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Abstract

This paper addresses the estimation of a semiparametric sample selection index model where both the
selection rule and the outcome variable are binary. Since the marginal e¤ects are often of primary interest
and are di¢ cult to recover in a semiparametric setting, we develop estimators for both the marginal e¤ects
and the underlying model parameters. The marginal e¤ect estimator uses only observations where the
selection probability is above a certain threshold. A key innovation is that this high probability set is
adaptive to the data. The model parameter estimator is a quasi-likelihood estimator based on regular
kernels with bias corrections. We establish their large sample properties and provide simulation evidence
con�rming that these estimators perform well in �nite samples.
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1 Introduction

There is an extensive literature extending the sample selection model of Heckman (1974, 1979) to relax

parametric restrictions.1 For example, for models with continuous outcomes Ahn and Powell (1993) allowed

for a nonparametric selection control function whereas more recently Das et al. (2003) allowed for a fully

nonparametric treatment. There are also several papers which investigate the semiparametric treatment

of the related model which features a binary response with a continuous endogenous explanatory variable

(see, for example, Blundell and Powell, 2004 and Rothe, 2009). Despite this, there are relatively few papers

that focus explicitly on the sample selection model with both binary outcomes and a binary selection rule.

Moreover, there is no treatment of the semiparametric estimation of the marginal e¤ects in such a model.

This represents a signi�cant void as important empirical examples exist in many areas of microeconomics.

In the fully parametric setting, both the model parameters and the marginal e¤ects, which are generally

the objects of primary interest, are easily obtainable. However, those are not easily attainable in the case of

the semiparametric index model. The marginal e¤ect is especially di¢ cult to estimate because it cannot be

directly derived from parameter estimates as the error distribution is unknown. The main issue arises from

partial observability in that the outcome is only observed in the selected sample. Consequently, it is di¢ cult

to study the conditional probability of the outcome given that the individual is not selected as there are no

observations available to estimate it. And this conditional probability is essential to estimating the outcome

probability given exogenous variables by Bayes rule. A more complete discussion is provided in Section 3.1.

Some important developments in this area include the work of Chesher (2005), Vytlacil and Yildiz (2007),

and Shaikh and Vytlacil (2011), which discuss identi�cation of the marginal impact of a discrete endogenous

variable. However, detailed estimation of marginal e¤ects has not been addressed for the case of sample

selection.

In this paper we develop semiparametric estimators for both the marginal e¤ects and the index parameters

underlying them. We make no distributional assumptions and allow for a model structure that is more

general than threshold-crossing. Our primary focus is upon the marginal e¤ects as they have not been

addressed in this setting. To deal with the partial observability issue mentioned above, we propose to

estimate the relevant probabilities by focusing on those observations in an estimated high probability set

where the selection probability tends to one. The framework of this approach is developed in pioneering

1For a survey see Vella (1998).
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papers of Heckman (1990) and Andrews and Schafgans (1998) for a known high probability set. This set

depends on the tail behavior of the index and error distributions. Therefore, in practice it is important

to study the empirical tail behavior so as to �nd the appropriate high probability set. In this paper we

characterize the high probability set as one where the probability exceeds a cuto¤ that approaches one as

the sample size increases. We propose and establish the theoretical properties for an estimator of this cuto¤

that depends on the empirical tail behavior. Based on the estimated high probability set, we formulate a

marginal e¤ect estimator and provide the theory for it which takes the estimation of this set into account.

This data-dependent feature of the high probability set underlying the marginal e¤ect estimator poses a

number of theoretical challenges, but is essential in empirical studies.

Estimation of the marginal e¤ects requires estimates of the index parameters. To estimate them, we pro-

pose a likelihood-based procedure employing a double index formulation. Identi�cation issues are explicitly

treated in Newey (2007), although that paper does not address estimation. Our index parameter estimator

employs bias adjustment mechanisms similar to those developed by Klein and Shen (2010) for single index

regression models. We develop an estimator based on regular kernels and show that it has both desirable

theoretical properties and good �nite sample performance.2 It is possible to develop index parameter es-

timators within various frameworks (see, e.g. Gallant and Nychka ,1987, Klein and Spady, 1993, Ichimura

and Lee, 1991, Lee, 1995, and Klein and Vella, 2009). The estimator for index parameters provided here was

initially developed in an earlier unpublished working paper.3 Most recently Escanciano, Jacho-Chavez and

Lewbel (2012) have proposed semiparametric estimators for the index parameters. Their estimator di¤ers

from ours in two main respects. First, to obtain asymptotic normality, we exploit a property of semipara-

metric derivatives (due to Whitney Newey) to control for the bias under regular kernels. Escanciano et. al.

control for the bias using higher order kernels. Second, identi�cation of index parameters here is based on

exclusion restrictions, while Escanciano et. al. provide an alternative identi�cation strategy. As mentioned

above, there are also alternative frameworks for developing estimators for index parameters. However, the

estimation of marginal e¤ects remains unaddressed.

We describe the model in Section 2, and motivate the estimators for the marginal e¤ects and the index

parameters in Section 3. Assumptions and de�nitions are in Section 4. Section 5 provides a brief proof

strategy, an illustrative example and asymptotic results for the marginal e¤ect estimator. Similarly, the

2There are other alternative methods that control for the bias under regular kernels. For example, Honore and Powell (2005)
employed a jackknife approach where the �nal estimator is a linear combination of estimators using di¤erent windows.

3See http://www.iza.org/conference_�les/SPEAC2010/vella_f1653.pdf
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proof strategy and asymptotic results for our index parameter estimator are presented in Section 6. We

provide simulation evidence in Section 7 and o¤er concluding comments in Section 8. The Appendix contains

all proofs.

2 Model

The model we address in this paper is a semiparametric variant on the Heckman (1974, 1979) selection

model where the outcome of interest is binary. More explicitly:

Y1 = I fg(X�0; �) > 0g (1)

Y2 = I fh(Z�0; u) > 0g ; (2)

where Y1 is only observed for the subsample for which Y2 = 1: Here If:g is an indicator function; X and

Z are vectors of exogenous variables where Z includes at least one absolutely continuous element excluded

from X; � and u are error terms with a non-zero correlation; g(:) and h(:) are unknown functions. While

the estimator for the index parameters is developed for a model of the above generality, large sample theory

for the marginal e¤ect requires us to characterize individuals with high selection probabilities. To this end,

we assume h(Z�0; u) = Z�0 �u.4 As in most semiparametric models the parameters are identi�ed up to

location and scale. Writing

X�0 = b1(X1 +X2�10) + c1 � b1V10 + c1

Z�0 = b2(Z1 + Z2�20) + c2 � b2V20 + c2;

the �00s are identi�ed, while the b0s and c0s are not identi�ed. We refer to V10 and V20 as indices and assume

that the model satis�es the following index restrictions:

Pr (Y1 = d1; Y2 = d2jX;Z) = Pr (Y1 = d1; Y2 = d2jV10; V20) (3)

Pr (Y2 = d2jX;Z) = Pr (Y2 = d2jV20) (4)

Pr (Y1 = d1jX;Z) = Pr (Y1 = d1jV10) . (5)

4Since the error distribution is unknown, this threshold-crossing model is unchanged if we replace Z�0 with any monotonic
function of it.
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We note that the above conditions hold if the errors are independent of X and Z. We impose this

index structure, as opposed to a nonparametric one, to improve the performance of the estimators.

3 Motivation

3.1 Marginal E¤ects

The marginal e¤ect of interest is the change in Pr (Y1 = 1jX) = Pr (Y1 = 1jV10) due to a change in one of the

explanatory X-variables. To motivate this marginal e¤ect, let Y2 denote whether or not an individual decides

to have a diagnostic test for a particular genetic disease and let Y1 denote whether or not an individual has

that disease. We would like to know how a change in one of the X-variables a¤ects the probability of having

the disease for the entire population and not just the subgroup that received the diagnostic test. In the fully

parametric case (e.g., bivariate probit with selection) the probability of having the disease Pr (Y1 = 1jV10)

is a known function, and the corresponding marginal e¤ect of interest can be directly calculated once the

parameters of the model are estimated.

Now consider the semiparametric case where the functional form of this probability function is not known.

Under index restrictions, the probability of interest can be written as

Pr (Y1 = 1jV10) = Pr (Y1 = 1jV10; V20)

= Pr (Y1 = 1jY2 = 1; V10; V20)P2

+Pr (Y1 = 1jY2 = 0; V10; V20) (1� P2) ;

where P2 = Pr (Y2 = 1jV10; V20) = Pr (Y2 = 1jV20). We can recover the �rst argument on the right-hand side

semiparametrically. The question then becomes how to recover the second part: Pr (Y1 = 1jY2 = 0; V10; V20) (1� P2).

In general, this is not estimable because we do not observe Y1 (genetic disease) when Y2 = 0 (no testing).

However, if P2 = 1 this second term disappears and we can estimate the marginal e¤ect of interest based on

only the �rst term. In an approach related to that of Heckman (1990) and Andrews and Schafgans (1998,

hereafter referred to as A&S), we estimate the marginal e¤ect by using only those observations for which

the selection probability P2 is high. With N as the full sample size, FU as the distribution function for the
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selection error u, Y2 = I fV20 > ug ; and a > 0, the high probability set is de�ned as

�
v20 : FU (v20) > 1�N�a	 :

The probability of being in this high probability set is given by Ph = Pr(V20 > F�1U (1�N�a)) =

1 � GV
�
F�1U (1�N�a)

�
, where GV is the distribution function for the selection index V20. For example,

when the index has a standard Weibull distribution GV = 1 � exp(�v20), and the error follows a Weibull

distribution FU = 1� exp(�uc); c > 1; Ph = exp(� [� ln(N�a)]
1=c
): As the error tails become thinner rela-

tive to the index tail (c increases), Ph increases. This example demonstrates that the appropriate value of

a depends on the thickness of the index tail relative to that of the error. As these tails are unknown, we

propose a data dependent value for a and establish its asymptotic properties.

Assume that we are interested in the marginal impact of a particular exogenous variable Xm ceteris

paribus. If we write the vector of exogenous variables as: X =
�
X[m]; Xm

�
, we are basically studying the

impact of moving Xm from a �xed baseline level xmb to a �xed evaluation level xme; keeping all other

exogenous variables �xed at x[m]. De�ne the corresponding baseline and evaluation levels for the outcome

equation index as:

vb � v
�
x[m]; xmb

�
and ve � v

�
x[m]; xme

�
(6)

where v (x) is the index value at x =
�
x[m]; xm

�
:

Employing the de�nitions above, let �0 (�v) � Pr(Y1 = 1jV10 = �v) and de�ne the true marginal e¤ect as:

ME = �0 (ve)� �0(vb). (7)

When Xm is discrete, the above de�nition is natural. When Xm is continuous, it is also possible to de�ne

a marginal impact as a derivative. However, in applications we are more often than not more interested

in measuring the impact of a discrete change than that of an in�nitesimal change. For example, suppose

that Xm denotes income and that income is continuous. Then we might want to know the impact of a 10%

increase in income beyond a base level (e.g. median income). We also note that the marginal e¤ect estimator

for discrete changes converges to the truth faster than derivatives. Therefore we use the above de�nition of

a marginal e¤ect for examining perturbations in both discrete and continuous variables.

To motivate the marginal e¤ect estimator, notice that a traditional semiparametric estimator for the
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probability of interest would have the following form without sample selection

cPr (Y = 1jV = �v) = Pj

�
1
NhY1jK [(�v � V1j) =h]

	P
j

�
1
NhK [(�v � V1j) =h]

	
where the sums are nonparametric kernel estimates with K a regular symmetric kernel and h a window

parameter.

The estimator �̂ (�v) ; as in (D1) of Section 4, di¤ers from this estimated probability in two respects. First,

as we only observe Y1 when Y2 = 1, we need to have Y2j in both the numerator and the denominator so as to

select observations for which Y2 = 1: This introduces sample selection bias that we eliminate (asymptotically)

by adding the smooth high probability indicator Ŝj . The de�nition of the S-function is in (D3) of Section 4

with a discussion of it at the end of that section. Further, we provide an illustrative example in Section 5.2.

3.2 Index Parameters

While the proposed marginal e¤ect estimator is the primary focus, it depends on estimated index parameters.

The index parameter estimators are obtained by maximizing a quasi or estimated likelihood. The true

likelihood has the following form

L (�) �
NX
i=1

X
d1�d2

Yi(d1; d2) ln (Pi (d1; d2; �)) ;

where

Yi(d1; d2) =

8><>: IfY1i = d1; Y2i = d2g for d2 = 1

IfY2i = d2g for d2 = 0

Pi (d1; d2; �) � Pr (Yi(d1; d2) = 1jVi (�) = vi (�)) :

Here Vi (�) = (V1i (�) ; V2i (�))0. In practice, we do not have the true Pi and need to estimate it (P̂i). The

properties of our index parameter estimator depend on how these likelihood probabilities are estimated.

We employ regular kernels and several bias-reducing mechanisms to ensure that the estimator has desirable

large sample properties and also performs well in �nite samples.

To motivate these mechanisms we show below that the gradient to the quasi-likelihood is a product of

terms, one of which is the derivative of the probability function, r�P̂i(d1; d2; �0); where �0 denotes the true
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parameter value. Subject to some issues that we address below, the key to our bias reduction mechanisms

is the result due to Whitney Newey (see Klein and Shen, 2010, Theorem 0) that:

E (r�Pi(d1; d2; �0) j Vi (�0)) = 0: (8)

It can be shown that we need to trim on the basis of estimated indices to take advantage of Newey�s

result. Accordingly, we develop a two stage estimation strategy. In the �rst stage, we estimate the index

with trimming based on the continuous exogenous variables. We then trim observations on the basis of this

estimated index in the second stage. This type of argument poses two problems which we solve. First, the

consistency argument requires that estimated probability functions converge uniformly in the parameters to

the corresponding true functions. When trimming is based on an estimated indices, the rate at which the

density denominators vanish is only controlled in a neighborhood of the true parameter values. We solve

this problem by using adjusted probabilities so as to control the rate at which density denominators vanish

away from the truth. We set the adjustment so that it vanishes slowly when parameters are evaluated away

from the truth but vanishes rapidly at the truth. The second problem is that we must be able to replace

estimated probability derivatives with the corresponding true ones if we want to use Newey�s result as a

bias reducing mechanism. Here, we employ an adjustment to ensure that it is asymptotically valid to treat

estimated probability derivatives as known.

4 Assumptions and De�nitions

Here we provide the assumptions and de�nitions that we employ to establish the asymptotic properties for

the estimators.

A1. The observations are i.i.d. from the model in (1)-(2), where the matrices X and Z have full rank

with probability 1. For the marginal e¤ects estimator, we restrict the function h to have the additively

separable form given following (2).

A2. The vector of the true parameter values (�10; �20) lies in the interior of a compact parameter space,

�:

A3. The indices V1 and V2 each contains at least one absolutely continuous exogenous variable. Further,
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V2 contains at least one absolutely continuous variable that does not enter V1 in any form. The model

satis�es index restrictions as in (3-5).

A4. Let gV jY (v1; v2jy1; y2) be the conditional density for the indices. Letting rpgV jY be any of the partials

or cross partials of gV jY up to order p, with r0gV jY = gV jY , assume gV jY > 0 on all �xed compact

subsets of the support for the indices, and rpgV jY , @
@�

�
rpgV jY

�
, and @2

@�@�

�
rpgV jY

�
are bounded for

p = 0; 1; 2; 3; 4:

A5. Let FU be the marginal distribution for the selection error, GV2 the marginal distribution function

for the selection index, and GV2jV1(v2j�v) the conditional distribution of v2jV1 = �v: With a0N de�ned

in (D4) below, characterize the high probability set as fv2 : P2 � FU (v2) > 1�N�a0N g. Assume: (a)

For all t2 > t1 > T su¢ ciently large,

GV2(t2)�GV2(t1) > FU (t2)� FU (t1)

GV2jV1(t2j�v)�GV2jV1(t2j�v) > FU (t2)� FU (t1):

(b) The marginal density for the selection index gV2(v2); is decreasing in the tail. With gV2(vu) �

O(N�") where " is a small positive number, and H(vu) �
g
V2
(vu)

1�GV2 (vu)
as the hazard for V2:

1�FU (vu)
1�GV2 (vu)

<

H(vu)N
�a0N .

A6. Let gV2jV1(v2j�v) be the density for V2 conditioned on V1 = �v: For all t > T su¢ ciently large, assume

that O (gV2 (t)) � O
�
gV2jV1(tj�v)

�
:

A7. Assume Pr(Y1 = d1jY2 = d2; V1 = v1; V2 = v2) has up to four bounded derivatives with respect to v1

at �v:

A8. Assume (a) Pr(Y1 = d1jY2 = 1) > 0; Pr(Y2 = d2) > 0 and with gX as the joint density for X,

sup� jln [Pi (d1; d2; �)]j gX is integrable. Further, (b) sup� E
�
ln2 [Pi (d1; d2; �)]

�
is �nite.

The �rst three assumptions are standard in index models. Assumption (A4) provides required smoothness

conditions for determining the order of the bias for density estimators. As is well known in the literature

(see e.g. Khan and Tamer (2010)), tail conditions are needed to develop the large sample distribution of

these types of estimators. These conditions are provided in (A5a). Notice that the error and index supports

can be �nite provided these tail conditions hold. For example, when the error has a bounded support that
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is a subset of that for the index, this assumption holds. However, when the index support is a subset of

that for the error, this assumption will not hold. In Section 5.2, we illustrate the problem that results when

these conditions do not hold.

Assumption (A5b) is required for the trimming arguments. Let vl be a value of the selection index such

that the selection probability P2(v2) � FU (v2) � 1 � N�a for v2 � vl. Let vu be a value of the selection

index such that gV2(v2) � N�� for v2 � vu. To avoid a con�ict in these conditions, we need to guarantee

that vl < vu. This inequality will hold provided that

1� FU (vu) < 1� FU (vl) � N�a::

Dividing both sides by 1 � GV2(vu) and noting that gV2(vu) � N�� = [1�GV2(vu)]H(vu); where H is the

hazard function for V2; it su¢ ces that

1� FU (vu)
1�GV2(vu)

<
N�a

1�GV2(vu)
= H(vu)N

�(a��):

Assumptions (A6-7) are used to derive the order of the bias in estimating the marginal e¤ect components.

For purposes of establishing consistency irrespective of whether the X�s are bounded, Assumption (A8a)

implies that the following expected log-likelihood is bounded and continuous in �:

L (�) �
NX
i=1

IfVi�	vg
X
d1�d2

Yi(d1; d2) ln (Pi (d1; d2; �)) :

while (A8b) is useful for obtaining consistency for the case in which several of the explanatory variables

are unbounded. In addition to the above assumptions, we also need a number of de�nitions for densities,

probability functions and estimators. These are given below.

D1. The estimator for marginal e¤ects. De�ne:

�̂ (�v; â) �
P
j

1
Nhs

Y1jK [(�v � V1j) =hs]Y2jŜjP
j

1
Nhs

K [(�v � V1j) =hs]Y2jŜj
;

where K is a regular symmetric kernel, window hs = O(N�:2�3"); 5 " is a small positive number,
5Throughout the window is set to be �(V )N�r, where �(V ) is the standard devation of the index in the kernel. The order

of the window needs to be N�r were r < :2. To simplify the form of other expressions that depend on this window, we set
r = :2� 3":
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which is set to be 0.01 in the Monte Carlo simulations; and Ŝj is a smoothed trimming function on an

estimated high probability set that depends on â (see (D3-4)).

D2. Expectation and Density Components. For k = 1; 2; and dk = 0; 1; de�ne:

f̂k (tk; dk; h) �
NX
j=1

Y dkkj (1� Ykj)1�dk

Nh
K

�
tk � Vkj

h

�

D3. The S-function. With b > 0, de�ne S(� ; x) � � (!; gV2 (v2))T (x),

T (x) =

8>>>><>>>>:
0; x�R1 � fx : x � 0g

1� exp �xk
bk�xk ; x�R2 � fx : 0 < x < bg

1; x�R3 � fx : x � bg

� (!; gV2 (v2)) � 1

1 + exp [N� (! � gV2 (v2))]
; ! = E(gV2)

N�"0

lnN
; 0 < "0 < " < � � :2

The integer k is set to ensure that S is as many times di¤erentiable as is needed at x = 0. The T (x)

is adapted from A&S.

D4. True and estimated high probability parameters a0N and â. Let Sj � S(� (!; gV2 (v2j)) ; x(a; P2j))where

x (a; P2) �
�
ln

�
1

1� P2

�
� ln (Na)

�

To de�ne the estimator corresponding to Sj , let

P̂aj �
P
i

1
NhT

Y2iKT [(V2j � V2i) =hT ]P
i

1
NhT

KT [(V2j � V2i) =hT ]
;

where KT a normal twicing kernel (Newey, Hsieh and Robins, 2004) and hT = O(N�:1). Next, in the

notation of (D2), de�ne the density estimator:

ĝV2(t2) = f̂2 (t2; d2 = 1; h2) + f̂2 (t2; d2 = 0; h2) =
NX
j=1

1

Nh2
K(

t2 � V2j
h2

);

with window h2 = O(N�:2). When the value tk is replaced by the observation Vik; the above averages

are taken over the (N � 1) observations for which j 6= i. Referring to (D3), de�ne the estimated
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S-function as:

Ŝj � S(� j ( �w; ĝV2) ; x(a; P̂aj)); �w �
N�"0

lnN
;
X

ĝV2(V̂2i)=N:

Further, for � = 1; 2; let:

Ê2

�
Ŝ
�
� 1

N

X
j

Ŝj ; Ê2

�
Ŝ�j�v

�
�
P
j

1
NhT

Ŝ�jKT [(�v � V1j) =hT ]P
j

1
NhT

KT [(�v � V1j) =hT ]
:

Suppressing j subscripts, assume [E(S)]2

E(S2j�v) � 1 and is an increasing function of N�a for a su¢ ciently

large N . Further, for p below a positive �nite bound �p , [E(S)]2

E(S2j�v) = Op(N
�2ap): Then for "0 > 0;

A = fa : 0 < "0 < a � :4� "g and we de�ne:6

a0N = argmin
a�A

"
hsN

1�2a+" [E (S)]
2

E(S2j�v) � 1
#2

â = argmin
a�A

264hsN1�2a+"

h
Ê2

�
Ŝ
�i2

Ê2

�
Ŝ2j�v

� � 1
375
2

where hs = O(N�:2�3") from (D1).

D5. Unadjusted Probabilities and Densities. Let �k be the standard deviation for Vk; k = 1; 2. For

the Y2�model, and employing (D2), let

cPr (Y2i = d2jV2i = t2) � f̂2 (t2; d2; hm) =
1X

d2=0

f̂2 (t2; d2; hm) ;

where hm � O(N�rm); rm =
1
6+" :

6 In the de�nition of a0N ; substitute N�2ap for [E(S)]
2

E(S2j�v) . Then, for N large:

a =
:4� "
1 + p

Replacing p with its upper bound yields the lower bound for a with "0 = :4�"
1+�p

. The upper bound follows as p becomes small.

12



For the Y1-model, conditioned on Y2 = 1, let:

cPr (Y1i = d1jY2i = 1; Vi = t) � f̂ (t; d1; h1c; h2c) =
1X

d1=0

f̂ (t; d1; h1c; h2c)

f̂ (t; d1; h1c; h2c) �
NX
j=1

Y d11j (1� Y1j)1�d1Y2j
Nh1ch2c

K(
t1 � V1j
h1c

)K(
t2 � V2j
h2c

);

where h1c = O(N�rc); h2c = O(N�rc); rc =
1
8+" : The joint probability estimator is then given as:

P̂i(d1; d2; �) � cPr (Y1i = d1jY2i = 1; Vi = t)cPr (Y2i = d2jV2i = t2) :

Let gV1(t1) be the marginal density for V1 at t1 and the corresponding estimate:

ĝV1(t1) = f̂1 (t1; d1 = 1; h1) + f̂1 (t1; d1 = 0; h1) =

NX
j=1

1

Nh1
K(

t1 � V1j
h1

);

where h1 = O(N�:2):When the value tk is replaced by the observation Vik; the above averages are

taken over the (N � 1) observations for which j 6= i:7

D6. Interior Index Trimming. Let V̂ Uk and V̂ Lk be upper and lower sample quantiles for the indices:

Vk � Vk (�) ; k = 1; 2. De�ne smooth interior trimming functions as

�̂ I (tk) �
h
1 + exp

�
ln(N)

h
V̂ Lk � tk

i�i�1
�
h
1 + exp

�
ln(N)

h
tk � V̂ Uk

i�i�1
:

D7. Adjusted Semiparametric Probability Functions. Referring to (D5), let q̂2L(d2) be a lower

sample quantile for f̂2 (V2; d2), and q̂L(d1) a lower sample quantile for f̂ (V ; d1). Then, de�ne the

adjusted estimates as

f̂�2 (t2; d2; hm) = f̂2 (t2; d2; hm) + �2(�̂ I ; q̂2L(d2))

with �2(�̂ I ; q̂2L(d2)) � N�rm=2 [1� �̂ I (t2)] q̂2L(d2)
7 It can easily be shown that all estimators with windows depending on population standard deviations are asymptotically

the same as those based on sample standard deviations. For notational simplicity, we employ population standard deviations
throughout.
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f̂� (t; d1; h1c; h2c) = f̂ (t; d1; h1c; h2c) + �(�̂ I ; q̂L(d1))

with �(�̂ I ; q̂L(d1)) � N�rc=2 [1� �̂ I (t1) �̂ I (t2)] q̂L(d1);

where hm; h1c and h2c are de�ned as in (D5). Adjusted probabilities are now given as:

cPr� (Y2i = d2jV2i = t2) � f̂�2 (t2; d2; hm) =
1X

d2=0

f̂�2 (t2; d2; hm)

cPr� (Y1i = d1jY2i = 1; Vi = t) � f̂� (t; d1; h1c; h2c) =
1X

d1=0

f̂� (t; d1; h1c; h2c)

P̂ �i (d1; d2; �) � cPr� (Yi(d1; d2) = 1jVi (�) = vi (�))

� cPr� (Y1i = d1jY2i = d2; Vi = t) �cPr� (Y2i = d2jV2i = t2) :

D8. Optimal Semiparametric Probability Functions. Referring to (D5), let

f̂o2 (t2; d2) � f̂2 (t2; d2; ho) ; f̂
o (t; d1) � f̂ (t; d1; h1o; h2o)

where ho = O(N�1=5) and h1o = O(N�1=6); h2o = O(N�1=6): Then, de�ne

cPro (Y2i = d2jV2i = t2) � f̂o2 (t2; d2) =

1X
d2=0

f̂o2 (t2; d2)

cPro (Y1i = d1jY2i = 1; Vi = t) � f̂o (t; d1) =
1X

d1=0

f̂o (t; d1)

P̂ oi (d1; d2; �) � cPro (Yi(d1; d2) = 1jVi (�) = vi (�))

� cPro (Y1i = d1jY2i = d2; Vi = t) �cPro (Y2i = d2jV2i = t2) :

D9. The Initial Estimator for Index Parameters. De�ne the initial or �rst stage estimator as

�̂ � argmax
�

L̂ (�) ;

L̂ (�) �
NX
i=1

IfXCi�	̂xg
X
d1�d2

Yi(d1; d2) ln
�
P̂i (d1; d2; �)

�
:
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Let

�̂i (d1; d2; �) � r�P̂i(d1; d2; �)=P̂i(d1; d2; �)

With XCi as a vector of the continuous variable in Xi, q̂Lx as a vector of lower sample quantiles for

XCi, and q̂Ux as a vector of upper sample quantiles for X; de�ne 	̂x as:

	̂x � fx : q̂Lx < x < q̂Uxg:

De�ne a gradient correction as:

ĈX

�
�̂I

�
�

NX
i=1

IfXCi�	̂xg
X
d1�d2

h
P̂i

�
d1; d2; �̂

��� P̂ oi �d1; d2; �̂��i �̂i �d1; d2; �̂� :
With Ĥ

�
�̂I

�
as the estimated Hessian matrices from L̂, the adjusted initial estimator estimator is

de�ned as

�̂
o

I � �̂I � Ĥ
�
�̂I

��1
ĈX

�
�̂I

�
:

D10. The Final Estimator for Index Parameters. With V̂i � X1i +X2i�̂
o

I ; q̂Lv as a vector of lower

sample quantiles for the V̂ 0i s, and q̂Uv as the corresponding vector of upper sample quantiles, de�ne

	̂v as:

	̂v � fv : q̂Lv < v < q̂Uvg:

De�ne the second stage estimator as follows:

�̂
� � argmax

�
L̂� (�) :

L̂� (�) �
NX
i=1

IfV̂i�	̂vg
X
d1�d2

Yi(d1; d2) ln
�
P̂ �i (d1; d2; �)

�
:

Let

�̂
�
i (d1; d2; �) � r�P̂ �i (d1; d2; �)=P̂ �i (d1; d2; �);
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and de�ne P̂ o (d1; d2; �) as in (D8). Then, de�ne a gradient correction as:

ĈV

�
�̂
�� � NX

i=1

IfV̂i�	̂vg
X
d1�d2

h
P̂ �i

�
d1; d2; �̂

��� P̂ oi �d1; d2; �̂��i �̂�i �d1; d2; �̂�� :
With Ĥ�

�
�̂
��
as the estimated Hessian matrix from L̂� above, the adjusted �nal estimator is de�ned

as

�̂
o � �̂

� � Ĥ�
�
�̂
���1

ĈV

�
�̂
��
:

As mentioned in Section 3.1, the S-function in (D3) plays an important role in the marginal e¤ect

estimation by smoothly restricting observations to a high probability set and at the same time ensuring

that density denominators are not too small. Assumption (A5) ensures that there is no con�ict in these

restrictions, which is further illustrated in Section 5.2. By restricting observations in this manner, we a¤ect

both the bias and the variance of the estimator. For example, if the high probability set parameter is set too

high, the bias will be small but the variance will be large due to the small "e¤ective" sample size. Similarly,

if the high probability parameter is too small, then there will be a substantial bias in the estimator. The

moment conditions in (D4) re�ect the bias-variance trade-o¤ in estimating the marginal e¤ect. From Lemmas

3-4,

O

�
bias2

var

�
� O(hsN

1�2a) [E(S)]2

E(S2j�v) : (9)

To maximize the rate at which the mean-squared error tends to zero, the order of the bias squared and

the variance are usually set to be the same. However, to ensure normality we require that the bias squared

vanishes slightly faster than the variance. This requirement generates the moment condition in (D4).

5 Marginal E¤ect Estimators

5.1 Proof Strategy

Before providing theorems on consistency and normality, we discuss the proof strategy for the marginal e¤ect

estimator. To facilitate the discussion, we begin with the following simpli�ed (and infeasible) estimator:


 (�v; a) �

P
j

n
1

Nhs
Y1jK [(�v � V1j) =hs]

o
(Y2jSj)

E (Sj�v) gV1(�v)
; (10)

16



which di¤ers from the original estimator (D1) in that it depends on a known high probability parameter, an

S-function that depends on a known semiparametric probability function, and a denominator which is the

population expectation corresponding to the denominator of the original estimator. Our strategy is to �rst

analyze the infeasible estimator and then establish its relation to the original estimator. In the Appendix, we

establish the orders of the squared bias (Lemma 3) and the variance (Lemma 4) for the simpli�ed estimator:

Bias2 [
 (�v; a)] = O
�
b2N (�v; a)

�
; V ar [
 (�v; a)] = O [vN (�v; a)] .

To balance the bias/variance trade-o¤, we could set a0N such that

b2N (�v; a0N ) = vN (�v; a0N ):

Then, with b̂N and v̂N as estimators for the bias and variance functions, we could set â to satisfy:

b̂2N (�v; â) = v̂N (�v; â):

However, to establish asymptotic normality, we actually set a0N such that the square bias vanishes at a rate

close to but slightly faster than the variance and similarly for â:

With estimated and true high probability parameters set as above, we show that it su¢ ces to analyze

the simpli�ed, infeasible estimator by showing that:

p
1=vN (�v; a0N )

h

 (�v; a0N )� �̂ (�v; â)

i
= op(1):

It is then possible to establish asymptotic results for the marginal e¤ect estimator. The proofs are in the

Appendix.

We note that unlike the index case, the proof of asymptotic normality for the marginal e¤ect estimator

is not based on
p
N -asymptotics. Employing the characterization above, we show that

dME �MEp
V̂N

d! Z~N(0; 1);

where with VN interpreted as a deterministic variance sequence, V̂N � VN
p! 0. The convergence rate for
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the marginal e¤ect estimator is given by the order of
p
VN and is not known a priori. It depends in part on

tail properties of the index and error distributions in the selection equation. Consequently, proofs are quite

di¤erent than in the case of
p
N -asymptotics. Nevertheless, as in A & S, the limiting standard normal result

makes it possible to conduct inference as usual. We provide an illustrative example in which we determines

the convergence rate below.

5.2 Illustrative Example

In this subsection, we provide an illustrative example to show the importance of the tail assumptions and their

implications. When these assumptions hold, we will determine the high probability set and the convergence

rate for the marginal e¤ect estimator. For this example, let FU and GV2 be the following Weibull distribution

functions for the selection error and index, respectively:

FU (u) = 1� exp(�uc); GV2(v2) = 1� exp(�v2): (11)

The theory depends on being able to control for density denominators while still having a su¢ ciently large

number of observations in the high probability set. To ensure that estimated selection probabilities converge

to the truth, we trim observations to ensure that:

gV2 (v2) = exp (�v2) > N�" , v2 < " ln(N): (12)

On the other hand, to be in the high probability set, we select those observations for which

P2 = 1� exp(�vc2) > 1�N�a , v2 > [a ln(N)]
1=c (13)

If error tails are fatter than index tails (c < 1), (12) and (13) cannot hold simultaneously. In this case, for

a large N the set of v2 values satisfying (12) and (13) will be empty.

If c > 1, then index tails will be fatter than error tails as we have assumed. In this case for a large N ,

there will be a set with positive probability (calculated below) on which both conditions hold. For this case,

we proceed to �nd the high probability set and the rate of convergence for the estimator. Assuming for

simplicity that selection and outcome indices are independent, from (D4), the high probability set parameter,
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a0N , satis�es:
ln
�
hsN

1�2a0N
�

lnN
+

1

lnN
ln

 
[E(S)]2

E(S2)

!
= �": (14)

Notice that the second left-hand term converges to zero from the proposition below. Then, with hs = N�:2�3",

a0N satis�es:

:8� 2"� 2a0N ! 0:

Therefore, in large samples, a0N = :4 � ": Further, it immediately follows from the proposition below that

the convergence rate of the marginal e¤ect estimator will be

O

0@sNhs [E(S)]
2

E(S2)

1A = O

�q
Nhs exp[(�a0N lnN)1=c

�
:

Proposition 1 . [E(S)]
2

E(S2)
= O(exp[� (a lnN)1=c]).

Proof. We establish the order [E(S)]2

E(S2)
by bounding the S-function for large N . We begin by bounding the

��component of the S-function that controls density denominators. Since � is an increasing function of the

index density, gV2(v2), suppressing the ! argument of the � function, with any 0 < � < 1; we have:

�(gV 2) = �(gV 2) � 1fgV 2 > (1� �)!g+ �(gV 2) � 1fgV 2 � (1� �)!g

� 1fgV 2 > (1� �)!g+ � (gV 2 = (1� �)!) ;

where � (gV 2 = (1� �)!) vanishes exponentially fast. For the lower bound on � :

�(gV 2) = �(gV 2) � 1fgV 2 > (1 + �)!g+ �(gV 2) � 1fgV 2 � (1 + �)!g

� � (gV 2 = (1 + �)!) 1fgV 2 > (1 + �)!g;

where � (gV 2 = (1 + �)!) converges exponentially to 1. It now follows from the de�nition of S in (D3-4) and
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(12-13) that:

S� � S � �(gV 2)T (X) � S+;

S� � � (gV 2 = (1 + �)!) 1fgV 2 > (1 + �)!g1 fX > bg

= � (gV 2 = (1 + �)!) 1
n
[a lnN + b]1=c � V2 � � ln((1 + �)!)

o
S+ � 1fgV 2 > (1� �)!g1 fX > 0g+ � (gV 2 = (1� �)!)

= 1
n
[a lnN ]1=c � V2 � � ln((1� �)!

o
+ � (gV 2 = (1� �)!) :

Recall (11),when c > 1;

E
�
S�
�
=

h
e�[a lnN+b]

1=c

� (1 + �)!
i
� (gV 2 = (1 + �)!)

E
h�
S�
�2i

=
h
e�[a lnN+b]

1=c

� (1 + �)!
i
� (gV 2 = (1 + �)!)

2

E
�
S+
�
= e�[a lnN ]

1=c

� (1� �)! + � (gV 2 = (1� �)!)

E
h�
S+
�2i

=
h
e�[a lnN ]

1=c

� (1� �)!
i
[1 + 2� (gV 2 = (1� �)!)] + �2 (gV 2 = (1� �)!) :

Since � (gV 2 = (1 + �)!) and � (gV 2 = (1� �)!) converge exponentially fast to 1 and 0 respectively and since

(1��)! converges to 0 faster than does e�[a lnN ]1=c, each of the above expectations has order O(exp[� (a lnN)1=c]).

Therefore, as [
E(S�)]

2

E[(S+)2]
� [E(S)]2

E(S2)
� [E(S+)]

2

E[(S�)2] ; it follows that
[E(S)]2

E(S2)
= O(exp[� (a lnN)1=c]).

5.3 Asymptotic Results

Theorem 1 (Consistency). Refer to (6), select the high probability set as in (D4), and assume that

NhE(SjV1 = �v)!1

as N increases. Then, under A1-4,A5(b),A6-7,

�̂ (�v; â)
p! �0 (�v) :
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Theorem 2 (Normality). Refer to (6) and (7), let

V̂N = dV ar(
(ve; a0N )) + dV ar(
(vb; a0N ))
where dV ar(
(�v; a0N )) =

�̂ (�v; â)
h
1� �̂ (�v; â)

iP
j

1
Nhs

K2 [(�v � V1j) =hs] Ŝ2j

NhsÊ22

�
Ŝj�v
�
ĝ2V1(�v)

:

Then under A1-7, dME �MEp
V̂N

d! Z~N(0; 1):

6 Index Parameter Estimators

6.1 Proof Strategy

To provide an overview of the theoretical arguments, we note that the consistency argument is rather

standard except that we need to accommodate the bias controls used in the normality arguments. The main

challenge is in the proof for normality. As discussed earlier and as shown below, we employ a two-stage

construction in order to exploit Newey�s result on probability derivatives for controlling the bias. In the �rst

stage, we trim on continuous X�s and obtain parameter estimates by maximizing the quasi-likelihood in

(D9) and then make a bias correction. In the second stage, with trimming now based on the estimated index

and with probabilities "adjusted" to ensure consistency (by controlling density denominators away from the

truth), we maximize the quasi-likelihood in (D10). From standard Taylor series arguments, with Ĥ
�
�+
�
as

the Hessian to the objective function at an intermediate point, the estimator �̂
�
satis�es:

p
N
�
�̂
� � �0

�
= �Ĥ� ��+��1pN hÂ� + B̂�i ;

where

Â� � 1

N

NX
i=1

IfV̂i�	̂vg
X
d1�d2

[Yi(d1; d2)� Pi (d1; d2; �0)] �̂
�
i (d1; d2; �0)

B̂� � 1

N

NX
i=1

IfV̂i�	̂vg
X
d1�d2

h
Pi (d1; d2; �0)� P̂ �i (d1; d2; �0)

i
�̂
�
i (d1; d2; �0)

�̂
�
i (d1; d2; �) � r�P̂ �i (d1; d2; �)=P̂ �i (d1; d2; �):
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While it is relatively straight forward to analyze the Hessian and Â� components, the B̂� component

involves bias issues. We deal with this problem by employing a bias correction that e¤ectively enables us to

replace this component with one with desirable bias properties. Employing the correction factor in (D10),

our �nal estimator is

�̂
o � �̂

� � Ĥ�
�
�̂
���1

ĈV

�
�̂
��
:

We show that it has the following convenient form:

p
N
�
�̂
o � �0

�
= �Ĥ� ��+��1pN hÂ� + B̂oi+ op(1)

where with P̂ oi as an estimated probability function based on an optimal window,

B̂o � 1

N

NX
i=1

IfV̂i�	̂vg
X
d1�d2

h
Pi (d1; d2; �0)� P̂ oi (d1; d2; �0)

i
�̂
�
i (d1; d2; �0) :

To analyze
p
N
�
�̂
o � �0

�
; from standard uniform convergence arguments, the Hessian component con-

verges to a �xed matrix. To analyze the Â� component above, we employ Lemma 2.17 in Pakes and Pollard

(1989) to deal with the indicator on an estimated set and a mean-square convergence argument to deal with

�̂
�
i . We show that with �i � r�Pi(d1; d2; �0)=Pi(d1; d2; �0),

p
NÂ� =

1p
N

NX
i=1

IfVi�	vg
X
d1�d2

[Yi(d1; d2)� Pi (d1; d2; �0)] �i + op(1):

For the B̂o component, employing convergence rates for estimated indicators, probabilities and probability

derivatives, we show that:

p
NB̂o =

1p
N

NX
i=1

IfVi�	vg
X
d1�d2

h
Pi (d1; d2; �0)� P̂ oi (d1; d2; �0)

i
�i + op(1):

We show that the expression on the right-hand-side is asymptotically equivalent to a U-statistic with ex-

pectation 0. This follows from Newey�s result which ensures that E [�ijV ] = 0: From standard projection

arguments we are able to show that this U-statistic vanishes in probability. Asymptotic normality then

follows. Consistency is relatively easy to establish. Detailed proofs are in the Appendix.
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6.2 Asymptotic Results

In the theorems below, we note that the consistency holds under much weaker window conditions than does

normality.

Theorem 3 (Consistency). Assume that each index satis�es the identifying assumptions required for

single index models.8 Then, under (A1-4,8),

�̂
p! �0; �̂

� p! �0; �̂
o p! �0:

Theorem 4 (Normality). With L (�) as the limiting likelihood of L̂� (�) de�ned in (D10) and with H

as its Hessian matrix, de�ne H0 � EH (�0) : Then under (A1-4,8):

p
N
h
�̂
o � �0

i
d! Z~N(0;�H�1

0 ):

7 Simulation Evidence

In this section, we consider the �nite sample performance of the estimator in four di¤erent models. These

di¤er according to: i) whether or not the model is threshold-crossing; and ii) whether the continuous variables

and errors follow a Normal or Weibull distribution. The �rst two models we consider have threshold-crossing

structures. The �rst model (TNorm design) has normal errors and is given as

Y1 = I
np
2 (X1 +X3) > �

o
Y2 = I

np
2 (X2 �X3) > u

o
;

where Y1 is observed when Y2 = 1: The errors and the continuous X0s (X1; X2) are generated as

u;X2 s N(0; 1)

� = 2u+ z, z s N(0; 1)

X1 = X2 + 2z1, z1 s N(0; 1);

8See, for example, Ichimura (1993) or Klein and Spady (1993).
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and rescaled to each have variance one, while X3 is a binary variable with a probability of .5 on each of

its support points, {-1,1}. Notice that the indices have a standard deviation of 2. For the second index,

this ensures that the index has fatter tails than the error, which is theoretically needed in estimating the

marginal e¤ect.

In a second model (TWeibull design), the selection error is non-normal while the model structure stays

the same. The error u follows a Weibull (1,1.5) distribution giving a right tail probability of exp(�u1:5).

We set X2 to follow Weibull (1,1) distribution so that the tail comparison condition is satis�ed. As stated

above, all the variables and errors are rescaled to have zero mean and variance one.

In the third (NTNorm design) and fourth (NTWeibull design) models, the Y1 equation has the following

non-threshold-crossing structure:

Y1 = I
n
X1 +X3 > s

h
1 + (X1 +X3)

2 =4
i
�
o
;

where the variables are generated as in the previous models. Note that s is chosen to ensure the right-hand-

side of the inequality is rescaled to have variance one as above. Similar to the �rst two models above, here

the third and fourth models di¤er according to whether Normal or Weibull distributions are employed.

For all models we setN = 2000 and conduct 1000 replications. We compare the �nite sample performance

of the semiparametric marginal e¤ect estimator with the bivariate probit counterpart. We also compare

the parameter estimates upon which these marginal e¤ects are based. Finally, we provide results for the

estimation of the high probability set. Notice that there is an in�nite number of marginal e¤ects because

there is an in�nite number of base levels and evaluation levels. Here we report the marginal e¤ect of moving

X1 from its median level to one unit above while keeping the binary variable X3 at zero. Finally, we set

b = 0:01, with b as a parameter in the de�nition of the high probability trimming function T in (D3).
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Table 1. Estimation of Marginal E¤ects

Truth Bivariate Probit Semiparametric

TNorm 0.33 mean 0.34 0.32

std 0.03 0.05

RMSE 0.03 0.05

TWeibull 0.29 mean 0.37 0.31

std 0.06 0.06

RMSE 0.09 0.07

NTNorm 0.47 mean 0.36 0.48

std 0.08 0.05

RMSE 0.13 0.05

NTWeibull 0.43 mean 0.47 0.48

std 0.17 0.06

RMSE 0.18 0.08
With results for the marginal e¤ects shown in Table 1, overall the semiparametric estimator performs

well in all designs with a small bias and standard deviation. In contrast, the bivariate probit counterpart

does not perform well outside of the TNorm design where bivariate probit is correct. In the TNorm case,

where bivariate probit is the correct speci�cation, it does indeed have a small bias and standard deviation

and performs better than the semiparametric method. In the TWeibull case, the semiparametric method

shows signi�cant advantage in terms of the bias. The bias of the semiparametric marginal e¤ect estimator

is .02, while the bivariate probit counterpart has a bias of .08, which is almost 30% of the truth (.29).

When we move onto the non-threshold-crossing designs, we continue to see the semiparametric estimator

performing signi�cantly better. In the NTNorm case, the semiparametric estimator has both smaller bias (

.01 vs .11) and smaller standard deviation (.05 vs .08). In the NTWeibull case, the semiparametric estimator

still performs much better than the bivariate probit in terms of both bias and variance, resulting in a much

smaller RMSE (.08 vs .18). Most of the advantage comes from the standard deviation (.06 vs .17). We have

also explored the sensitivity of the results to the point at which the marginal e¤ect was calculated and found

that a larger sample size is needed for the marginal e¤ects estimator to perform well when we evaluate it

further away from the center of the distribution.
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Table 2. Estimation of Index Parameters

Bivariate Probit Semiparametric

Outcome Selection Outcome Selection

Coef(X1) Coef(X3) Ratio31 Coef(X2) Coef(X3) Ratio32 Ratio31 Ratio32

TNorm

mean 1.01 1.02 1.01 1.00 -1.00 -1.00 0.98 -1.02

std 0.07 0.13 0.11 0.05 0.04 0.03 0.07 0.04

RMSE 0.07 0.13 0.11 0.05 0.04 0.03 0.07 0.04

TWeibull

mean 1.20 1.20 1.00 1.02 -1.06 -1.05 0.94 -1.04

std 0.09 0.23 0.16 0.06 0.04 0.04 0.06 0.04

RMSE 0.22 0.30 0.16 0.06 0.08 0.06 0.09 0.06

NTNorm

mean 0.96 -1.02

median 1.07 1.13 1.04 1.00 -1.00 -1.00 0.97 -1.02

std 0.05 0.04

MAD 0.11 0.14 0.08 0.03 0.03 0.02 0.04 0.03

RMSE 0.06 0.04

NTWeibull

mean 0.93 -1.04

median 1.51 1.46 0.95 1.03 -1.04 -1.05 0.93 -1.04

std 0.05 0.04

MAD 0.52 0.47 0.08 0.05 0.06 0.05 0.07 0.04

RMSE 0.08 0.06
We provide the index parameter estimation results in Table 2. For semiparametric estimation, the

parameters are identi�ed up to location and scale, hence we report Ratio31=
coef(X3)
coef(X1)

in the outcome equation

and Ratio32=
coef(X3)
coef(X2)

in the selection equation. Notice that for the non-threshold-crossing designs, we report

the median and median absolute deviation (MAD) for the bivariate probit estimators because there were a

number of replications where bivariate probit performed extremely poorly. The semiparametric estimator,
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however, does not have this issue, hence we report not only the median and MAD but also the mean, standard

deviation, and RMSE. For the parametric case, we also report ratios to facilitate direct comparisons with the

semiparametric method. For the selection equation, over all designs, both parametric and semiparametric

estimators perform quite well. Regarding the outcome equation, the semiparametric estimator performed

better in all designs and usually by a substantial amount in terms of MAD or RMSE.

We also investigated using higher order kernels for estimating index parameters as an alternative to

the bias controls implemented here.9 Due to convergence problems, we found it necessary to examine this

estimator on a two-dimensional grid, which was quite time-consuming. Accordingly, we only examined 100

replications for each design (at which point the estimator seemed quite stable). For the selection equation,

the RMSEs were similar with the exception of the TWeibull design. For this design and for all designs

pertaining to the outcome equation, the RMSEs under higher order kernels were more than twice as large

as that under regular kernels.

Lastly, we provide the estimation results for the high probability set parameters. The means of â

with standard deviations in parentheses are as follows: .32(.004), .29(.005), .29(.004), .29(.005) for TNorm,

TWeibull, NTNorm, NTWeibull, respectively. While the variances for all of the estimates are quite small,

it is di¢ cult to evaluate the performance of the estimator without knowing a0N . Accordingly, we examined

the performance of the estimator for the following example where the error and index densities have the

following Weibull form:

1� FU (u) = exp(�ucu); 1�GV2(v) = exp(�vcv);

with cu = 1:5 and cv = 1 so that the index tails are fatter than those of the selection error. It can be shown

that by setting b = 0 the moment condition is approximately equivalent to

h
2 + (a0N lnN)

1
cu
�1
i
a0N = :8� 2":

Since a0N depends on the sample size, we examined three di¤erent sample sizes: N = 500; 1000;and

2000. At each of these sample sizes, we solved the above equation for a0N and conducted a Monte Carlo

experiment with 100 replications to evaluate the performance of â at the base level of the index.

9 In our Monte Carlo studies, the higher order kernel we use is the twicing kernel for both index parameter estimation and
estimation of the high probability set parameter.
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Table 3. Estimation of High Probability Parameter

Sample Size a0N jBiasj Standard Deviation RMSE

500 0.279 0.037 0.027 0.046

1000 0.280 0.025 0.025 0.035

2000 0.283 0.019 0.009 0.020
Table 3 shows the results. The bias, standard deviation and RMSE are standardized by the truth a0N .

It shows that the estimator â performs very well in terms of absolute bias, standard deviation and RMSE. It

also con�rms that the absolute bias, standard deviation and RMSE all decline as the sample size increases.

As expected, a0N increases slowly as the sample size increases.

8 Conclusions

This paper studies the binary outcome model with sample selection in a semiparametric framework. As

marginal e¤ects are often of primary interest in this type of model, we propose a semiparametric marginal

e¤ect estimator. This marginal e¤ect estimator is based on observations in a high probability set where the

selection probabilities are above a cuto¤. We propose an estimator for this cuto¤ and establish its large

sample properties. Based on that, we establish the large sample properties for our marginal e¤ect estimator,

which takes into account that the cuto¤ and the selection probability are estimated. In a Monte Carlo study

we �nd that our marginal e¤ect estimator based on the estimated high probability set performs quite well

in �nite samples.

This marginal e¤ect estimator is developed under an index framework so as to achieve good performance

in �nite samples. Accordingly, it depends on an estimator for index parameters. In this paper, we propose

an index parameter estimator based on regular kernels with bias control mechanisms and show that the

estimator is consistent and asymptotically distributed as normal. While retaining these desirable large sample

properties, the Monte Carlo results show that this estimator performs very well in �nite samples.
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9 Appendix

9.1 Main Results

9.1.1 Marginal E¤ect

Proof of Theorem 1. By Lemma 10,

CN (�v)
h
�̂ (�v; â)� �0 (�v)

i
= CN (�v)
(�v; a0N ) + op(1):

Lemma 3 characterizes the order of the bias of the estimator. Recalling the de�nition of the high probability

parameter in (D4), the bias in the estimator vanishes. From Lemma 4, the reciprocal of the estimator

variance has the following order:

NhsE (Sj�v)2 =E
�
S2j�v

�
> NhsE (Sj�v) ;

which completes the proof as NhsE (Sj�v) tends to 1 as N increases.

Proof of Theorem 2. By de�nition, dME �ME =
h
�̂(ve; â)� �0(ve)

i
�
h
�̂(vb; â)� �0(vb)

i
: We begin

by showing that the covariance between these two components vanishes. Notice that �̂(�v; â)� �0(�v) is close

to 
(�v; a0N ) from Lemma 10, which we can write as a sample average
P
j
1
N tj (�v). The covariance is then of

the form E [tj (ve) tk (vb)]. For j 6= k; from independence and the vanishing bias of the expectation of each

term, this expectation vanishes. For j = k, the kernel function ensures that this expectation also vanishes

faster than N�1=2 as V1j cannot be close to both ve and vb. Therefore, the variance is the sum of the

variances of 
(ve; a0N ) and 
(vb; a0N ).

To provide the normality argument without assuming that the marginal e¤ect components have variances

of the same order, we consider several cases. First, if O(V ar(
(ve; a0N ))) > O(V ar(
(vb; a0N ))), then with

V � V ar(
(ve; a0N )) + V ar(
(vb; a0N ));

1p
VN

= O

 
1p

V ar(
(ve; a0N ))

!
= O (CN (ve)) :
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Therefore, the characterization results in Lemma 10 apply to yield

dME �MEp
VN

= O (CN (ve))
h
�̂ (ve; a0N )� �0 (ve; a0N )

i
+ op(1):

Asymptotic normality now follows from Lemma 9(b). A symmetric argument holds for the case where

O(V ar(
N (ve; a0N ))) < O(V ar(
N (vb; a0N ))): For the case whereO(V ar(
N (ve; a0N ))) = O(V ar(
N (ve; a0N ));

an argument similar to that in the proof of Lemma 9(b) shows that the relevant Lindeberg condition holds.

Therefore,
dME�MEp

VN

d! Z~N(0; 1): Employing similar arguments as in Lemma 9(a), it can be shown that

VN�V̂N
VN

p! 0: Hence the theorem follows.

9.1.2 Index Parameters

Proof of Theorem 3. We provide the proof for �̂
�
, with the arguments for the other estimators being

very similar. Lemma 11 proves that we can replace the P̂ �i with P
�
i in the objective function L̂

�(�), and

obtain L�(�) satisfying

sup
�

���L̂�(�)� L�(�)��� p! 0:

From Lemma 12,

sup
�
jL�(�)]� E [L(�)]j p! 0:

To complete the argument, we must show that E [L(�)] is uniquely maximized at �0: From standard

arguments, �0 is a maximum, and the only issue is one of uniqueness. With �� as any potential maximizer,

it can be shown that any candidate for a maximum must give correct probabilities for all three cells:

(Y1 = 1; Y2 = 1); (Y1 = 0; Y2 = 1) ; and Y2 = 0: It then follows that for the Y2 = 0 cell:

Pr(Y2 = 0jV2 (��2)) = Pr(Y2 = 0jX) = Pr(Y2 = 0jV2 (�20)):

Under identifying conditions for single index models, ��2 = �20: For the (Y1 = 1; Y2 = 1) cell:

Pr(Y1 = 1jY2 = 1; V1 (��1) ; V2 (��2)) Pr(Y2 = 1jV2 (��2)) =

Pr(Y1 = 1jY2 = 1; V1 (�10) ; V2 (�20)) Pr(Y2 = 1jV2 (�20)):
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Since ��2 = �20:

Pr(Y1 = 1jY2 = 1; V1 (�10) ; V2 (�20)) = Pr(Y1 = 1jY2 = 1; V1 (��1) ; V2 (�20)):

Solving the �rst probability function for V1 (�10) ; for some function � we have:

V1 (�10) = �(V1 (�
�
1) ; V2 (�20)):

holding for X in some set. Since V2 contains a continuous variable that does not a¤ect V1, di¤erentiating

both sides with respect to this variable yields 0 = rv2�. Therefore, � must only be a function of the �rst

index and is equal to V1 (�10). Identi�cation now follows from conditions that identify single index models.

Proof of Theorem 4. From a Taylor expansion, the second stage estimator has the following form:

�
�̂
� � �0

�
= �Ĥ� ��+��1 1

N

NX
i=1

X
d1�d2

h
Yi (d1; d2)� P̂ �i (d1; d2; �0)

i
�̂
�
i (d1; d2; �0) IfVi

�
�̂
o

I

�
�	̂vg;

where �+ is an intermediate point. Using the notation in Lemma 15, the above can be written as

�
�̂
� � �0

�
= �Ĥ� ��+��1 (A� �B�) :

Referring to (D10), we begin by simplifying the adjustment factor by showing that:

Ĥ�
�
�̂
���1

ĈV

�
�̂
��� Ĥ� ��+��1 ĈV (�0) = op(N

�1=2):

Adopting the same strategy as in Lemma 14, the following two terms are op(N�1=2):

Ĥ� ��+��1 Ĥ�
�
�̂
���1 h

Ĥ� ��+�� Ĥ�
�
�̂
��i

ĈV

�
�̂
��

Ĥ� ��+��1 hĈV ��̂��� ĈV (�0)i :
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From the de�nition of �̂
o

I in (D10) and employing the result above:

p
N
�
�̂
o � �0

�
=

p
N
�
�̂
o � �0 + Ĥ� ��+��1 ĈV (�0)�+ op(1)

= �Ĥ� ��+��1pN (A� �Bo) + op(1);
where

Bo � 1

N

NX
i=1

X
d1�d2

h
P̂ oi (d1; d2; �0)� Pi (d1; d2; �0)

i
�̂
�
i (d1; d2; �0) IfVi

�
�̂
o

I

�
�	̂vg:

From Lemma 15a,
p
N [A� �A�0] = op(1): From Lemma 16,

p
NBo = op(1). The theorem now follows.

9.2 Intermediate Lemmas

This section provides three types of lemmas: 1) basic lemmas required by all estimators, 2) lemmas required

to analyze the marginal e¤ects estimator, and 3) lemmas relevant for the index estimator.

9.2.1 Basic Lemmas

Referring to (D5) and with an arbitrary small positive number " and k = 1; 2, de�ne

VkN (h) = fv2 : ak(dk) + h1�" < vk < bk(dk)� h1�"g (15)

VN (h) = fv : ack (dk) + h1�" < vk < bck (dk)� h1�"g: (16)

If the conditional density gVkjYk (vkjYk = dk) has compact support, interpret [ak(d2); bk(d2)] as that support.

Similarly, if the conditional density gV jY (vjY1 = d1; Y2 = d2) is compact, interpret [ack(dk); bck(dk)] as the

corresponding support. When these supports are unbounded, we let VkN and VN approach all of R1 and R2

respectively, as N increases.

We begin with two basic lemmas on uniform and pointwise convergence rates. As the proofs of these

lemmas are standard in the literature (see, for example Bhattacharya (1967) for a discussion of density

estimators and derivatives and an extension in Klein (1993) ), they are not provided here but are available

upon request.

35



Lemma 1. Uniform Convergence. For  any pth di¤erentiable function of �, let rp� ( ) be the

pth partial derivative of  with respect to �; r0� ( ) �  : Let f̂2, f̂ , and ĝV1 ;be the estimators in (D5) with

respective probability limits f2 ; f and gV2 ; let ĝV2 be the estimator in (D4) with probability limit gV2 : Denote

m as the kernel order, where m = 1 for regular kernels and m = 2 for twicing kernels. Then, under A1-4,

for � in a compact set), the following rates hold for p = 0; 1; 2:

a) : sup
tk;�

���rp� �f̂k (tk; dk; h)�� rp� (fk (tk; dk; h))
��� = Op

�
min

�
h2m;

1p
Nhp+1

��
with tk�VkN (h)

b) : sup
t;�

���rp� �f̂ (t; d1; d2; h)�� rp� (f (t; d1; d2; h))
��� = Op

�
min

�
h2m;

1p
Nhp+2

��
with t�VN (h):

If sup
t;�

���Âij (�)�Aij (�)��� = Op(N
�t) for j = 1; 2 and inf

t;�
A2j (�) > N�s for s < t, then

c) : sup
t;�

�����Â1j (�)Â2j (�)
� A1j (�)

A2j (�)

����� = Op(N
�(t�s)):

Lemma 2. Pointwise Convergence. Using the same notation as above in Lemma 1, under A1-4

a) :
���rp� �f̂k (tk; dk; h)�� rp� (fk (tk; dk; h))

��� = Op

�
min

�
h2m;

1p
Nh2p+1

��
b) :

���rp� �f̂ (t; d1; d2; h)�� rp� (f (t; d1; d2; h))
��� = Op

�
min

�
h2m;

1p
Nhp+1

��
:

If
���Âij (�)�Aij (�)��� = Op(N

�t) for j = 1; 2 and A2j (�) > N�s for s < t, then

c) :

�����Â1j (�)Â2j (�)
� A1j (�)

A2j (�)

����� = Op(N
�(t�s)):

9.2.2 Marginal E¤ects Lemmas

Lemma 3. Under A1-4,A5(b),A6-7, with �0 (�v) � Pr(Y1 = 1jV1 = �v) and 
 � 
(�v; a) as in (10),

jE (
N )j � BN = O(N�aE(S)=E(Sj�v)):

Proof. With P2 = Pr(Y2 = 1jV2) and �d(V1; V2) � E [Y1 � �0 (�v) jY2 = d; V1; V2] ; and 
A as the
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numerator of 
 :

E (
A) = E(
1

hs
�1(V1; V2)K [(�v � V1) =hs]S)P2

=

ZZ
�1(�v + hsz; v2)K(z)SP2g(�v + hsz; v2)dzdv2:

Using a Taylor series expansion,

jE (
A)j �
����Z �1(�v; v2)P2Sg(�v; v2)dv2

����+ jRESj :
Note that �1(�v; v2)P2 + �0(�v; v2) (1� P2) = E [Y1 � �0 (�v) jV1 = �v; V2] = 0; hence for the �rst term on the

right-hand side,

����Z �1(�v; v2)P2Sg(�v; v2)dv2

���� =

����Z �0(�v; v2) (1� P2)Sg(�v; v2)dv2
����

� O

�
N�a

Z
Sg(�v; v2)dv2

�
= O

�
N�agV1(�v)

Z
SgV2jV1(v2j�v)dv2

�
= O

�
N�aE(Sj�v)

�
:

The second term on the right-hand side (jRESj) is a residual term from the Taylor series expansion. Under

A4,A7, it is O
�
h2sE(S)

�
: Therefore, combining those two terms, the slowest rate would be jE (
A)j =

O(N�aE(S)) since O(h2s) < O (N�a) and O(E(Sj�v)) � O(E(S)) from (A6).

Lemma 4. Under (A1-4,A5b,A6-7) for 
 de�ned in Lemma 3 and a0N de�ned in (D4),

1p
V ar (
)

= O (CN (�v)) :

where CN (�v) �
p
NhsE(Sj�v)p
E(S2j�v)

:

Proof. For a0N set as in (D4),
(E(
N ))

2

V ar(
N )
! 0; hence

V ar (
) = O

 
E([Y1 � �0 (�v)]2K2 [(�v � V1) =hs]Y2S2)

Nh2s (E (SjV1 = �v))
2 g2V1(�v)

!

= O

�
E(K2 [(�v � V1) =hs]S2)
Nh2s (E (SjV1 = �v))

2

�
:
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Letting z = (V1 � �v) =hs, the result follows from a Taylor series expansion about hs = 0.

Lemma 5. Recall (D3), let

!̂
�
�̂
�
= Ê(ĝV2

�
V2i

�
�̂
��
)
N�"0

lnN

�̂ i � �
�
!̂
�
�̂
�
; ĝV2

�
V2i

�
�̂
���

� i0 � � (! (�0) ; gV2 (V2i (�0)))

�1i �
h
!̂
�
�̂
�
� ! (�0)

i
�2i �

h
ĝV2

�
V2i

�
�̂
��
� gV2 (V2i (�0))

i

Then, under (A1-4) there exists � > 0 and a large number K such that:

�̂ i = � i0 + � i0 � op
�
N��

�
+ op

h
N�K�

i
;

where each op term is uniform in i.

Proof. From a Taylor series expansion in !̂
�
�̂
�
and ĝV2

�
V2i

�
�̂
��

about ! (�0) and gV2 (V2i (�0)) :

�̂ i = � i0 � � i0(1� � i0)N� [�1i +�2i] + ::: (17)

To complete the proof, we will show that there exists � > 0 such that N��2i is op(N��) uniformly in i.

Since �1i depends on the di¤erence between a sample average of density estimators and the expectation of

the true density, it can be shown that this term converges in probability, uniformly in i, to zero faster than

�2i. Suppose we stop the Taylor series expansion at K; the remainder term is op
h�
N���Ki uniformly in i

from Lemma 1 under (A1-4). Therefore, �̂ i = � i0 + � i0 � op
�
N���+ op �N�K��.

To establish the uniform convergence of N��2i upon which the above argument depends, note that

N��2i = N�
h
ĝV2

�
V2i

�
�̂
��
� gV2

�
V2i

�
�̂
��i

+N�
h
gV2

�
V2i

�
�̂
��
� gV2 (V2i (�0))

i
:

With ĝV2 depending on a window h2 = O(N�:2); from Lemma 1, ĝV2
�
V2i

�
�̂
��
� gV2

�
V2i

�
�̂
��
= Op(N

�:3)

uniformly. Hence as as � � :2 in (D3), we can �nd � > 0 such that the �rst term is of order N��. Since

gV2 has bounded �rst derivatives under (A4), the second term vanishes faster than the �rst under a Taylor
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series argument and an index parameter estimator �̂ that satis�es
h
�̂ � �0

i
= Op(N

�:5).

Lemma 6 below provides a result needed to obtain the convergence rate of â� a0N .

Lemma 6. Let

cN (a) � N�2(a�:4+")

M1(a) � E(S)2

M2(a) � E(S2j�v):

and recall (D4). Then under A1-5, there exists � > 0 such that

cN (â)

0B@
h
Ê2

�
Ŝ
�i2

Ê2

�
Ŝ2j�v

� � M1(â)

M2(â)

1CA = Op

�
N��

�
:

Proof. To prove the result, we show there exists � > 0 such that

cN (â)

0B@
h
Ê2

�
Ŝ
�i2

Ê2

�
Ŝ2j�v

� �
h
Ê2

�
Ŝ
�i2

M2(â)

1CA = Op

�
N��

�
(18)

and cN (â)

0B@
h
Ê2

�
Ŝ
�i2

M2(â)
� M1(â)

M2(â)

1CA = Op

�
N��

�
: (19)

Here, we provide the proof for (18); the proof of (19) is very similar. Recall the de�nition of â in (D4),

cN (â)

h
Ê2

�
Ŝ
�i2

Ê2

�
Ŝ2j�v

� = N�2(a�:4+") � h�1s N�(1�2a+")

= N�2a+:8�2" �O(N :2+3"�(1�2a+"))

= O(1) (20)

because hs = O(N�:2�3") from (D1). The term in (18) can be written as

cN (â)

h
Ê2

�
Ŝ
�i2

Ê2

�
Ŝ2j�v

�
0@M2(â)� Ê2

�
Ŝ2j�v

�
M2(â)

1A = O(1)

0@M2(â)� Ê2
�
Ŝ2j�v

�
M2(â)

1A (21)
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Hence it su¢ ces to determine the order of
M2(â)�Ê2(Ŝ2j�v)

M2(â)
. Recalling (D3), it is equal to

h
Ê2
�
S2 [� ; x(â; P2)] j�v

�
� Ê2

�
S2
h
�̂ ; x(â; P̂a)

i
j�v
�i

M2(â)
+

h
M2(â)� Ê2

�
S2 [� ; x(â; P2)] j�v

�i
M2(â)

: (22)

To show the �rst term in (22) is Op(N��) with � > 0, notice that

S2 [� ; x(â; P2)]� S2
h
�̂ ; x(â; P̂a)

i
= �2T 2 (x(â; P2))� �̂2T 2

�
x(â; P̂a)

�
= �2

h
T 2 (x(â; P2))� T 2

�
x(â; P̂a)

�i
(TA)

+
�
�2 � �̂2

�
T 2 (x(â; P2)) (TB)

+
�
�̂2 � �2

� h
T 2 (x(â; P2))� T 2

�
x(â; P̂a)

�i
: (TC)

We start by showing Ê2 [TAj�v] =M2(â) = Op
�
N���. From a Taylor series expansion in P̂a:

T 2
�
x(â; P̂a)

�
� T 2(x(â; P2)) =

m�1X
k=1

�
T 2
�0(k)

(x(â; P2))

"
P̂a � P2
1� P2

#k
=k!

+
�
T 2
�0(m) �

x(â; P+2 )
� " P̂a � P2
1� P+2

#m
=m! ,

where
�
T 2
�0(m) is the mth derivative of the function T 2 w.r.t. x, and P+2 is an intermediate point. Then,

noting that trimming keeps the density for V2 at �v bounded away from 0 (D3), Ê2 [TAj�v] =M2(â) = Op
�
N���

if

Ak �

������
NX
i=1

1

N
�2i
�
T 2
�0(k)

(x(â; P2i))

"
P̂ai � P2i
1� P2i

#k
K2

�
�v � vi
hT

�
=M2(â)hT

������ = Op

�
N��

�

Am �
�����
NX
i=1

1

N
�2i
�
T 2
�0(m) �

x(â; P+2i )
� " P̂ai � P2i

1� P+2i

#m
K2

�
�v � vi
hT

�
=M2(â)hT

����� = Op

�
N��

�
:

For Ak, setting k = 1 for expositional purposes,10 the term will be bounded above by

sup

�����
 
P̂ai � P2i
1� P2i

!
� iT

0(1)(x(â; P2i))

����� �
NX
i=1

1

N
� i � 2T (x(â; P2i))K2

�
�v � vi
hT

�
=M2(â)hT ; (23)

10Higher order derivatives of the T -function are bounded and keep x in the R2 region same as does the original T -function in
(D3). Moreover, higher order terms converge faster to 0 than lower order terms.
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where T 0(m) is the mth derivative of T w.r.t. x. The sup component has order:

sup
i;�

���� i �P̂ai � P2i����
inf
â
N�â :

The numerator is Op
�
N�(4�"0)

�
from Lemma 1 because P̂ai is based on a twicing kernel with window

hT = N�:1 with � i constraining the density denominator to be larger than O(N�"0). The denominator is

O
�
N�(:4�")�from (D4). As " � "0 > 0 there exists � such that the sup component will have order of N��.

Turning our attention to the second component of (23), it is bounded above by

sup
a

���PN
i=1

1
N � iT (x(a; P2i)K2

�
�v�vi
hT

�
=hT � E(�T (x(a; P2))j�v)

���
M2(a)

+ sup
a

E(�T (x(a; P2))j�v)
M2(a)

:

For the �rst term, denote a� as the value for a such that this term takes on its supremum. Under

a twicing kernel, from Lemma 1 it follows that with hT = O(N�:1), the numerator is O(N�:4): For the

denominator, referring to (D3), notice that the S2 function is bounded below by an indicator function set

to be zero when x is in either R1 or R2, and one when x is in R3. Hence M2(a) is bounded below by the

conditional expectation of that indicator function, which is a probability that is of order N�a as the tail

of v2j�v is fatter than the error tail. Therefore, M2(a) > O(N�a) > O(N�(:4�")) (see D4). Therefore, there

exists 0 < � < " such that

sup
a

���PN
i=1

1
N � iT (x(a; P2i)K2

�
�v�vi
hT

�
=hT � E(�T (x(a; P2))j�v)

���
M2(a)

= Op(N
��): (24)

Hence it su¢ ces to show that sup
a

E(�T (x(a;P2))j�v)
M2(a)

= O(1). Referring to (D3), notice that

E(�T (x(a; P2))j�v)
M2(a)

� c1 Pr(R2j�v) + Pr(R3j�v)
c2 Pr(R2j�v) + Pr(R3j�v)

where

c1 � E

�
1� exp �xk

bk � xk jR2; �v
�

c2 � E

"�
1� exp �xk

bk � xk

�2
jR2; �v

#
:
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The above ratio converges to some constant irrespective of which of the regional probabilities converges

faster to zero. For the remainder term Am, it vanishes faster than N�� for a su¢ ciently large value of m.

Turning to Ê2 [TBj�v] =M2(â), from the expansion in Lemma 5 whose order K is set su¢ ciently large,

Ê2 [TBj�v] =M2(â) = op

�
N�2�

� NX
i=1

1

N
�2iT

2(x(â; P2i))K2

�
�v � vi
hT

�
=M2(â)hT

As T 2(x(â; P2i)) � T (x(â; P2i)), it follows from (24) and the subsequent discussion that the second compo-

nent is Op(1); which establishes the order for this component. Employing a very similar argument, there

exists � > 0 such that Ê2 [TC j�v] =M2(â) = Op(N
��):

To complete the argument, we need to provide the order for the second term in (22). For this term:

�����M2(â)� Ê2
�
S2 [� ; x(â; P2)] j�v

�
M2(â)

����� �
sup
a

���M2(a)� Ê2
�
S2 [� ; x(a; P2)] j�v

����
M2(â)

Notice that the Ê2 is a twicing kernel and has an estimated density at �v that converges to a positive

value. Then, from Lemma 1, with window hT = O(N�:1); the expression above is O( N
�:4

M2(â)
): From above,

M2(â) = O(N�(:4�")). Then, there exists 0 < � < " for which the result follows.

Lemma 7. Referring to Lemma 6, de�ne

z(a) � N�a

R (z (a)) � M1(a)
M2(a)

z0 � z(a0N ); ẑ � z (â) ; z+ � z (a+) :

Then, under (A1-5) there exists � > 0 such that jâ� a0N j = op

�
N

��
�
:

Proof. From Lemma 6 and a Taylor series expansion, there exists � > 0 such that

cN (â)

h
Ê2

�
Ŝ
�i2

Ê2

�
Ŝ2j�v

� = cN (â)R (z (â)) +Op

�
N��

�
= cN (a0N )R (z (a0N )) +Op

�
N��

�
�

ln (N) cN
�
z+
� �
2R
�
z+
�
+ z+R0

�
z+
��
[â� a0N ] :
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Recall (20), notice that cN (â)
[Ê2(Ŝ)]

2

Ê2(Ŝ2j�v)
= cN (a0N )R (z (a0N )) and is bounded away from zero by de�ni-

tion (D4). Therefore,

[â� a0N ] =
Op
�
N���

ln (N) cN (z+)R (z+) + z+R0 (z+)
:

Since R = [E(S)]2

E(S2j�v) in (D4) is increasing, z
+R0 (z+) > 0; hence

[â� a0N ] = Op

�
N��= ln (N) cN

�
z+
�
R
�
z+
��
:

Suppose â < a0N (the argument when â > a0N is the same), then â < a+ < a0N , and z0 < z+ < ẑ. Since

R is increasing, R(z0) < R(z+) < R(ẑ): Therefore, cN (z0)R (z0) < cN (z
+)R (z+) < cN (ẑ)R (ẑ) : Both the

upper and lower bounds are bounded away from zero. The proof now follows.

Lemma 8. Expectations of Kernel Products. Let f"1j;"2j;"3jg be i.i.d. over j with each depending

on an index, V2j : Throughout this lemma and its proof, all expectations are conditioned on V2j and hold

uniformly in j. For expositional purposes, we suppress the conditioning notation. Assume the following

properties:

a) : E("
j) = O(h
2p


 )

b) : E
h
"
�


j

i
= O(

1

h
%
�1



); �
 > 1:

where 
 = 1; 2; 3: Set h4p




= O( 1
Mh


) and denote �"
 = 1
M

PM
j=1 "
j ; then

E
�
[�"1]

r [�"2]
s [�"3]

t	 = O
�
h2p1r1

�
O
�
h2p2s2

�
O
�
h2p3t3

�
:

Proof. From the Cauchy�Schwarz inequality,

E
�
[�"1]

r [�"2]
s [�"3]

t	 < nE [�"1]4ro1=4 nE [�"2]4so1=4 nE [�"3]2to1=2 :
It su¢ ces to order one of the three terms, hence we can study a general term: E [�"]q with general h and
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p: This general term has q types of terms, with kth (k = 1; :::; q) type:

1

M q�k

X
� � �
X

| {z }
k

1

Mk
"i1j1 � � � "

ik
jk

where i1 + :::+ ik = q and j1 6= � � � 6= jk:

From the i.i.d. property of the "0s; the expectation of this term is given as

1

M q�kE
h
"i1j1

i
� � � E

h
"ikjk

i
:

Suppose we study a term E
h
"itjt

i
, where 1 6 t 6 k. There are two types of expectations: single power of "

and multiple powers of ". For the single power case, from property (a):

E
h
"itjt

i
= O(h2p) for it = 1.

For the multiple power case, from property (b):

E
h
"itjt

i
= O

 �
1

h

�(it�1)!
for it > 1:

There are di¤erent combinations of i1; � � �; ik for a given q and k. To order 1
Mq�kE

h
"i1j1

i
� � � E

h
"ikjk

i
, we

next need to �nd the combination that yields the slowest convergence rate. One observation we make here

is that the slowest term is the one with the least number of single power "0s.

When k 6 q
2 , the slowest term would have no single power of " in it (see below for an example). Therefore,

from property (b) the convergence rate will be

O

�
(
1

Mh
)q�k

�
:

When k > q
2 , the slowest term would include at least one single power " in it, hence from property (a)

and (b) the rate will be:

O
�
(h2p)2k�q

�
O

�
(
1

Mh
)q�k

�
:

To illustrate our proof strategy, suppose q is an even number (the case for an odd number is very similar),
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for example q = 6. If we denote the type by the powers of the elements, for example 1122 would mean the

"1j1"
1
j2
"2j3"

2
j4
term, then we have the following table:

2666666666666666664

k Slowest Type Rate

1 6 O
�
( 1
Mh)

5
�

2 33 O
�
( 1
Mh)

4
�

3 222 O
�
( 1
Mh)

3
�

4 1122 O
�
(h2p)2( 1

Mh)
2
�

5 11112 O
�
(h2p)4( 1

Mh)
�

6 111111 O
�
(h2p)6

�

3777777777777777775
For k = q

2 , the slowest term would be the one with k squared terms,

1

M q�kE
�
"2j1
�
� � � E

�
"2jk
�
:

Hence the rate would be

O

�
1

M q�k (
1

h
)k
�
= O

�
(
1

Mh
)q�k

�
:

It can be shown that this same expression holds for all smaller k. For k = q
2 + 1, the slowest term would

have two single power "0s and the rest would be squared terms, e.g.,

1

M q�kE ["j1 ]E ["j2 ]E
�
"2j3
�
� � � E

�
"2jk
�
;

hence the rate would be

1

M q�kO

�
(h2p)2(

1

h
)k�2

�
= O

�
(h2p)2k�q(

1

Mh
)q�k

�
:

This same expression holds for all larger k.

We now need to �nd the kth term with the slowest convergence rate. Set h optimally, i.e. h4p = O( 1
Mh)
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and substitute it in each term above, we have

O
�
(h4p)q�k

�
= O

�
(h2p)2q�2k

�
when k 6 q

2 ;

O
�
(h2p)2k�q(h4p)q�k

�
= O(h2pq) when k > q

2 :

Hence the slowest convergence rate is O(h2pq). The lemma follows.

Lemma 9. De�ne

Ê (Y2S (� ; x(a; P2)) j�v) �
X
j

1

Nh
K [(�v � V1j) =h]Y2jS(� j ; x(a; P2j)):

Then under (A1-7) with 
0 � 
(�v; a0N ),

a) :
E (SjV1 = �v) gV1(�v)� Ê

�
Y2S

�
�̂ ; x(â; P̂a)

�
j�v
�

Ê
�
Y2S

�
�̂ ; x(â; P̂a)

�
j�v
� p�! 0:

b) :

0p

V ar(
0)

d�! Z~N(0; 1)

Proof. Since for any random variable XN ; XN
p�! 1 i¤ (1=XN )

p�! 1; the result in (a) is equivalent to:

E (SjV1 = �v) gV1(�v)
Ê
�
Y2S

�
�̂ ; x(â; P̂a)

�
j�v
� p�! 1 i¤

Ê
�
Y2S

�
�̂ ; x(â; P̂a)

�
j�v
�

E (SjV1 = �v) gV1(�v)
p�! 1

i¤
E (SjV1 = �v) gV1(�v)� Ê

�
Y2S

�
�̂ ; x(â; P̂a)

�
j�v
�

E (SjV1 = �v) gV1(�v)
p�! 0:

Notice that the last result above holds i¤:h
E (SjV1 = �v) gV1(�v)� Ê (Y2S (� ; x(a0N ; P2)) j�v)

i
E (SjV1 = �v) gV1(�v)

p�! 0

and

h
Ê (Y2S (� ; x(a0N ; P2)) j�v)� Ê

�
Y2S

�
�̂ ; x(â; P̂a)

�
j�v
�i

E (SjV1 = �v) gV1(�v)
p�! 0:

The above terms are very similar to (22) in Lemma 6 and the argument for their convergence is very

similar to that in the proof of Lemma 6. The �rst term converges to zero by a pointwise convergence argu-

ment using the properties of the S-function and the fact that the conditional expectation of Y2 approaches

46



1 on the high probability set .Employing a Taylor series argument and utilizing the result from Lemma 7, it

can be shown that under (A4-5) the second term goes to zero in probability.

To prove (b), let E [Sj�v] � E [SjV1 = �v], and de�ne:


0j �
[Y1j � �0 (�v)]K [(�v � V1j) =hs]Y2jSj

hsE (Sj�v) gV1(�v)

Since [Y1j��0(�v)]Y2j
gV1 (�v)

is uniformly bounded in j, from Lemma 4:

V ar

 
NX
i=1


0j

!
= O

"
N

hs

E
�
S2j�v

�
(E [Sj�v])2

#
� s2N

The Lindberg Condition for normality requires that for every " > 0 :

1

s2N

NX
i=1

E
�

20j1

�

20j > "2s2N

	�
! 0:

Substituting for s2N , it su¢ ces to show that:

1

E [S2j�v]E

264 1
hs
K2
�
�v�V1
hs

�
S2�

1
n
1
hs
K2
�
�v�V1
hs

�
S2 > O

�
NE

�
S2j�v

��o
375! 0

To establish the above limit, it will be useful to bound E
�
S2j�v

�
from below. Recall from the proof of

the proposition in Section 5.2 that:

S � � (gV 2 = (1 + �)!) 1fgV 2 > (1 + �)!g1 fX > bg

For the second indicator, from the de�nition of X in (D4):

1 fX > bg = 1fFU (V2) > 1�N�a0N e�bg = 1
n
V2 > F�1U

�
1�N�a0N e�b

�o

For the �rst indicator, de�ne vU such that gV 2 (vU ) = (1 + �)!g: Then, from the monotonicity assumption

on gV 2 in its tail,(A5b) it follows that

1fgV 2 > (1 + �)!g = 1fV2 < vUg
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To bound S from below, it will su¢ ce to characterize a lower bound on vU : From (A5):

1� FU (vU )
1�GV2 (vU )

< H (vU )N
�a0N () 1� FU (vU ) < gV2 (vU )N

�a0N

() FU (vU ) > 1� (1 + �)!N�a0N

() vU > F�1U
�
1� (1 + �)!N�a0N

�
Therefore

S � � (gV 2 = (1 + �)!)
n
F�1U

�
1�N�a0N e�b

�
< V2 < F�1U

�
1� (1 + �)!N�a0N

�o

and hence

E(S2j�v) � �2 (gV 2 = (1 + �)!) Pr
h
F�1U

�
1�N�a0N e�b

�
< V2 < F�1U

�
1� (1 + �)!N�a0N

�
j�v
i

From the tail assumption in (A5a) on the conditional distribution of V2 given V1 = �v;

Pr
h
F�1U

�
1�N�a0N e�b

�
< V2 < F�1U

�
1� (1 + �)!N�a0N

�
j�v
i

= GV2(F
�1
U

�
1� (1 + �)!N�a0N

�
j�v)�GV2(F�1U

�
1�N�a0N e�b

�
j�v)

>
�
1� (1 + �)!N�a0N

�
�
�
1�N�a0N e�b

�
= N�a0N

h
e�b � (1 + �)!

i
= O

�
N�a0N

�
Since � (gV 2 = (1 + �)!) approaches 1 as N increases, for N su¢ ciently large, we have established a

lower bound of O (N�a0N ) for E(S2j�v): Now the Lindeberg condition becomes:

L � O (Na)E

264 1
hs
K2
�
�v�V1
hs

�
S2�

1
n
K2
�
�v�V1
hs

�
S2 > hsO

�
N1�a0N

�o
375! 0:

Since K2
�
�v�V1j
hs

�
S2 is uniformly bounded and since hsN1�a0N ! 1; the indicator above will be zero

for N su¢ ciently large and the proof will follow.

Lemma 10. For notational simplicity, we denote CN = CN (�v) as in Lemma 4. Then, under (A1-7)

CN

h
�̂ (�v; â)� �0 (�v)

i
= CN
0 + op(1):
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Proof. Letting #j � (Y1j � �0 (�v))Y2jK [(�v � V1j) =hs] =hs;

CN

h
�̂ (�v; â)� �0 (�v)

i
� CN
0

= CN

24Pj
1
N #jS

�
�̂ j ; x(â; P̂aj)

�
Ê
�
Y2S

�
�̂ ; x(â; P̂a)

�
j�v
� � Pj

1
N #jS (� j ; x(a0N ; P2j))

E (SjV1 = �v) gV1(�v)

35

= CN

2664
P
j
1
N
#j[S(�̂j ;x(â;P̂aj))�S(�j ;x(a0N ;P2j))]

Ê(Y2S(�̂ ;x(â;P̂a))j�v)
�P

j
1
N
#jS(�j ;x(a0N ;P2j))

E(SjV1=�v)gV1 (�v)
� Ê(Y2S(�̂j ;x(â;P̂aj))j�v)�E(SjV1=�v)gV1 (�v)

Ê(Y2S(�̂ ;x(â;P̂a))j�v)

3775 :
where P2j = Pr(Y2j = 1jV2j): From Lemma 9,

CN

P
j
1
N #jS (� j ; x(a0N ; P2j))

M3(a0N )
= Op(1)

Ê
�
Y2S

�
�̂ j ; x(â; P̂aj)

�
j�v
�
� E (SjV1 = �v) gV1(�v)

Ê
�
Y2S

�
�̂ j ; x(â; P̂aj)

�
j�v
� = op(1):

Therefore, we may ignore the product of these two terms and study

CN

24Pj
1
N #j

h
S
�
�̂ j ; x(â; P̂aj)

�
� S (� j ; x(a0N ; P2j))

i
Ê
�
Y2S

�
�̂ j ; x(â; P̂aj)

�
j�v
�

35 :

From Lemma 9(a), we can multiply it with
Ê(Y2S(�̂ ;â;P̂a)j�v)
E(SjV1=�v)gV1 (�v)

and study

CN

P
j
1
N #j

h
S
�
�̂ j ; x(â; P̂aj)

�
� S (� j ; x(a0N ; P2j))

i
E (SjV1 = �v) gV1(�v)

:

It remains to be shown that

CN

P
j
1
N #j

h
S
�
�̂ j ; x(â; P̂aj)

�
� S (� j ; x(a0N ; P2j))

i
E (SjV1 = �v) gV1(�v)

p�! 0: (25)

To study S
�
�̂ ; x(â; P̂a)

�
�S (� ; x(a0N ; P2)) = �̂T

�
x(â; P̂a)

�
� �T (x(a0N ; P2)) ; we use Taylor expansion

on both �̂ and T
�
â; P̂a

�
. In doing these expansions, we are evaluating all indices at �0 to simplify the

exposition. It is relatively straight forward to account for the estimation of the index parameters using a
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further Taylor series expansion in � and the fact that
�
�̂ � �0

�
is Op

�
N�1=2� :

�̂(!̂; ĝV2) = �(!̂; gV2) +
@�

@!
(!̂ � !) + @�

@gV2
(ĝV2 � gV2) + :::

T
�
x(â; P̂a)

�
= T (x(a0N ; P2)) +

@T

@x

@x

@a
(â� a0N ) +

@T

@x

@x

@P2
(P̂a � P2) + :::

Recalling Lemma 5, with the expansion going far enough the remainder terms can be ignored. Substi-

tuting the above series into (25), denote �"2j � ĝV2j � gV2j it su¢ ces to study:

CN

P
j
1
N #j

h
@�j
@gV2j

�"2j

i h
@Tj
@xj

@xj
@P2j

(P̂aj � P2j)
i

E (SjV1 = �v) gV1(�v)

This term is representative in the sense that an analysis of it will make it clear that the same argument

holds for the other terms.

CN

P
j
1
N #j [�� j(1� � j)N

��"2j ]
h
@Tj
@xj

� P̂aj�P2j1�P2j

i
E (SjV1 = �v) gV1(�v)

To show that the above term converges in probability to zero, we show that the expectation of its square

converges to zero. There are two types of elements in it:

C2N
N2E2 (SjV1 = �v) g2V1(�v)

X
j

(
#j� j(1� � j)N��"2j

@Tj
@xj

"
P̂aj � P2j
1� P2j

#)2
(Squared Term)

and

C2N
N2E2 (SjV1 = �v) g2V1(�v)

X
j

X
i6=j

264
n
#i� i(1� � i)N��"2i

@Ti
@xi

h
P̂ai�P2i
1�P2i

io
�
n
#j� j(1� � j)N��"2j

@Tj
@xj

h
P̂aj�P2j
1�P2j

io
375 : (Cross-product Term)

It can be shown that the expectation of the squared terms converge to zero much faster than the

expectation of the cross-product terms and require a much simpler argument. Accordingly, in what follows

we analyze the cross-product terms.

Recall (D5) and denote ~gV2j �
P1
d2=0

f̂2 (t2; d2; hm), write

P̂aj � P2j
1� P2j

=

�
�"1j

1� P2j

� �
gV2j
~gV2j

�
where �"1j �

�
P̂aj � P2j

� ~gV2j
gV2j

:
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From a Taylor series expansion in 1
~gV2j

, we have

gV2j
~gV2j

= 1� ~gV2j � gV2j
gV2j

+ :::

As
~gV2j�gV2j
gV2j

and the following terms converges to zero, in the following proof we consider the leading

term, which is equal to 1. De�ne P̂aj [i] by removing from P̂aj its dependence on ith observation. Similarly,

de�ne P̂ai [j] ;�"1i[j];�"1j [i];�"2i[j] and �"2j [i]. As the terms involving the removed observations converge to zero

very fast, it su¢ ces to study

N2�C2N
E2 (SjV1 = �v) g2V1(�v)

E

264
n
#i� i(1� � i)�"2i[j]@Ti@xi

h
�"1i[j]
1�P2i

io
�
n
#j� j(1� � j)�"2j [i]@Tj@xj

h
�"1j [i]
1�P2j

io
375

=
N2�C2N

E2 (SjV1 = �v) g2V1(�v)
E

264 E f#i#j jXgE f� i� j�"2i[j]�"2j [i]�"1i[j]�"1j [i]jXg

( 1�� i1�P2i )(
1��j
1�P2j ) �

@Tj
@xj

@Ti
@xi

375 :
Notice that E f#i#j jXg = E f#i#j jV g. Employing a similar argument as in Lemma 3, we have E f#i#j jV g to

be uniformly of the order O(N�2a). From Lemma 8, E f� i� j�"2i[j]�"2j [i]�"1i[j]�"1j [i]jV g is uniformly of the order

O(h4Th
4
2) = O(N�1:2). As CN (�v) �

p
NhsE(Sj�v)p
E(S2j�v)

and O(E(Sj�v)) � O(E(S)), we have C2N = O(Nhs[E(S)]
2

E(S2j�v) ) =

O(N2a�") by (D4). Further, ( 1�� i1�P2i )(
1��j
1�P2j ) �

@Tj
@xj

@Ti
@xi

= O(N2a)
@Tj
@xj

@Ti
@xi
, hence we can study

N2�O(N2a�")O(N�2a�1:2)O(N2a)
E
n
@Ti
@xi

@Tj
@xj

o
E2 (SjV1 = �v) g2V1(�v)

= O(N2�+2a�1:2�")
E
n
@Ti
@xi

@Tj
@xj

o
E2 (SjV1 = �v) g2V1(�v)

:

Because � � 0:2; a � 0:4 � "; it remains to be shown that
E

�
@Ti
@xi

@Tj
@xj

�
E2(SjV1=�v)g2V1 (�v)

= O(1) to complete the proof.

Notice that @T@x is zero except in region R2 in (D3), while T is zero except in region R2 and R3, we have

E
n
@Ti
@xi

@Tj
@xj

o
E2 (SjV1 = �v) g2V1(�v)

= O

�
c1 Pr(R2)

c2 Pr(R2) + c3 Pr(R3)

�2
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where

c1 �
�
E

�
@Ti
@xi

@Tj
@xj

jR2
��

c2 � E

��
1� exp �xk

bk � xk

��
1

h
Y2K

�
�v � V1
h

��
jR2
�

c3 = E

��
1

h
Y2K

�
�v � V1
h

��
jR3
�
:

Therefore,
E

�
@Ti
@xi

@Tj
@xj

�
E2(SjV1=�v)g2V1 (�v)

= O(1): The proof now follows.

9.2.3 Index Lemmas

The next lemma proves that the estimated second-stage objective function L̂� (�) is uniformly close to a

more tractable objective function L� (�) that does not depend on estimated functions. To de�ne L� (�), we

require additional notation. Let q�L (d1) be a lower sample quantile for f(V (�) ; d1) where:

f (V (�) ; d1) � Pr (Y1 = d1jY2 = 1) gV jY1=d1;Y2=1 (V (�))

Refer to (D7) and de�ne conditional components of adjusted probabilities as:

f� (t; d1) � f (t; d1) + �(� I(t); q
�
L(�; d1))

P �c (t; d1) � f� (t; d1) =
1X

d1=0

f� (t; d1)

For the marginal components of adjusted probabilities, let q�2L (d2) be a lower sample quantile for

f2 (V2 (�) ; d2) where:

f2 (V2 (�) ; d2) � Pr (Y2 = d2) gV2 (V2 (�)) :

Then, de�ne:

f�2 (t2; d2) � f2(t2; d2) + �2(� I(t2); q
�
2L(�; d2))

P �2 (t2; d2) � f�2 (t2; d2) =
1X

d2=0

f�2 (t2; d2) :
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The adjusted probability function is then given as:

P �i (d1; d2; �) � P �c (Vi(�); d1)P
�
2 (V2i(�); d2) :

In the lemmas below, it will also be useful to provide a separate analysis depending on the set in which

the index vector lies. To this end, denote gV jY1=d1;;Y2=1 as the density for V conditioned on Y1 = d1 and

Y2 = 1. and gV2j;Y2=d2 as the density for V2 conditioned on Y2 = d2; Referring to (D?), assume that there

exists a set of index values, B: with complement B� such that: (a) For v � (v1; v2) � B� all of these densities

exceed N��� , �� < rc=2 and (b) Pr(V �B) = O(N��); � > 0: The class of densities for which these conditions

hold is very wide.

Lemma 11. Let L̂� (�) �
P
i L̂

�
i and L

� (�) �
P
i L

�
i where from (D10)

L̂�i � IfV̂i�	̂vg
X
d1�d2

Yi (d1; d2) ln
h
P̂ �i (d1; d2; �)

i
L�i � IfVi0�	vg

X
d1�d2

Yi (d1; d2) ln [P
�
i (d1; d2; �)] :

Then, assuming (A1-4)

sup
�

1

N
jL̂� (�)�

X
i

I fXi�B�
NgL�i j = op(1):

Proof. First we show sup
�

1
N jL̂

� (�)� L� (�) j = op(1): Since 1
N jL̂

� (�)� L� (�) j � D1 +D2; where

D1 � 1

N

X
i

X
d1�d2

���IfV̂i�	̂vg � IfVi0�	vg��� jln [P �i (d1; d2; �)]j
D2 � 1

N

X
i

X
d1�d2

���ln�P̂ �i (d1; d2; �) =P �i (d1; d2; �)���� ;
it su¢ ces to show that each of the above terms uniformly converges in probability to zero. For D1:

D1 �
X
d1�d2

sup
i;�
jln [P �i (d1; d2; �)]j

1

N

X
i

X
d1�d2

���IfV̂i�	̂vg � IfVi0�	vg���
For the �rst factor ofD1; de�ne P �c (Vi(�); d1) and P

�
2 (V2i(�); d2) as the probability limit ofcPr� (Y1i = d1jY2i = d2; Vi = t)
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and cPr� (Y2i = d2jV2i = t2) holding �0s �xed, then

P �i (d1; d2; �) � P �c (Vi(�); d1)P
�
2 (V2i(�); d2)

As the analysis for P �c and P
�
2 components is identical, here we consider the former.

P �c (Vi(�); d1) =
P (Y1 = 1; Y2 = 1)g(V jY1 = 1; Y2 = 1) + �(� I(t); q�L(�; 1))

g(V jY2 = 1)Pr(Y2 = 1) +
P1
d1=0

�(� I(t); q�L(�; 1))

�

min

2664 inf
t�B�

N ;�
P (Y1 = 1; Y2 = 1)g(V jY1 = 1; Y2 = 1) + �(� I(t); q�L(�; 1));

inf
t�B�

N ;�
P (Y1 = 1; Y2 = 1)g(V jY1 = 1; Y2 = 1) + �(� I(t); q�L(�; 1))

3775
sup
t;�
g(V jY2 = 1)Pr(Y2 = 1) + sup

P1
d1=0

�(� I(t); q�L(�; 1))

�
min

�
inf

t�BN ;�
�(� I(t); q

�
L(�; 1)); inf

t�B�
N ;�
P (Y1 = 1; Y2 = 1)g(V jY1 = 1; Y2 = 1)

�
sup
t;�
g(V jY2 = 1)Pr(Y2 = 1) + sup

P1
d1=0

�(� I(t); q�L(�; 1))
:

From the de�nition of B�
N ;

inf
t�B�

N ;�
P (Y1 = 1; Y2 = 1)g(V jY1 = 1; Y2 = 1) > N�rc=2

and from the de�nition of �(� I(t); q�L(�; 1) :

inf
t�BN ;�

�(� I(t); q
�
L(�; 1)) > N�rc=2

From Assumption (A4) and the de�nition of� we have both sup
t;�
g(V jY2 = 1)Pr(Y2 = 1) and sup

P1
d1=0

�(� I(t); q
�
L(�; 1))

bounded. It follows that sup�;i jln [P �c (Vi(�); d1)]j = Op
�
ln
�
N rc=2

��
= Op(lnN). From Klein (1993, Lemmas

1-2), there exists a " > 0 such that the indicator di¤erence converges much faster than op (N�"), which

completes the argument for D1:

Lemma 11 will now follow by showing uniform convergence for D2 on B�
N and on BN . Similar to the

analysis for D1;it will su¢ ce to analyze the P �c �components of D2: To this end, let

D2c (B
�
N ) �

1

N

X
i

X
d1�d2

IfXi�B�
Ng
���ln hP̂ �c (Vi(�); d1) =P �c (Vi(�); d1)i��� ;
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and de�ne D2c (BN ) analogously for Xi�BN : We then need to show that D2c (B�
N ) and D2c (BN ) con-

verge in probability to 0, uniformly in �. Beginning with D2c (B
�
N ), from a Taylor series expansion of

ln
�
P̂ �c (Vi(�); d1)

�
about P �c (Vi(�); d1), uniform convergence in probability to 0 follows from Lemma 1. For

D2c (BN ) ;

sup
�
D2c (BN ) �

24 sup
Xi�B�

N ;�

X
d1�d2

���ln hP̂ �c (Vi(�); d1) =P �c (Vi(�); d1)i���
35" 1

N

X
i

IfXi�B�
Ng
#
:

Similar to the analysis for D1, it can be shown that the �rst component increases at a lnN rate, while

from Lemma 1 the second term converges to zero at a rate given by N raised to a negative power. Hence

sup
�

1
N jL̂

� (�)� L� (�) j = op(1).

Now we show sup
�

1
N jL

� (�)�
P
i I fXi�B�

NgL�i j = op(1) to complete the proof. Note that

sup
�

������ 1N
X
i

IfVi(�0)�	vg
X
d1�d2

IfVi(�)�BNgYi (d1; d2) ln [P �i (d1; d2; �)]

������
� sup

�

1

N

X
i

X
d1�d2

IfXi�BNgj ln [P �i (d1; d2; �)] j

� sup
Xi�BN ;�

j ln [P �i (d1; d2; �)] sup
�

1

N

X
i

X
d1�d2

IfXi�BNg:

The �rst term above explodes slower than Op(lnN) as above: From the conditions on BN , the second term

decreases at a rate given by N raised to a negative power. The result then follows.

To establish consistency for the proposed estimator, we will need to show that the objective function

underlying the estimator is uniformly close to one that is continuous and that is uniquely maximized at �0:

Lemma 12. Under (A1-4, A8), let:

Li � IfVi0�	vg
X
d1�d2

Yi (d1; d2) ln [Pi (d1; d2; �)]

and recall the de�nition of L�i in Lemma 11. Then,

sup
�

1

N

���X I fXi�B�
NgL�i � E

hX
Li

i��� = op(1)
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and E 1
N [
P
Li] is a bounded and continuous function of �:11:

Proof. First we show sup
�

1
N j
P
I fXi�B�

Ng [L�i � Li] j = op(1). Note that:

jlnP �i � lnPij �
����ln P �c (Vi(�); d1)Pci

����+ ����ln P �2 (V2i(�); d2)P2i

����
Following the same strategy as in Lemma 11, as arguments for P �c and P

�
2 components are identical, here

we consider the former.

����ln P �c (Vi(�); d1)Pci

���� = ln

264 P (Y1=1;Y2=1)g(V jY1=1;Y2=1)+�(�I(t);q�L(�;1))
g(V jY2=1)Pr(Y2=1)+

P1
d1=0

�(�I(t);q
�
L(�;1))

� g(V jY2=1)Pr(Y2=1)
P (Y1=1;Y2=1)g(V jY1=1;Y2=1)

375
�

����ln�1 + �(� I(t); q
�
L(�; 1))

P (Y1 = 1; Y2 = 1)g(V jY1 = 1; Y2 = 1)

�����
+

�����ln
 
1 +

P1
d1=0

�(� I(t); q
�
L(�; 1))

g(V jY2 = 1)Pr(Y2 = 1)

!����� :
As the arguments for these terms are identical, here we consider the �rst term. From a Taylor series

expansion in �(�I(t);q
�
L(�;1))

P (Y1=1;Y2=1)g(V jY1=1;Y2=1) about zero

����ln�1 + �(� I(t); q
�
L(�; 1))

P (Y1 = 1; Y2 = 1)g(V jY1 = 1; Y2 = 1)

����� =
��������

1

1+

�
�(�I (t);q

�
L
(�;1))

P (Y1=1;Y2=1)g(V jY1=1;Y2=1)

�+
�
h

�(�I(t);q
�
L(�;1))

P (Y1=1;Y2=1)g(V jY1=1;Y2=1)

i
�������� ;

where+ indicates an intermediate point. OnB�
N ,

�(�I(t);q
�
L(�;1))

P (Y1=1;Y2=1)g(V jY1=1;Y2=1) converges to 0. Hence sup
�

1
N j
P
I fXi�B�

Ng [L�i � Li] j =

op(1). From Lemma 1,

sup
�

1

N
j
X

I fXi�B�
NgLi � E

hX
I fXi�B�

NgLi
i
j = op(1):

Now we show sup
�

1
N jE [

P
I fXi�B�

NgLi]� E [
P
Li]j = op(1) to complete the proof. From the de�nition of

11 If there is only one unbounded X with non-zero true coe¢ cient, then this dominance condition is not required as we are
trimming on the true index.
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Li :

jLij �

������
X
d1�d2

ln [Pi (d1; d2; �)]

������
�

X
d1�d2

sup
�
jln [Pi (d1; d2; �)]j ;

which is bounded under (A8).

sup
�

1

N

���E hX I fXi�B�
NgLi

i
� E

hX
Li

i���
= sup

�

1

N

���E hX I fXi�BNgLi
i���

= sup
�
jE [I fXi�BNgLi]j :

From Cauchy-Schwarz,

sup
�
jE [I fXi�BNgLi]j �

p
jE [I fXi�BNg]j

r
sup
�

��E �L2i ���
The �rst term converges to 0, while the second is bounded under (A8). Hence sup

�

1
N j
P
I fXi�B�

NgL�i � E [
P
Li]j =

op(1): Lastly, from (A8), E
�
1
N

P
Li
�
is a bounded and continuous function of �.

Lemma 13. Initial Index Estimator. Recall the de�nition of P̂i(d1; d2; �) in (D5) and that

�̂i (d1; d2; �) � r�P̂i(d1; d2; �)=P̂i(d1; d2; �):
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De�ne:

A � 1

N

NX
i=1

X
d1�d2

[Yi (d1; d2)� Pi (d1; d2; �0)] �̂i (d1; d2; �0) IfXi�	̂xg

A0 � 1

N

NX
i=1

X
d1�d2

[Yi (d1; d2)� Pi (d1; d2; �0)] �i (d1; d2; �0) IfXi�	xg

B � 1

N

NX
i=1

X
d1�d2

h
P̂i (d1; d2; �0)� Pi (d1; d2; �0)

i
�̂i (d1; d2; �0) IfXi�	̂xg

B0 � 1

N

NX
i=1

X
d1�d2

h
P̂i (d1; d2; �0)� Pi (d1; d2; �0)

i
�i (d1; d2; �0) IfXi�	xg:

Then, under (A1-4),

a) :
p
N [A�A0] = op(1)

b) :
p
N [B �B0] = op(1)

c) :
h
�̂I � �0

i
= Op

�
N� 2

8+"

�

Proof. For (a), with "i � Yi (d1; d2)� Pi (d1; d2; �0) and �̂i � �̂i (d1; d2; �0), de�ne

�A1 � 1p
N

NX
i=1

"i

h
�̂i � �i

i
IfXi�	xg;

�A2 � 1p
N

NX
i=1

"i

h
IfXi�	̂xg � IfXi�	xg

i
�i;

�A3 � 1p
N

NX
i=1

"i

h
IfXi�	̂xg � IfXi�	xg

i h
�̂i � �i

i
:

then

�A1 +�A2 +�A3 = op(1)) A�A0 = op(1):

Below we prove that these �� terms are op(1):
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To analyze �A1; referring to (D5) the following notation is convenient:

f̂ic � f̂ (t; d1; h1c; h2c) ; ĝic �
X
d1

f̂ (t; d1; h1c; h2c) ; P̂ic � f̂ic=ĝic

f̂im � f̂2 (t2; d2; h) ; ĝim �
X
d2

f̂2 (t2; d2; h) ; P̂im � f̂im=ĝim:

Then, recalling the de�nitions of �̂i and �i, let:

�̂i (d1; d2; �0) � r�P̂i(d1; d2; �0)=P̂i(d1; d2; �0) (26)

� r�P̂ic=P̂ic +r�P̂im=P̂im � �̂ic + �̂im.

�i (d1; d2; �0) � r�Pic=Pic +r�Pim=Pim � �ic + �im:

As the arguments for �̂icand �̂im are similar, with �̂ic having a slower convergence rate, it su¢ ces to provide

the argument for

�A1c �
1p
N

NX
i=1

"i

h
�̂ic � �ic

i
IfXi�	xg:

To deal with the estimated denominators of �̂ic , by de�nition

(�̂ic � �ic)f̂icĝic =
�h
f̂icr�ĝic � ĝicr�f̂ic

i
� �icf̂icĝic

�
�icficgic = ficr�gic � gicr�fic

Therefore,

(�̂ic � �ic)f̂icĝic =

264
�h
ficr�ĝic � gicr�f̂ic

i
� �icficgic

�
+

(f̂ic � fic)rgic + (f̂ic � fic)(rgic �rĝic) + :::+

375 (27)

=

264
�
fic (r�ĝic �r�gic)� gic

�
r�f̂ic �r�fic

��
+

(f̂ic � fic)rgic + (f̂ic � fic)(rgic �rĝic) + :::+

375 ;
where all of the terms either involve the di¤erence between estimated and true functions such as fic (r�ĝic �r�gic)

or cross-product di¤erences such as (f̂i � fi)(rg �rĝ). Employing (27), Cauchy-Schwarz, and Lemma 2,
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it can be shown that:

�A1c =
1p
N

NX
i=1

"i

h
�̂ic � �ic

i " f̂icĝic
ficgic

#
]IfXi�	xg+ op(1) (28)

Next, substituting (27) into the simpli�ed form of �A1c; in (28) we obtain a collection of terms involving the

di¤erence between estimated and true functions. Employing Cauchy-Schwarz and Lemma 2, we may ignore

terms involving cross product terms such as (f̂i� fi)(rg�rĝ): From a mean-square convergence argument

similar to that in Klein and Shen (2010, Lemma 8), it can be shown that we may also ignore terms that

depend on linear combinations of the di¤erence between estimated and true functions as for example the

�rst two components in (27).

For �A2; recall from (D9)

	̂x � fx : q̂Lx < x < q̂Uxg

write it as a function of q̂ :

	̂x � 	x(q̂) � fx : q̂Lx < x < q̂Uxg

Then, with q0 as a vector of true quantiles,
p
N�2 = op(1) if

sup
jq�qoj<�

1p
N

X
[IfXi�	x(q)g � IfXi�	x(q0)g] "i�i = op(1)

for all � = o(1):12 The result then follows from Pakes and Pollard (1989, Lemma 2.17, p. 1037).

Turning to �A3; and letting

	�x(q̂) � 	x(q̂) [	x(q0); (29)

we have:
12 If uniformity holds for � � N� for all � = o(1); then uniformity holds over op (1) neighborhoods of �:
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j�A3j � 1p
N

NX
i=1

"i j IfXi�	x(q̂)g � IfXi�	x(q0)gj IfXi�	�x(q̂))g
����̂i � �i��� � �31�32

�31 �
hX

"2i [IfXi�	x(q̂)g � IfXi�	x(q0)g]
2 =N

i1=2
, (30)

�32 =

"
sup

jq�qoj<�

X
IfXi�	�x(q)g2

�h
�̂im � �im

i2
+
h
�̂ic � �ic

i2�
=N

#1=2
; (31)

�31 = op(N
� 1
2
+"). For �32, the convergence rate is determined by the �̂ic term. It then follows from

Lemma 1 that j�32j2 = Op(N
�c), c > 2=9. The result (a) follows.

To prove (b), let P̂i �Pi � P̂i (d1; d2; �0)� Pi (d1; d2; �0) and de�ne:

�B1 � 1p
N

NX
i=1

h
P̂i � Pi

i h
�̂i � �i

i
IfXi�	xg

�B2 � 1p
N

NX
i=1

h
P̂i � Pi

i h
IfXi�	̂xg � IfXi�	xg

i
�i

�B3 � 1p
N

NX
i=1

h
P̂i � Pi

i h
IfXi�	̂xg � IfXi�	xg

i h
�̂i � �i

i

Similar to (a), it now su¢ ces to show that each of these terms is op(1):

To analyze �B1, recall the de�nitions of P̂i and Pi and notice that

P̂i � Pi � P̂imP̂ic � PimPic =
h
P̂im � Pim

i
P̂ic + Pim

h
P̂ic � Pic

i
:

Because of its slower convergence rate it su¢ ces to analyze the term involving Pim
h
P̂ic � Pic

i
: Recalling the

characterization of �̂i and �i in (26) it also su¢ ces to analyze the component involving �̂ic��ic: Accordingly,

we analyze:

�B1c �
1p
N

NX
i=1

h
P̂ic � Pic

i h
�̂ic � �ic

i
IfXi�	xg;

By de�nition h
P̂ic � Pic

i
ĝic = (fic � ĝicPic) (32)
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Employing the decomposition in (27), Cauchy-Schwarz, and Lemma 2:

�B1c =
1p
N

NX
i=1

�
P̂ic � Pic

��
�̂ic � �ic

�" f̂icĝ2ic
ficg2ic

#
IfXi�	xg+ op(1)

Employing an argument similar to that for �c1A; from(32), (27),Cauchy-Schwarz, and Lemma 2, �B1c =

op(1):

Turning to �B2, it su¢ ces to analyze:

�B2c �
1p
N

NX
i=1

h
P̂ic � Pic

i h
IfXi�	̂xg � IfXi�	xg

i
IfXi�	x(q̂) [	x(q0)g�i

From Cauchy-Schwarz and the de�nition of the set 	�x in (29)

j�B2cj �
p
N

vuuuut supjq�qoj<�
PN
i=1

1
N

h
P̂ic � Pic

i2
IfXi�	�x(q)g�2i �PN

i=1
1
N

h
IfXi�	̂xg � IfXi�	xg

i2 : (33)

For the �rst term under the square-root, from the de�nition of P̂ic � f̂ic=ĝic, (32), and Lemma 2, it can be

shown that it is bounded above by:

sup
jq�qoj<�

NX
i=1

1

N

��
f̂ic � ĝicPic

� 1

gic

�2
IfXi�	�x(q)g�2i + op(N�1=2:)

From Lemma 2, this term is Op
�
N� 4

8+"

�
. In an analysis almost identical to that for �31 in (31), the second

component of (33) is Op(N�c) ; c � 2=3, from which it now follows that �B2c = op(1):
13 Employing an

analysis very similar to that for �B3; it can be shown �B3 converges in probability to 0 at a rate faster than

that for �B2: Part (b) now follows.

For (c), from a standard Taylor series expansion and results (a-b) above:

h
�̂I � �0

i
= �Ĥ�1 [A�B] = Ĥ�1 [A0 �B0] + op(N� 1

2 ); (34)

where Ĥ is the estimated Hessian to the �rst-stage likelihood. Using Lemma 1 and recalling the windows

13From Klein (1993, LemmasA1-2), the second component is actually op(N�1=2+". To facilitate the analysis in subsequent
lemmas, we are emphasizing here that a much slower convergence rate su¢ ces.
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de�ned in (D5), it follows that Ĥ = Op(1): Since
p
NA0 converges in distribution to a normal random

variable, A0 = Op(1=
p
N); the proof will now follow from the convergence rate for B0: Recalling that:

P̂i � Pi � P̂imP̂ic � PimPic =
h
P̂im � Pim

i
P̂ic + Pim

h
P̂ic � Pic

i
;

it su¢ ces to examine:

B0c �
1

N

NX
i=1

h
P̂c � Pc

i
�iIfXi�	xg: (35)

Recalling that
h
P̂ic � Pic

i
ĝic = (fic � ĝicPic) ; from Cauchy-Schwarz and Lemma 2:

B0c � 1

N

NX
i=1

h
P̂c � Pc

i ĝic
ĝic
�i (d1; d2; �0) IfXi�	xg+ op(1) (36)

=
1

N

NX
i=1

[(fic � ĝicPic)]
1

ĝic
�i (d1; d2; �0) IfXi�	xg+ op(1):

From Cauchy-Schwarz and Lemma 2, it can be shown that B0c = Op(N
� 2
8+" ): Part (c) now follows.

The second stage estimator requires that trimming be based on an estimated index, and the theory

requires that this index converge su¢ ciently fast to the true index. As the initial index in Lemma 13 does

not satisfy the required rate condition, Lemma 14 below makes a bias correction to the initial estimator and

shows that the resulting correction signi�cantly increases the convergence rate. We will �nd that this rate

is su¢ cient for our purposes.

Lemma 14. The Initial Bias-Corrected Estimator. Let:

BoI �
1p
N

NX
i=1

X
d1�d2

h
P̂ oi (d1; d2; �0)� Pi (d1; d2; �0)

i
�̂i

�
d1; d2; �̂I

�
IfXi�	̂xg

and recall the de�nition of �̂
o

I in (D9). Then, under (A1-4),

a) : BoI = Op(N
�1=3)

b) : (�̂
o

I � �0) = Op(N
�1=3):
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Proof. For part (a), employing an analysis very similar to in Lemma 13b, it can be easily shown that:

BoI =

NX
i=1

X
d1�d2

h
P̂ oi (d1; d2; �0)� Pi (d1; d2; �0)

i
�i (d1; d2; �0) IfXi�	xg+ op(N�1=2):

Employing the same argument in (36), the rate of convergence basically comes from P̂ oi (d1; d2; �0) �

Pi (d1; d2; �0) ; which is Op(N�1=3):

Turning to (b), Employing Lemma 13a-b, we have

�
�̂I � �0

�
= �Ĥ

�
�+
��1

[A0 �B0] + op(N�1=2);

where �+ is an intermediate point. To simplify the adjustment to this estimator, referring to (D10) we will

show below:

� � Ĥ
�
�̂I

��1
ĈX

�
�̂I

�
� Ĥ

�
�+
��1

ĈX (�0) = op(N
�1=3):

Rewriting the above expression, � = �1 +�2, where

�1 � Ĥ
�
�̂I

��1 h
Ĥ
�
�+
�
� Ĥ

�
�̂I

�i
Ĥ
�
�+
��1

ĈX

�
�̂I

�
�2 � Ĥ

�
�+
��1 h

ĈX

�
�̂I

�
� ĈX (�0)

i
:

To study �1, note that Lemma 13 gives a convergence rate for �̂I � �+. Then, using a Taylor series

expansion on
h
Ĥ
�
�+
�
� Ĥ

�
�̂I

�i
and Lemmas 1, it can be shown that

h
Ĥ
�
�+
�
� Ĥ

�
�̂I

�i
and Ĉ

�
�̂I

�
converge to zero su¢ ciently fast that �1 = op(N

�1=3).

For �2; Taylor expand the second component to obtain

�2 = Ĥ
�
�+
��1 �rĈ���̂I � �0� ;

where rĈ is evaluated at an intermediate point. The �rst component is Op(1) from Lemma 1; the

second component is Op( 1p
Nh3

) from Lemma 1; and the third component is Op
�
h2
�
; hence we have

�2 = op
�
N�1=3� :
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From the de�nition of �̂
o

I in (D9) and employing the result above:

�
�̂
o

I � �0
�
=
�
�̂I � �0 + Ĥ

�
�+
��1

Ĉ (�0)
�
+ op(1) = �Ĥ

�
�+
��1

(A0 �BoI ) + op(1);

Since Ĥ
�
�+
�
converges to a positive de�nite matrix, and A0 = Op(N

�1=2); the proof then follows from part

(a).

Lemma 15 provides a characterization for the gradient components of the second stage estimator, which

are in turn used to obtain its convergence rate.

Lemma 15. The Second Stage Estimator. De�ne

�̂
�
i (d1; d2; �) � r�P̂ �i (d1; d2; �)=P̂ �i (d1; d2; �)

and let:

A� � 1

N

NX
i=1

X
d1�d2

[Yi (d1; d2)� Pi (d1; d2; �0)] �̂
�
i (d1; d2; �0) IfVi

�
�̂
o

I

�
�	̂vg

A�0 � 1

N

NX
i=1

X
d1�d2

[Yi (d1; d2)� Pi (d1; d2; �0)] �i (d1; d2; �0) IfVi�	vg

B� � 1

N

NX
i=1

X
d1�d2

h
P̂ �i (d1; d2; �0)� Pi (d1; d2; �0)

i
�̂
�
i (d1; d2; �0) IfVi

�
�̂
o

I

�
�	̂vg

B�0 � 1

N

NX
i=1

X
d1�d2

h
P̂ �i (d1; d2; �0)� Pi (d1; d2; �0)

i
�i (d1; d2; �0) IfVi�	vg:

Then, under A1-4 and recalling the de�nition of the second stage estimator, �̂
�
:

a) :
p
N [A� �A�0] = op(1)

b) :
p
N [B� �B�0 ] = op(1)

c) :
h
�̂
� � �0

i
= Op(N

�1=3)
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Proof. For (a), with "i � Yi (d1; d2)� Pi (d1; d2; �0) and �̂
�
i � �̂

�
i (d1; d2; �0), de�ne

��A1 � 1p
N

NX
i=1

"i

h
�̂
�
i � �i

i
IfVi�	vg;

��A2 � 1p
N

NX
i=1

"i

h
IfVi

�
�̂
o

I

�
�	̂vg � IfVi�	vg

i
�i;

��A3 � 1p
N

NX
i=1

"i

h
IfVi

�
�̂
o

I

�
�	̂vg � IfVi�	vg

i h
�̂
�
i � �i

i
:

Then

��A1 +�
�
A2 +�

�
A3 = op(1)) A� �A�0 = op(1):

Using a strategy very similar to Lemma 13, we can prove that these � terms are op(1):

To prove (b), notice that for Vi�	v, P̂ �i � P̂i goes to zero at an exponential rate. Let P̂ �i �Pi �

P̂ �i (d1; d2; �0)� Pi (d1; d2; �0) and de�ne:

�B1 � 1p
N

NX
i=1

h
P̂ �i � Pi

i h
�̂
�
i � �i

i
IfVi�	vg

�B2 � 1p
N

NX
i=1

h
P̂ �i � Pi

i h
IfVi

�
�̂
o

I

�
�	̂vg � IfVi�	vg

i
�i

�B3 � 1p
N

NX
i=1

h
P̂ �i � Pi

i h
IfVi

�
�̂
o

I

�
�	̂vg � IfVi�	vg

i h
�̂
�
i � �i

i
:

The proof is very similar to that in Lemma 13. Finally, using a similar Taylor series argument and proof

strategy as in Lemma 13, part (c) follows from (a) and (b).

Lemma 16 below provides the key required result to prove asymptotic normality for the �nal adjusted

estimator.

Lemma 16. Assuming (A1-4),
p
NBo = op(1);

where

Bo � 1

N

NX
i=1

X
d1�d2

h
P̂ oi (d1; d2; �0)� Pi (d1; d2; �0)

i
�̂
�
i (d1; d2; �0) IfVi

�
�̂
o

I

�
�	̂vg:
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Proof. Using a similar strategy as for Lemma 15b, we can show
p
N (Bo �Bo0) = op(1), where

Bo0 �
1

N

NX
i=1

X
d1�d2

h
P̂ oi (d1; d2; �0)� Pi (d1; d2; �0)

i
�i (d1; d2; �0) IfVi�	vg:

Next, note that:

P̂ oi � Pi � P̂ oimP̂
o
ic � PimPic =

h
P̂ oim � Pim

i
P̂ oic + Pim

h
P̂ oic � Pic

i
;

where for notational simplicity we have suppressed the fact that every probability function depends on

(d1; d2; �0) : Here, we provide the analysis for the last term as it converges to zero slower than the �rst. In

other words, we study

1

N

NX
i=1

X
d1�d2

h
Pim

�
P̂ oic � Pic

�i
�i (d1; d2; �0) IfVi�	vg = U + op(1);

where the U-statistic satis�es:

U � 1p
N

NX
i=1

X
d1�d2

"
(
f̂oc (t2; d2)

ĝoc (t2; d2)
� Pic)Pim

# �
ĝoc (t2; d2)

gc (t2; d2)

�
�i (d1; d2; �0) IfVi�	vg

=
1p
N

NX
i=1

X
d1�d2

h
(f̂oc (t2; d2)� ĝoc (t2; d2)Pic)Pim

i ��i (d1; d2; �0) IfVi�	vg
gc (t2; d2)

�
:

Notice that from Newey�s result (8), E[�ijVi] = 0; which implies that the expectation of U is 0. It then

follows from standard projection arguments that the U-statistic vanishes in probability.
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