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Abstract 

The answer as to whether there are gains from pooling real-time oil price forecasts 
depends on the objective. The approach of combining five of the leading forecasting 
models with equal weights dominates the strategy of selecting one model and using it for 
all horizons up to two years. Even more accurate forecasts, however, are obtained when 
allowing the forecast combinations to vary across forecast horizons. While the latter 
approach is not always more accurate than selecting the single most accurate forecasting 
model by horizon, its accuracy can be shown to be much more stable over time. The 
mean-squared prediction error of real-time pooled forecasts is between 3% and 29% 
lower than that of the no-change forecast and its directional accuracy as high as 73%. Our 
results are robust to alternative oil price measures and apply to monthly as well as 
quarterly forecasts. We illustrate how forecast pooling may be used to produce real-time 
forecasts of the real and the nominal price of oil in a format consistent with that 
employed by the U.S. Energy Information Administration in releasing its short-term oil 
price forecasts, and we compare these forecasts during key historical episodes. 

JEL classification: Q43, C53 
Bank classification: Econometric and statistical methods; International topics 

Résumé 

La combinaison de modèles de prévision en temps réel du prix du pétrole présente-t-elle 
des avantages? La réponse dépend de l’objectif. La méthode consistant à mettre en 
commun cinq des principaux modèles de prévision en leur attribuant un poids uniforme 
prime sur la stratégie visant à choisir un seul modèle et à l’utiliser à des horizons allant 
jusqu’à deux ans. Il est même possible d’accroître la justesse des prévisions en faisant 
varier les combinaisons de modèles selon les horizons. Bien que cette approche ne 
produise pas systématiquement des prévisions plus exactes que celles obtenues en 
sélectionnant le modèle qui offre la meilleure qualité prédictive à chaque horizon, la 
précision des projections fournies se révèle beaucoup plus stable au fil du temps. En effet, 
les prévisions en temps réel réunies présentent une erreur quadratique moyenne de 3 % à 
29 % inférieure à celle d’une marche aléatoire et indiquent avec exactitude le sens des 
variations dans 73 % des cas. Ces résultats ne dépendent pas de la mesure du prix du 
pétrole retenue et s’appliquent tant aux prévisions mensuelles qu’aux prévisions 
trimestrielles. Les auteurs montrent comment établir au moyen de modèles combinés des 
prévisions en temps réel des prix réels et nominaux dans un format analogue à celui 
qu’emploie l’Agence d’information du département de l’Énergie des États-Unis pour 
formuler ses propres prévisions à court terme; les deux groupes de prévisions des prix 
pétroliers sont ensuite comparés pour des périodes historiques déterminantes. 

Classification JEL : Q43, C53 
Classification de la Banque : Méthodes économétriques et statistiques; Questions 
internationales 
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1. Introduction 

Accurate real-time forecasts of the price of oil are important to firms and consumers as well as state and 

national governments.  Real-time forecasts refer to forecasts based on the data actually available to 

forecasters at the time a forecast is generated, as opposed to information that only becomes available later. 

Real-time data sets explicitly account for delays and revisions in data releases. For example, data on 

global oil production are only released with a delay of several months and subject to revisions for several 

years.  Ignoring these data constraints, as has been common in many earlier studies, may result in overly 

optimistic assessments of the ability to forecast oil prices (see Alquist et al. 2013). 

 There are many alternative real-time approaches to forecasting oil prices, ranging from the use of 

oil futures prices and survey forecasts to atheoretical time-series models and econometric models.1 Our 

approach in this paper is to focus on short-term oil price forecasting models that can be motivated based 

on economic grounds. To date, a large number of alternative forecasting model specifications have been 

considered in the literature on real-time forecasts of the real price of oil. Among these models, we restrict 

attention to forecasting models that have been shown to produce more accurate real-time forecasts than 

the random walk benchmark model, at least for some forecast horizons.  We take the specification of the 

forecasting models employed in this literature as given. Our objective is to examine the forecast accuracy 

of weighted averages of these forecasts, as measured by the mean-squared prediction error (MSPE) at 

monthly and quarterly horizons up to two years. We also report results for the directional accuracy of 

these combined forecasts. 

 Forecast combinations (also known as pooled forecasts) have a long tradition in macroeconomic 

forecasting (see, e.g., Timmermann 2006). With regard to short-term oil price forecasts, Baumeister and 

Kilian (2014a) established that an equal-weighted combination of four recently proposed oil price 

forecasting models is systematically more accurate than the no-change forecast as well as forecast 

combinations based on recursive or rolling inverse MSPE weights. The forecasting models considered in 

                                                            
1 For a comprehensive review, the reader is referred to Alquist, Kilian and Vigfusson (2013). Subsequent 
contributions include Baumeister and Kilian (2014a,b,c), Baumeister, Kilian and Zhou (2013), Chen (2014), 
Baumeister, Guérin and Kilian (2014), and Bernard, Khalaf, Kichian and Yelou (2014), among  others. 
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that study included a vector autoregressive (VAR) forecast, forecasts based on the spread between oil 

futures prices and the spot price of oil, forecasts based on non-oil industrial commodity prices, and 

forecasts based on a time-varying parameter (TVP) model of the spreads between the U.S. spot prices of 

gasoline and heating oil and the spot price of crude oil. More recent work by Baumeister, Guérin and 

Kilian (2014), which explored the predictive content of high-frequency data from financial and energy 

markets, uncovered evidence that an important additional source of real-time information about future oil 

prices is the cumulative change in U.S. crude oil inventories. In the current paper, we extend the set of 

models to be combined to include the latter forecast, which performs particularly well at horizons 

between one and two years. 

 Baumeister and Kilian (2014a) compared the accuracy of equal-weighted forecast combinations 

to that of individual forecasting models and showed that only pooled forecasts are systematically more 

accurate than the no-change forecast at all horizons up to 18 months or 6 quarters.  In this paper, we show 

that also including forecasts based on U.S. crude oil inventories in the forecast combination substantially 

improves the accuracy of the pooled forecast at horizons between one and two years.  

The use of the same weights for all forecast horizons in constructing these baseline results 

ensures that there are no discontinuous changes in the forecast path across horizons of the type that would 

arise if we switched forecasting models or forecast combinations from one horizon to the next.  For 

example, using a VAR forecasting model at horizons up to one year and a no-change forecast for longer 

horizons may result in a jump in the path of the oil price forecast at the one-year horizon, as illustrated in 

Baumeister and Kilian (2014b).  Some forecast users find such jumps awkward, perhaps because of the 

difficulty of rationalizing such jumps from an economic point of view. Insisting on a smooth forecast path 

comes at the price of higher MSPEs, however. If a low MSPE is all we care about in forecasting, one 

clearly can improve on equal-weighted combinations of all oil price forecasting models. We illustrate this 

point by allowing for different forecast combinations at each horizon. This strategy takes advantage of the 

fact that some oil price forecasting models perform well at short horizons, but were never intended for 

longer horizons, whereas other models perform best at longer horizons. We show that relaxing the 
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constraint of a continuous forecast path substantially reduces the MSPE of the pooled forecast at all 

horizons, but especially at horizons beyond one year. 

 This fact raises the question of how forecast pooling by horizon compares with simply selecting 

for each horizon the individual forecasting model with the lowest MSPE.  The latter comparison is the 

relevant benchmark when evaluating the benefits of pooling in the absence of the continuity constraint. 

We find that pooled forecasts often but not always have lower MSPEs than the best individual forecast. 

The superior accuracy of the forecast combination at some horizons is not surprising in that pooled 

forecasts provide insurance against failures of individual models. Our results show that this insurance 

carries a price in the form of lower forecast accuracy in some dimensions, however. For example, at 

horizons beyond 18 months, the individual forecasts are clearly more accurate. This drawback is offset by 

the fact that the accuracy of the pooled forecasts is more stable over time, as revealed by plots of the 

recursive MSPE ratios over time.  

 The MSPE of the real-time pooled forecasts is up to 29% lower than that of the no-change 

forecast even at horizons as high as two years. The pooled forecasts also predict the direction of change in 

the real price of oil correctly with probabilities as high as 73%. Our qualitative results are robust to 

alternative oil price measures and apply to monthly as well as quarterly forecasts. In addition to 

presenting these summary statistics, we use graphical methods to examine how the pooled real-time 

forecasts performed in recent years when the real price of oil fluctuated substantially. We compare these 

model-based pooled forecasts to the U.S. Energy Information Administration’s (EIA) short-term oil price 

forecasts, as released in the Short-Term Energy Outlook, since the EIA is the primary government 

institution to produce short-term oil price forecasts on a monthly basis. Finally, we discuss how real-time 

pooled forecasts of the nominal oil price may be derived from the forecasts of the real price, and we 

illustrate that both real and nominal oil price forecasts may be presented in a format already used by the 

EIA.  

The remainder of the paper is organized as follows. In section 2 we review the forecasting models 

considered. Section 3 evaluates our monthly forecasts of the real U.S. refiners’ acquisition cost for oil 
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imports and of the West Texas Intermediate (WTI) price of crude oil.  In section 4 we extend the analysis 

to quarterly forecasts. Section 5 examines how stable the accuracy of these oil price forecasts is over time. 

In section 6 we visually compare the accuracy of our pooled oil price forecasts to that of the EIA oil price 

forecasts during key episodes. In section 7 we illustrate how these forecasting tools may be used to 

produce real-time forecasts of the real and the nominal price of oil in a format consistent with that 

employed by the EIA in releasing its short-term oil price forecasts. Concluding remarks are offered in 

section 8. 

 

2. The Forecasting Environment 

All forecasting models are estimated at monthly frequency. We consider monthly forecast horizons up to 

two years. Forecasts at the corresponding quarterly horizons are obtained by averaging the monthly 

forecasts at quarterly frequency, as recommended in Baumeister and Kilian (2014b). The forecasting 

models are estimated recursively and subject to real-time data constraints. All data are obtained from the 

real-time database developed in Baumeister and Kilian (2012, 2014a) and extended in Baumeister, Kilian 

and Zhou (2013). The reader is referred to the latter references for a detailed description of the data 

sources and definitions. The evaluation period is January 1992 through September 2012 (or, equivalently, 

the first quarter of 1992 through the third quarter of 2012).  Our objective is to forecast the ex-post 

revised real price of oil, as measured by the observations in the March 2013 vintage of the real-time 

database. 

The real-time forecasts are evaluated based on their recursive MSPE and their directional 

accuracy, as measured by the success ratio. The success ratio is the fraction of times that a method 

correctly predicts the direction of change in the real price of oil. Success ratios above 0.5 indicate an 

improvement relative to the no-change forecast.  The MSPE results are normalized relative to the no-

change forecast, with a ratio below 1 indicating a gain in accuracy. There is no valid test for judging the 

statistical significance of the MSPE reductions in our context, but we examine the stability of our results 
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across horizons, across specifications and over time.2 The statistical significance of the success ratios is 

assessed based on the test proposed in Pesaran and Timmermann (2009). 

Building on the comprehensive analysis of forecast combination methods in Baumeister and 

Kilian (2014a), we consider five forecasting models with proven credentials. 

 

2.1. Forecasts based on a VAR model of the global oil market 

The first model is a reduced-form VAR model of the form: 

( ) t tB L y u   ,         

where , , ,oil
t t t t ty prod rea r inv       refers to a vector including the percent change in global crude oil 

production, a measure of global real economic activity, the log of the U.S. refiners’ acquisition cost for 

crude oil imports deflated by the log of the U.S. CPI, and the change in global crude oil inventories;   

denotes the intercept; 4 1( ) ... p
pB L I B L B L     the autoregressive lag order polynomial; p  the 

autoregressive lag order; L  the lag operator; and tu a white noise innovation.3 This VAR model may be 

viewed as the reduced-form representation of the structural global oil market model developed in Kilian 

and Murphy (2014).  

We follow the earlier literature in estimating the unrestricted VAR model with 12 autoregressive 

lags by the method of least squares. Forecasts |ˆoil
t h tr  of the log of the real price of oil are constructed 

iteratively from the estimated VAR model conditional on the most recent data and converted to levels, 

                                                            
2 There are four distinct problems in testing the statistical significance of MSPE reductions in our context. First, 
traditional tests for equal predictive accuracy for nested models are concerned with testing predictability in 
population. There are only very limited results on testing the equality of out-of-sample MSPEs obtained from 
recursively estimated models. Second, these results are limited to direct forecasts. No results are available for 
iterated forecasts of the type considered in our analysis.  Third, the tests in question have been designed for 
comparing pairs of nested forecasting models. They have not been designed for evaluating the accuracy of forecast 
combinations, some of which are nested in the benchmark model and some of which are not.  Fourth, these problems 
are further compounded by the presence of real-time data constraints, which affect the distribution of the test 
statistics in question (see Clark and McCracken 2013).  
3 The inventory data are constructed by multiplying U.S. crude oil inventories by the ratio of OECD petroleum 
inventories to U.S. petroleum inventories. Petroleum inventories are defined to include both stocks of crude oil and 
stocks of refined products. The global real activity index is constructed from data on global dry cargo ocean 
shipping freight rates as described in Kilian (2009).  
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resulting in the forecast  

,
| |

ˆ ˆexp( )oil oil VAR
t h t t h tR r  ,     (1) 

where h  is the forecast horizon. Forecasts for the real WTI price are constructed from the same VAR 

model by assuming that the most recent spread between the log WTI price and the log of the U.S. 

refiners’ acquisition cost remains unchanged in the future. By rescaling the forecasts of the U.S. refiners’ 

acquisition cost in this manner, we allow the relationship between the two oil price measures to evolve as 

a random walk (see Baumeister and Kilian 2014b).  

 

2.2. Forecasts based on the price of non-oil industrial raw materials 

An alternative forecasting method – based on the intuition that there are broad-based predictable shifts in 

the demand for globally traded commodities – exploits real-time information from recent cumulative 

changes in non-oil industrial commodity price indices. As discussed in Baumeister and Kilian (2012), 

such a forecast of the real price of oil may be constructed as follows: 

    ,
|

ˆ 1 ( )oil oil h industrial raw materials h
t h t t t t t hR R E     ,    (2) 

where oil
tR  denotes the current level of the real price of oil and ,h industrial raw materials

t  stands for the percent 

change of the Commodity Research Bureau (CRB) index of the spot price of industrial raw materials 

(other than oil) over the preceding h  months. The term ( )h
t t hE    is the expected U.S. inflation rate over 

the next h periods. In practice, this expectation is proxied by recursively constructed averages of past U.S.  

CPI inflation data, starting in July 1986.4 

 

2.3. Forecasts based on oil futures prices 

Yet another approach is to exploit information from oil futures markets. Many practitioners rely on the 

price of oil futures contracts when generating forecasts of the nominal price of oil or, equivalently, on the 

futures spread when forecasting the change in the nominal price of oil. This forecast can then be 

                                                            
4 Undoubtedly, the inflation forecast could be refined further, but there is little loss in generality in our approach, as 
shown in Baumeister and Kilian (2012). 
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converted to a forecast for the real price of oil by subtracting expected inflation. This approach is 

embodied in the forecasting model 

  |
ˆ 1 ( ) ,oil oil h h

t h t t t t t t hR R f s E        (3) 

where h
tf  is the log of the current WTI oil futures price for maturity ,h ts  is the log of the corresponding 

WTI spot price, and ( )h
t t hE    is again the expected inflation rate over the next h periods. Monthly WTI 

oil futures price data for our evaluation period are available only up to a horizon of 18 months. This 

means that for horizons beyond 18 months the futures-based forecast receives zero weight in the forecast 

combinations. 

 

2.4. Time-varying parameter model of the gasoline and heating oil spreads 

Many market practitioners believe that rising spreads between the price of refined products (such as 

gasoline or heating oil) and the price of crude oil signal upward pressures on the price of crude oil. For 

example, Goldman Sachs in April 2013 cut its oil price forecast, citing significant pressure on product 

spreads, which it interpreted as an indication of reduced demand for products (see Strumpf 2013). There 

are many reasons to expect forecasts based on product spreads to be unstable over time. One concern is 

that the price of crude oil is likely to be determined by the refined product in highest demand and that 

product has changed over time. Another concern is that crude oil supply shocks, local capacity constraints 

in refining, changes in environmental regulations or other market turmoil may all temporarily undermine 

the predictive power of product spreads. We therefore follow Baumeister et al. (2013) in first recursively 

estimating the time-varying regression model 

 | 1 2
gas heat

t h t t t t t t t t hs s s s s                , 

where gas
ts  is the log of the nominal U.S. spot price of gasoline and heat

ts  is the log of the nominal U.S. 

spot price of heating oil.5 Given the TVP estimates, we then construct the TVP model forecast 

                                                            
5 In estimating the model, we postulate that εt+h ~ NID(0,σ2) while the time-varying coefficients 1 2[ ]'t t t    
evolve according to a random walk as 1 ,t t t     and t is independent Gaussian white noise with variance .Q  
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  | 1 2
ˆ ˆˆ exp ( )oil oil gas heat h

t h t t t t t t t t t t hR R s s s s E                (4) 

by Monte Carlo integration as the mean of the forecasts simulated based on 1,000 Gibbs iterations 

conditional on the most recent data.6  

 

2.5. Forecasts based on U.S. crude oil inventories 

The final forecasting model can be motivated by the theoretical analysis in Alquist and Kilian (2010), 

which shows that changes in crude oil inventories capture shifts in expectations about the future real price 

of oil. As shown in Baumeister, Guérin and Kilian (2014), forecasts of the real price of oil may be 

constructed from U.S. crude oil inventory data as follows:  

  |
ˆˆ 1oil oil h

t h t t tR R inv    ,  (5) 

where h
tinv  denotes the percent change in U.S. crude oil inventories over the preceding h  months and 

̂ is obtained by regressing cumulative percent changes in the real price of oil on the lagged cumulative 

percent change in U.S. inventories without intercept. The latter restriction improves the accuracy.   

 

3. Monthly Forecasts of the Real Price of Oil 

We evaluate the monthly forecasts of the real price of oil obtained with the forecast combination for 

horizons 1,...,24,h  corresponding to a maximum horizon of two years. This range covers the horizons 

typically of interest in applied work. 

 

3.1. U.S. refiners’ acquisition cost for crude oil imports 

The U.S. refiners’ acquisition cost for crude oil imports is a commonly used proxy for the global price of 

crude oil and, as such, is of central interest for oil price forecasters. Table 1 shows that an equal-weighted 
                                                                                                                                                                                                
The intercept has been restricted to zero, following Baumeister et al. (2013), who show that this restriction greatly 
improves the out-of-sample accuracy.  This state-space model is estimated using a Gibbs sampling algorithm. The 
conditional posterior of t  is normal, and its mean and variance can be derived via standard Kalman filter recursions 
(see Kim and Nelson 1999). Conditional on an estimate of t , the conditional posterior distribution of 2 is inverse 
Gamma and that of Q  is inverse Wishart. 
6 Our forecasts take into account that the model parameters continue to drift over the forecast horizon according to 
their law of motion. The first 30 observations of the initial estimation period are used as a training sample to 
calibrate the priors and to initialize the Kalman filter. 
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combination of all five oil price forecasting models unambiguously reduces the MSPE of the forecast at 

all horizons relative to the no-change forecast, much like the simpler forecast combination considered in 

Baumeister and Kilian (2014a). The difference is that the larger forecast combination including the 

additional forecasting model based on U.S. crude oil inventories generates further improvements at 

horizons beyond 18 months. Not only are there MSPE reductions at these long horizons, but there also is 

statistically significant directional accuracy. 

 The MSPE reductions in Table 1 for this forecast combination occur at all horizons and are 

reasonably large by the standards of the literature on oil price forecasting. The largest MSPE reduction is 

11%. The largest success ratio is 68%. Table 2 reveals which models contribute to the improved accuracy 

at which horizon. It shows how the MSPE ratio of the combination forecast changes as we drop one 

model at a time from the pooled forecast. Increases in the ratio mean that the model left out would have 

improved forecast accuracy if included, whereas decreases mean that it would have worsened forecast 

accuracy. For example, the VAR improves forecast accuracy at horizons 1 through 7 and industrial raw 

materials prices at horizons 1 through 5. Oil futures prices worsen accuracy at short horizons, but improve 

accuracy at horizons 5 through 18, while the TVP product spread model improves forecast accuracy at 

horizons 5 through 24. Finally, the inventory model improves accuracy only at horizons 14 through 24. 

 Table 2 shows that clearly not every forecasting model is suitable for every horizon. A natural 

proposal is to select an improved forecast combination for each horizon by dropping all models that lower 

forecast accuracy in Table 2 and by retaining the others. The second set of results in Table 1 confirms that 

choosing equal-weighted subsets by horizon further improves forecast accuracy. In that case, the largest 

MSPE reduction increases from 11% to 29% and the largest success ratio from 68% to 73%.  These 

statistics are very large by the standards of the oil price forecasting literature. The most stunning 

improvement in accuracy occurs beyond the 18-month horizon. It is related to the fact that we dropped the 

VAR forecast and the forecast based on industrial commodity prices, which were never intended to be 

accurate at such long horizons (see Baumeister and Kilian 2012). 

The difference between the first and the second set of results in Table 1 is that we have relaxed  
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the implicit constraint that forecasts across horizons should be generated by the same forecasting model 

or the same forecast combination. Relaxing this constraint by construction must reduce the MSPE of the 

pooled forecast. This raises the question of what the benefits are of forecast pooling in the absence of that 

continuity restriction. If we are not concerned with continuity, the relevant benchmark is the forecast 

accuracy obtained by generating the most accurate individual oil price forecasting model for each 

horizon. The third set of results in Table 1 shows that by selecting the best individual forecasting model, 

we can reduce the MSPE even further. In that case, the MSPE reductions in Table 1 reach 36% in some 

cases and the success ratios an astonishing 75%. This means that we predict the direction of change in the 

real price of oil three times out of four. These impressive gains in accuracy are not uniform across 

forecast horizons, however. In fact, for many horizons the forecast combination chosen by horizon has a 

slightly lower MSPE than the best individual model. Only at horizons beyond 18 months are the 

individual forecasting models clearly more accurate. Thus, these results seem ambiguous and either 

approach seems reasonable. In section 5 we will present additional evidence that in fact the accuracy of 

the pooled forecasts is much more stable over time, making them the preferred approach. Before 

addressing this point, it is useful to examine how robust these findings are to the use of other oil price 

measures. 

 

3.2. WTI spot price of crude oil 

Table 3 shows the corresponding results for the real spot price of WTI crude oil, which is a commonly 

used reference price in oil markets. Unlike the U.S. refiners’ acquisition cost, the nominal WTI price is 

available without delays and not subject to revisions. It was subject to regulation until the 1980s, 

however, and has recently become unrepresentative of the global price of crude oil. 

 Table 3 documents that the equal-weighted combination of all five models is about as accurate for 

the real WTI price as for the real refiners’ acquisition cost. The largest MSPE reduction is 12% and the 

largest success ratio 67%. Many of the gains in directional accuracy are statistically significant, even at 

horizons as high as 24 months. Some are not, especially between horizons of 5 and 10 months. The 
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pooled forecast generates MSPE reductions at every horizon between 1 month and 24 months.  

To conserve space, we do not include a table showing the contributions of each forecasting model 

to the pooled forecast analogous to Table 2; however, note that the pattern is very similar except that the 

VAR model contributes to the accuracy of the forecast combination at all horizons but horizons 16, 17 

and 18.  Allowing the forecast combination to vary by horizon increases the MSPE reductions at all 

horizons, as in Table 1. At some horizons the MSPE reductions reach 19% relative to the no-change 

forecast. The largest success ratio is 70%. Compared with the results in Table 1, these gains in accuracy 

are still substantial, but more modest.  

Finally, when choosing the best individual forecasting model by horizon, the MSPE reductions 

reach 30% in some cases and the success ratios can be as high as 82%. These large gains are all obtained 

at horizons beyond 18 months. At shorter horizons, the relative performance of this last method compared 

with the forecast combination chosen by horizon is ambiguous and the differences are modest. We 

conclude that our findings are robust with respect to the choice of oil price measure. 

 

4. Quarterly Forecasts of the Real Price of Oil 

For many purposes, users of oil price forecasts are interested in quarterly rather than monthly forecasts. It 

is straightforward to construct forecasts at quarterly horizons by averaging the monthly forecasts. This 

approach is more accurate than constructing quarterly forecasts from models estimated at quarterly 

frequency (see Baumeister and Kilian 2014b). It is important to note that the accuracy of quarterly 

forecasts may not be inferred from that of monthly forecasts because of the unknown covariance of the 

monthly forecasts across horizons and because averaging lowers the variance of the forecasts.  

 Nonetheless, the upper panel of Table 4 suggests that quarterly forecasts are about as accurate as 

monthly forecasts. The success ratios are systematically above 0.5 and all statistically significant except 

for the longest horizons. All MSPE ratios are below 1. The maximum MSPE reductions of the pooled 

forecast range from 12% for the equal-weighted combination of all models to 26% for the combination 

chosen by horizon. The corresponding success ratios may be as high as 70% and 71%. Similar results 
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hold for the real WTI price in the lower panel. For the best individual model forecasts chosen by horizon, 

in the upper panel of Table 4, the MSPE reductions may be as large as 35% and the success ratio as high 

as 74% at the quarterly frequency. The corresponding results for the real WTI price are 29% and 71%. 

We conclude that our results are not affected by the choice between monthly and quarterly forecast 

horizons. 

 

5. How Stable Is the Accuracy of Pooled Forecasts Compared to Other Forecasts? 

One of the perceived benefits of pooling oil price forecasts is that the forecast accuracy tends to become 

more stable over time than forecasts from individual models. Tables 1 and 3 show that substantial further 

reductions in the MSPE ratio are feasible when selecting the preferred forecast combination or the 

preferred forecasting model by horizon. These accuracy gains, however, may come at the expense of 

instability over time.  Figure 1 examines this concern by plotting the recursive real-time MSPE ratios over 

time. We focus on the real U.S. refiners’ acquisition cost for oil imports, but note that similar results hold 

for the real WTI price. Since MSPE ratios are uninformative when based on too short an evaluation 

period, we discard the first five years of the evaluation period. The last observation shown in Figure 1 

corresponds to the MSPE ratios shown in Table 1. To conserve space, we focus on horizons of 1, 3, 6, 9, 

12, 15, 18, 21 and 24 months. 

 Figure 1 illustrates that the equal-weighted combination of all five forecasting models has 

virtually always been more accurate than the no-change forecast at every horizon shown, especially since 

2000.  To a lesser extent, this has also been true for the subset of models chosen for each horizon. Figure 

1 shows that the reductions in the overall MSPE associated with that second method come at the expense 

of a somewhat more erratic forecast performance. Overall, however, the accuracy of this method remains 

quite robust. Only occasionally, the recursive MSPE ratios become positive. Such episodes are short-lived 

and the losses in accuracy are comparatively small. 

 In sharp contrast, the accuracy of the third method we considered, which involves selecting the 

single most accurate forecasting model by horizon, is highly erratic. Especially at horizons 6, 9, 12 and 
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15, this method may generate recursive MSPE ratios as high as 1.7 in some cases, making this approach 

unfit for applied work, despite its strong performance, on average, over the evaluation sample. We 

conclude that there are clear gains from pooling forecasts not captured by the MSPE ratios in Tables 1 

and 3. Very similar results also hold for quarterly forecasts, as shown in Figure 2.  

 

6. Pooled Forecasts and EIA Forecasts in Historical Perspective  

A different perspective on the accuracy of pooled real-time forecasts may be obtained by comparing them 

to the short-term oil price forecasts published by the EIA, the primary government authority that 

generates oil price forecasts based on its institutional knowledge and the analysis of industry information. 

The data source for the latter forecasts is the EIA’s Short-Term Energy Outlook.  Most importantly for our 

purposes, this publication provides quarterly forecasts of the U.S. refiners’ acquisition cost for imports for 

horizons up to 6 quarters. For the purpose of comparing the EIA forecasts with the pooled forecasts, the 

nominal EIA oil price forecasts have been deflated by the same measure of expected inflation used in 

constructing the pooled forecasts of the real price of oil. Figure 3 compares the forecasts produced by the 

EIA against the realizations of the real price of oil. For each quarter for which a forecast is available, we 

show the entire forecast path. The EIA nowcast for the current quarter is marked as a circle. In Figure 4 

we conduct a similar comparison for the pooled real-time forecast selected by horizon.  

Figures 3 and 4 illustrate the differences between the pooled forecast and the EIA’s forecast. For 

example, the plots show that the quarterly nowcasts produced by the EIA tend to differ from the 

realizations much more than the nowcasts constructed in the Baumeister and Kilian (2012) real-time 

database.  There is little systematic difference between the EIA forecasts and the pooled forecasts from 

1992 to 2002, except that the EIA forecasts often are based on nowcasts that are off the mark, causing 

them to overstate or understate the level of the real price of oil. With the surge in the real price of oil 

starting in 2003, however, strong qualitative differences emerge. Whereas the EIA’s forecast paths for the 

next five years always point downward, the pooled forecasts almost always predict increases, at least in 

the short run. This is particularly evident in the first quarter of 2008, when the pooled forecast anticipates 
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a sharp increase in the real price of oil, and the EIA predicts a strong decline. Similarly, the pooled 

forecast is better at predicting the downturn of the real price of oil in late 2008 and the recovery in 2009.  

While neither the pooled forecast nor the EIA forecast is good at predicting turning points, the pooled 

forecast quickly adapts, once a turning point has occurred. A case in point is the third quarter of 2008, one 

quarter after the peak of mid-2008. Whereas the EIA predicts continued oil price increases following a 

small decline, the pooled forecast correctly anticipates a sharp decline in the real price of oil in the fourth 

quarter, although not as steep as the actual drop. 

 

7. Real versus Nominal Oil Price Forecasts 

It can be shown that much of the variation in the nominal price of crude oil reflects variation in the real 

price of oil. Only at longer horizons does the inflation component matter (see Alquist et al. 2013). 

Whereas we have focused on the real price of oil, which is the price that ultimately matters for users of oil 

price forecasts, the EIA publishes nominal oil price forecasts. In this section, we show how both the real 

and the nominal pooled oil price forecasts may be reported in the same format in which the EIA reports 

its own oil price forecasts. We again focus on the U.S. refiners’ acquisition cost for oil imports. 

Table 5 shows three examples. It documents forecast paths generated as of the last quarter of 

2000, the third quarter of 2008 and the second quarter of 2009.  When the forecasts are generated, many 

prior values of the real price of oil are still unknown and have to be inferred by the forecaster. These 

nowcasts differ from the actual values of the price of oil revealed later. The forecast path and the 

corresponding realizations of the ex-post revised price of oil are shown for five quarters, reflecting the 

limited availability of the EIA forecasts. All forecasts are normalized such that the nominal and the real 

price of oil coincide in the last nowcast period. The difference in the forecast paths of the real and the 

nominal price is expected U.S. inflation. Inflation adjustments for the nowcasts are based on the real-time 

U.S. inflation data in Baumeister and Kilian (2012). We convert pooled forecasts of the real price of oil to 

nominal price forecasts by adjusting the predicted changes in the real price of oil by the same expected 

rate of inflation used in constructing Figure 3.   



15 
 

The first example in Table 5 shows that in the last quarter of 2000 both the EIA forecast and the 

pooled forecast predict a decline in the price of oil. One difference is that the EIA relies on an imprecise 

nowcast, whereas our nowcast is close to the realized value of the price of oil. The other difference is that 

the pooled forecast predicts a steeper decline, more in line with the actual evolution of the price of oil. 

The other two examples in Table 5 involve situations in which both the EIA nowcasts and our 

nowcasts are reasonably accurate, allowing us to abstract from the role of the nowcast. The second 

example shows that in the third quarter of 2008, amidst the financial crisis, the EIA predicts that the price 

of oil will quickly recover and rise to 122 dollars by mid-2009. The pooled forecast, in contrast, predicts a 

sharp decline, although not nearly as steep as the actual decline. The third example is the second quarter 

of 2009, after the recovery of the price of oil has started. The EIA forecast path shows a modest increase, 

whereas the path predicted by the pooled forecast shows a much steeper increase, closer to the actual 

evolution of the price of oil.  

These three examples demonstrate that the choice of forecasting methods matters. Clearly, there 

are other examples in which the EIA forecast and the pooled forecasts are more similar, and there are also 

some examples in which the EIA forecast is more accurate than the pooled forecast. Nevertheless, overall, 

the benefits of relying on model-based real-time forecasts compared with the EIA forecasts are readily 

apparent.7 We conclude that it is straightforward to construct real-time pooled forecasts of both the 

nominal and the real price of oil in a format that the EIA relies on. Table 5 also shows that the distinction 

between real and nominal oil price forecasts matters. While that difference is negligible at short horizons, 

at the 5-quarter horizon, for example, it accounts for somewhere between four and five dollars in our 

examples.  This difference is small compared with the overall level of the price of oil, but 

large enough to matter for economic decisions. 

 

                                                            
7 We do not formally compare the MSPEs and directional accuracy of the EIA forecast and the pooled forecast. The 
reader is referred to the related analysis in Baumeister and Kilian (2014a), which shows that the EIA forecasts have 
much higher MSPE than the no-change forecast, and lack directional accuracy. This result overturns the substantive 
conclusion of Sanders, Manfredo and Boris (2009) based on a much shorter evaluation period and a different 
econometric approach. Moreover, including the EIA forecast in the forecast combination would systematically lower 
the accuracy of the pooled forecast. 
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8. Concluding Remarks 

We compared three approaches to generating short-term real-time oil price forecasts. One is a pooled 

forecast obtained by assigning equal weight to all forecasting models under consideration. Another allows 

the subset of models selected for the forecast combination to vary by horizons according to its ability to 

reduce the MSPE. A third approach involves selecting for each horizon the model with the lowest 

recursive MSPE. Of these approaches, only the first two can be recommended.  While tailoring the 

forecast combination to each horizon improves the forecast accuracy especially at longer horizons without 

seriously impairing the reliability of the pooled forecast, the accuracy of forecasts based on selecting the 

best individual model at each horizon tends to be unstable over time. 

Pooled forecasts were shown to be at least as accurate as the no-change forecast of the real price 

of oil at all horizons up to two years, and often substantially more accurate. We illustrated that pooled oil 

price forecasts not only are more accurate than the no-change forecast, but also perform better than the 

EIA’s own short-term forecasts during key historical episodes. Our analysis suggests that recently 

developed model-based forecasts have become a promising alternative to forecasts of the type 

traditionally employed by the EIA. We illustrated how these forecasting tools may be used to produce 

real-time forecasts of the real and the nominal price of oil in a format consistent with that employed by 

the EIA in releasing its short-term oil price forecasts.  There is no reason for the set of forecasting models 

included in the forecast combination to remain unchanged over time. We discussed tools that can be used 

to decide whether to include additional models in the forecast combination or to drop models from the 

forecast combination. These tools can be implemented in real time, as the oil price forecast is updated on 

a monthly basis. 
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Data Appendix 

Monthly averages of the daily WTI spot price were obtained from the FRED database of the 

Federal Reserve Bank of St. Louis. The corresponding oil futures prices for maturities between 1 

and 18 months are from Bloomberg. The spot price index of industrial raw materials is from the 

Commodity Research Bureau. The nominal shipping rate data underlying the global real activity 

index were obtained from Kilian (2009) for 1973M1 through 1984M12 and were extrapolated 

through 2012M9 using the Baltic Dry Index as reported by Bloomberg. The nominal EIA oil 

price forecasts were obtained from the EIA’s Short-Term Energy Outlook. Data for U.S. crude 

oil inventories are reported from August 1982 onwards in the Weekly Petroleum Status Report 

issued by the EIA. The spot prices for regular gasoline and for heating oil for delivery in New 

York Harbor are also from the EIA. All other oil market data, including the U.S. refiners’ 

acquisition cost for crude oil imports, global oil production and the remaining inventory data, 

were obtained from the Monthly Energy Review published by the EIA (not available in electronic 

form prior to 1996M1). The construction of the real-time data set from the historical issues of the 

Monthly Energy Review is described in Baumeister and Kilian (2012).  Real-time data for the 

monthly seasonally adjusted U.S. consumer price index for all urban consumers were obtained 

from the Economic Indicators published by the Council of Economic Advisers. These data are 

available in the FRASER database of the Federal Reserve Bank of St. Louis. Additional real-

time U.S. consumer price index data were obtained from the macroeconomic real-time database 

of the Federal Reserve Bank of Philadelphia. 
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Figure 1: Real-Time Recursive MSPE Ratio Relative to No-Change Forecast 
Real U.S. Refiners’ Acquisition Cost for Oil Imports 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES:  All results are based on the methods examined in Table 1. A ratio below 1 indicates an improvement relative to the no-change forecast. 
The plot shows the evolution of the recursive MSPE ratio over time for the forecast evaluation period since 1997. This increases the reliability of 
the MSPE estimates and allows the MSPE ratio to stabilize.
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Figure 2: Real-Time Recursive MSPE Ratio Relative to No-Change Forecast 
Real U.S. Refiners’ Acquisition Cost for Oil Imports 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES:  All results based on the methods examined in Table 4. A ratio below 1 indicates an improvement relative to the no-change forecast. The 
plot shows the evolution of the recursive MSPE ratio over time for the forecast evaluation period since 1997. This increases the reliability of the 
MSPE estimates and allows the MSPE ratio to stabilize. 
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Figure 3: Real-Time Recursive Forecasts and Realizations for the Real U.S. Refiners’ Acquisition Cost for Oil Imports 
Quarterly EIA Forecasts 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTES:  The nominal EIA forecasts from the Short-Term Energy Outlook have been adjusted for expected inflation. The EIA’s nowcasts are 
marked by a circle. 
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Figure 4: Real-Time Recursive Forecasts and Realizations for the Real U.S. Refiners’ Acquisition Cost for Oil Imports 
Quarterly Pooled Real-Time Forecasts Chosen by Horizon 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
NOTE:  The nowcasts constructed as in Baumeister and Kilian (2012) are marked by a circle. 
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Table 1: Real-Time Forecast Accuracy of Alternative Forecast Combinations 
Evaluation period: 1992M1-2012M9 

 
 

 Real U.S. Refiners’ Acquisition Cost for Crude Oil Imports 
 

 Equal-weighted 
combination of all 5 
forecasting models  

 

Equal-weighted subset of 
models 

chosen by horizon 

Best individual 
forecasting model  

by horizon    

Monthly 
horizon 

MSPE 
ratio 

Success 
ratio 

MSPE 
ratio 

Success 
ratio 

MSPE 
ratio 

(model) 

Success 
ratio 

1 0.912  0.578* 0.872  0.550* 0.934 (2)   0.546**

2 0.887  0.573* 0.824  0.577* 0.848 (2)   0.552**

3 0.894  0.559* 0.849  0.599* 0.864 (2)  0.628*

4 0.914 0.561 0.881  0.585* 0.938 (2)  0.598*

5 0.945 0.527 0.926 0.514 0.979 (3) 0.498 
6 0.960 0.557 0.944 0.545 0.971 (4) 0.541 
7 0.962 0.535 0.946 0.531 0.935 (4) 0.527 
8 0.956 0.533 0.905 0.574 0.914 (4) 0.579 
9 0.944 0.573 0.884    0.598** 0.892 (4) 0.560 

10 0.927    0.584** 0.869   0.613* 0.879 (4) 0.588 
11 0.906  0.603* 0.845   0.636* 0.856 (4) 0.623 
12 0.894  0.626* 0.837   0.639* 0.865 (4) 0.613 
13 0.890  0.637* 0.834   0.654* 0.869 (3)  0.629*

14 0.885  0.636* 0.846   0.661* 0.861 (3)  0.640*

15 0.885  0.677* 0.836   0.694* 0.860 (3)  0.634*

16 0.893  0.680* 0.832   0.727* 0.862 (5)  0.632*

17 0.907  0.682* 0.836   0.717* 0.849 (5)  0.644*

18 0.917  0.655* 0.835   0.720* 0.835 (5)   0.629**

19 0.961 0.593 0.843   0.680* 0.802 (5) 0.623
20 0.955   0.635* 0.812   0.696* 0.742 (5)  0.709*

21 0.939    0.625** 0.772  0.664 0.680 (5)  0.716*

22 0.919   0.645* 0.731   0.671* 0.642 (5)  0.746*

23 0.910   0.665* 0.710  0.648 0.654 (5)  0.740*

24 0.919 0.611 0.716  0.637 0.695 (5)  0.708*
 

NOTES: We consider five forecasting models based on monthly data: (1) a VAR forecast, (2) a 
forecast based on non-oil industrial commodity prices, (3) a forecast based on oil futures prices, 
(4) a forecast based on the spread of product prices relative to the price of crude oil, and (5) a 
forecast based on U.S. crude oil inventories. All forecasts are generated recursively from data 
subject to real-time data constraints. Boldface indicates improvements relative to the no-change 
forecast. * denotes significance at the 5% level and ** at the 10% level based on the Pesaran and 
Timmermann (2009) test for the null hypothesis of no directional accuracy. The statistical 
significance of the MSPE reductions cannot be assessed because none of the currently available 
tests of equal predictive accuracy applies in this setting.  
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Table 2: Changes in Real-Time Recursive MSPE Ratios of  

“Leave-One-Out” Forecast Combinations with Equal Weights 
Evaluation period: 1992M1-2012M9 

 
 

 Real U.S. Refiners’ Acquisition Cost for Crude Oil Imports 
 

Monthly  
horizon 

VAR Oil futures 
spread 

Industrial 
commodity 

prices 

TVP product 
price spread 

U.S. crude oil 
inventories 

1 +0.046 -0.015 +0.013 -0.008 -0.016 
2 +0.039 -0.013 +0.032 -0.016 -0.023 
3 +0.032 -0.009 +0.030 -0.011 -0.020 
4 +0.033 -0.005 +0.023 -0.005 -0.020 
5 +0.028 +0.003 +0.009 +0.005 -0.019 
6 +0.015 +0.009 -0.001 +0.015 -0.011 
7 +0.001 +0.012 -0.005 +0.023 -0.008 
8 -0.005 +0.016 -0.007 +0.027 -0.006 
9 -0.009 +0.018 -0.007 +0.030 -0.004 
10 -0.010 +0.019 -0.008 +0.028 0 
11 -0.011 +0.020 -0.006 +0.029 -0.002 
12 -0.011 +0.024 -0.003 +0.023 -0.001 
13 -0.011 +0.029 -0.002 +0.018 -0.001 
14 -0.015 +0.031 -0.004 +0.019 +0.001 
15 -0.020 +0.033 -0.007 +0.018 +0.008 
16 -0.023 +0.035 -0.012 +0.016 +0.021 
17 -0.027 +0.036 -0.016 +0.014 +0.029 
18 -0.033 +0.036 -0.019 +0.016 +0.038 
19 -0.028 NA -0.032 +0.030 +0.082 
20 -0.024 NA -0.055 +0.030 +0.104 
21 -0.022 NA -0.078 +0.034 +0.124 
22 -0.027 NA -0.091 +0.045 +0.133 
23 -0.031 NA -0.097 +0.064 +0.123 
24 -0.033 NA -0.098 +0.081 +0.108 

 

NOTES: The models are described in the text. Boldface indicates increases relative to the MSPE 
ratio in column (1) of Table 1. Increases mean that the model left out would have improved 
forecast accuracy if included, whereas decreases mean that it would have worsened forecast 
accuracy. The statistical significance of the MSPE changes cannot be assessed because none of 
the currently available tests of equal predictive accuracy applies in this setting.  
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Table 3: Real-Time Forecast Accuracy of Alternative Forecast Combinations 
Evaluation period: 1992M1-2012M9 

 
 

 Real WTI Price of Crude Oil  
 

 Equal-weighted 
combination of all 5 
forecasting models  

 

Equal-weighted subset of 
models 

chosen by horizon 

Best individual 
forecasting model  

by horizon    

Monthly 
horizon 

MSPE 
ratio 

Success 
ratio 

MSPE 
ratio 

Success 
ratio 

MSPE 
ratio 

(model) 

Success 
ratio 

1 0.898 0.518 0.846 0.494 0.866 (2) 0.530 
2 0.884  0.565* 0.814   0.565* 0.813 (2)  0.565*

3 0.894  0.587* 0.841   0.591* 0.862 (2)  0.595*

4 0.919   0.578** 0.877   0.589* 0.959 (2)  0.602*

5 0.949 0.543 0.928  0.535 0.986 (4) 0.584 
6 0.968 0.533 0.939  0.541 0.973 (4) 0.553 
7 0.969 0.547 0.940  0.539 0.943 (4) 0.547 
8 0.959 0.537 0.927  0.550 0.907 (4) 0.558 
9 0.949 0.552 0.919  0.564 0.896 (4) 0.564 
10 0.930 0.538 0.903  0.554 0.876 (4) 0.571 
11 0.911  0.603* 0.884   0.582* 0.859 (4) 0.611 
12 0.905  0.605* 0.883    0.576** 0.892 (4) 0.597 
13 0.899  0.616* 0.876   0.599* 0.893 (3)  0.603*

14 0.894  0.610* 0.868   0.614* 0.885 (3)  0.606*

15 0.898  0.634* 0.873   0.647* 0.884 (3)  0.626*

16 0.906  0.667* 0.851   0.697* 0.884 (5)  0.662*

17 0.916  0.674* 0.856   0.678* 0.880 (5)  0.635*

18 0.926  0.638* 0.859   0.668* 0.873 (5)  0.651*

19 0.963    0.593** 0.916   0.641* 0.845 (5)  0.745*

20 0.965  0.639* 0.899   0.683* 0.795 (5)  0.739*

21 0.953    0.625** 0.867   0.703* 0.743 (5)  0.773*

22 0.924  0.645* 0.824   0.680* 0.703 (5)  0.816*

23 0.916  0.648* 0.812   0.678* 0.704 (5)  0.819*

24 0.916    0.628** 0.809     0.646** 0.731 (5)  0.792*
 

NOTES: We consider five forecasting models based on monthly data: (1) a VAR forecast, (2) a 
forecast based on non-oil industrial commodity prices, (3) a forecast based on oil futures prices, 
(4) a forecast based on the spread of product prices relative to the price of crude oil, and (5) a 
forecast based on U.S. crude oil inventories. All forecasts are generated recursively from data 
subject to real-time data constraints. Boldface indicates improvements relative to the no-change 
forecast. * denotes significance at the 5% level and ** at the 10% level based on the Pesaran and 
Timmermann (2009) test for the null hypothesis of no directional accuracy. The statistical 
significance of the MSPE reductions cannot be assessed because none of the currently available 
tests of equal predictive accuracy applies in this setting. 
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Table 4: Real-Time Forecast Accuracy of Alternative Forecast Combinations 

Evaluation period: 1992M1-2012M9 
 
 

 Equal-weighted 
combination of all 5 
forecasting models  

 

Equal-weighted subset of 
models 

chosen by horizon 

Best individual 
forecasting model  

by horizon    

Quarterly 
horizon 

MSPE 
ratio 

Success 
ratio 

MSPE 
ratio 

Success 
ratio 

MSPE 
ratio 

Success 
ratio 

       
 Real U.S. Refiners’ Acquisition Cost for Crude Oil Imports 

 
1 0.921  0.687* 0.894  0.711* 0.903  0.735*

2 0.945  0.646* 0.920  0.610* 0.945  0.646*

3 0.938  0.654* 0.901   0.593** 0.907 0.543 
4 0.898  0.700* 0.848  0.663* 0.858  0.625*

5 0.880  0.620* 0.837  0.633* 0.866  0.620*

6 0.897  0.628* 0.831  0.641* 0.835 0.603 
7 0.947 0.558 0.814  0.649* 0.728  0.623*

8 0.927 0.540 0.741 0.618 0.649 0.592 
  
 Real WTI Price of Crude Oil 

 
1 0.901  0.699* 0.845  0.687* 0.856 0.711*

2 0.949  0.646* 0.914  0.622* 0.971 0.659*

3 0.945  0.654* 0.910  0.593* 0.909  0.593**

4 0.902  0.663* 0.873  0.650* 0.856  0.638**

5 0.893  0.608* 0.869 0.570 0.890 0.608*

6 0.908  0.628* 0.847  0.628* 0.864  0.603**

7 0.961 0.584 0.895 0.546 0.780 0.623*

8 0.933 0.566 0.833 0.618 0.706 0.632*
 

NOTES: We consider five forecasting models based on monthly data: (1) a VAR forecast, (2) a 
forecast based on non-oil industrial commodity prices, (3) a forecast based on oil futures prices, 
(4) a forecast based on the spread of product prices relative to the price of crude oil, and (5) a 
forecast based on U.S. crude oil inventories. All forecasts are generated recursively from data 
subject to real-time data constraints. Boldface indicates improvements relative to the no-change 
forecast. * denotes significance at the 5% level and ** at the 10% level based on the Pesaran and 
Timmermann (2009) test for the null hypothesis of no directional accuracy. The statistical 
significance of the MSPE reductions cannot be assessed because none of the currently available 
tests of equal predictive accuracy applies in this setting.  
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Table 5: Selected Real-Time Forecast Paths for the U.S. Refiners’ Acquisition Cost for Crude Oil Imports 
 

Example 1: 2000.IV 1999 2000 2001 2002 
 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 
Real  Pooled 20.58 23.84 27.44 26.91 29.33 28.82 23.69 23.21 22.61 22.47 23.46 

EIA 20.54 23.85 27.41 26.94 29.33 31.06 30.69 29.56 27.61 24.94 N.A. 
Actual 20.57 23.83 27.44 26.94 29.32 28.30 23.93 23.46 22.57 16.61 18.77 

   

Nominal Pooled 19.75 23.04 26.79 26.52 29.12 28.82 23.90 23.61 23.18 23.23 24.45 
EIA 19.70 23.01 26.84 26.55 29.11 31.06 30.94 30.04 28.29 25.76 N.A. 
Actual 19.75 23.04 26.79 26.52 29.12 28.30 24.16 23.86 23.01 16.92 19.19 

Example 2: 2008.III 2007 2008 2009 
 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 

Real  Pooled 66.24 74.26 85.84 92.46 117.92 112.24 88.63 91.96 98.87 100.14 99.50 
EIA 66.05 74.16 85.57 92.43 116.93 114.01 111.25 117.16 119.16 116.31 112.52 
Actual 66.10 74.16 85.73 92.30 117.58 111.78 52.90 41.67 59.01 67.48 73.67 

  

Nominal  Pooled 62.41 70.45 82.45 89.75 115.90 112.24 89.26 93.37 101.16 103.28 103.42 
EIA 62.30 70.38 82.44 89.73 115.70 114.01 112.13 119.02 122.00 120.02 117.01 
Actual 62.41 70.45 82.45 89.73 115.83 111.78 51.84 40.45 57.57 66.40 73.04 

Example 3: 2009.II 2008 2009 2010 
 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 
Real  Pooled 89.79 114.66 108.98 51.51 40.55 59.76 73.79 69.60 72.88 76.03 76.92 

EIA 89.74 114.13 110.26 52.82 40.64 55.77 63.57 62.09 61.64 61.85 62.36 
Actual 90.06 114.73 109.08 51.63 40.67 57.57 65.85 71.89 73.87 73.10 71.83 

  

Nominal  Pooled 89.75 115.90 111.79 51.84 40.45 59.76 74.34 70.63 74.50 78.29 79.79 
EIA 89.74 115.93 112.85 52.31 40.46 55.77 64.03 63.00 63.00 63.67 64.66 
Actual 89.73 115.83 111.78 51.84 40.45 57.57 66.40 73.04 75.19 74.36 73.31 

         

  NOTES:  Nowcasts are shown in bold, and forecasts in italics. By construction, the nominal and the real price coincide in the last nowcast period. 
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