = p(t]) (46) and t ⊂ t′ (this paragraph’s assumption) imply t] ⊆ t′.
Hence t] ⊆ t′ ⊆ t′∪{c′} ⊆ z′, where the last set inclusion holds by the

definition of z′. Thus z′ ∈ Zt] . This and (52) contradict (47).

Since the previous paragraph shows t ⊂ t′ is false, (50) implies t = t′.
So (51) shows c ∈ F (t). So t∪{c} is a node. [If it were needed, it could

be shown that t∪{c} equals the ttc defined three paragraphs ago.]

Equation (49) and the definition of ztc imply that t, t∪{c}, and

t] are all subsets of ztc. Thus, since t∪{c} is a node by the previous

paragraph, S1 Corollaries 5.1 and 5.3 imply that {t, t∪{c}, t]} is a chain.

Thus (46) and (48) imply t∪{c} = t]. This and (48) are our goals.

(g). I argue

Ḟ = { (ṫ, ċ) | ċ 6⊇ṫ and (∃ṫ]∈ṗ−1(ṫ)) ċ⊇ṫ] }
= { (Zt, Zc) | Zc 6⊇Zt and (∃Zt]∈ṗ−1(Zt)) Zc⊇Zt] }
= { (Zt, Zc) | c/∈t and (∃Zt]∈ṗ−1(Zt)) c∈t] }

= { (Zt, Zc) | c/∈t and (∃t]∈p−1(t)) c∈t] }
= { (Zt, Zc) | (∃t]) c/∈t, (t], t)∈p, c∈t] }
= { (Zt, Zc) | (∃t]) c/∈t, t∪{c}=t] }
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= { (Zt, Zc) | c/∈t, t∪{c}∈T }
= { (Zt, Zc) | (c, t)∈F } .

The first equality is the definition of Ḟ , the second follows from parts

(b) and (c), and the third follows from Lemma A.3(c). The fourth

equality follows from part (e) and the sixth follows from the definition

of p. The last equality follows follows from the definition of F . 2

Lemma A.5. Let ((Ci)i, N) be a no-trivial-move (13) choice-set

form (5). Next, let C = ∪iCi, and define Z, (Zn)n, and (Zc)c by

(14). Finally, let

W := Z , Ṅ := {Zn|n} , Ċ := {Zc|c} ,

and (∀i) Ċi := {Zc|c∈Ci} .

Then the following hold.

(a) (W, Ṅ) is an AR∗ outcome-set tree (6).

(b) (W, Ṅ, Ċ) is a concise (11) AR∗ outcome-set preform (9).

(c) (W, Ṅ, (Ċi)i) is a concise AR∗ outcome-set form (12).

Proof. Derive T (2), F (3), and p (4) from ((Ci)i, N). Then, by

Lemma A.4(a) and S2 Lemma A.1, derive Ṫ (7), ṗ (8), and Ḟ (10)

from (W, Ṅ, (Ċi)i).

(a). Since (6a,b) was established by Lemma A.4(a), (6c–e) remain.

I will prove these in the order (6c), (6e), (6d).

(6c). By definition, W = Z and Ṅ = {Zn|n}. Thus it suffices to

show that {{z}|z} ⊆ {Zn|n}. Accordingly, take any z and note that

{z} = Zz ∈ {Zz′|z′} ⊆ {Zn|n}, where the equality holds by

Lemma A.2(d), and where the set inclusion holds since Z ⊆ N by the

definition of Z.

(6e). I argue

Ṅ = {Zn|n}
= {Zn|(∃n])n⊂n]} ∪ {Zn|(/∃n])n⊂n]}
⊆ {Zt|t} ∪ {Zn|(/∃n])n⊂n]}

= Ṫ ∪ {Zn|(/∃n])n⊂n]}

= Ṫ ∪ {Zn|n∈NrF−1(C)}

= Ṫ ∪ {Zn|n∈Z}
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= Ṫ ∪ {Zz|z}

= Ṫ ∪ {{z}|z}

= Ṫ ∪ {{w}|w} .

The first equality is the definition of Ṅ , the set inclusion follows from

S1 Corollary 5.2(b), and the third equality follows from Lemma A.4(d).

The fourth equality follows from S1 Corollary 5.2(c), and the fifth

equality follows from the definition of Z. The seventh equality fol-

lows from Lemma A.2(d), and the eighth equality follows from the

definition of W .

(6d). Take any nonempty chain Ṅ∗ in Ṅ .

On the one hand, suppose there is a {w} ∈ Ṅ∗. Note that ∅ /∈ Ṅ
by (6a), which has already been proved. Thus, since Ṅ∗ is a chain

containing {w}, ∩Ṅ∗ = {w}. Hence ∩Ṅ∗ ∈ Ṅ by (6c), which has

already been proved.

On the other hand, suppose there is no {w} ∈ Ṅ∗. Then Ṅ∗ ⊆ Ṫ by

(6e), which has already been proved. Thus by Lemma A.4(b,d), there

exists a nonempty T ∗ ⊆ T such that Ṅ∗ = { Zt | t∈T ∗ }. Further,

by Lemma A.2(b), T ∗ is a chain. On the one hand, if T ∗ is infinite,

then (1c) implies ∪T ∗ ∈ N . On the other hand, if T ∗ is finite, then

∪T ∗ ∈ T ∗ ⊆ N . Thus in either case,

∪T ∗ ∈ N .(53)

I argue

∩Ṅ∗ = ∩{ Zt | t∈T ∗ }
= ∩{ {z|t⊆z} | t∈T ∗ }
= { z | (∀t∈T ∗) t⊆z }
= { z | ∪T ∗⊆z }
= Z∪T ∗

∈ Ṅ .

The first equality follows from the definition of T ∗, and the second

equality follows from the definition of Zt. The fifth equality follows

from the definition of Z∪T ∗ , which is applicable by (53). Finally, the

set membership follows from (53) and the definition of Ṅ .
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(b). Since (9a) was established in part (a), it suffices to prove (9b–e)

and conciseness (11).

(9b). By definition, Ċ = {Zc|c}. By Lemma A.3(a), each Zc is

nonempty. Further, each

Zc = {z|c∈z} ⊂ Z = W ,

where the first equality is the definition of Zc and the second equality

is the definition of W .

(9c). Take any ṫ [. By Lemma A.4(d), we may let t [ be such that

ṫ [ = Zt [ . I argue

ṗ−1(ṫ [) = { ṫ | (ṫ, ṫ [)∈ṗ }
= { ṫ | (ṫ, Zt [)∈ṗ }
= { Zt | (Zt, Zt [)∈ṗ }

= { Zt | (t, t [)∈p }

= { Zt | (∃c) c∈t , tr{c}=t [ }

= { Zt | (∃c) c/∈t [ , t [∪{c}=t }

= { Zt | (∃c) c/∈t [ , t [∪{c}=t , Zt [∩Zc=Zt }

= { Zt [∩Zc | (∃t) c/∈t [ , t [∪{c}=t }

= { Zt [∩Zc | c∈F (t [) }

= { Zt [∩Zc | Zc∈Ḟ (Zt [) }

= { Zt [∩ċ | ċ∈Ḟ (Zt [) }

= { ṫ [∩ċ | ċ∈Ḟ (ṫ [) } .

The second equality holds by the definition of t [, and the third holds

by Lemma A.4(b,d). The fourth equality holds by Lemma A.4(e), and

the fifth holds by the definition of p. The seventh equality in the ⊆
direction holds by the ⇒ direction of Lemma A.4(f). Meanwhile, the

seventh equality in the ⊇ direction is obvious. The eighth equality is a

change of variable from t to c, and the ninth follows from the definition

of F . The tenth equality follows from Lemma A.4(g), the eleventh

follows from Lemma A.4(c), and the twelfth follows from the definition

of t [.
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(9d). Suppose {ċ1, ċ2} ⊆ Ḟ (ṫ) and ċ1 6= ċ2. By ċ1 ∈ Ḟ (ṫ) and by

Lemma A.4(g), there exist c1 and t1 such that

ṫ = Zt1 ,(54a)

ċ1 = Zc1 ,(54b)

and c1 ∈ F (t1) .(54c)

Similarly, by ċ2 ∈ Ḟ (ṫ) and by Lemma A.4(g), there exist c2 and t2

such that

ṫ = Zt2 ,(55a)

ċ2 = Zc2 ,(55b)

and c2 ∈ F (t2) .(55c)

(54a), (55a), and Lemma A.4(b) together imply t1 = t2. Thus by (54c)

and (55c),

{c1, c2} ⊆ F (t1) .(56)

Further, (54b), (55b), Lemma A.4(c), and ċ1 6= ċ2 together imply

c1 6= c2 .(57)

Now suppose that ċ1∩ċ2 6= ∅. By (54b) and (55b), this is equivalent

to Zc1∩Zc2 6= ∅. Thus, there exists z such that z ∈ Zc1∩Zc2 . This is

equivalent to

{c1, c2} ⊆ z .(58)

(56), (57), and (58) imply that |F (t1)∩z| ≥ 2. This contradicts S1

Lemma B.6.

(9e). Before starting the main argument, I argue that

(∃ t1, t2)(59a)

F (t1)rF (t2) 6= ∅ and F (t1)∩F (t2) 6= ∅

⇔ (∃ t1, t2, cA, cB)

cA ∈ F (t1)rF (t2) and cB ∈ F (t1)∩F (t2)

⇔ (∃ t1, t2, cA, cB)

{(t1, cA), (t1, cB), (t2, cB)} ⊆ F and (t2, cA) /∈ F

⇔ (∃ Zt1 , Zt2 , ZcA , ZcB)

{(Zt1 , ZcA), (Zt1 , ZcB), (Zt2 , ZcB)} ⊆ Ḟ and (Zt2 , ZcA) /∈ Ḟ
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⇔ (∃ ṫ1, ṫ2, ċA, ċB)

{(ṫ1, ċA), (ṫ1, ċB), (ṫ2, ċB)} ⊆ Ḟ and (ṫ2, ċA) /∈ Ḟ

⇔ (∃ ṫ1, ṫ2, ċA, ċB)

ċA ∈ Ḟ (ṫ1)rḞ (ṫ2) and ċB ∈ Ḟ (ṫ1)∩Ḟ (ṫ2)

⇔ (∃ ṫ1, ṫ2)(59b)

Ḟ (ṫ1)rḞ (ṫ2) 6= ∅ and Ḟ (ṫ1)∩Ḟ (ṫ2) 6= ∅ .

The third equivalence follows from Lemma A.4(g). The fourth equiva-

lence follows from Lemma A.4(b–d).

By assumption (1e), (59a) is false. Thus by the preceding paragraph,

(59b) is false. Thus (9e) is true.

Conciseness (11). I will first show that

(∀c) Zc ⊆ ∪{ Zt | t∈F−1(c) } .(60)

Accordingly, take any c and take any z ∈ Zc. Since {c}⊆z, Lemma A.1

at a={c} and n=z allows us to define

tc := min{ t | c∈t⊆z } .

Since the definitions of p and tc imply p(tc) ⊂ tc ⊆ z,

z ∈ Zp(tc) .(61)

Meanwhile, note that c ∈ p(tc) would contradict the minimization in

the definition of tc. Hence, c /∈ p(tc) and p(tc)∪{c} = tc. By the defini-

tion of F , this implies c ∈ F (p(tc)), which is equivalent to

p(tc) ∈ F−1(c). (61) and the conclusion of the last sentence imply

z ∈ Zp(tc) ⊆ ∪{ Zt | t ∈ F−1(c) } .

Hence (60) has been established.

I will now prove (11). Accordingly, take any ċ. By the definition of

Ċ there exists c such that ċ = Zc. I argue

ċ = Zc

⊆ ∪{ Zt | t ∈ F−1(c) }

= ∪{ Zt | Zt ∈ Ḟ−1(Zc) }

= ∪{ Zt | Zt ∈ Ḟ−1(ċ) }

= ∪{ ṫ | ṫ ∈ Ḟ−1(ċ) }

= ∪Ḟ−1(ċ) .
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The first equality is the definition of c. The set inclusion is (60) and

the second equality follows from Lemma A.4(g). The third equality

follows from the definition of c, and the fourth equality follows from

Lemma A.4(b,d).

(c). Since (12a) has been established by part (b), it suffices to prove

(12b) and (12c).

(12b). By assumption (5b), the members of {Ci |i} are disjoint.

Thus by Lemma A.4(c), the members of { {Zc|c∈Ci} |i} are disjoint.

Thus by the definition of (Ċi)i, the members of { Ċi |i} are disjoint.

(12c). Before beginning the main argument, I argue that

(∃ i, t) F (t)6⊆Ci and F (t)∩Ci 6=∅(62a)

⇔ (∃ i, t, c1, c2) {c1, c2}∈F (t) , c1 /∈Ci , and c2∈Ci
⇔ (∃ i, t, c1, c2) {Zc1 , Zc2}∈Ḟ (Zt) , c

1 /∈Ci , and c2∈Ci
⇔ (∃ i, t, c1, c2) {Zc1 , Zc2}∈Ḟ (Zt) , Zc1 /∈{Zc|c∈Ci} , and

Zc2∈{Zc|c∈Ci}

⇔ (∃ i, t, c1, c2) {Zc1 , Zc2}∈Ḟ (Zt) , Zc1 /∈Ċi , and Zc2∈Ċi
⇔ (∃ i, ṫ, ċ1, ċ2) {ċ1, ċ2}∈Ḟ (ṫ) , ċ1 /∈Ċi , and ċ2∈Ċi
⇔ (∃ i, ṫ) Ḟ (ṫ)6⊆Ċi and Ḟ (ṫ)∩Ċi 6=∅ .(62b)

The second equivalence holds by Lemma A.4(g). The third equiva-

lence holds by Lemma A.3(b) and the fourth equivalence holds by the

definition of (Ċi)i. The fifth equivalence holds by Lemma A.4(b–d).

By assumption (5c), (62a) is false. Thus by the preceding paragraph,

(62b) is false. Thus (12c) is true. 2

Proof A.6 (for Theorem 1). Part (a) follows from Lemma A.5(c).

The remaining parts follow from Lemma A.4(b–g). 2

Appendix B. For Theorem 2

B.1. Lemmata concerning outcome-set preforms

Lemma B.1. Suppose that (W, Ṅ, Ċ) is an AR∗ outcome-set preform

(9) with its Ṫ (7), ṗ (8), and Ḟ (10). Then the following hold.

(a) {(ṫ, ċ)|(ṫ, ṫ∩ċ)∈ṗ−1} = Ḟ .

(b) If ṗ(ṫ)∩ċ = ṫ, then ċ ∈ Ḟ (ṗ(ṫ)).
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Proof. (a). The statement of part (a) is equivalent to

(∀ṫ, ċ) (ṫ, ṫ∩ċ)∈ṗ−1 ⇔ (ṫ, ċ)∈Ḟ .

To prove the ⇐ direction, assume (ṫ, ċ)∈Ḟ . Then (9c) implies that

(ṫ, ṫ∩ċ)∈ṗ−1. To prove the ⇒ direction, assume (ṫ, ṫ∩ċ)∈ṗ−1. By the

definition of Ḟ , it suffices to prove

ċ 6⊇ ṫ and

(∃ṫ]∈ṗ−1(ṫ)) ċ ⊇ ṫ] .

To see the first, suppose ċ ⊇ ṫ. Then ṫ∩ċ = ṫ, in which case the assump-

tion (ṫ, ṫ∩ċ)∈ṗ−1 implies (ṫ, ṫ)∈ṗ−1, in contradiction to the definition of

ṗ. To see the second, note that (ṫ∩ċ)∈ṗ−1(ṫ) by assumption and that

ċ ⊇ (ṫ∩ċ).
(b). Suppose ṗ(ṫ)∩ċ = ṫ. Then since (ṗ(ṫ), ṫ) ∈ ṗ−1, we have

(ṗ(ṫ), ṗ(ṫ)∩ċ) ∈ ṗ−1 .

By part (a) in the ⊆ direction, this implies (ṗ(ṫ), ċ) ∈ Ḟ . 2

Lemma B.2. Let (W, Ṅ, Ċ) be an AR∗ outcome-set preform (9) with

its Ṫ (7) and ṗ (8). Then the following hold.

(a) If ṫ6=W , there is exactly one ċ such that ṗ(ṫ)∩ċ = ṫ.

(b) (∀ṫ) {ċ|ċ⊇ṫ} is finite.

Proof. Define Ḟ by (10).

(a). Take any ṫ 6= W .

This paragraph shows that there is at least one ċ that satisfies

ṗ(ṫ)∩ċ = ṫ. Since ṫ 6= W , ṗ(ṫ) exists. Note that

ṫ ∈ ṗ−1(ṗ(ṫ)) = { ṗ(ṫ)∩ċ | ċ∈Ḟ (ṗ(ṫ)) } ,

where the set membership follows from the function-hood of ṗ and

the equality follows from (9c). Thus there exists a ċ ∈ Ḟ (ṗ(ṫ)) such

that ṫ = ṗ(ṫ)∩ċ (the membership of ċ in Ḟ (ṗ(ṫ)) is unnecessary in this

proof).

This paragraph shows that no more than one ċ satisfies ṗ(ṫ)∩ċ = ṫ.

Accordingly, suppose that ċ1 and ċ2 satisfy ṗ(ṫ)∩ċ1 = ṫ and ṗ(ṫ)∩ċ2 = ṫ.

By Lemma B.1(b), both ċ1 and ċ2 belong to Ḟ (ṗ(ṫ)). Further, since

both ċ1 and ċ2 are supersets of ṫ, we have that ċ1∩ċ2 6= ∅. The last

two sentences and (9d) imply ċ1 = ċ2.
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(b). Take any ṫ. If ṫ = W , then {ċ|ċ⊇W} is finite by (9b). Ac-

cordingly, assume ṫ 6= W . Then S2 Lemma C.2(a) implies that there

exists a unique integer K ≥ 1 such that the sequence (ṗk(ṫ))Kk=1 is well-

defined and W = ṗK(ṫ). Further, by S2 Lemma C.2(b), we may let

λ be a function from {ċ|W⊃ċ⊇ṫ} into {1, 2, ... K} with the property

that, for all ċ in its domain, ċ ∈ Ḟ (ṗλ(ċ)(ṫ)).

Now suppose {ċ|ċ⊇ṫ} were infinite. Then by (9b), {ċ|W⊃ċ⊇ṫ} must

have more than K members. Thus by the definition of λ, {ċ|W⊃ċ⊇ṫ}
must have distinct members ċ1 and ċ2 such that λ(ċ1) = λ(ċ2). Thus

by the definition of λ again, both ċ1 and ċ2 belong to Ḟ (ṗλ(ċ1)(ṫ)) =

Ḟ (ṗλ(ċ2)(ṫ)). However, since both ċ1 and ċ2 belong to {ċ|W⊃ċ⊇ṫ}, ċ1

and ċ2 are not disjoint. The last two sentences and (9d) imply ċ1 = ċ2.

This contradicts the distinctness in their definition. 2

Lemma B.3. Let (W, Ṅ, Ċ) be a concise (11) AR∗ outcome-set pre-

form (9) with its Ṫ (7). Then ċ ⊇ ṅ iff (∃ṫ) ċ ⊇ ṫ ⊇ ṅ.3

Proof. The reverse direction is immediate. To prove the forward

direction, assume ċ ⊇ ṅ. If ṅ ∈ Ṫ , the conclusion follows immediately

by setting ṫ = ṅ. Thus we may assume ṅ /∈ Ṫ . By (6e), this implies

the existence of a w such that ṅ = {w}. Thus we have

ċ ⊇ {w} = ṅ .

Conciseness implies ∪Ḟ−1(ċ) ⊇ ċ, where Ḟ is defined by (10). Thus

since ċ 3 w, there is some ṫw ∈ Ḟ−1(ċ) such that ṫw 3 w. Thus we

have

ċ ⊇ ṫw∩ċ ⊇ {w} = ṅ .

Since ṫw ∈ Ḟ−1(ċ), (9c) implies ṫw∩ċ ∈ Ṫ . Thus the last two sentences

imply the lemma’s conclusion by setting ṫ = ṫw∩ċ. 2

3The forward direction can fail without conciseness. For instance, in Example
2 of S2 Section 3.3, ċ={1} is a superset of ṅ={1} and there is no ṫ such that
ċ ⊇ ṫ ⊇ ṅ. Similarly, in Example 3 of S2 Section 3.3, ċ=D(22)∪{.02} is a superset
of ṅ={.02} and there is no ṫ such that ċ ⊇ ṫ ⊇ ṅ. Conciseness and Lemma B.3 are
used to justify the third equality in (78) below.
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B.2. Main argument for Theorem 2

Lemma B.4. Let (W, Ṅ, Ċ) be a concise (11) AR∗ outcome-set pre-

form (9) with its (Ċṅ)ṅ (16). Then the following hold.

(a) ∩Ċṅ = ṅ (where ∩∅ is defined to be W ).

(b) ṅ1⊇ṅ2 iff Ċṅ1⊆Ċṅ2.

Proof. (a). Take any ṅ. The ⊇ direction follows immediately from

the definition of Ċṅ. The ⊆ direction is equivalent to Wr∩Ċṅ ⊇ Wrṅ.

To prove this, take any w /∈ ṅ. The next three paragraphs will show

w /∈ ∩Ċṅ.

Let Ṫwn = {ṫ|ṫ⊇{w}∪ṅ}. Since Ṫwn is a chain by (6b), ∩Ṫwn is a

member of Ṅ by (6d). Further,

∩Ṫwn ⊃ {w}(63)

because [1] ∩Ṫwn ⊇ {w}∪ṅ by the definition of Ṫwn, [2] w /∈ ṅ by as-

sumption, and [3] ṅ 6= ∅ by (6a). Since (63) implies that ∩Ṫwn is not

a singleton, (6e) implies that ∩Ṫwn is a member of Ṫ . Accordingly, we

may use ṫwn to denote ∩Ṫwn. I argue

ṫwn ⊃ {w} ,(64a)

ṫwn ⊃ ṅ , and(64b)

(/∃ṫ) ṫwn ⊃ ṫ ⊇ {w}∩ṅ .(64c)

(64a) follows from (63) and the the definition of ṫwn. (64b) follows from

the definitions of ṫwn and Ṫwn and from the assumption that w /∈ ṅ.

(64c) follows immediately from the definitions of ṫwn and Ṫwn.

By (64a), S2 equation (4), and S2 Lemma A.3(b), we have that

ṗ−1(ṫwn) partitions ṫwn. Thus by (64b) there is some ṫn ∈ ṗ−1(ṫwn)

that intersects ṅ. By (6b), either ṫn ⊇ ṅ or ṅ ⊃ ṫn. If the latter held,

(64b) would imply ṫwn ⊃ ṅ ⊃ ṫn, which contradicts ṫwn = ṗ(ṫn). Hence

the former holds:

ṫn ⊇ ṅ .(65)

Note the definition of ṫn implies ṫwn ⊃ ṫn. So the last two sentences

imply ṫwn ⊃ ṫn ⊇ ṅ. Thus by (64c), we must have

ṫn 63 w .(66)

The definition of ṫn and (9c) imply the existence of a ċ such that

ṫwn∩ċ = ṫn .(67)
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By (67) and (65), ċ ⊇ ṫn ⊇ ṅ. Thus

ċ ∈ Ċṅ .(68)

Further, by (67) and (66), ṫwn∩ċ = ṫn 63 w. Thus, since ṫwn 3 w by

(64a), ċ 63 w. This and (68) imply that ∩Ċṅ 63 w.

(b). Suppose ṅ1 ⊇ ṅ2. Then Ċṅ1 ⊆ Ċṅ2 by the definition of (Ċṅ)ṅ.

Conversely, suppose Ċṅ1 ⊆ Ċṅ2 . Then ∩Ċṅ1 ⊇ ∩Ċṅ2 , which is equiva-

lent to ṅ1 ⊇ ṅ2 by part (a). 2

Lemma B.5. Let (W, Ṅ, Ċ) be a concise (11) AR∗ outcome-set pre-

form (9) with its Ṫ (7), ṗ (8), and Ḟ (10). Let

C := Ċ and N := {Ċṅ|ṅ} ,

where (Ċṅ)ṅ is defined by (16). Finally, derive T (2), F (3), and p (4)

from (C,N). Then the following hold.

(a) (Ċṅ)ṅ is a bijection from Ṅ onto N . Further, ĊW = {}.
(b) T = { Ċṫ | ṫ∈Ṫ }.
(c) (∀ṫ, ċ, ṫ]) ( ṫ=ṗ(ṫ]) and ṫ∩ċ=ṫ]) iff ( ċ /∈Ċṫ and Ċṫ∪{ċ}=Ċṫ]).

(d) F = { (Ċṫ, ċ) | (ṫ, ċ)∈Ḟ }.
(e) p = { (Ċṫ] , Ċt) | (ṫ], ṫ)∈ṗ }.

Proof. (a). First sentence. (Ċṅ)ṅ is onto N by the definition of N .

To show (Ċṅ)ṅ is injective, suppose ṅ1 and ṅ2 are such that Ċṅ1 = Ċṅ2 .

Then by two applications of Lemma B.4(a), ṅ1 = ∩Ċṅ1 = ∩Ċṅ2 = ṅ2.

Second sentence. I argue ĊW = {ċ|ċ⊇W} = {ċ|ċ=W} = {}. The

first equality is the definition of ĊW , and the second equality holds

by (9b). The third equality follows from W /∈Ċ, which follows from

conciseness via the straightforward paragraph following the statement

of S2 Lemma 3.2.

(b). I will argue that

T = { n | n is finite }

= { Ċṅ | Ċṅ is finite }

= { Ċṅ | ṅ∈Ṫ }

= { Ċṫ | ṫ∈Ṫ } .

The first equality is the definition of T , and the second equality follows

from part (a). Since the last equality is trivial, only the third equality
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remains. Accordingly, the next two paragraphs will argue that

Ċṅ is finite iff ṅ∈Ṫ .

To prove the forward direction, assume Ċṅ is finite. Then the col-

lection {Ċṅ[|Ċṅ[⊆Ċṅ} is finite simply because a finite set has a finite

number of subsets. Hence {ṅ[|Ċṅ[⊆Ċṅ} is finite by part (a). Hence

{ ṅ[ | ṅ[⊇ṅ } is finite by Lemma B.4(b). Hence ṅ∈Ṫ by the definition

of Ṫ .

To prove the reverse direction, assume ṅ∈Ṫ . Then {ċ|ċ⊇ṅ} is finite

by Lemma B.2(b). Hence Ċṅ is finite by its definition.

(c). Forward Direction. Take any ṫ, ċ, and ṫ] such that ṫ = ṗ(ṫ]) and

ṫ∩ċ = ṫ].

If ċ were an element of Ċṫ, two applications of Lemma B.4(a) would

result in ṫ = ∩Ċṫ = (∩Ċṫ)∩ ċ = ṫ∩ċ = ṫ], which contradicts ṫ = ṗ(ṫ]).

Hence ċ /∈ Ċṫ, which is the first of the two statements to be proved.

To prove the second, first note that ṫ = ṗ(ṫ]) implies ṫ ⊇ ṫ]. This

implies Ċṫ ⊆ Ċṫ] by the definitions of Ċṫ and Ċṫ] . Second note that

ṫ∩ċ = ṫ] implies ċ ∈ Ċṫ] by the definition of Ċṫ] . These two observations

together imply Ċṫ∪{ċ} ⊆ Ċṫ] .

To show the converse, consider any ċ+ in Ċṫ]rĊṫ. Then by the defi-

nition of (Ċṅ)ṅ,

ċ+ ⊇ ṫ] and(69a)

ċ+ 6⊇ ṫ .(69b)

Hence by the assumption ṫ = ṗ(ṫ]) and by the definition of Ḟ ,

ċ+ ∈ Ḟ (ṫ) .(70)

Meanwhile, the assumption ṫ∩ċ = ṫ] implies

ċ ⊇ ṫ] .(71)

Further, the assumptions ṫ = ṗ(ṫ]) and ṫ∩ċ = ṫ] imply

ċ ∈ Ḟ (ṫ)(72)

by Lemma B.1(b). (69a) and (71) imply that ċ+∩ċ 6= ∅. Thus, (70),

(72), and (9d) imply that ċ+ = ċ. Thus any ċ+ in Ċṫ]rĊṫ equals ċ.

Equivalently, Ċṫ∪{ċ} ⊇ Ċṫ] .
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Reverse Direction. Take any ṫ, ċ, and ṫ] such that ċ /∈ Ċṫ and

Ċṫ∪{ċ} = Ċṫ] . Note

ṫ∩ċ = (∩Ċṫ)∩ċ = ∩(Ċṫ∪{ċ}) = ∩(Ċṫ]) = ṫ] ,(73)

where the first equality holds by Lemma B.4(a), the second is tautolog-

ical (Ċṫ∪{ċ} is a collection of choices), the third holds by Ċṫ∪{ċ} = Ċṫ]

(last sentence), and the last holds by Lemma B.4(a) (again). Also note

ṫ ⊃ ṫ∩ċ = ṫ] ,(74)

where the strict set inclusion holds because ṫ 6⊆ ċ by ċ /∈ Ċṫ (two sen-

tences ago), and where the equality holds by (73). Finally, the following

four sentences argue

(/∃ṫ′) ṫ ⊃ ṫ′ ⊃ ṫ] .(75)

Suppose there were such at ṫ′. Then by Lemma B.4(b), Ċṫ ⊂ Ċṫ′ ⊂ Ċṫ] .

Thus by the assumption Ċṫ∪{ċ} = Ċṫ] , we have Ċṫ ⊂ Ċṫ′ ⊂ Ċṫ∩{ċ}.
This is impossible simply because the same collection Ċṫ appears on

both ends. (74) and (75) imply ṫ = ṗ(ṫ]). This and (73) are our goals.

(d). I argue

F = { (t, c) | c/∈t and t∪{c}∈T }
= { (t, c) | (∃t]) c/∈t and t∪{c}=t] }
= { (t, ċ) | (∃t]) ċ /∈t and t∪{ċ}=t] }

= { (Ċṫ, ċ) | (∃ṫ]) ċ /∈Ċṫ and Ċṫ∪{ċ}=Ċṫ] }

= { (Ċṫ, ċ) | (∃ṫ]) ṫ=ṗ(ṫ]) and ṫ∩ċ=ṫ] }

= { (Ċṫ, ċ) | ṫ∩ċ∈ṗ−1(ṫ) }

= { (Ċṫ, ċ) | (ṫ, ċ)∈Ḟ } .

The first equality is the definition of F . The third equality follows from

the definition of C. The fourth equality follows from parts (a) and (b).

The fifth equality follows from part (c). The last equality follows from

Lemma B.1(a).

(e). I argue

p = { (t], t]r{c}) | c∈t] and t]r{c}∈T }
= { (t], t]r{c}) | (∃t) c∈t] and t]r{c}=t }
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= { (t], t]r{ċ}) | (∃t) ċ∈t] and t]r{ċ}=t }

= { (Ċṫ] , Ċṫ]r{ċ}) | (∃ṫ) ċ∈Ċṫ] and Ċṫ]r{ċ} = Ċṫ }

= { (Ċṫ] , Ċṫ) | (∃ċ) ċ∈Ċṫ] and Ċṫ]r{ċ} = Ċṫ }

= { (Ċṫ] , Ċṫ) | (∃ċ) ċ /∈Ċṫ and Ċṫ∪{ċ} = Ċṫ] }

= { (Ċṫ] , Ċṫ) | (∃ċ) ṫ=ṗ(ṫ]) and ṫ∩ċ=ṫ] }

= { (Ċṫ] , Ċṫ) | ṫ=ṗ(ṫ]) }

The first equality is the definition of p. The third equality holds by

the definition of C. The fourth holds by parts (a) and (b). The fifth is

a change of variables from (ṫ], ċ) to (ṫ], ṫ). The seventh equality holds

by part (c). The last equality is obvious in the ⊆ direction, and the

converse holds by (9c). 2

Lemma B.6. Suppose (W, Ṅ, (Ċi)i) is a concise AR∗ outcome-set

form (12). Let

(Ci)i := (Ċi)i and N := {Ċṅ|ṅ} ,

where (Ċṅ)ṅ is defined by (16). Then the following hold.

(a) (∪iCi, N) is a choice-set preform (1) with no-trivial-moves (13).

(b) ((Ci)i, N) is a choice-set form (5) with no-trivial-moves.

Proof. Note (12a) implies (9) and (6). Derive Ċ := ∪iĊi, Ṫ (7), ṗ

(8), and Ḟ (10) from (W, Ṅ, (Ċi)i). Further, derive C := ∪iCi, T (2),

F (3), and p (4) from ((Ci)i, N). Note that, by the definitions of C,

(Ci)i and Ċ,

C = ∪iCi = ∪iĊi = Ċ .(76)

(a). (1a). By the definitions of N and (Ċṅ)ṅ, each member of N is

a subset of Ċ. Thus by (76), each member of N is a subset of C.

Further, {} ∈ N because W ∈ Ṅ by (6a) and because ĊW = {} by

Lemma B.5(a). Hence N is nonempty.

(1b). This paragraph proves

(∀ċ)(∃ṅ) ċ ∈ Ċṅ .(77)

Accordingly, take any ċ. By conciseness (11), Ḟ−1(ċ) is nonempty.

Thus there is some ṫ[ such that ċ ∈ Ḟ (ṫ[). Thus by (9c), ṫ[∩ċ ∈ ṗ−1(ṫ[),

which easily implies that ṫ[∩ċ is a node. Thus, simply because ċ ⊇ ṫ[∩ċ,
we have ċ ∈ Ċṫ[∩ċ. Set ṅ = ṫ[∩ċ.
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To conclude, this paragraph shows C ⊆ ∪N . Accordingly, take any

c. By (76), c ∈ Ċ. Thus by (77), there is some ṅ such that c ∈ Ċṅ.

Hence c ∈ Ċṅ ⊆ ∪{Ċṅ′|ṅ′} = ∪N , where the last equality follows from

the definition of N .

(1c). To show the ⊆ half of (1c), take any n∈NrT . Then by the

definition ofN and Lemma B.5(a,b), n∈{Ċṅ|ṅ}r{Ċṫ|ṫ}. In other words,

there exists an ṅ/∈Ṫ such that n=Ċṅ.

By ṅ/∈Ṫ and the definition of Ṫ , ṅ has an infinite number of prede-

cessors. By (6e), each of these predecessors is in Ṫ . Hence {ṫ|ṫ⊇ṅ} is

an infinite subset of Ṫ . Further, by (6b), {ṫ|ṫ⊇ṅ} is an infinite chain

in Ṫ . Thus by Lemma B.4(b), {Ċṫ|ṫ⊇ṅ} is an infinite chain. Further,

by Lemma B.5(b), {Ċṫ|ṫ⊇ṅ} is an infinite chain in T . Define T ∗ to be

this infinite chain.

It remains to be shown that n = ∪T ∗. I argue

n = Ċṅ(78)

= { ċ | ċ⊇ṅ }
= ∪{ {ċ|ċ⊇ṫ} | ṫ⊇ṅ }

= ∪{ Ċṫ | ṫ⊇ṅ }
= ∪T ∗ .

The first equality follows from the definition of ṅ. The second equality

is the definition of Ċṅ. The ⊇ half of the third equality is obvious. The

converse follows from conciseness and Lemma B.3. The fourth equality

follows from the definition of Ċṫ. The fifth equality follows from the

definition of T ∗.

To show the ⊇ half of (1c), suppose that T ∗ is an infinite chain in T .

By Lemma B.5(a,b), there is an infinite Ṫ ∗ such that T ∗ = {Ċṫ|ṫ∈Ṫ ∗}.
Further, by Lemma B.4(b), Ṫ ∗ is a chain. Thus ∩Ṫ ∗ ∈ Ṅ by (6d).

This paragraph argues

∪T ∗ = ∪{ Ċṫ | ṫ∈Ṫ ∗ }(79)

= ∪{ {ċ|ċ⊇ṫ} | ṫ∈Ṫ ∗ }

= { ċ | (∃ṫ∈Ṫ ∗) ċ⊇ṫ }

= { ċ | ċ⊇∩Ṫ ∗ }

= Ċ∩Ṫ ∗

∈ N .
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The first equality follows from the definition of Ṫ ∗. The second equality

follows from the definition of Ċṫ. The third equality is a rearrangement.

The ⊆ half of the fourth equality is straightforward. The converse holds

because Ṫ ∗ is a chain. The fifth equality is the definition of Ċ∩Ṫ ∗ , which

applies because ∩Ṫ ∗ ∈ Ṅ by the conclusion of the previous paragraph.

The set membership follows from the definition of N .

Finally, since T ∗ is an infinite chain, ∪T ∗ must be an infinite set.

Thus ∪T ∗ /∈ T by the definition of T . This and (79) yield ∪T ∗ ∈ NrT .

(1d). To start, note that

(∀ṫ, ċ, ṫ]) ṫ=ṗ(ṫ]) and ṫ∩ċ=ṫ](80)

⇔ ċ /∈Ċṫ and Ċṫ∩{ċ}=Ċṫ]
⇔ ċ∈Ċṫ] and Ċṫ=Ċṫ]r{ċ} .

The first equivalence is Lemma B.5(c). The second is a rearrangement.

Now fix any t] 6= {}. The next paragraph will show the existence

of a c∈t] such that t]r{c}∈T . The paragraph thereafter will show

the uniqueness of such a c. To prepare for these two paragraphs, use

Lemma B.5(b) to define ṫ] such that t] = Ċṫ] .

Since t] 6= {}, Lemma B.5(a) implies that ṫ] 6= W . Thus, ṗ(ṫ]) is

well-defined. Thus by Lemma B.2(a), we may let ċ be such that

ṗ(ṫ])∩ċ = ṫ]. Let ṫ = ṗ(ṫ]). By the last two sentences and (80) in

the forward direction,

ċ∈Ċṫ] and Ċṫ=Ċṫ]r{ċ} .

By Lemma B.5(b), we may let t = Ċṫ. Further, by (76), we may let

c = ċ. By the previous three sentences and the definition of ṫ], we have

c∈t] and t=t]r{c} .

Hence there exists a c∈t] such that t]r{c}∈T .

Now consider any c′∈t] such that t]r{c′}∈T . Let t′ = t]r{c′}. By

the last two sentences we have

c′∈t] and t′=t]r{c} .

By Lemma B.5(b), we may let ṫ′ be such that t′ = Ċṫ′ . Further, by

(76), we may let ċ′ = c′. The last three sentences and the definition of

ṫ] two paragraphs ago yield

ċ′∈Ċṫ] and Ċṫ′=Ċṫ]r{ċ′} .
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Thus by (80) in the reverse direction, we have that ṫ′=ṗ(ṫ]) and ṫ′∩ċ′=ṫ].
By substituting out ṫ′, we arrive at ṗ(ṫ])∩ċ′=ṫ]. Thus by the uniqueness

in Lemma B.2(a) and the definition of ċ at the start of the previous

paragraph, we have ċ′ = ċ. Thus, by the definition of ċ′ in this para-

graph and the definition of c in the previous one, we have c′ = c.

(1e). Note that

(∀ṫ1, ṫ2) Ḟ (ṫ1)=Ḟ (ṫ2) or Ḟ (ṫ1)∩Ḟ (ṫ2)=∅(81a)

⇔ (∀ṫ1, ṫ2) F (Ċṫ1)=F (Ċṫ2) or F (Ċṫ1)∩Ḟ (Ċṫ2)=∅
⇔ (∀t1, t2) F (t1)=F (t2) or F (t1)∩F (t2)=∅ ,(81b)

where the first equivalence follows from Lemma B.5(d), and the second

follows from Lemma B.5(a,b). (81a) is the assumed (9e), and (81b) is

the desired (1e).

No-trivial-moves. Take any t. By Lemma B.5(b), we may let ṫ be

such that t = Ċṫ.

On the one hand, suppose there is a w such that ṫ = {w}. Then

ṗ−1(ṫ) = ∅. Thus by (9c), Ḟ (ṫ) = ∅. Thus by Lemma B.5(d), F (Ċṫ) =

∅. So by the definition of ṫ, F (t) = ∅.

On the other hand, suppose that there is not a w such that ṫ = {w}.
Then by S2 equation (4) and S2 Lemma A.3(b), ṗ−1(ṫ) has at least

two elements. Thus by (9c), Ḟ (ṫ) has at least two elements. Thus by

Lemma B.5(d), F (Ċṫ) has at least two elements. So by the definition

of ṫ, F (t) has at least two elements.

The last two paragraphs have shown that F (t) = ∅ or |F (t)| ≥ 2.

Hence |F (t)| 6= 1.

(b). I must show that ((Ci)i, N) satisfies (5) and has no-trivial-

moves. Both (5a) and no-trivial-moves were proved in part (a).

(5b). This follows from (12b) and the fact that each Ci = Ċi by

definition.

(5c). Take any i and any t. By Lemma B.5(b), there exists ṫ such

that Ċṫ = t. By (12c),

Ḟ (ṫ)⊆Ċi or Ḟ (ṫ)∩Ċi=∅ .

Since Ḟ (ṫ) = F (Ċṫ) by Lemma B.5(d), this is equivalent to

F (Ċṫ)⊆Ċi or F (Ċṫ)∩Ċi=∅ .
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By the definitions of ṫ and Ci, this is equivalent to

F (t)⊆Ci or F (t)∩Ci=∅ .

2

Proof B.7 (for Theorem 2). Part (a) follows from Lemma B.6(b).

The remaining parts follow from Lemma B.5. 2

Appendix C. For Theorem 3 and its Corollary

C.1. There and back again, from both sides

Proof C.1 (for Lemma 4.1). For notational ease, define

(W, Ṅ, (Ċi)i) := Ẑ[((Ci)i, N)] .(82)

Then by the definition of Ẑ,

W = Z ,(83a)

Ṅ = {Zn|n} , and(83b)

(∀i) Ċi = {Zc|c∈Ci} ,(83c)

where Z, (Zn)n, and (Zc)c are derived from ((Ci)i, N) by (14).

Next define

((C ′i)i, N
′) := Ĉ[(W, Ṅ, (Ċi)i)] .(84)

Then by the definition of Ĉ,

(∀i) C ′i = Ċi and(85a)

N ′ = {Ċṅ|ṅ} ,(85b)

where (Ċṅ)ṅ is derived from (W, Ṅ, (Ċi)i) by (16).

First I argue

(∀i) C ′i = Ċi = { Zc | c∈Ci } = { δ(c) | c∈Ci } = δ(Ci) .(86)

The first equality is (85a), the second equality is (83c), and the third

equality follows from the definition of δ. Second I argue

N ′ = { Ċṅ | ṅ }(87)

= { {ċ|ċ⊇ṅ} | ṅ }
= { {Zc|Zc⊇Zn} | n }
= { {Zc|c∈n} | n }
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= { {δ(c)|c∈n} | n }
= { δ(n) | n } .

The first equality is (85b), and the second equality follows from the

definition of (Ċṅ)ṅ. The third equality follows from (83b), (83c), and

Theorem 1(b–c). The fourth follows from Lemma A.3(c). The fifth

follows from the definition of δ.

Since δ = (Zc)c by definition, δ is a bijection by Theorem 1(c). This,

(86), and (87) imply that ((Ci)i, N) and ((C ′i)i, N
′) are equivalent by

the choice renaming δ.

Finally, recall Φ = ((Ci)i, N) by the definition of Φ in the lemma

statement. Thus Ĉ◦Ẑ[Φ] = ((C ′i)i, N
′) by the previous sentence, (82),

and (84). Thus the last three sentences imply that Φ and Ĉ◦Ẑ[Φ] are

equivalent by the choice renaming δ. 2

Proof C.2 (for Lemma 4.2). For notational ease, define

((Ci)i, N) := Ĉ[(W, Ṅ, (Ċi)i)] .(88)

Thus, by the definition of Ĉ,

(∀i) Ci = Ċi and(89a)

N = {Ċṅ|ṅ} .(89b)

where (Ċṅ)ṅ is derived from (W, Ṅ, (Ċi)i) by (16). By Theorem 2(a),

((Ci)i, N) is a no-trivial-move (13) choice-set form (5) .(90)

Next define

(W ′, Ṅ ′, (Ċ ′i)i) := Ẑ[((Ci)i, N)] .(91)

Thus, by the definition of Ẑ,

W ′ = Z ,(92a)

Ṅ ′ = {Zn|n} ,(92b)

(∀i) Ċ ′i = {Zc|c∈Ci} .(92c)

where Z, (Zn)n, and (Zc)c are derived from ((Ci)i, N) by (14).

For future use on several occasions, I argue

Z = NrF−1(C)(93)

= { n | (/∃n]) n⊂n] }

= { Ċṅ | (/∃ṅ]) Ċṅ⊂Ċṅ] }
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= { Ċṅ | (/∃ṅ]) ṅ⊃ṅ] }

= { Ċṅ | (∃w) ṅ={w} }

= { Ċ{w} | w } .

The first equality is the definition of Z. The second equality follows

from (90) and S1 Corollary 5.2(c). The third equality follows from (89b)

and Theorem 2(b). The fourth equality follows from Lemma B.4(b).

The fifth equality follows from (6a) and (6c).

First I argue

(∀i) Ċ ′i = { Zc | c∈Ci }
= { {z|c∈z} | c∈Ci }

= { {z|ċ∈z} | ċ∈Ċi }

= { {Ċ{w}|ċ∈Ċ{w}} | ċ∈Ċi }

= { {Ċ{w}|w∈ċ} | ċ∈Ċi }

= { {θ(w)|w∈ċ} | ċ∈Ċi }

= { θ(ċ) | ċ∈Ċi }

The first equality holds by (92c), the second holds by the definition of

Zc, and the third holds by (89a). The fourth equality holds by (93) and

Theorem 2(b). The fifth equality holds because Ċ{w} = {ċ|ċ⊇{w}} =

{ċ|w∈ċ}. The sixth equality holds by the definition of θ.

Second I argue

Ṅ ′ = { Zn |n}
= { { z | n⊆z } |n}

= { { z | Ċṅ⊆z } |ṅ}

= { { Ċ{w} | Ċṅ⊆Ċ{w} } |ṅ}

= { { Ċ{w} | ṅ⊇{w} } |ṅ}

= { { Ċ{w} | w∈ṅ } |ṅ}

= { { θ(w) | w∈ṅ } |ṅ}
= { θ(ṅ) |ṅ} .

The first equality holds by (92b), and the second holds by the definition

of (Zn)n. The third holds by (89b) and Theorem 2(b). The fourth holds
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by (93) and Theorem 2(b) again. The fifth holds by Lemma B.4(b).

The seventh holds by the definition of θ.

Third I argue that θ = (Ċ{w})w is a bijection from W onto W ′. I do so

in four steps. [1] Trivially, ({w})w is a bijection from W onto {{w}|w}.
[2] (Ċ{w}){w} is a bijection from {{w}|w} onto {Ċ{w}|w}. This holds

because [a] its domain {{w}|w} is a subset of Ṅ by (12a), (9a), and (6c),

[b] Ṅ is the domain of (Ċṅ)ṅ, and [c] the latter function is a bijection

by Theorem 2(b). [3] Steps [1] and [2] together imply that θ = (Ċ{w})w
is a bijection from W onto {Ċ{w}|w}. [4] {Ċ{w}|w} = Z = W ′ by (93)

and (92a).

The conclusions of the last three paragraphs show that (W, Ṅ, (Ċi)i)

and (W, Ṅ ′, (Ċ ′i)i) are equivalent by the outcome renaming θ. Recall

Φ̇ = (W, Ṅ, (Ċi)i) by the definition of Φ̇ in the lemma statement. Thus

Ẑ◦Ĉ[Φ] = (W, Ṅ ′, (Ċ ′i)i) by the last sentence, (88), and (91). Thus the

last three sentences imply that Φ̇ and Ẑ◦Ĉ[Φ̇] are equivalent by the

outcome renaming θ. 2

C.2. For Theorem 3

Lemma C.3. Suppose that Φ := ((Ci)i, N) and Φ′ := ((C ′i)i, N
′) are

two choice-set forms (5) that are equivalent (20) by the choice renaming

δ. Then the following hold.

(a) Φ has no-trivial-moves (13) iff Φ′ has no-trivial-moves. (I take

this as self-evident.)

(b) Suppose Φ and Φ′ have no-trivial-moves. Define the conversion

operator Ẑ by (18). Then Ẑ[Φ] is equivalent (22) to Ẑ[Φ′] by the outcome-

renaming function θ defined by θ(w) = {δ(c)|c∈w} at each outcome w

in the W of Ẑ[Φ]. (Proof below.)

Proof. (b). This lengthy first paragraph derives four preliminary

results about Φ = ((Ci)i, N) and Φ′ = ((C ′i)i, N
′). From ((Ci)i, N)

derive C = ∪iCi, F (3), Z, (Zn)n, and (Zc)c (14). Similarly from

((C ′i)i, N
′) derive C ′ = ∪iC ′i, F ′ (3), Z ′, (Z ′n)n, and (Z ′c)c (14). (20b)

and the bijectivity of δ imply that

{ (n, δ(n)) |n } is a bijection from N onto N ′(94)

(where δ(n) = {δ(c)|c∈n} by definition). Further, since Z ⊆N , (94)

implies that { (z, δ(z)) | z } is a bijection from Z onto { δ(z) | z }. Note
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that

{ δ(z) | z } = { δ(n) | n∈NrF−1(C) }
= { δ(n) | (/∃n])n⊂n] }
= { δ(n) | (/∃n]) δ(n)⊂δ(n]) }
= { n′ | (/∃n′])n′⊂n′] }
= { n′ | n′∈N ′r(F ′)−1(C) }
= Z ′ ,

where the first equality holds by the definition of Z, the second holds

by S1 Corollary 5.2(c), the third holds by the assumed bijectivity of δ,

the fourth holds by changing variables from (n, n]) to (n′, n′]) via (94),

the fifth holds by S1 Corollary 5.2(c) again, and the last holds by the

definition of Z ′. The last two sentences imply that

{ (z, δ(z)) | z } is a bijection from Z onto Z ′(95)

(where δ(z) = {δ(c)|c∈z} by definition). Next, note that

(∀n) { δ(z) | z∈Zn } = { δ(z) | n⊆z }(96)

= { δ(z) | δ(n)⊆δ(z) } = { z′ | δ(n)⊆z′ } = Z ′δ(n) ,

where the first equality follows from the definition of (Zn)n, the second

follows from the bijectivity of δ, the third is a change of variables via

(95), and the last follows from the definition of (Z ′n′)n′ since δ(n) ∈ N ′
by (94). Finally, note that

(∀c) { δ(z) | z∈Zc } = { δ(z) | c∈z }(97)

= { δ(z) | δ(c)∈δ(z) } = { z′ | δ(c)∈z′ } = Z ′δ(c) ,

where the first equality follows from the definition of (Zc)c, the second

follows from the bijectivity of δ, the third is a change of variables via

(95), and the last follows from the definition of (Z ′c′)c′ since δ(c) ∈ C ′
by (20a).

Let

(W, Ṅ, (Ċi)i) := Ẑ[Φ] = (Z, {Zn|n}, ({Zc|c∈Ci})i ) ,(98)

where the second equality follows from the definition of Ẑ. Similarly,

let

(W ′, Ṅ ′, (Ċ ′i)i) := Ẑ[Φ′] = (Z ′, {Z ′n′ |n′}, ({Z ′c′|c′∈C ′i})i ) ,(99)

where the second equality follows from the definition of Ẑ.
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I first show that θ is a bijection from W onto W ′. By (95) and the

first components of (98) and (99),

{ (w, δ(w)) |w } is a bijection from W onto W ′

(where δ(w) = {δ(c)|c∈w} by definition). This bijection equals θ by

the definition of θ.

To derive (22a), I argue

{ θ(ṅ) | ṅ }
= { { θ(w) |w∈ṅ } | ṅ }
= { { θ(z) | z∈Zn } |n }
= { { δ(z) | z∈Zn } |n }
= { Z ′δ(n) |n }
= { Z ′n′ |n′ }

= Ṅ ′ .

The second equality follows from the first and second components of

(98) and from Theorem 1(b). The third follows from the definition of

θ. The fourth follows from (96), the fifth from (94), and the sixth from

the second component of (99).

To derive (22b), take any i. I argue

{ θ(ċ) | ċ∈Ċi }

= { { θ(w) |w∈ċ } | ċ∈Ċi }
= { { θ(z) | z∈Zc } | c∈Ci }
= { { δ(z) | z∈Zc } | c∈Ci }
= { Z ′δ(c) | c∈Ci }
= { Z ′c′ | c′∈C ′i }

= Ċ ′i .

The second equality follows from the first and third components of

(98) and from Theorem 1(c). The third follows from the definition of

θ. The fourth follows from (97). The fifth follows from (20a) and the

bijectivity of δ. The sixth follows from the third component of (99).

2
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Lemma C.4. Suppose Φ̇ := (W, Ṅ, (Ċi)i) and Φ̇′ := (W ′, Ṅ ′, (Ċ ′i)i)
are two concise AR∗ outcome-set forms (12) which are equivalent (22)

by the outcome renaming θ. Define the conversion operator Ĉ by (19).

Then Ĉ[Φ̇] and Ĉ[Φ̇′] are equivalent (20) by the choice-renaming function

δ defined by δ(c) = {θ(w)|w∈c} at each choice c in the ∪iCi of Ĉ[Φ̇].

Proof. This first paragraph derives some preliminary results about

(W, Ṅ, (Ċi)i) and (W ′, Ṅ ′, (Ċ ′i)i). From the first form, derive Ċ=∪iĊi
and (Ċṅ)ṅ (16). From the second form, derive Ċ ′=∪iĊ ′i, and (Ċ ′ṅ′)ṅ′

(16). Because θ:W→W ′ is assumed to be a bijection, (22a) implies

{ (ṅ, θ(ṅ)) | ṅ } is a bijection from Ṅ onto Ṅ ′(100)

(where θ(ṅ) = {θ(w)|w∈ṅ} by definition). Similarly, (22b) and (12b)

imply

{ (ċ, θ(ċ)) | ċ } is a bijection from Ċ onto Ċ ′(101)

(where θ(ċ) = {θ(w)|w∈ċ} by definition). Finally, note

(∀ṅ) {θ(ċ)|ċ∈Ċṅ} = {θ(ċ)|ċ⊇ṅ} = {θ(ċ)|θ(ċ)⊇θ(ṅ)}(102)

= {ċ′|ċ′⊇θ(ṅ)} = Ċ ′θ(ṅ) ,

where the first equality holds by the definition of Ċṅ, the second holds

because θ is a bijection, the third is a change of variables from ċ to

ċ′ via (101), and the last follows from the definition of (Ċ ′ṅ′)ṅ′ since

θ(ṅ) ∈ Ṅ ′ by (100).

Let

((Ci)i, N) := Ĉ[Φ̇] = ((Ċi)i, {Ċṅ|ṅ}) ,(103)

where the second equality follows from the definition of Ĉ. Similarly,

let

((C ′i)i, N
′) := Ĉ[Φ̇′] = ((Ċ ′i)i, {Ċ ′ṅ′ |ṅ′}) ,(104)

where the second equality follows from the definition of Ĉ.

I first show that δ is a bijection from C onto C ′, where C=∪iCi and

C ′=∪iC ′i by definition. By the definition of C, the first component

of (103), and the definition of Ċ, we have C = ∪iCi = ∪iĊi = Ċ.

Similarly, by the definition of C ′, the first component of (104), and the

definition of Ċ ′, we have C ′ = ∪iC ′i = ∪iĊ ′i = Ċ ′. Thus by (101) and

the last two sentences,

{ (c, θ(c)) | c } is a bijection from C onto C ′
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(where θ(c) = {θ(w)|w∈c} by definition). This bijection equals δ by

the definition of δ.

To show (20a), take any i. I argue

δ(Ci) = { δ(c) | c∈Ci } = { θ(c) | c∈Ci }

= { θ(ċ) | ċ∈Ċi } = Ċ ′i = C ′i .

The second equality follows from the definition of δ. The third equality

follows from the first component of (103). The fourth equality follows

from (22b). The fifth equality follows from the first component of (104).

To show (20b), I argue

{ δ(n) |n }
= { { δ(c) | c∈n } |n }
= { { θ(c) | c∈n } |n }

= { { θ(ċ) | ċ∈Ċṅ } | ṅ }

= { Ċ ′θ(ṅ) | ṅ }

= { Ċ ′ṅ′ | ṅ′ }
= N ′ .

The second equality follows from the definition of δ. The third equality

follows from both components of (103) and Theorem 2(b). The fourth

equality holds by (102). The fifth holds by (100). The last holds by

the second component of (104). 2

Proof C.5 (for Theorem 3). (a). This paragraph shows that Ẑ

is a well-defined function from the class of choice-set forms with no-

trivial-moves, into the class of concise AR∗ outcome-set forms, given

the theorem statement’s definitions of equality. Accordingly, take any

choice-set form Φ with no-trivial-moves. By Lemma C.3(a), Φ is well-

defined given the concept of equality for choice-set forms. Further, by

Theorem 1(a), the definition of Ẑ, and Lemma C.3(b), Ẑ[Φ] is a well-

defined concise AR∗ outcome-set form given the concepts of equality for

[1] choice-set forms and [2] concise AR∗ outcome-set forms.

This paragraph shows that Ĉ is a well-defined function from the class

of concise AR∗ outcome-set forms, into the class of choice-set forms with

no-trivial-moves, given the theorem statement’s definitions of equal-

ity. Accordingly, take any concise AR∗ outcome-set form Φ̇. By The-

orem 2(a), the definition of Ĉ, and Lemma C.4, Ĉ[Φ̇] is a well-defined
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choice-set form, with no-trivial-moves, given the concepts of equality

for [1] concise AR∗ outcome-set forms and [2] choice-set forms.

(b–c). Recall the definitions of Ẑ and Ĉ. Lemma 4.1 shows, for

any choice-set form Φ with no-trivial-moves, that Ĉ◦Ẑ[Φ] = Φ. Simi-

larly, Lemma 4.2 shows, for any concise AR∗ outcome-set form Φ̇, that

Ẑ◦Ĉ[Φ̇] = Φ̇. The last two paragraphs and the last two sentences imply

parts (b) and (c). 2

C.3. For Corollary 5.1

Lemma C.6. Suppose that Φ̄ and Φ̄′ are two OR∗ choice-sequence

forms (S1 equation (6)) that are equivalent (26) by the choice renaming

δ. Then the following hold.

(a) Φ̄ has no-absent-mindedness (S1 equation (16)) iff Φ̄′ has no-

absent-mindedness. (I take this as self-evident.)

(b) Φ̄ has no-trivial-moves (25) iff Φ̄′ has no-trivial-moves. (I take

this as self-evident.)

Lemma C.7. Suppose that Φ̄ and Φ̄′ are two OR∗ choice-sequence

forms (S1 equation (6)) that have no-absent-mindedness (S1 equation

(16)). Define the conversion operator R̂ by S1 equation (17). Then Φ̄

and Φ̄′ are equivalent (26) by the choice renaming δ iff R̂[Φ̄] and R̂[Φ̄′]
are equivalent (20) by the same δ. (I take this as self-evident.)

Lemma C.8. Suppose that Φ̄ is an OR∗ choice-sequence form (S1

equation (6)) with no-absent-mindedness (S1 equation (16)). Define

the operator R̂ by S1 equation (17). Then Φ̄ has no-trivial-moves (25)

iff R̂[Φ̄] has no-trivial-moves (13).

Proof. Define ((Ci)i, N̄) := Φ̄ and derive its T̄ (S1 equation (2)) and

F̄ (S1 equation (3)). Then define ((Ci)i, N) := R̂[Φ̄] and derive its T

(2) and F (3). I argue

(∀t) |F (t)| 6= 1

⇔ (∀t̄) |F (R(t̄))| 6= 1

⇔ (∀t̄) |F̄ (t̄)| 6= 1 .

The first equivalence holds because R|T̄ is a bijection from T̄ onto T by

S1 Theorem 1(b,c). The second equivalence holds by S1 Theorem 1(e).

2
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Proof C.9 (for Corollary 5.1). Let

D̄ := { OR∗ choice-sequence forms with no-absent-mindedness and
no-trivial-moves (25) } ,

D := { choice-set forms with no-trivial-moves (13) } , and

Ḋ := { concise AR∗ outcome-set forms } .
By Lemmata C.6 and C.3(a), these three classes are well-defined given

the concepts of equality in the corollary statement.

(a-b). By S1 Theorem 2 and Lemma C.7, R̂ is a well-defined bijection

from the class of OR∗ choice-sequence forms with no-absent-mindedness,

onto the class of choice-set forms, given the concepts of equality in the

corollary statement. Hence Lemma C.8 implies that R̂|D̄ is a bijection

from D̄ onto D. By definition, R̂∗ = R̂|D̄.

(c-d). Part (b) shows that R̂∗ is a bijection from D̄ onto D. Theo-

rem 3(b) shows that Ẑ is a bijection from D onto Ḋ. Parts (c) and (d)

follow immediately. 2
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