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Abstract 

In the last decades, innovation activity has been defined by an increasing complexity and a 

faster pace of the underlying technological change. Accordingly, several studies have shown 

that competitive systems of innovation benefit from being able to build upon a wide but 

integrated spectrum of technological capabilities characterised by a sustained dynamism in 

the level of inter-sectoral technology flows. In this context, technological platforms – defined 

as knowledge and scientific launching pads that spin out of key enabling technologies - may 

create the opportunity for technological externalities to take place across a set of related 

sectors through a swarm of increasingly applied and incremental innovations.  

In this paper, we look at the presence and determinants of these technological platforms 

across EU Countries and explore the mechanisms through which these influence inter sectoral 

technology spillovers, thus shaping technological shifts within the broader economy. Using 

data on patents and patent citations obtained from the PATSTAT-CRIOS database, covering 

all patent applications made to the European Patent Office (EPO), we try to model the 

systemic nature of technology platforms. In particular, our aim is to provide empirical 

evidence that the presence of key enabling technologies at the base of the platform may lead 

to a more sustained interaction across second tier innovations characterised by a “distant” 

knowledge base. Then, we endeavour to investigate the relationship that may take place 

between this process and the role played by the national dimension. 
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1. Introduction 

One of the most important determinants behind the heterogeneity in the level of innovation 

activities across different industries is constituted by the level of technological opportunities 

(Scherer, 1980). According to Klevorick et al. (1995), there are three main sources of 

technological opportunities: advances in basic science or, more generally, scientific 

knowledge; previously accumulated knowledge impacting on the next wave of technological 

opportunities of the same industry, and finally, technological spillovers from different but 

related industries.  

In a context characterised by an increasingly complex and interconnected innovation 

environment leading to a multidimensional nature of emerging technological paradigms 

(Granstrand et al., 1997), the role of the technological advance of related industries and the 

resulting inter-sectoral technology spillovers has become even more relevant for the 

development of long term innovation activities. Accordingly, this inter-sectoral flow of new 

technologies has been a central element in 20
th

 century invention and innovation (Mowery 

and Rosenberg, 1998; Arthur, 2007).  

The scholarly debate has provided empirical evidence of the importance of inter-sectoral 

knowledge spillovers using different approaches and data (Griliches, 1992; Nadiri, 1993; 

Verspagen, 1997). However, this strand of research has mainly explored the effects on 

productivity and economic growth, while the evolution and the dynamics of technological 

change have received much less attention.  

The novelty of this paper is to present robust evidence of the mechanisms that lie at the base 

of technological shifts by exploring the concept and the characteristics of technology 

platforms, which have recently attracted much attention by policy makers (European 

Commission, 2012; TSB, 2011; 2012). Underpinned by key enabling technologies (KETs), 

technology platforms are defined as technologies with wide and swift applicability across a 

range of related and unrelated sectors. We explore the mediating role that KETs may exert in 

enhancing inter sectoral technology flows and sustaining communication across technologies 

that may lead towards new innovation opportunities and new technological trajectories. In 

particular, we address the hypotheses that KETs may lead to more original patents that break 

previous technological trajectories, and whether there is a spatial effect in the dynamics of 

technology platforms. To this end, we analyse patents applications to the European Patent 

Office controlling for the mediating effect of coherence in the technological base of new 

applications and the level of technological diversification and knowledge stock of patent 

applicants. 



 
 

4                                                 
 

The findings from this research lead to crucial business and policy implications. From a 

business perspective, understating whether KETs are characterised by a broad sectoral 

applicability may enhance the flow of technological spillovers across sectors. This offers 

useful insights in the processes that may lead to increased technological diversification and 

technology trajectory leapfrogging, and more importantly, to a broader absorptive capacity. 

From a policy perspective, reaching a better understanding of the role of KETs in the 

innovation capacity of the wider economy, addresses the issue of how to support the adoption 

and anchoring of such new innovations that may be considered of particular social value 

across different sectors. In other words, the effective action of technology platform may be 

seen as constituting a valid instrument for technology leapfrogging and for shifting 

technological trajectories towards more sustainable and socially valuable direction, a notable 

example being represented by the current interest in environmental – or green - technologies. 

The remainder of the paper is organised as follows. Section 2 introduces and discusses the 

main elements characterising technology platforms and the specific qualities of the 

underlying technology. Section 3 presents a short overview of the relationship between 

technology platforms and the spacial dimension. Data for the analysis are reviewed in Section 

4, along with the specification for the main model variables. Section 5 presents some stylised 

facts regarding originality and generality across EU member states, followed by a discussion 

of the results from the regression analysis. Section 6 concludes with the policy implications 

drawn on our findings, along with some final remarks. 

 

 

2. Technology integration and synthesis: the role of technology platforms 

Since the remark of Schumpeter (1934) on the „combinatorial‟ function of entrepreneurs, 

technological integration and synthesis has held a most important place within the literature 

on innovation and technological change. Combinative capabilities create linkages internal 

and external to companies which exert a fundamental role in the creation of new knowledge 

(Nelson and Winter, 1982; Kogut and Zander, 1992), so that it is possible to identify 

technologies as combinations (Arthur, 2007). Accordingly, technological trajectories and, 

ultimately, industry dynamics might be described by a process of cumulativeness in firms‟ 

knowledge capabilities and the integration of the technological opportunities available 

(Nelson and Winter, 1982; Dosi, 1982).  

To identify and create new knowledge, technological opportunities must overlap to some 

extent with the technological space of established capabilities. However, as firms‟ innovative 
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activity is characterised by processes of knowledge relatedness (Breschi et al., 2003), the 

intersection between these elements is often significant and the resulting pattern of 

technological change usually displays an incremental and path dependent structure. 

Conversely, technological shifts occur when „distant‟ technologies are integrated together, so 

that a “technology that has less immediate precedents in its technology class is likely to be 

more radical innovation” (Hicks and Hegde, 2005: 708).  

 

2.1. The role of technological diversification 

In a context where there is an increasing complexity in innovation and a faster pace within 

technological activity, opportunities from different but related industries become fundamental 

elements that hold the potential to increase innovation productivity due to cross-fertilisation 

and innovation complementarity. In this sense, the ability to recognise and absorb these new 

opportunities is a fundamental capability for the long-term resilience of firms (Fai and von 

Tunzelmann, 2001). Thus, capabilities of technological synthesis represent an important 

competitive advantage allowing companies to explore and exploit new opportunities. 

Moreover, the ability to integrate firms‟ established technologies with innovations 

technologically different may also represent an important element in fostering resilience 

across mature technologies. 

It is possible to identify two main processes through which technological integration and 

synthesis may take place. The first is related to the expansion of firms‟ absorptive capacities 

through technological diversification, whereas the second is related to the presence of 

enabling technologies. Large corporations and small serial innovators as well engage in 

processes of technological diversification to broaden the range of their absorptive capacity 

and knowledge competencies (Granstrand et al., 1997; Patel and Pavitt, 1997; Corradini et al., 

2012). In this sense, technological diversification prevents innovative firms from being 

locked in a specific technology (Susuki and Kodama, 2004). Broad-based knowledge 

capabilities act as a platform enabling the expansion and the diversification of firms‟ 

technological trajectory in derived technologies along a wide range of new opportunities 

(Kim and Kogut, 1996). Hence, they increase the level of potential exploration and 

reconfiguration of existing knowledge into new fields of research, allowing for a more 

fruitful exploitation of firms‟ combinative capabilities (Kogut and Zander, 1992).  

Although technological diversification represents an important strategy for the horizontal 

exploitation of technological opportunities across the innovation environment, it requires 

resources and competencies that are often scattered across heterogeneous and dissimilar 
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companies. In this sense, the creation of new technological paradigms resulting from the 

integration of „distant‟ innovative capabilities requires a wider set of different actors to 

trigger the positive feedbacks that generate technological progress and economic growth. 

These may encompass public research institutions undertaking basic research (Nelson, 1959; 

Trajtenberg et al., 1997), large incumbent firms and new technology-based companies, 

communicating together through a common, coherent knowledge base (Teece et al., 1994; 

Breschi et al., 2003).  

 

2.2. Technology platforms: towards a definition 

In this paper, we argue that the specific qualities of technology may also create the 

opportunities for similar processes of knowledge integration and synthesis of „distant‟ 

technologies. Discussing the characteristics of general purpose technologies (GPTs), usually 

identified by a general nature defined by technological pervasiveness leading „innovational 

complementarities‟, previous literature has underlined their role as enabling technologies 

(Bresnahan and Trajtenberg, 1995), that is, technologies whose impact is exerted on the 

productivity of a wide range of sectors.  

Building upon the idea of enabling technology, we introduce the concept of technology 

platforms to underline the role that technologies with a broad applicability across different 

technological fields may play not just in generating innovation cascades, but most 

importantly in fostering a web of linkages across „distant‟ technologies.  

In the current scholarly literature, the term technological platform is related with “a set of 

instruments which enables scientific and technological production: it allows exploration and 

exploitation of a variety of options, for strategic research, technology development, and 

sometimes also product development” (Robinson et al., 2007). Taking into account the inter-

firm dimension that is inherent to innovation networks and the rise of „open innovation‟ (See 

Freeman, 1991; Chesbrough, 2003), technological platforms can be defined as “building 

blocks that act as a foundation upon which an array of firms (sometimes called a business 

ecosystem) can develop complementary products, technologies, or services” (Gawer, 2010).   

More generally, platforms are characterised by a core underlying technology which serves as 

a pivot around which the different actors are interconnected. Cooke (2007, p. 188), for 

example, argues that the key feature of industry platforms, “... is that a single significant 

innovation may travel swiftly across the platform, earning surplus profits as it is applied to 

different but related technologies by 'communities of practice' sharing a high degree of 

'absorptive capacity' across the platform strands”. As such, industry platforms represent more 
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than a collective use of common resources, rather they define and constrain future research 

efforts.  Accordingly, Robinson et al. (2007) argue that technological platforms can be seen 

as „intentional opportunity structures‟ which play an essential part in emerging techno-

industrial networks.  

The key feature of technology platforms is a broad technological base characterised by high 

technological dynamism generating positive technological externalities across a wide range 

of sectors, thus yielding increasing returns to scale in the output of the innovation system. In 

other words, those key enabling technologies (KETs) that underpin technology platforms can 

also generate increasing the returns to R&D and a „cascade‟ effect on all technologies pegged 

to the platform - similarly to the disruptive effect of the adoption of GPTs as technological 

applications across the wider economy.  

Technology platforms increase the opportunities that companies might have to learn from 

distant technologies, and to exploit complementarities across a wide range of technological 

fields that are connected through a common enabling technology. Similarly, they increase the 

likelihood of inter-sectoral cross fertilisation to take place, thus generating a shift in current 

technological trajectories. In other words, technology platforms developed around KETs may 

play a fundamental role in sustaining communication across diverse technological fields, 

generating high levels of dynamism and pervasiveness through processes of 'innovational 

complementarity' and innovation synthesis.  

In line with these arguments, our first hypothesis is that technologies which are based on 

technology platforms, here identified as KETS, are more likely to be original and be more 

disruptive with previous technological trajectories. Thus, our first hypothesis is the following: 

 

H1. KETs exert a positive effect on the likelihood to develop more original technologies. 

 

 

3. Technology platforms and the national dimension 

The discourse associated with technological platforms is clearly associated with another level 

of analysis rooted in a spatial perspective. Cooke and De Laurentis (2010, p 273) write about 

„platforms of innovation‟ where a platform “consists of a number of businesses and quite 

possibly knowledge or training and support services, agencies and firms that cross typical 

sectoral and even cluster boundaries.  Comparable to clusters but not to the same extent 

sectors, there is spatial contiguity in the notion of platform.” Robinson et al. (2007) note that 

“because of the coordination [...] that is involved, there is a proximity effect and some 
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clustering will occur”. Hence, high-tech clusters and districts might be argued to comprise an 

external technological platform defining the contours of the cluster‟s technological proximity.  

Cooke and Leydesdorff (2006) develop a regional innovation policy framework, 

incorporating the concepts of related variety and differentiated knowledge bases, that 

embraces a „platform‟ approach. Producing the co-location of different scientific and 

technological fields, the shared pool of technological capabilities which define these 

platforms creates technological externalities across a set of related sectors, thus fostering 

regional economic growth (Cooke and De Propris, 2011).  

With respect to technology platforms, one important difference is identifiable: while high-

technology clusters are usually defined in terms of sectoral proximity, the distinctive element 

in the agglomeration effect defined by the presence of a technological platform is the 

underlying core technology (Robinson et al., 2007), around which spillovers arise and are 

exchanged (Iammarino and McCann, 2006). As Maurseth and Verspagen (2002) have shown, 

knowledge spillovers in Europe are often confined within a national dimension. Thus, 

innovations that are based on „distant‟ technologies may have a higher likelihood of success 

if the knowledge required for their development is characterised by a geographical proximity. 

Our second hypothesis builds upon these arguments to explore the presence of a national 

dimension in the process of knowledge synthesis carried out by technology platforms, where 

proximity in knowledge spillovers exert a positive effect on the integration of „distant‟ 

technologies.  

 

H2. Innovations which are spatially related are more likely to foster the development of 

original technologies.  

 

 

4. Empirical analysis 

 

4.1. Data 

The analysis presented is based on patent data from the EP-CRIOS
1
 database covering all 

patent applications made at the European Patent Office (EPO), whose priority date
2
 is 

comprised in the period between the year 1996 and 2006 included. The use of patents as 

                                                 
1
 For a detailed description, see Lissoni et al. (2006). 

2
 The priority date refers to the year of worldwide first filing.  Being the first date in the application process, 

this data can be considered as the closest to the date of invention. 
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measure of innovation has been adopted for a long time, and strengths and weaknesses are 

well known (see Pavitt, 1988, Griliches, 1990). Patent data are used extensively in the 

innovation literature for they have a wide coverage of innovative activity in almost all 

technological sectors, while ensuring the presence of a significant inventive step. Moreover, 

they are available for long periods of time and provide detailed and fine information on the 

technological characteristics of the patented invention, as well as inter-sectoral knowledge 

flows as provided by citations (Jaffe et al., 1993).  

Focusing on all patent applications for all 27 member countries of the European Union, the 

sample obtained accounts for 490444 patent applications. Data are obtained merging 

information from two related databases. The first is the EP-CRIOS database, which contains 

information on all patent documents from the EPO. Among these, the most relevant to our 

studies are: 

 

- Patent publication date, priority date, International Patent Classification (IPC) 

technological class; 

- Applicant data, such as names, addresses, NUTS3 level location and type (i.e.: private 

company, university or not for profit government organization); 

- Standardised inventor data, including all information available for applicants. 

 

The second database is the PATSTAT database, based on the EPO master documentation 

database (DOCDB), which is used to collect information on all forward and backward EPO 

to EPO citations for all the patents analysed in this paper. 

As we focus on EPO to EPO patent citations to build our indexes and carry out our analysis, a 

couple of considerations are in order. First, EPO patents do not represent the whole 

population of patent applications in Europe, as must first apply for the patent in their national 

patent office. However, we may expect patents with higher quality to be filed also at the 

European level. Second, patent examination at the EPO differs significantly form other 

offices such as the USPTO. In particular, while under the US patent system the applicant is 

required to list all citations relevant to the patent applied for, at the EPO the large majority of 

citations are added by the patent examiner.  Thus, it is possible the applicant may be not 

aware of some of the technologies included in the document citations (Maurseth and 

Verspagen, 2002). This does not imply that a citation link in EPO patents cannot be used as 

an indicator of technological relatedness. In fact, Criscuolo and Verspagen (2008) suggest the 
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opposite may be true, as EPO citations have been scrutinised by patent examiners to be closer 

in technological relevance and time to the filed invention. 

 

4.2. EPO applications: some stylised facts  

Before exploring the relationship between technology platforms and their binding effect on 

different technologies, in this Section we offer a broad overview of the data used in the 

analysis to offer a descriptive snapshot of the innovation activity in the European Union as 

depicted by EPO patent applications. 

 

Figure 1 – Patent applications per year for selected countries. 

 

 

In terms of total patent applications, there are well-known significant differences across 

Countries. This is shown for some of the largest Countries – in terms of patents - in Figure 1, 

where we report the number of patent applications to the EPO per year
3
. 

Substantial differences also take place across different IPC classes, reflecting the inter-

sectoral heterogeneity in the pace of technological change. At the same time, these 

differences are strongly country variant, in line with the technological specialisation of EU 

member states and the important specificities of the various national systems of innovation. 

This is reported in Figure 2, which shows the percentage of patent applications for each IPC 

                                                 
3
 We note that as the EPO is located in Germany, the number of applications from this Country may be over-

represented.  
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class with respect to the total number of applications from some selected Countries. While it 

is important to take into account that sectors have a different propensity to patent inventions
4
, 

some stylised facts emerge from Figure 2. The IPC classes with the highest percentage of 

patenting across the EU are class 3 (Telecommunications) and class 7  

 

Figure 2 – Percentage of EPO applications per IPC class. 

  

                                                 
4
 See, for example, Arundel and Kabla (1998). 
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(Technologies for Control/Measures/Analysis), followed by class 1 and class 27 (respectively 

Electrical engineering and Transport technology). Conversely, lower values are presented by 

class 9 (Nuclear technology), class 8 (Space technology) and 21 (Environmental 

Technologies). 

Interestingly, we can also observe significant differences across the selected Countries. For 

example, Germany presents higher specialisation in sectors such as Transport technology and 

Technologies for Control/Measures/Analysis, while France is stronger in 

Telecommunications and Electrical engineering. The UK is also strong in Technologies for 

Control/Measures/Analysis, but it also shows strong specialisation in Biotechnologies and 

Pharmaceuticals. Quite different is the case of Italy, whose higher values are associated with 

Handling and Printing technologies, Consumer goods and Civil engineering. Other countries 

are even more specialised. Sweden
5
, for example, holds almost a quarter of all its patent in 

the Telecommunications class, while for Finland this value goes up to around 40%. For the 

Netherlands, more than a third of all patents are in classes 2, 3 and 4. 

 

4.3. Econometric approach 

In this Section, we try to model the effect of technology platforms. Our aim is to provide 

empirical evidence that the presence of KETs that form the platform leads to a more 

sustained interaction across innovations characterised by a “distant” knowledge base (H1), 

and that this effect may be stronger within a national dimension (H2). In other words, we try 

to test the hypothesis that innovations whose effects take place in a wide range of 

technological fields might increase the likelihood of developing more original innovations 

that may shift away from previous technological trajectories, and whether there is a regional 

dimension related to this process. Thus, our model may be defined as follows: 

 

ORIGIN = f(KET, INTER, N_INVENTORS, COHERENCE, TECHDIV, KSTOCK, 

OWN_TYPE, F_CIT, B_CIT) 

 

4.3.1. Dependent variable 

To investigate the presence of technology shifts, we analyse patents escaping the path 

dependency inherent to the cumulative nature of technological change, as these can be seen 

                                                 
5
 Data are not reported here, but they are available upon request. 
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as „shifting technologies‟ that broaden the spectrum of the technological frontier.  Such 

patents can be also related to original and more radical innovations.  

An intuitive and well established proxy for these characteristics is offered by the „originality‟ 

index, labelled ORIGIN, which is a measure of the sector dispersion of backward citations. 

Following Trajtenberg et al. (1997), the index is calculated as the generality index, except 

that citations received are replaced by citations made by the company. Including the 

correction presented in Hall (2005) for small sample bias (i.e. Nbp / Nbp - 1), we have: 

 

2

,

1

1
1

K
b p b p k

p

kb p b p

N N
ORIGIN

N N

  
    

     

                                                                     (1)  

 

where K is the number of different IPC technological classes where the patent made citations, 

Nbp,k is the number of backward citations made to the k sector and Nbp the total number of 

citations made. 

 

4.3.2. Independent variables 

To capture the presence of key enabling technologies, represented by the variable KET, we 

make use of the generality index first proposed by Trajtenberg et al. (1997) to capture the 

generic nature of academic patents. This index provides a measure of the spread across 

different technological fields of follow-up innovations, and for this reason has been adopted 

as a proxy for the quality of enabling technology in the seminal paper by Hall and 

Trajtenberg (2004) on the measurement of general purpose technologies.  To calculate this 

variable, we follow the approach proposed by Trajtenberg et al. (1997), who construct the 

index as an inversed Herfindahl index, with values closer to 1 for patents with citations from 

a large spread across different technological classes and values close to 0 for patents cited in 

a small number of technological classes. Including the same correction introduced for the 

dependent variable, the generality index is defined for each patent p as follows: 

 

2

,

1

1
1

K
f p f p k

p

kf p f p

N N
GENERALITY

N N

  
    

     


                                                                  (2)  
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where K is the number of different IPC technological classes where patent p was cited, Nfp,k 

is the number of forward citations for the k sector and Nfp the total number of forward 

citations6. The value for our variable, KET, is defined as the average level of GENERALITY 

across the backward citations of each patent application. 

To address our second hypothesis related to the degree of internationalisation of technology 

flows in the development of technology platforms (associated to the coordination across 

technologies and the localised effect of knowledge spillovers), we introduce a variable 

capturing the international dimension of knowledge flows (INTER), which is defined as the 

proportion of backward citations to the same Country as the original patent over the total 

number of backward citations7.  

 

The next variable, labelled N_INVENTORS, is given by the number of inventors that 

registered the patent. The simple idea behind this is that the broader the range of actors 

participating and therefore the elements of combinative capability involved, the higher the 

opportunities for cross-fertilisation of competencies and the broader the scope of new 

technologies.  

 

A first set of control variables includes the coherence between the patents, the technological 

diversification among applicants and their R&D intensity.  

 

The first variable of this group, defined as technological coherence (COHERENCE), is a 

measure of the technological distance within the backward citations underpinning the original 

patent. COHERENCE is based on the concept of knowledge-relatedness suggested by 

Breschi et al. (2003). With this variable, we control for the fact that some technological fields 

are more likely to “communicate” to each other. We proceed calculating the knowledge-

relatedness matrix whose elements are given by the cosine index Sij, that measure the 

similarity between two technological classes i and j with respect to their relationship with all 

other IPC classes (For a detailed description, see Breschi et al., 2003). Formally, we have: 

 

                                                 
6
 It follows from the definition of GENERALITY, that the index is not defined for patents with zero backward 

citations. Patents with only one backward citation have the index set equal to 0 by construction. 
7 Different levels of regional dimension have been explored, as patent data are available at the NUTS3 level. 
However, results are similar to the analysis conducted at the national level. Results are based on the NUTS3 
level for the patent applicant, but similar findings are obtained using data on the NUTS3 of inventors. 
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                                                                                               (3)                                              

 

where Si,j represents the number of patents that have been classified in both sectors i and j 

using information on all UK patents between 1996 and 2006. This process generates a 30X30 

square matrix M8 that can be used to measure knowledge-relatedness between patents and 

patent citations in time t. Thus, the index COHERENCE is given by the average value of 

knowledge-relatedness between the IPC of the original patent and those of each backward 

citation. 

 

To control for R&D intensity we use the knowledge stock of the owner of the original patent 

(KSTOCK)9, which is based on the past history of innovation, as companies with more R&D 

capabilities have higher absorptive capacity and are more likely to pursue broader processes 

of technological search. The proxy for the R&D intensity of the inventors is measured 

through the patent stock of the inventor up to time t. In line with the existing literature we 

measure the patent stock (KSTOCK) as: 

 

1(1 )it it itKSTOCK P KSTOCK   
                                                                      (4) 

 

where itP
 represents the number of patents at the beginning of year t and δ is the depreciation 

rate, which is usually assumed to be 15% (Hall et al., 2005)10.  

 

Then, we include a measure of the technological diversification within companies‟ innovation 

activity to control for the possibility that inventors characterised by a broader technological 

base might present higher „combinative‟ capabilities (Kogut and Zander, 1992) and stronger 

absorptive capacity, leading to more original inventions. To measure technological 

                                                 
8
 Values for the matrix are available upon request. 

9 For the formal definition, see previous Section. 
10 Given that our database contains information on all patent applications, we do not need account for the 
effect of missing initial conditions. 
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diversification (TECHDIV) we make use of an index which is based on a measure of 

technological proximity. It is calculated as the inverse of the Herfindahl index, confronting 

patents for each IPC technological class against the total number of patent of a given 

company. Again, we correct the index using the bias correction indicated by Hall (2005) to 

account for observations with few patents per year. The index is formally defined as follows: 
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where Nit is the total number of patents for the ith company in year t, while k represents the 

IPC category where the firm patented and K is the total number of technological classes 

where the company was active. It follows that due to the nature of the formula of TECHDIV, 

companies with less than two patents per year had to be omitted from the analysis. 

 

We add a series of control variables to capture the role of University owned patents 

(UNIV_O), not for profit Government organizations (GNP) and others, as these have often 

been associated with more original patents.  

 

Finally, the variables FCIT8 and CITATIONS are introduced to control for the quality of the 

patent and the number of backward citations included in the application. Given the wide 

variance in the quality of the patents, accounting for the number of forward citations in the 

following 8 years ensures that the effect of technology platforms is consistent for both low 

and high quality patents, the latter being obviously more interesting as a case. The number of 

backward citations is included as an additional control for the propensity to add more 

citations in sectors where patents are traditionally used as a means of intellectual property 

protection.  

 

4.3.3. Estimation method 

In the regression analysis, the originality index that constitutes our dependent variable 

presents values that fall within the open bounded interval I = (0, 1). Hence, predicted values 

from OLS regression or spline methods may generate predicted values lying outside the unit 

interval. At the same time, modelling the log-odds ratio as a linear function is an inefficient 
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solution as values for our dependent variable standing on the interval boundaries zero and one 

would not be handled. Adjusting such values is also inappropriate. To address this issue, we 

make use of the fractional response model11 suggested by Papke and Wooldridge (1996), 

who show that quasi-maximum likelihood estimation (QMLE) can be used to obtain robust 

estimators of the conditional mean parameters.  

 

 

5. Results 

 

5.1. Descriptive Results 

For a first understanding of possible differences at the Country level in the qualities of 

originality
12

 and generality across different types of applicants, in Figure 3 and Figure 4 we 

report the average values of originality and generality across five selected Countries for 

private companies, universities, government non-profit agencies (GNP) and others. As we 

can see from the Figure 3, there are similar levels of originality observed across the five 

member Countries selected, and at the same time we see that the rankings between the four 

groups of inventors also presents similar patterns across them. In particular, universities and 

non-profit government organisations seem to develop patents characterised by higher levels 

of originality with respect to private companies
13

. However, whilst in Germany and the UK 

governmental non-profit organisations seem to produce patents with higher values of 

originality, in the other countries University generated patents present the higher values. 

These differences are likely to be related to the specific structure of the different national 

innovation systems. With respect to the public research system, it is important to underline 

the presence of differences in the role and the importance in terms of innovation output 

between universities and other types of public research organisations (For an introduction, 

see Lissoni and Montobbio, 2012). In this sense, our findings seem to suggest a closer 

relationship with fundamental research in Germany and the UK
14

. Finally, it is interesting to 

note a significantly high value for university generated patents in Sweden. 

 

                                                 
11

 Estimates are robust to more standard methods like logit or probit. 
12

 Values for originality are calculated for patent applications with at least 2 backward citations. 
13

 T-tests for mean differences are significant at the .001 level. 
14

 Two notable examples may be the Cancer Research Institute in the UK and the Max Planck institute in 
Germany. 
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Figure 3 – Average patent originality across selected EU members and type of 

applicant. 

 

 

Figure 4 shows that the level of generality is more heterogeneous across type of applicant and 

Countries. Germany and the UK seem to develop more general inventions, but the wider 

differences take place across the four categories analysed. As observed for originality, 

companies present lower values than universities of governmental non-profit organisations
15

. 

The ranking among these two groups is once again mixed. In particular, for Italy and Sweden 

we note quite a gap between private companies‟ and universities‟ generality values: this can 

be explained by the sector specialised nature of innovation in companies in these countries as 

opposed to university research still much engaged with basic research.  

Overall, we find that both measures of originality and generality seem to support previous 

findings from the literature indicating that university-owned patents and GNPs are on average 

more original and general than patents generated by private companies.
16

 

The level of generality differs across technological classes. This is shown in Figure 5, where 

we report the average value for generality across IPC classes for the EU as a whole and in the 

five selected countries. While we observe that generality is fairly country invariant, we see 

clear differences at the technological level. Sectors characterised by a higher level of 

generality (e.g.: > 0.5) include Organic chemistry (10), Macromolecular Chemistry (11), 

Surface technology (13), Biotechnology (15), Technical processes (18) and environmental 

technologies (21). Conversely, lower levels are found for Telecommunications (3), Medical 

engineering (8) and Civil engineering (21)
17

. These technological classes resemble those 

                                                 
15

 Mean differences are significant at the .001 level. 
16

 For a broader discussion of the differences between university-owned and company-owned patents, see 
Lissoni and Montobbio (2012). 
17

 We are currently working on a network analysis to analyse technological flows across different technologies. 
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identified by both the European Commission and the UK Technology Strategy Board
18

 as 

enabling technologies. Some differences remain, notably in a more prominent role of 

environmental technologies and a low level of generality for telecommunications.
19

 

 

Figure 4 – Average patent generality across selected EU members and type of applicant. 

 

 

Figure 4 – Average generality across IPC classes.  

 

 

 

 

                                                 
18

 See Appendix, Table A.1. 
19

 We point out that other classes related to ICT present significant generality, such as Audiovisual technology 
(2), Information technology (4) and Semiconductors (5). 
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5.2. Regression results 

In this Section, we present the results based on our empirical framework. We present 

descriptive statistics in Table 1, while the correlation matrix of the variables employed is 

reported in Table 2. With respect to the latter, it is particularly interesting to see that there is a 

medium-high negative correlation between technological coherence across backward 

citations and the level of generality among these, indicating that patents that are based on 

distant technologies tend to rely on technologies that are characterised by a broad 

technological applicability. As expected, there is a positive correlation between knowledge 

stock and the level of technological diversification, while a negative correlation is present 

between coherence and originality. 

 

Table 1 – Descriptive statistics. 

  Obs Mean St.Dev Median Max Min VIF Tolerance 

Origin 379028 0.48 0.37 0.59 1 0   

Ket 370420 0.46 0.28 0.52 1 0 1.95 0.51 

Inter 370429 0.66 0.38 0.76 1 0 1.01 0.99 

N_inventors 379069 2.45 1.75 2 49 0 1.04 0.96 

Coherence 378771 0.75 0.26 0.83 1 0.01 1.78 0.56 

Techdiv 287041 0.62 0.25 0.68 1 0 1.15 0.87 

Kstock 379069 876.16 2021.54 57.23 11091.8 1 1.14 0.87 

Fcit8 379069 1.44 2.76 1 144 0 1.04 0.96 

Citations 379069 3.27 3.29 2 128 1 1.05 0.96 

 

Table 2 – Correlation matrix. 

  1 2 3 4 5 6 7 8 9 

Origin 1         

Ket 0.556 1        

Inter 0.026 0.045 1       

N_inventors 0.088 0.079 -0.039 1      

Coherence -0.499 -0.633 -0.024 -0.003 1     

Techdiv 0.091 0.068 -0.017 0.116 -0.018 1    

Kstock -0.062 -0.101 0.018 0.017 0.073 0.326 1   

Fcit8 0.024 0.031 -0.007 0.086 -0.015 0.011 -0.021 1  

Citations 0.061 0.047 -0.014 0.094 -0.041 0.015 -0.043 0.181 1 
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The estimates from the fractional response model are reported in Table 3. Column (1) reports 

the results using applications from all 27 EU member states, while the other columns show 

the results for the five selected Countries.  

The estimates for KET are in line with our first hypothesis that key enabling technologies 

support the development of more original patent applications, with the relative coefficients 

being positive and statistically significant across all different columns. In other words, even 

after controlling for patents‟ technological class
20

 and coherence across backward citations, 

patents based on general technologies - or KETs - are significantly more likely to be original 

and to integrate components from a wider range of different technologies. Such technologies 

can be regarded as exerting a binding effect that may ultimately lead to technological shifts or 

innovation cascades. 

The role of INTER, that is, the proportion of citations from countries other than the one of the 

citing patent, presents a mixed picture with different coefficients across the countries 

analysed. In particular, for Germany and Italy is positive and significant, while for Sweden is 

significant but negative
21

. Such results are likely to be related to both the characteristics of 

the specific national systems of innovation and to the sector specialisation or diversification 

of the technological base in such countries. Overall, we have not found convincing evidence 

of a European innovation system. Further analysis is needed to explore this possibility.  

Control variables behave as expected. We find a general positive effect in the presence of a 

larger team of inventors (N_INVERTORS), a negative sign for COHERENCE and a positive 

one for TECHDIV. In this sense, our findings confirm that patent applications which are 

based on similar technologies are less likely to be disruptive. Conversely, companies that are 

able to engage in different technological avenues present a higher likelihood of being able to 

benefit from and integrate distant technologies, thus developing more original innovations. 

The role of university and GNP patents, like INTER, is less clear cut. While for the EU 

overall the coefficient is statistically significant, Germany and France are the only countries 

where these variables present a positive and significant effect. Again, such differences might 

be explained in terms of different national systems of innovation. At the same time, these 

findings may also suggest that the level of originality usually associated with universities‟ 

patents depend more on their ability to use general technologies, or KETs, in their innovation  

                                                 
20

 Similar models have been also carried out for single ICP classes, but estimates are fairly robust to the 
different model specifications. Estimates are available upon request. 
21

 Negative coefficients are found also for France and UK, but they are significant only at the .10 level. 



 
 

22                                                 
 

Table 3 – Fractional response model estimates for Originality. 

Fractional response model - GLM robust estimates 

  (1) (2) (3) (4) (5) (6) 

  All countries Germany UK France  Italy Sweden 

       KET 2.339*** 2.323*** 2.136*** 2.375*** 2.353*** 2.484*** 

 
(0.0185) (0.0261) (0.0674) (0.0467) (0.0803) (0.0884) 

INTER 0.0146 0.0423*** -0.0612+ -0.0396+ 0.143*** -0.0973* 

 
(0.00893) (0.0122) (0.0313) (0.0233) (0.0418) (0.0431) 

N_INVENTOR

S 
0.00892*** 0.00796*** 0.0131** 0.00866+ 0.0119 0.0108 

 
(0.00151) (0.00203) (0.00443) (0.00507) (0.00899) (0.00662) 

COHERENCE -2.262*** -2.252*** -2.204*** -2.297*** -2.152*** -2.675*** 

 
(0.0204) (0.0288) (0.0708) (0.0522) (0.0900) (0.105) 

TECHDIV 0.300*** 0.344*** 0.146*** 0.331*** 0.267*** 0.355*** 

 
(0.0130) (0.0197) (0.0365) (0.0374) (0.0516) (0.0597) 

KSTOCK -0.000*** -0.000*** -0.000+ -0.000 0.000 -0.000*** 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

GNP 0.0286+ 0.0433+ -0.0902 0.0131 0.108 -0.499 

 
(0.0167) (0.0258) (0.0681) (0.0288) (0.117) (0.343) 

UNIV_O 0.0465+ 0.0494 0.0142 0.176+ 0.0425 -0.151 

 
(0.0258) (0.0635) (0.0388) (0.0915) (0.138) (0.357) 

OTHER 0.0508 0.129+ 0.0339 -0.0624 0.0932 0.767* 

 
(0.0346) (0.0705) (0.0860) (0.0635) (0.0984) (0.368) 

FCIT8 0.00624*** 0.00858*** 0.00623** 0.00453* 0.00734 0.00144 

 
(0.000751) (0.00116) (0.00205) (0.00230) (0.00456) (0.00239) 

B_CITATIONS 0.00872*** 0.0161*** -0.00129 0.00851*** 0.0126*** -0.00313 

 
(0.000585) (0.00103) (0.00130) (0.00168) (0.00330) (0.00207) 

Constant 0.955*** 0.576*** 0.973*** 0.717*** 0.525*** 0.953 

 
(0.1209) (0.0417) (0.1617) (0.0742) (0.1308) (0.628) 

       Obs. 277983 132872 23805 44217 14314 15301 

Country 

dummies Yes No No No No No 

Time dummies Yes Yes Yes Yes Yes Yes 

IPC dummies Yes Yes Yes Yes Yes Yes 

+ p<0.10 * p<0.05 ** p<0.01 *** p<0.001 

 

processes. This is supported by our findings on the value of KET across different types of 

applicants, as reported in Figure 5, where universities and GNP organisations are found to 

show much higher value for KET than private companies.  

Finally, the remaining control variables related to backward and forward citations both show 

a positive coefficient in most of the columns of Table 3, with the exception of columns (5) 

and (6) based on Swedish and Italian patents. In these cases, though, estimates are not 



 
 

23                                                 
 

statistically significant. While it is not surprising that original patent are positively associated 

with more forward citations, the finding for CITATIONS is more interesting, as it suggests 

that previous knowledge is an important element in the development of more original 

inventions. 

 

Figure 5 – Average value of KET across selected EU members and type of applicant. 

 

 

 

6. Conclusions 

In this paper, we have investigated the role played by technology platforms in enhancing 

cross-fertilisation across different technological domains, thus fostering the development of 

more original and radical inventions that combining a number of different but related 

technologies enables technological shifts or technological trajectory leapfrogging.  

Using patent data from the EPO for the period between 1996 and 2006, we have first offered 

some stylised facts regarding the level of generality and originality across technological 

classes for EU country members, also exploring differences across types of inventors 

(companies, universities and governmental not-for-profit organisations). Our findings show 

that there is a significant heterogeneity across technologies, and this pattern seems to be 

country-invariant. Moreover, we have confirmed previous studies pointing out the higher 

levels of generality and originality for patents generated by universities as against private 

companies, and the positive correlation among these characteristics. Then, we have provided 

empirical evidence that inventions are more likely to be original if they have technological 

antecedents characterised by the specific qualities of technology platforms, that is, a broad 
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and swift applicability across a wide range of different technological applications. More 

generally, our findings suggest that technology platforms play an important role in fostering 

technology flows across sectors, ultimately leading to the emergence of innovations that are 

more radical in nature and that are more likely to be conductive to technological breaks and 

leapfrogging on new technological trajectory.  

Our results have relevant policy implications. In particular, concrete policy recommendations 

can be formulated on two levels. Firstly, universities and to a lesser extent governmental not-

for-profit organisations play a crucial role in integrating a wide range of technological patents 

and by using them to produce radical innovations. More interestingly, we have shown that the 

crucial role they play in terms of technological integration and radical innovation lies in their 

higher propensity to effectively adopt KETs within their innovation activity. Accordingly, 

public funded research can be seen as a key driver of basic research and radical innovations, 

as well as important as being a boundary-spanner in connecting, translating and integrating 

different technological knowledge. This would seem to suggest that the Europe 2020 

commitment to pushing R&D investment to 3% of GDP is crucially important to enable the 

EU to either maintain or gain a leading position in new technologies.  

Secondly, from the most complete EU-wide patent database we have been able to derive what 

are those technologies that can be intrinsically defined as enabling technologies. These are 

those with higher level of generality (e.g.: > 0.5), including Organic chemistry (10), 

Macromolecular Chemistry (11), Surface technology (13), Biotechnology (15), Technical 

processes (18) and environmental technologies (21). These technologies are able to generate 

a spawning of patents spreading across different technological fields and for this reason they 

are enabling technology with the potentials to enhance the innovative capacity of other 

sectors. These technologies can be considered the root of a number of derivatives and 

applications that trickling down the innovation process will in the end produce products and 

services that will satisfy the changing needs of our society from aging to pollution. It is 

desirable for Europe to have a grip on such enabling technologies and to embed such 

enabling technologies in technology platforms that are located in European regions. Regional 

spillovers effects will work to diffuse such innovations across embedded regional innovation 

systems. 
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APPENDIX 

 

Table A.1 - Enabling technologies identified by the European Commission and the UK 

Technology Strategy Board. 

 

European Commission 

 

UK Technology Strategy Board 

Micro- and nanoelectronics Electronics, sensors and photonics 

Nanotechnology Nanotechnology is embedded in all themes 

where there are possibilities 

Photonics See above 

Advanced materials Advanced materials 

Industrial biotechnology Biosciences 

 Information and communication 

technology 

Advanced manufacturing technologies 

(recognised as a "cross-cutting" KETs) 

High value manufacturing (a competence 

to be applied to the technologies) 

 Digital services (a competence to be 

applied to the technologies) 
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Table A.2 – International patent classification (IPC) technological classes 

OST30-code OST30-name 

1 Electrical engineering 

2 Audiovisual technology 

3 Telecommunications 

4 Information technology 

5 Semiconductors 

6 Optics 

7 Technologies for Control/Measures/Analysis 

8 Medical engineering 

9 Nuclear technology 

10 Organic chemistry 

11 Macromolecular chemistry 

12 Basic chemistry 

13 Surface technology 

14 Materials; Metallurgy 

15 Biotechnologies 

16 Pharmaceuticals; Cosmetics 

17 Agricultural and food products 

18 Technical processes (chemical, physical, mechanical) 

19 Handling; Printing 

20 Materials processing, textile, glass, paper 

21 Environmental technologies 

22 Agricultural and food apparatuses 

23 Machine tools 

24 Engines; Pumps; Turbines 

25 Thermal processes 

26 Mechanical elements 

27 Transport technology 

28 Space technology; Weapons 

29 Consumer goods 

30 Civil engineering 

  

 

 

 

 


