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Abstract

We analyze the doping behavior of heterogeneous athletes in an environment of

private information. In a n-player strategic game, modeled as an all-pay auction,

each athlete has private information about his actual physical ability and choses

the amount of performance-enhancing drugs. The use of doping substances is costly

but not further regulated. The main finding of the analysis is the existence of a

doping threshold. In our leading case only strong athletes dope. The level of the

doping threshold is increasing in the doping costs and decreasing in the prize level.

Furthermore, increasing the number of athletes affects the doping decision in two

ways. More competition increases the incentives to dope for strong athletes. At the

same time, we find a discouragement effect for weak athletes.
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1 Introduction

Since the 1990s, the number of athletes tested positive for doping has substantially

increased. Positive doping cases have been covered by the media particularly in profes-

sional cycling. The Festina affair in 1998 and the Fuentes scandal in 2006, followed by

extensive legal investigations, show that many favorites and even entire cycling teams

doped systematically.1 The recently published material from the investigations of the

U.S. Anti-Doping Agency against Lance Armstrong and the U.S. Postal Service Team

reveal the actual dimension of doping in professional cycling (USADA, 2012). Doping

is, however, by no means a new phenomenon. Written sources show that already in

ancient Greece athletes used stimulants and dubious mixtures to enhance their strength

and endurance (Verroken, 2005).

A closer look at doping practices reveals that athletes either dope during the training

period, directly before a competition, or do both. Performance-enhancing drugs are

popular because of their immediate and strong impact on individual performance. Drugs

instantaneously improve performance, whereas training is time consuming and affects the

performance only in the long run. Moreover, many drugs are only detectable for a short

period of time. These features make doping especially attractive for athletes who wish

to further enhance their performance shortly before a contest. A better understanding

of athletes’ incentives to take drugs is an important prerequisite to increase the efficiency

of anti-doping policies.

Anti-doping agencies and the International Olympic Committee (IOC) have the objec-

tive to establish a doping-free environment for sports contests. The regulator, however,

cannot directly control whether athletes take performance-enhancing drugs. Asymmetric

information makes detection difficult and expensive. The current policies of anti-doping

agencies are out-of-competition as well as in-competition doping controls and the sanc-

tioning of convicted athletes. The ongoing doping cases in sports such as athletics,

professional cycling or weight lifting show that despite severe sanctions and public hu-

miliation in the case of detection, doping remains present in professional sports. Some

experts even believe that doping has increased in particular sports due to the ongoing

commercialization and the development of more effective drugs.

1Dilger et al. (2007) give a short review of the history of doping and present recent doping scandals in
professional cycling and in athletics.
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Asymmetric information can occur at several levels. The existing doping literature has

primarily focused on asymmetric information between athletes and the regulator, leav-

ing aside considerations about asymmetric information between athletes. Muehlheusser

(2006) emphasizes the relevance of informational asymmetries in sports and recommends

taking them into account when designing contests. Each athlete has private informa-

tion about his actual physical ability, but can only guess the abilities of his rivals. The

behavior of athletes in camouflaging and even misrepresenting their actual ability in-

dicates that this informational advantage is important.2 An athlete’s decision to use

performance-enhancing drugs will hence not only depend on regulations, but also on

private information concerning his ability. So far, this issue has been neglected by the

doping literature. The aim of this paper is to investigate the rationale of doping in a

heterogeneous n-player game under private information.

Many researchers have studied the doping problem in the context of actual or poten-

tial anti-doping regulations. Berentsen (2002) is one of the first to analyze anti-doping

regulations in a strategic two-player game.3 Cheating and doping have recently been

introduced into the theory of contests and tournaments. Their common basis is the

Lazear-Rosen tournament model, extended to include a regulator who audits the ath-

letes. Kräkel (2007), for example, analyzes the doping behavior of heterogeneous athletes

who optimize the use of doping and legal inputs.4 Another strand of the doping litera-

ture has focused on fair play norms and on peer group approval based on past doping

decisions (Eber, 2008, 2011; Strulik, 2012). In both approaches an equilibrium without

doping is possible; however, a reliable coordination mechanism is needed to make this

equilibrium stable.5

Our paper is closely related to the literature that analyzes cheating in tournament

models. In contrast to the random component in Lazear-Rosen tournament models, we

assume that athletes’ abilities are heterogeneously distributed and private information.

As the interest lies in identifying how heterogeneity affects doping behavior under private

information, we assume that taking performance-enhancing drugs is costly and ignore

2For instance, athletes play down their actual form or, conversely, conceal injuries and illnesses at press
conferences.

3For similar contributions, see e.g., Eber and Thépot (1999), Maennig (2002), Haugen (2004). Berentsen
and Lengwiler (2004) analyze doping and fraudulent accounting in an evolutionary game.

4Analogous is Stowe and Gilpatric (2010) who focus instead on the doping decision and different regulation
regimes. Curry and Mongrain (2009) investigate the effects of the prize structure. Finally, Gilpatric
(2011) analyzes how enforcement affects the effort levels.

5Bird and Wagner (1997) were the first who proposed decentralized mechanisms based on social norms to
solve the doping problem. An example of such a mechanism is whistleblowing (see e.g., Berentsen et al.,
2008).
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further anti-doping regulations for the moment. The information structure of the contest

is the following: In stage one, nature independently draws athletes’ abilities from a

distribution. The number of athletes and the distribution is common knowledge. The

actual ability of the athlete, however, is private information. In stage two, athletes

may improve their performance by taking performance-enhancing drugs. They base

their doping decision on their actual ability and their beliefs about the abilities of their

competitors. Finally, in stage three, the athlete with the greatest performance–the

combination of ability and the chosen amount of doping–wins the prize money.

Our private information setting with heterogeneous athletes yields new insights which

complement the results of existing doping literature. We analyze how the prize amount,

the doping costs, the number of athletes and the distribution of abilities affect ath-

letes’ doping behavior. We show that under private information not all athletes take

performance-enhancing drugs. For the majority of underlying parameter values, there

exists a doping threshold. In our leading case, strong athletes dope, and athletes be-

neath the doping threshold have no incentive to dope. The doping behavior of an athlete

depends crucially on his actual ability and the degree of competition. If the degree of

competition increases, strong athletes take larger amounts of drugs. At the same time

there exists a discouragement effect for athletes with low abilities. The anticipation of

encountering stronger athletes in the contest discourages weak athletes from doping. For

nonstandard parameterizations, three other equilibrium outcomes occur.

The paper is structured as follows: In Section 2, we describe the model and present

the main results. In Section 3, we formally derive the equilibrium outcome with the

doping threshold. In Section 4, we discuss the results of the doping model. First, we

show how the doping threshold depends on the number of athletes and on the ratio of

prize money to doping costs. Second, we analyze the influence of the distribution of

abilities. Finally, we display the equilibrium results under special parameterizations.

Section 5 concludes.

2 The Model and Main Results

In a contest, n athletes compete against each other. The winner receives prize money v.

All athletes are risk-neutral and maximize their expected payoff. Figure 1 displays the

information structure of the contest. In stage one, nature independently draws athletes’

abilities ai, for i = 1, ..., n. The abilities are drawn from a given cumulative distribution

function F with support [0, 1]. More specifically, we assume a power function distribution
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F (a) = aα. This flexible functional form allows us to analyze the doping incentives for

different shapes of the distribution. At the same time it ensures an explicit solution.

The number of athletes and the distribution are common knowledge. The actual ability

of the athlete, however, is private information.

In stage two, athletes may improve their performance by taking performance-enhancing

drugs. The athlete’s performance pi is a linear combination of his ability ai and the

amount of doping di he chooses to take: pi = ai + di. We assume that athletes are free

to choose an arbitrary doping amount and are not limited to the two discrete options of

doping or not doping.6 Athletes base their doping decision on their actual ability and

their beliefs about the abilities of their competitors. Doping substances are not free of

charge and the athlete has to pay for his doping substances before the contest begins.

Since we are interested in how heterogeneity affects doping behavior under private infor-

mation, we assume that taking performance-enhancing drugs is costly and ignore further

anti-doping regulations for the moment.7

Finally, in stage three, the athlete with the greatest performance–the combination

of ability and the chosen amount of doping–wins the prize money. For simplicity, the

athlete with the greatest performance wins with certainty.8 In a world without doping,

the athlete with the greatest ability would win the contest. However, as athletes can

choose arbitrary amounts of doping, it is, in principal, possible for a weaker athlete

to beat a more talented athlete. Each athlete thus faces a trade-off between gaining a

higher likelihood of winning through doping and the increased costs.

Figure 1: The information structure of the contest
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6The model can readily be adapted to apply to a binary decision between doping and not doping. Note
that this modification would not change the qualitative results.

7This is comparable to a situation with toothless anti-doping regulations. For example, if athletes can
easily manipulate their test results.

8See e.g. Kovenock et al. (1996) for all-pay auctions with complete information. For all-pay auctions with
private information, see among others Amann and Leininger (1996) and Feess et al. (2008).
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The doping amount is the difference between the athlete’s performance pi and his

ability ai. If an athlete’s performance is equal to his ability, then he does not dope and

his doping costs are zero. Every athlete’s doping cost function is thus a function of the

difference pi − ai. The doping costs are c(p − ai), where the parameter c indicates the

magnitude of marginal doping costs. The linearity of the function ensures a closed-form

solution. The cost function is the same for all athletes. We denote the ratio of prize

money to marginal doping costs by w (w ≡ v/c). From now on, we will assume that the

parameter values of α, n and w satisfy α(n−1) ≥ 1 and wα(n−1) > 1 and use the term

leading case for these parameterizations. In Section 4.3, we will relax these assumptions

and address special cases.9

The athlete’s probability of winning depends on his chosen performance p and on the

performances of the other athletes. The athlete only wins the contest if his performance

p(ai) is greater than the performances of all other athletes. On the other hand, the costs

accrue even if the athlete does not win the contest. Equation (1) displays the payoffs of

an athlete with ability ai who chooses the performance p(ai).

Π(ai) =

{
v − c(p(ai)− ai) if p(ai) > maxj 6=i p(aj),

−c(p(ai)− ai) if p(ai) < maxj 6=i p(aj),
(1)

nonnegativity constraint: p(ai) ≥ ai. (2)

Negative doping amounts are ruled out by assumption (di ≥ 0). Therefore, the

nonnegativity constraint p(ai) ≥ ai has to hold for every possible ai. Furthermore,

in case of a tie between m athletes (m ≤ n), the prize money is split up equally between

the m athletes.

We are interested in athletes’ optimal doping behavior. More precisely, we present the

symmetric equilibrium performance function of the athletes. In equilibrium there exists

a doping threshold. Athletes with ability below the threshold do not dope, whereas

athletes with ability above the threshold do dope. Theorem 1 presents the equilibrium

outcome of the doping model.

Theorem 1. There exists a symmetric Nash equilibrium in pure-strategies with the

doping threshold a?, for parameterizations that satisfy the conditions of the leading case.

9See Appendix A.2 for an overview of all possible cases and their underlying conditions.
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In the symmetric equilibrium, an athlete with ability a chooses the performance

p(a) =

{
a if a < a?,

a? + w
[
aα(n−1) − a?α(n−1)

]
if a ≥ a?.

(3)

The unique doping threshold a? is

a? = [αw(n− 1)]
1

1−α(n−1) . (4)

Proof. See Appendix A.1.10

3 The Doping Equilibrium

The actual contest is similar to an all-pay auction where every athlete has to pay for

his personal doping amounts. We are interested in an equilibrium performance function

which is increasing in a. If this is the case, then the probability of winning G(a) is the

c.d.f. of the highest order statistic A(n−1:n−1) of the remaining athletes.11 Given the

assumed power function distribution, the probability of having the greatest ability is

G(a) = Pr{A(n−1:n−1) ≤ a} = F (a)n−1 = aα(n−1).

In order to find the symmetric Nash equilibrium in the doping contest, we apply the

usual approach used in auction theory. First, we assume that in a symmetric Nash

equilibrium an athlete with ability a chooses the performance p(a) and then formulate

the expected return for this athlete (using the highest order statistic). Every athlete

can deviate from his equilibrium strategy by choosing another performance. However, it

does not make sense to choose a performance lower than p(0) or higher than p(1). In the

first instance, one would never win, and, in the second instance, one would always win,

but have to pay too much. For this reason, deviations from the equilibrium performance

function can be modeled as follows: An athlete with ability a who pretends to have

a different ability x chooses the associated performance p(x) in the contest through

adjusting the doping amount.

The expected utility function of an athlete with ability a, who pretends to have ability

x, is the product of the prize v multiplied by the winning probability of an athlete with

ability x minus the cost of doping necessary in order to achieve the performance p(x).

10The proof relies on the intermediate results of Section 3. Therefore, we recommend that readers cover
Section 3 before turning to the proof.

11For further information on order statistics, see David and Nagaraja (2003).
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His expected utility is thus: u(a, x) = vG(x) − c(p(x) − a). The athlete will choose

the x that maximizes his expected utility. He can only imitate performances that are

equal to or greater than his ability, since the amount of doping cannot be negative. In

equilibrium, the nonnegativity constraint p(a) ≥ a has to hold for every possible a.

The main contribution of this paper is the equilibrium performance function where

the nonnegativity constraint is binding. However, in a fist step, the doping equilibrium

is derived for cases where the constraint is not binding.12 This is done in order to

introduce the basic solution technique and to emphasize the importance of the nonneg-

ativity constraint. If the nonnegativity constraint is not binding, then, the equilibrium

performance function can be derived in the following way.

To obtain the optimum, we differentiate the utility function with respect to x and set

it equal to zero. We obtain the FOC: vG′(x)− cp′(x) = 0. The optimal behavior of an

athlete with ability ai is to imitate the strategy of an athlete with ability x so that the

FOC is satisfied.

In addition to the FOC, the incentive compatibility (IC) constraint has to be satisfied

for every possible a in the Nash equilibrium. There must be no gain in deviating from

the equilibrium strategy. The IC constraint is satisfied if u(a, a) > u(a, x) for all a, x.

We assume that if an athlete is indifferent between u(a, a) and u(a, x), he will choose

the equilibrium strategy a. In a symmetric equilibrium, the optimal x corresponds to

the athlete’s own ability a. Therefore, we insert x = a and p(x) = p(a) into the FOC

and obtain vG′(a)− cp′(a) = 0. The FOC states that the expected marginal return has

to be equal to the marginal costs of increasing the winning probability. Dividing by c

and solving for p′(a) gives p′(a) = vG′(a)/c. We see that only the ratio of prize money

to marginal doping costs matters. Therefore, we use w and obtain the basic equation to

derive the equilibrium performance function:

p′(a) = wG′(a). (5)

Our assumption of a linear doping cost function implies that an athlete with ability ai

is indifferent between his equilibrium performance p(ai) and all other p(a)’s for which

the nonnegativity constraint of doping is not binding.13

12The nonnoegativity constraint is not binding if α < (n− 1)−1 and w > 1.
13This particular circumstance has to be kept in mind when we investigate the equilibrium and for the

proof of Theorem 1. If, instead, we used a doping cost function with slightly decreasing marginal costs
or a quadratic doping cost function, then the implied single crossing property would guarantee a strictly
separating equilibrium. For example, assume that the doping cost function is: c(a) = c exp(−ρa), where
ρ is very small. As ρ goes to zero the marginal costs go to c (limρ→0 c(a) = c). Therefore, it seems
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Integrating from 0 to a gives the performance function p(a) for the cases where the

nonnegativity constraint is not binding.

p(a) = waα(n−1) for 0 ≤ a ≤ 1. (6)

The equilibrium performance function is similar to an equilibrium bid function of a

standard all-pay auction.

Having specified the performance function for parameterizations where the nonnega-

tivity constraint is not binding, we now turn to parameterizations of the leading case.

Under these assumptions, the nonnegativity constraint is only binding for weak abilities.

If we use performance function (6) for cases where the constraint is binding, then this

would result in a performance function that lies partly below the underlying ability.

Figure 2 depicts such a situation (α = 1, n = 10, w = 2). For athletes with an ability

lower than the intersection (0.92), the performance function lies below the underlying

ability. Hence, the nonnegativity constraint is violated. One could argue that aug-

menting the performance function of the lower section of the curve to the 45-degree line

Figure 2: Optimization that neglects the nonnegativity constraint
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plausible that the equilibrium outcome in the limit is similar to the outcome of a linear doping cost
function.
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(to their corresponding ability) would solve the problem. However, we will show below,

that this is not a Nash equilibrium.

In the following, we will derive the equilibrium results of Theorem 1. To ensure that

an athlete’s performance is equal to or greater than his ability, we introduce the reserve

ability approach.14 This approach to find the equilibrium subject to the nonnegativity

constraint is non-standard in auction literature. Therefore, we derive the equilibrium

with the doping threshold step by step and, if necessary, provide further explanations.

The reserve ability approach is a three-step procedure to find the equilibrium out-

come. First, assign an arbitrary reserve ability and assume that athletes with abilities

below the reserve ability choose their ability as performance. Second, derive the equi-

librium doping behavior of athletes with abilities above the reserve ability. And finally,

determine the proper reserve ability such that athletes with abilities below it behave

optimally. The approach can only be applied if the constraint is binding for a closed

interval that includes the lowest ability and the c.d.f. is continuous.

The introduction of the reserve ability approach ensures that the performance of weak

athletes is equal to their ability, such that p(a) is no longer smaller than a. In contrast

to an auction with a reserve price, weaker athletes can still win, since their performance

is the sum of the chosen doping quantity and their ability. The reserve ability is non-

effective under parameterizations where the constraint is not binding and performance

outstrips ability over the whole support.

In order to obtain the performance function p(a) of an athlete with ability a, we

integrate Equation (5) from an arbitrary reserve ability ar with respect to a.∫ a

ar
p′(z)dz = w

∫ a

ar
G′(z)dz = w[F (a)n−1 − F (ar)n−1].

We solve the integral on the left-hand side of the equation above and take the obtained

term p(ar) over to the right-hand side. Since the performance function at position ar

must be equal to ar, we can replace p(ar) by ar. Finally, we substitute the power

distribution function. We thus obtain the performance function of athletes, given the

underlying distribution of abilities and the reserve ability ar.

p(a, ar) = ar +w
[
F (a)n−1 − F (ar)n−1

]
= ar +w[aα(n−1)−arα(n−1)

] for ar ≤ a ≤ 1. (7)

14The term reserve ability comes from the concept of the reserve price. The reserve price is used in auction
theory in order to close out bid valuations that are too low. The bids have to at least meet the reserve
price, which prevents bidders with valuations lower than r from placing a bid. For a good overview on
auctions and the reserve price see Krishna (2002).
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The proper reserve ability satisfies two conditions. First, the reserve ability ar has

to be chosen such that the performance function p(a, ar) of athletes with ability above

the reserve ability does not sink below the 45-degree line (p(a, ar) > a for a ∈ [ar, 1]).

Second, ar must not be chosen too large such that athletes with abilities below the

reserve ability have no incentives to deviate. For our continuous power distribution

function, these two conditions are satisfied if p(a, ar) has the same slope as the 45-

degree line at position a = ar. Hence, the slope of the performance function is equal

to 1 at the proper reserve ability, which we denote the doping threshold. The reason

for this smoothness condition can be seen in the athletes’ optimization problem. In

equilibrium, every athlete chooses his performance such that weaker athletes have no

interest in imitating that performance. Therefore, the equilibrium performance function

does not have a kink at the doping threshold.15

To determine the proper reserve ability ar, we set the derivative of the performance

function (7) equal to one. By solving the equation for a, we obtain Equation (4) which is

the doping threshold. The doping threshold a? defines the ability level where the athlete

is indifferent between doping and not doping. Athletes with an ability beneath the

threshold do not dope, and athletes with an ability above this value take performance-

enhancing drugs. The doping threshold depends on the distribution of abilities, the

number of competing athletes, and the ratio of prize money to marginal doping costs. In

Proposition 1, we show that under the parameterization of the leading case the doping

threshold exists.

Proposition 1. If α(n− 1) > 1 and α(n− 1)w > 1, then there exists a unique doping

threshold a? ∈ (0, 1), and strong athletes dope, and weak athletes abstain from doping.

Proof. The derivative of Equation (7) is continuous and strictly increasing if α(n−1) > 1.

Given that ar = 0, the derivative pa(0, 0) is zero. If the derivative pa(1, 0) = α(n−1)w >

1, then it follows that a unique solution of the doping threshold a? must exist over the

support ∈ [0, 1].

The next step is to derive the performance function and the doping amount of the

athletes. The athlete’s performance function is obtained by inserting Equation (4) in

Equation (7). The result is Equation (3), which is the equilibrium behavior of the

athletes.

Besides the performance function, the doping behavior of the athletes is of interest.

As the performance function p(a) is the sum of ability a and the doping quantity d,

15For the mathematical proof see Appendix A.1.
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the doping function can be simply derived from the performance function. The doping

quantity is an athlete’s performance minus his ability. Having determined the doping

threshold, the performance function and the doping quantity, we can now describe the

equilibrium behavior of athletes in the doping model. Section 4 will discuss the outcomes

of the doping model in more detail. Using comparative statics and figures, we will show

how different values of α, n and w influence the doping threshold, the performance

function and the doping function.

4 Discussion

In our model, athletes usually choose an amount of doping such that the marginal costs

of doping are equal to the marginal expected increase in prize revenue. Depending

on the distribution of abilities, however, it is possible that the marginal return to be

gained by doping is smaller than the marginal costs of doping. In the leading case, weak

athletes abstain from doping, because it would cost more to imitate the performance

of a slightly stronger athlete than the extra return from having a higher probability

of winning. Thus, we identify a discouragement effect for weak athletes, similar to the

discouragement effect in Lazear-Rosen tournament models with head-starts or handicaps

(see e.g., Weigelt et al. (1989) and Schotter and Weigelt (1992)). Crucial for an athlete’s

doping decision is his actual ability and the shape of the winning probability function

G. The function becomes more convex, the more competitors there are. This is the

reason that a threshold value exists for the majority of parameterizations, below which

it is optimal to abstain from doping.

4.1 The Number of Athletes and the Costs of Doping

In discussing the results, we first investigate the effects of n and w. For this, we will

assume that α = 1. The abilities are uniformly distributed between 0 and 1. First, we

will consider the doping threshold. With a uniform distribution of abilities, Equation

(4) becomes

a?(α=1,n,w) = [w(n− 1)]
1

2−n . (8)

The number of competitors is decisive for the size of the doping threshold. If only

two athletes compete, then the function of the doping threshold does not exist. In a

two-player contest, the performance function consequently has the following appearance:

p(a) = wa for w > 1. The doping quantity, thus, increases linearly in line with ability.

12



If w ≤ 1, the two athletes do not dope, because doping is too expensive. Hence, either

both athletes dope or neither dopes.

In contests with more than two athletes, a doping threshold does exist. An athlete

is indifferent between doping and not doping if his ability is equal to the threshold.

The more athletes participate, the higher the value of the doping threshold. A higher

number of participants makes it increasingly unattractive for weak athletes to dope.

Furthermore, the ratio of prize money to marginal doping costs w determines the level

of the doping threshold. If w is large, then the participants can win a large amount of

prize money and the doping costs are relatively low. If w becomes smaller, that is, the

relative doping costs increase, then the doping threshold rises.

Figure 3 shows the performance function for a contest between 10 athletes and a

ratio of prize money to marginal doping costs of 2. The performance function (thick

line) represents an athlete’s ability up to the threshold. Beyond this point, the athlete’s

performance is greater than his ability. The doping threshold lies at approximately 0.7.

An athlete’s doping amount is the difference between his performance and his ability.

Up to the doping threshold, the doping amount is equal to zero. Doping does not

pay in this array, and athletes’ true abilities determine the outcome. For abilities above

Figure 3: Performance function p(a)
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the doping threshold, the doping function has a positive value. In other words, athletes

above this threshold will dope. The more talented such an athlete is, the more he will

dope, so that the athlete with the greatest ability will dope the most.

Under standard parameterizations, an athlete will have difficulties winning without

resorting to doping. In order to illustrate this, we use the example of an athlete with

ability afair = 1. This athlete always wins in a world where no athlete resorts to doping.

However, if he decides not to dope, his chances of winning falls dramatically. In order

to calculate his chance of winning in this contest, we need ability a◦, for which the

performance function p(a◦) is equal to 1.16 Our best athlete, who is also honest, is only

able to win against athletes whose a < a◦. His likelihood of winning corresponds to the

highest order statistic of a◦. G(afair = 1) = a◦ n−1 = 0.19. In a doping environment,

his chance of winning thus falls from 100 percent to just 20 percent. This low winning

probability is due to the fact that he does not simply have to compete against one

competitor whose ability should be smaller than his (ai < a◦), but has to win against

all nine competitors.

Commercialization has caused prize money in certain sports to surge and has allowed

successful athletes to skim additional cash from private companies. Nowadays, it is

quite common, that companies employ the images of successful athletes in corporate

sponsoring events to position a brand or to ameliorate their images. Thus, the ratio w

seems to have increased rather than decreased over the last two decades. In our model, a

larger w leads to a smaller doping threshold and raises the amount of doping substances

used. The implications of our model are supported by the observation that there are

more doping cases in popular sports than in sports where the prize amount is lower, or

where doping offers only a small competitive advantage.

4.2 The Distribution of Abilities

The nature of the distribution affects the doping threshold and the equilibrium amount of

doping substances used. The power distribution with an arbitrary α illustrates different

distributions of abilities. For α < 1, the density of the ability distribution is the highest

for small a’s, while on the other hand for α > 1, there are relatively more strong

than weak athletes. We accentuate the importance of the distribution of abilities by

contrasting the outcome of a contest of numerous strong athletes with the outcome of a

contest of numerous weak athletes.

16We set the performance function equal to 1 and then solve for a. For the contest with n = 10 and w = 2
we receive: a◦ = 0.832.
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Figure 4 compares two different distributions of abilities. In both cases, 10 athletes

compete against each other, and the ratio of prize money to marginal doping costs is

equal to 2. The dashed line is the density of athletes’ abilities. In Graph (a), the density

of the power function distribution has a parameter value of α = 0.3, and in Graph (b)

it has one of α = 3. The thin line is the performance of the athletes when they do not

dope. The athlete’s behavior–when doping takes place–is illustrated by the performance

function.

Graph (a) illustrates the outcome of a contest with numerous weak athletes. Here, the

doping threshold is very low. Since there are only a few strong athletes, even relatively

weak athletes make use of doping. The explanation for this result is that the probability

of coming up against a stronger athlete in the contest is relatively small. With a low

probability of strong athletes, the performance function increases gradually.

Graph (b) illustrates the outcome of a contest with numerous strong athletes. Here,

doping behavior is quite different in comparison to the first case. The doping threshold

is higher. This is because a weak athlete can expect to come up against a stronger

competitor, given the higher probability of strong athletes. The performance function

increases much more sharply than it did in Graph (a). The reason is that the degree

of competition is more intense among strong athletes. This leads the strongest athlete

to take more doping substances than he would have in the first case. In Graph (a), the

performance of the strongest athlete is 2.2, while it is above 2.6 in Graph (b). Hence,

although the doping threshold is further to the right, the actual performance of an athlete

with a = 1 is greater than in a contest with numerous weak athletes.

This section shows that in addition to the number of athletes and the ratio of prize

money to marginal doping costs, the distribution of abilities also plays a significant role.

An athlete’s strength relative to his opponents and, as in Dilger and Tolsdorf (2010), the

competitive pressure which weighs on an athlete from competitors with similar abilities

are crucial for the doping decision. However, note that a high doping threshold does

not always imply that strong athletes dope less than in circumstances with a lower

doping threshold. In summary, competitive pressure and the distribution of abilities

play decisive roles in an athlete’s choice of the optimal doping quantity.
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Figure 4: Comparison of different distributions
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(b) Many strong contestants: α = 3
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4.3 Special Cases

All parameter values for α, n and w that meet the assumptions of the leading case

lead to an equilibrium outcome where weak athletes abstain from doping. Relaxing the

conditions of the distribution of abilities and allowing for extreme values of the ratio

of prize money to doping costs makes three other outcomes possible. The leading case

arises in the majority of underlying parameter values. The other three cases are special

cases that emerge only under exceptional circumstances: if doping costs are very high

or low, or if the distribution of abilities is extremely skewed to the left.

For the prevailing equilibrium outcome, the derivative of Equation (7) with respect

to a plays a central role. The derivative is the expected marginal gain divided by

the marginal costs of doping. The second derivative shows that the first derivative is

increasing if α(n−1) > 1 and decreasing if α(n−1) < 1 for every a ∈ (0, 1]. This critical

value is the key to distinguish between the different doping outcomes. The underlying

parameter values of α, n and w determine which outcome arises. Three additional

outcomes are possible. In the first case, no athlete dopes. In the second case, only weak

athletes dope. And in the third case, everybody dopes.17

The outcome that nobody dopes results if the ratio of prize money to marginal doping

costs is low in comparison to the product of the shape parameter and the number of

rivals. Nobody dopes because the marginal doping costs are greater than the marginal

increase in the expected return. Hence, everybody would lower his expected utility by

doping.

Proposition 2. If α(n− 1) ≥ 1 and α(n− 1)w ≤ 1, then no doping threshold a? ∈ [0, 1]

exists and nobody dopes.

Proof. The derivative of Equation (7) with respect to a at ar = a is continuous and

strictly increasing in a if α(n− 1) > 1. The derivative at a = 0 is zero. If the derivative

p′1(1, 1) = α(n − 1)w < 1, then it follows that no doping threshold a? exists over the

support [0, 1].

The two other outcomes arise when the distribution of abilities is highly skewed to

the left. In case (ii) only weak athletes dope, and in case (iii) everybody dopes. We

investigate equilibrium outcomes for distributions of abilities that satisfy the inequality

α(n− 1) < 1. Then, the derivative of Equation (7) is decreasing. Furthermore, p1(0, a
r)

17Appendix A.2 presents the conditions, the parameter values have to meet for each of the three special
cases.
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is not defined under this condition. It is the case that lima→0 p1(a, a
r) =∞. Therefore,

the nonnegativity constraint is not binding for small a’s. Depending on the underlying

parameter values, it is possible that the constraint is not binding over the whole support.

In such a case, the equilibrium performance function is Equation (6). Generalizing the

performance function in such a way that it displays the equilibrium outcomes of case (ii)

and (iii), gives

p(a) = max{waα(n−1), a} for 0 ≤ a ≤ 1. (9)

The doping quantity is the difference between an athlete’s performance and his ability.

In the equilibrium outcome, only weak athletes take performance-enhancing drugs. The

formula of the doping threshold in case (ii) differs from the leading case. The doping

threshold in case (ii) is given as follows:

a?α,n,w = w
1

1−α(n−1) . (10)

Proposition 3 presents the outcome of case (ii) and (iii) and the underlying conditions.

Proposition 3. If α(n − 1) < 1, then two doping outcomes are possible, depending on

the underlying value of w. In the first outcome (ii), only weak athletes dope. If w ≤ 1,

then there exists a unique doping threshold a? ∈ [0, 1] and only weak athletes have an

incentive to dope.

In the second outcome (iii), everybody dopes. If w > 1, then no doping threshold exists

over the support [0, 1], and every athlete has an incentive to dope.

Proof. If α(n− 1) < 1, then the derivative of Equation (7) with respect to a for ar = 0

is strictly decreasing in a. Furthermore, the derivative p1(0, a
r) is not defined. It can

be shown that lima→0 p1(a, a
r) =∞. First, consider special case (ii). The performance

function p(a, 0) at a = 1, not considering the doping nonnegativity constraint, would be

p(1, 0) = w1α(n−1) = w ≤ 1. Therefore, there exists a unique intersection point with the

45-degree line. Hence, there exists a doping threshold a? over the support ∈ [0, 1].

Using the same reasoning for special case (iii), no doping threshold exists over the support

[0, 1] if w > 1.

Figure 5 displays the performance function p(a) in the special case (ii). The dashed

line is the density distribution of abilities. The distribution is very skewed to the left,

which implies that mostly weak athletes compete in the contest. Ten athletes participate

in the contest, and the ratio of prize money to marginal doping costs is assumed to be

2. The equilibrium outcome is that weak athletes dope. The doping amount starts to
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decrease after a certain ability level and is zero for abilities above the doping threshold.

The reason for this outcome is that the degree of competition is greatest for weak abilities.

Strong athletes do not dope, because the probability of encountering a stronger athlete

and the ratio of prize money to marginal doping costs are so small that it is not optimal

to increase their performance over their ability level under private information.

Figure 5: Weak athletes dope, special case (ii)

a

ø

H0.05,10,0.9L

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ability a

pH
a

L

HΑ
=

0.
05

,n
=

10
,w

=
2L

Case HiiL: Only weak athletes dope

At the doping threshold, the performance function has a kink. Having argued in the

leading case that there can be no kink at the doping threshold, in the special case (ii)

this is different. Given that all other athletes play the symmetric equilibrium of the

performance function in Equation (9), it can be shown that an athlete with an ability

ai below the doping threshold is indifferent to imitating the performance of an athlete

with an ability aj < a?. If he would instead imitate the performance of an athlete with

an ability aj > a?, his utility decreases. For athletes with an ability above the doping

threshold the nonnegativity constraint is binding. This implies that the marginal return

of increasing the performance is lower than the marginal costs of doping.
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5 Conclusion

We study the doping behavior in an environment of heterogeneous agents and private

information. Our setting yields new insights which complement existing results of the

doping literature. For the majority of underlying parameter values a doping threshold

exists. In our leading case, weak athletes will abstain from doping even without doping

controls. Athletes with abilities above the doping threshold resort to doping substances.

The doping behavior of athletes and the level of the doping threshold are sensitive to

the underlying parameterization. Three other equilibrium outcomes occur when we

investigate nonstandard parameterizations. In this paper, we restrict our attention to

doping in sport contests. However, our private information setting may also be of interest

in areas such as promotion tournaments or public procurement.

Our findings can be summarized as follows. First, an athlete’s doping decision depends

on the ratio of prize money to marginal doping costs and not on absolute values. In the

doping model, a higher ratio decreases the doping threshold and more athletes dope.

Thus, the ongoing commercialization and new discoveries of the pharmaceutical industry

have increased the incentives to resort to doping. Second, increasing the number of

athletes affects the doping decision in two ways. The increased competition forces strong

athletes to take larger amounts of drugs. At the same time a discouragement effect

exists for weak athletes. The anticipation of facing a higher probability of encountering

stronger athletes discourages weak athletes from doping. Finally, our comparison of

outcomes between a contest with many weak athletes and a contest with many strong

athletes shows that competitive pressure and the distribution of abilities play decisive

roles in athletes’ doping behavior.

The results of our model would be even more convincing if we could test our find-

ings empirically. Unfortunately, hardly any empirical studies about doping exist, since

doping is not directly observable. However, there are indications that support our find-

ings. Empirical evidence shows that there are more positive doping cases in commercial

sports with high prize amounts and where athletes receive substantial payments from

sponsorships. On the other hand, doping is only rarely detected in technical sports such

as tennis, where the use of performance-enhancing drugs helps only marginally.

A promising extension of our model would be the inclusion of a regulator who checks

the pool of athletes. But, such a model that combines our private information setting

with the asymmetric information problem between athletes and the regulator would be

demanding. This is because we would have to incorporate disqualifications into our

model, which makes closed-form solutions impossible.
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A Appendix

A.1 Proof of Theorem 1

The equilibrium performance function (Equation (3)) with the doping threshold (Equa-

tion (4)) is a Nash equilibrium if no athlete with ability ai for all ai ∈ [0, 1] is better

off by unilaterally deviating from the equilibrium strategy. Note that the performance

function is strictly increasing in a. It follows that, if an athlete imitates the strategy of

an athlete with ability aj , his winning probability is G(aj). By using the term imitating,

we mean that the athlete choses the performance p(aj) of an athlete with ability aj .

Note that an athlete with ability ai can only imitate athletes with a performance greater

than his ability (p(aj) ≥ ai). Thus, we can limit the verification on the range p(aj) ≥ ai,
for all ai ∈ [0, 1].

Before starting with the proof, we ask the question: How large would the doping costs

have to be for an athlete with ability ai to win with probability G(aj), such that he would

be indifferent to his equilibrium strategy? An athlete is indifferent if the difference of

the winning probability times prize money is equal to the difference of doping costs. We

denote the performance level where the athlete would be indifferent by p̂ai(G(aj)). The

performance level satisfies the following equation:

vG(aj)− c(p̂ai(G(aj))− ai) = vG(ai)− c(p(ai)− ai). (11)

Generalizing Equation (11) for an arbitrary a ≥ ai gives an indifference function.

Definition 1. The indifference function p̂ai(a) indicates the performance level at which

an athlete with ability ai is indifferent to his equilibrium strategy p(ai) if he were to win

with the probability of an athlete with ability a. Function p̂ai(a) is defined in the range

a ∈ [ai, 1]. More formally the function is

p̂ai(a) = p(ai) + w[G(a)−G(ai)] = p(ai) + w[aα(n−1) − aα(n−1)i ] for a ≥ ai. (12)

Comparing the functional form of Equation (12) with Equation (7) shows that the only

difference is the threshold value. For abilities ai > a?, the indifference function is even

identical to the equilibrium performance function within the range of a ∈ [a?, 1]. This

is a direct result of the assumed linear doping cost function. The indifference function

illustrates whether an athlete would have an interest in deviating from the equilibrium.

If the performance function p(a) runs below (above) p̂ai(a), then the athlete is better off
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(worse off) by deviating. The proof of Theorem 1 consists of two steps. First, we prove

that the performance function is a Nash equilibrium ((i), (ii)). Second, we prove that

the doping threshold a? is unique.

Proof. For athletes with ability ai above the doping threshold, the indifference function

is identical to the performance function. (i) Hence, for all ai ∈ [a?, 1] no athlete can be

better off by imitating another performance (p(aj) ≥ ai).

For athletes with abilities ai < a? below the doping threshold, the indifference function

is not identical to the performance function. Note that the derivative with respect to a

of p̂ai(a) is equal to the derivative of Equation (7). For parameterizations of the leading

case, the derivative p̂ai
′(a) at a = ai is strictly increasing in ai. Remember that p̂ai(a)

for ai = a? is identical to the performance function. Therefore, the derivative of p̂ai(a)

at a = a? is equal to 1. (ii) This implies that p̂ai(a) runs below the performance function

p(a) in the range of t ∈ [ai, 1] for all ai ∈ [0, a?). Hence, an athlete with ability ai is

worse off by imitating the strategy of an ability a > ai.

Finally, we prove that the doping threshold a? is unique. Suppose that the optimal

threshold ã? is smaller than a?. Then, the performance function would violate the

nonnegativity constraint, since the derivative of the performance function is smaller

than 1 for all ã? ∈ [0, a?). Now suppose that the optimal threshold ã? is greater than

a?. Then, p̂ai(a) of an athlete with ability ai which is slightly smaller than ã? would run

above the performance function, since the derivative of p̂ai(ai) for ai ∈ (a?, 1] is greater

than 1. Hence, the athlete with ability ã? − ε would be better off by deviating from his

equilibrium strategy. It follows that the doping threshold a? is optimally chosen, and

therefore the performance function is a Nash equilibrium.
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A.2 The Four Doping Outcomes

The following description presents the different doping outcomes. Moreover, the condi-

tions on the parameterization values of α, n and w that lead to the four outcomes are

displayed.

Table 1: The doping outcomes

(A) Leading Case (B) Special Cases

(i) Nobody dopes

α ≥ (n− 1)−1 ∩ wα(n− 1) ≤ 1.

Strong athletes dope (ii) Weak athletes dope

α ≥ (n− 1)−1 ∩ wα(n− 1) > 1. α < (n− 1)−1 ∩ w ≤ 1.

(iii) Everybody dopes

α < (n− 1)−1 ∩ w > 1.
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