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US Health and Aggregate Fluctuations:

Technical Appendix

Aleksandar Vasilev∗

December 8, 2014

1 Household Optimization Problem

The household haves to solve a stochastic optimal control problem, with market and non-

market consumption and hours as controls, and home and market capital as endogenous

state variables. Set up the Lagrangian

L = E0

∞∑
t=0

βt{lnCt + ψ lnGt + θ ln(1−Hg
t −BG−ξ −Hw

t )

+λt[(1− τ l)wtHw
t + (1− τ k)rtKt − Tt −Kt+1 + (1− δk)Kt − Ct]

+µt[Zt(H
g
t )φ + (1− δg)Gt −Gt+1]}

This is a concave programming problem, so the FOCs, together with the additional, bound-

ary (”transversality”) conditions for private physical capital and government bonds are both

necessary and sufficient for an optimum.

To derive the FOCs, first we take the derivative of the Lagrangian w.r.t Ch
t (holding all

other variables unchanged) and set it to 0, i.e. LCht = 0. That will result in the following

expression

LCt = 0→ 1

Ct
= λt (1)

∗Asst. Professor and CERGE-EI Affiliate Fellow, Department of Economics, American University in

Bulgaria, 1 Georgi Izmirliev Sq., Blagoevgrad 2700, Bulgaria. E-mail for correspondence: avasilev@aubg.bg.

1



This optimality condition equates marginal utility of consumption to the marginal utility of

wealth.

Now take the derivative of the Lagrangian w.r.t Kt+1 (holding all other variables unchanged)

and set it to 0, i.e. LKt+1 = 0. That will result in the following expression

LKt+1 = 0→ λ1t = βEtλ
1
t+1

[
(1− τ k)α Yt+1

Kt+1

+ (1− δk)
]

(2)

This is the Euler equation, which determines how consumption is allocated across periods.

Now take the derivative of the Lagrangian w.r.t Hw
t , i.e. LHw

t
= 0 (holding all other variables

unchanged). This will result in the following expression

LHw
t

= 0→ θ

1−Hg
t −Hs

t −Hw
t

= λt(1− τ l)(1− α)
Yt
Hw
t

=
1

Ct
(1− τ l)(1− α)

Yt
Hw
t

(3)

Now take the derivative of the Lagrangian w.r.t Hw
t , i.e. LHg

t
= 0 (holding all other variables

unchanged). This will result in the following expression

LHg
t

= 0→ θ

1−Hg
t −Hs

t −Hw
t

= µtφZt(H
g
t )φ−1 (4)

or

µt =

1
Ct

(1− τ l)(1− α) Yt
Hw
t

φZt(H
g
t )φ−1

Now take the derivative of the Lagrangian w.r.t Gh
t , i.e. LGht = 0 (holding all other variables

unchanged). This will result in the following expression

LGt+1 = 0→ β{ ψ

Gt+1

+
θBξG−ξ−1t+1

1−Hg
t+1 −Hs

t+1 −Hw
t+1

+ µt+1(1− δg)} = µt (5)

Note that

θBξG−ξ−1t+1

1−Hg
t+1 −Hs

t+1 −Hw
t+1

= BξG−ξ−1t+1 µt+1φZt(H
g
t+1)

φ−1

Then

β{ ψ

Gt+1

+BξG−ξ−1t+1 µt+1φZt(H
g
t+1)

φ−1 + µt+1(1− δg)} = µt (6)

This FOC shows the optimality condition for inter-temporal allocation of health: the house-

hold equates the benefits and costs. The discounted benefit has three parts: First, a higher
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health level tomorrow brings higher utility (the direct effect of health). Second, better health

means less sick time, hence indirectly more time to work and consumption. Thirdly, higher

health means higher undepreciated health level and thus less replenishment is needed to get

back to the old level. The cost is that a larger replenishment was done in the previous period.

2 Representative Firm’s Problem

The profit function is maximized when the derivatives of that function are set to zero.

Therefore, the optimal amount of capital - holding the level of technology At and labor

input Hw
t constant - is determined by setting the derivative of the profit function with

respect to Kt equal to zero. This derivative is

αAt(H
w
t )1−αKα−1

t − rt = 0 (7)

where αAt(H
w
t )1−αKα−1

t is the marginal product of capital because it expresses how much

output will increase if capital increases by one unit. The economic interpretation of this

First-Order Condition (FOC) is that in equilibrium, firms will rent capital up to the point

where the benefit of renting an additional unit of capital, which is the marginal product of

capital, equals the rental cost, i.e the interest rate.

rt = αAt(H
w
t )1−αKα−1

t (8)

Now, multiply by Kt and rearrange terms. This gives the following relationship:

αAt(H
w
t )1−αKα−1

t Kt = rtKt or αYt = rtKt (9)

because

αAt(H
w
t )1−αKα−1

t Kt = αAt(H
w
t )1−αKα

t = αYt (10)

To derive firms’ optimal labor demand, set the derivative of the profit function with respect

to the labor input equal to zero, holding technology and capital constant:

(1− α)At(H
w
t )−αKα

t − wt = 0 or wt = (1− α)At(H
w
t )−αKα

t (11)

In equilibrium, firms will hire labor up to the point where the benefit of hiring an additional

hour of labor services, which is the marginal product of labor, equals the cost, i.e the hourly
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wage rate.

Now multiply both sides of the equation by Hw
t and rearrange terms to yield

(1− α)At(H
w
t )−αKα

t H
w
t = wtH

w
t or (1− α)Yt = wtH

w
t (12)

Next, it will be shown that in equilibrium, economic profits are zero. Using the results above

one can obtain

Πt = Yt − rtKt − wtHw
t = Yt − αYt − (1− α)Yt = 0 (13)

Indeed, in equilibrium, economic profits are zero.

3 Steady-State Computation

Shutting down all stochasticity, we obtain

1 = β[(1− τ k)αy
k

+ 1− δk]

1

c
= λ

θ

1− hg −Bg−ξ − hw
=

1

c
(1− τ l)(1− α)

y

hw

β{ψ
g

+Bξg−ξ−1µφ(hg)φ−1 + µ(1− δg)} = µ

Collecting all µ terms to the right we obtain

β
ψ

g
= µ[1− βBξg−ξ−1φ(hg)φ−1 − β(1− δg)]

µ =
βψ/g

1− βBξg−ξ−1φ(hg)φ−1 − β(1− δg)

c+ δkk = kα(hw)1−α
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Outline of the steady-state computation procedure: First, from the Euler equation, we can

obtain the capital-to-output ratio k/y, or capital-to-hours ratio, since y/k = (k/hw)α−1.

Then we impose that in steady-state hw = 1/3, and obtain steady-state capital stock k,

investment ik and output y. From market clearing, we obtain steady-state consumption c.

Next, using that steady-state exercise hours hg = 0.02 and the law of motion of health,

we can compute steady-state health status g = (1/δg)(hg)φ. Setting steady-state sick days

hs = 0.02 in the relationship hs = Bg−ξ, we obtain B = hsgξ. Finally, we can find θ from

the marginal rate of substitution between consumption and hours worked.

4 Per capita stationary DCE

Since the model in stationary and per capita terms by definition, there is no need to transform

the optimality conditions, i.e Xh
t = Xt = xt. We obtain the following system of equations

that describe the DCE.

yt = atk
α
t (hwt )1−α (14)

yt = ct + kt+1 − (1− δk)kt (15)

1

ct
= λt (16)

λt = βEtλt+1

[
(1− τ k)α Yt+1

Kt+1

+ 1− δk
]

(17)

θ

1− hgt − hst − hwt
= λt(1− τ l)(1− α)

yt
hwt

(18)

θ

1− hgt − hst − hwt
= µtφzt(h

g
t )
φ−1 (19)

β

{
ψ

gt+1

+Bξg−ξ−1t+1 µt+1φzt(h
g
t+1)

φ−1 + µt+1(1− δg)
}

= µt (20)

kt+1 = ikt + (1− δk)kt (21)
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gt+1 = igt + (1− δg)gt (22)

hst = Bg−ξt (23)

igt = zt(h
g
t )
φ (24)

Therefore, the DCE is summarized by Equations (22)-(32) in the paths of the following 11

variables {yt, ct, gt, ikt , i
g
t , kt, h

w
t , h

g
t , h

s
t , λt, µt}∞t=0 given the paths of government transfers {tt}

and the exogenously set stationary processes, {at, zt}∞t=0, whose motion was determined in

the previous subsection.

5 Log-linearized system

Since there is no closed-form general solution for the model, the model is approximated by

log-linearizing the stationary DCE equations, where x̂t = lnxt − lnx. The log-linearized

system of model equations is as below1

kk̂t+1 = yŷt − cĉt + (1− δk)kk̂t (25)

0 = −ŷt + ât + αk̂t + (1− α)ĥwt (26)

−ĉt = λ̂t (27)

λ̂t = Etλ̂t+1 +
β(1− τ k)αy

k
Etŷt+1 −

β(1− τ k)αy
k

Etk̂t+1 (28)

ĥst = −ξĝt (29)

hw

(1− hwt − hst − hwt )
ĥwt +

hs

(1− hwt − hst − hwt )
ĥst (30)

+
hg

(1− hwt − hst − hwt )
ĥgt = λ̂t + ŷt − ĥwt (31)

µ̂t + ẑt + φĥgt = λ̂t + ŷt − ĥwt (32)

−[
βψ

gµ
+ βξ(ξ + 1)g−ξ−1zφ(hg)φ−1]ĝt+1 + β[ξg−ξ−1zφ(hg)φ−1 + (1− δg)]µ̂t+1

+βξg−ξ−1zφ(hg)φ−1ẑt+1 − βξg−ξ−1zφ(φ− 1)(hg)φ−1ĥgt+1 = µ̂t (33)

1Detailed derivations in Appendix 12.4.1-12.4.16
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k̂t+1 = δk ît + (1− δk)k̂t (34)

ĝt+1 = δg îgt + (1− δg)ĝt (35)

îgt = ẑt + φĥgt (36)

ât+1 = ρaât + εat+1 (37)

ẑt+1 = ρz ẑt + εzt+1 (38)

6 Auto- and Cross-correlation Functions

The main emphasis in this subsection is on the ACFs and CCFs of labor market variables.

In particular, close attention is paid to cyclical properties of public and private wage rates

and hours. To establish 95% confidence intervals for the theoretical ACFs and CCFs, as

in Gregory and Smith (1991), the simulated time series are used to obtain 1000 ACFs and

CCFs. The mean ACFs and CCFs are computed by averaging across simulations, as well

as the corresponding standard error across simulations. Those moments allow for the lower

and upper bounds for the ACFs confidence intervals to be estimated. The empirical ACFs

and CCFs are then plotted, together with the theoretical ones. If empirical ACFs lie within

the confidence region, this means that the calibrated model fits data well.

Empirical ACFs and CCFs were generated from a Vector Auto-Regressive (VAR) process of

order 1. Since ACFs and CCFs are robust to identifying restrictions (Canova (2007), Ch.7),

the VAR(1) was left unrestricted. However, not all the variables in x̂t are observable. As

proposed by Kim and Pagan (1994), a VAR was estimated using x̃t, model variables on

which data was available, where

x̃t =
[
yt ct it hwt wpt

]′
. (39)

7 Log-linearization

7.1 Linearized Market Clearing

ct + kt+1 − (1− δ)kt = yt (40)
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Take natural logarithms from both sides to obtain

ln[ct + kt+1 − (1− δ)kt] = ln(yt) (41)

Totally differentiate with respect to time to obtain

d ln[ct + kt+1 − (1− δ)kt]
dt

= d ln(yt) (42)

Simplify to obtain

[
1

ct + kt+1 − (1− δ)kt
][
dct
dt

c

c
+
dkt+1

dt

k

k
− (1− δ)dkt

dt

k

k
] =

dyt
dt

1

y
(43)

Pass to log-deviations to obtain

1

y
[ĉtc+ k̂t+1k − (1− δ)k̂tk] = ŷt (44)

Multiply both sides to obtain

ĉtc+ k̂t+1k − (1− δ)k̂tk = yŷt (45)

Rearrange terms to obtain

kk̂t+1 = yŷt − cĉt + (1− δ)kk̂t (46)

7.2 Linearized Production Function

yt = at(kt)
α(hwt )1−α (47)

Take natural logarithms to obtain

ln yt = ln at + α ln kt + (1− α) lnhwt (48)

Totallt differentiate with respect to time to obtain

d ln yt
dt

=
d ln at
dt

+ α
d ln kt
dt

+ (1− α)
d lnhwt
dt

(49)

Simplify to obtain
1

y

dyt
dt

=
1

a

dat
dt

+
α

k

dkt
dt

+
(1− α)

hw
dhwt
dt

(50)

Pass to log-deviations to obtain

0 = −ŷt + ât + αk̂t + (1− α)ĥwt (51)
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7.3 Linearized FOC consumption

1

ct
= λt (52)

Take natural logarithms from both sides to obtain

ln
1

ct
= lnλt (53)

− ln ct = lnλt (54)

Totally differentiate with respect to time to obtain

−d ln ct
dt

=
d lnλt
dt

(55)

−dct
dt

1

c
=
dλt
dt

1

λ
(56)

Pass to log-deviations to obtain

−ĉt = λ̂t (57)

7.4 Linearized no-arbitrage condition for capital

λt = βEtλt+1

[
(1− τ k)rt+1 + 1− δk

]
(58)

Substitute out the real interest rate with the marginal product of capital

λt = βEt

[
λt+1(1− τ k)α

yt+1

kt+1

+ 1− δk
]

(59)

Take natural logarithms from both sides to obtain

lnλt = lnEt

[
λt+1(1− τ k)α

yt+1

kt+1

+ 1− δk
]

(60)

Totally differentiate with respect to time to obtain

d lnλt
dt

=

d lnEt

[
λt+1(1− τ k)α yt+1

kt+1
+ 1− δ

]
dt

(61)

1

λ

dλt
dt

= Et

{
1

λ(1− τ k)α y
k

+ 1− δ

[
(1− τ k)αy

k
+ 1− δk

]
dλt+1

dt

λ

λ
(62)

+
λ(1− τ k)α

k

dyt+1

dt

y

y
−
[
λ(1− τ k)αy

k2

]
dkpt+1

dt

k

k

}
(63)
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Pass to log-deviations to obtain

λ̂t = Et

{
λ̂t+1 +

(1− τ k)αy[
(1− τ k)α yt+1

kt+1
+ 1− δk)k

] ŷt+1 −
αy[

(1− τ k)α yt+1

kt+1
+ 1− δk

]
k

k̂t+1

}
(64)

Observe that

(1− τ k)αy
k

+ 1− δk = 1/β (65)

Plug the above expression back to obtain

λ̂t = Et

[
λ̂t+1 +

β(1− τ k)αy
k

ŷt+1 −
β(1− τ k)αy

k
k̂t+1

]
(66)

Apply the expectations operator to each term to obtain

λ̂t = Etλ̂t+1 +
β(1− τ k)αy

k
Etŷt+1 −

β(1− τ k)αy
k

Etk̂t+1 (67)

7.5 Linearized Sick Days

hst = Bg−ξt (68)

Take natural logarithms from both sides to obtain

lnhst = lnBg−ξt (69)

Totally differentiate with respect to time to obtain

d lnhst
dt

= −ξ d ln gt
dt

(70)

Simplify to obtain
dhst
dt

1

hs
= −ξ dgt

dt

1

g
(71)

Pass to log-deviations to obtain

ĥst = −ξĝt (72)

7.6 Linearized FOC hours

θ(1− hwt − hst − hwt )−1 = λt(1− τ l)α
yt
hwt

(73)

Take natural logarithms from both sides to obtain

ln θ(1− hwt − hst − hwt )−1 = lnλt(1− τ l)α
yt
hwt

(74)
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Simplify to obtain

− ln(1− hwt − hst − hwt ) = lnλt + ln yt − lnhwt (75)

Totally differentiate with respect to time to obtain

−
−dhgt

dt
− dhst

dt
− dhwt

dt

(1− hwt − hst − hwt )
=
d lnλt
dt

+
d ln yt
dt
− d lnhwt

dt
(76)

dhgt
dt

+
dhst
dt

+
dhwt
dt

(1− hwt − hst − hwt )
=
d lnλt
dt

+
d ln yt
dt
− d lnhwt

dt
(77)

dhgt
dt

hg

hg
+

dhst
dt

hs

hs
+

dhgt
dt

hs

hs

(1− hwt − hst − hwt )
= λ̂t + ŷt − ĥwt (78)

Pass to log-deviations to obtain

hw

(1− hwt − hst − hwt )
ĥwt +

hs

(1− hwt − hst − hwt )
ĥst

+
hg

(1− hwt − hst − hwt )
ĥgt = λ̂t + ŷt − ĥwt (79)

7.7 MPL equalization

µtφzt(h
g
t )
φ−1 = λt(1− τ l)α

yt
hwt

(80)

Take natural logarithms from both sides to obtain

lnµtztφ(hgt )
φ−1 = lnλt(1− τ l)α

yt
hwt

(81)

Simplify to obtain

lnµt + ln zt + (φ− 1) lnhgt = lnλt + ln yt − lnhwt (82)

Totally differentiate with respect to time to obtain

d lnµt
dt

+
d ln zt
dt

+ (φ− 1)
d lnhgt
dt

=
d lnλt
dt

+
d ln yt
dt
− d lnhwt

dt
(83)

dµt
dt

1

µ
+
dzt
dt

1

z
+ (φ− 1)

dhgt
dt

1

hg
=
dλt
dt

1

λ
+
dyt
dt

1

y
− dhwt

dt

1

hw
(84)

Pass to log-deviations to obtain

µ̂t + ẑt + (φ− 1)ĥgt = λ̂t + ŷt − ĥwt (85)
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7.8 Health status dynamic equation

β{ ψ

gt+1

+Bξg−ξ−1t+1 µt+1φzt(h
g
t+1)

φ−1 + µt+1(1− δg)} = µt (86)

Take natural logarithms from both sides to obtain

ln β{ ψ

gt+1

+Bξg−ξ−1t+1 µt+1φzt(h
g
t+1)

φ−1 + µt+1(1− δg)} = lnµt (87)

Totally differentiate with respect to time to obtain

d ln{ βψ
gt+1

+ βµt+1[Bξg
−ξ−1
t+1 φzt(h

g
t+1)

φ−1 + µt+1(1− δg)]}
dt

=
d lnµ2

t

dt
(88)

Simplify to obtain

d{ βψ
gt+1

+βµt+1[Bξg
−ξ−1
t+1 φzt(h

g
t+1)

φ−1+µt+1(1−δg)]}
dt

βψ
g

+ βµ[Bξg−ξ−1φz(hg)φ−1 + µ(1− δg)]
=
d lnµt
dt

(89)

Note that
βψ

g
+ βµ[Bξg−ξ−1φz(hg)φ−1 + µ(1− δg)] = µ (90)

Then
1

µ

d

dt
{ βψ
gt+1

+ βµt+1[Bξg
−ξ−1
t+1 φzt(h

g
t+1)

φ−1 + µt+1(1− δg)]} =
d lnµt
dt

(91)

1

µ

{
− βψ

g

dgt+1

dt

1

g
+ β

[
ξg−ξ−1zφ(hg)φ−1 + (1− δg)

]
dµt+1

dt

µ

µ

+βµξg−ξ−1zφ(hg)φ−1
dzt+1

dt

1

z
− βµξ(ξ + 1)

g−ξ−1zφ(hg)φ−1
dgt+1

dt

1

g
− βµξg−ξ−1zφ(φ− 1)(hg)φ−1

dhgt+1

dt

1

hg

}
=
dµt
dt

1

µ
(92)

Pass to log-deviations to obtain

−βψ
gµ

ĝt+1 + β

[
ξg−ξ−1zφ(hg)φ−1 + (1− δg)

]
µ̂t+1 + βξg−ξ−1zφ(hg)φ−1ẑt+1

−βξ(ξ + 1)g−ξ−1zφ(hg)φ−1ĝt+1 − βξg−ξ−1zφ(φ− 1)(hg)φ−1ĥgt+1 = µ̂t (93)

Rearrange terms to obtain

−
[
βψ

gµ
+ βξ(ξ + 1)g−ξ−1zφ(hg)φ−1

]
ĝt+1

+β

[
ξg−ξ−1zφ(hg)φ−1 + (1− δg)

]
µ̂t+1

+βξg−ξ−1zφ)(hg)φ−1ẑt+1 − βξg−ξ−1zφ(φ− 1)(hg)φ−1ĥgt+1 = µ̂t (94)
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7.9 Linearized Private Capital Accumulation

kt+1 = ikt + (1− δk)kt (95)

Take natural logarithms from both sides to obtain

ln kt+1 = ln(ikt + (1− δk)kt) (96)

Totally differentiate with respect to time to obtain

d ln kt+1

dt
=

1

ik + (1− δk)k
d(ikt + (1− δk)kt)

dt
(97)

Observe that since ik = δkk, it follows that ik + (1− δk)k = δkk + (1− δk)k = k. Then

dkt+1

dt

1

k
=

1

k

dikt
dt

ik

ik
+

k

ik + (1− δk)kt
dt
k

k
(98)

Pass to log-deviations to obtain

k̂t+1 =
δkk

k
îkt +

(1− δk)k
k

k̂t (99)

Finally, simplify to obtain

k̂t+1 = δk îkt + (1− δk)k̂t (100)

7.10 Linearized Health Accumulation

gt+1 = igt + (1− δg)gt (101)

Take natural logarithms from both sides

ln gt+1 = ln(igt + (1− δg)gt) (102)

Totally differentiate with respect to time to obtain

d ln gt+1

dt
=

1

ig + (1− δg)g
d(igt + (1− δg)gt)

dt
(103)

Observe that since ig = δgg, it follows that i+ (1− δg)g = δgg + (1− δg)g = g. Then

dgt+1

dt

1

g
=

1

g

digt
dt

ig

ig
+

g

ig + (1− δg)gt
dt
g

g
(104)

Pass to log-deviations to obtain

ĝt+1 =
δgg

g
îgt +

(1− δg)g
g

ĝt (105)

Finally, simplify to obtain

ĝt+1 = δg îgt + (1− δg)ĝt (106)
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7.11 Health investment equation

igt = zt(h
g
t )
φ (107)

Take natural logarithms from both sides to obtain

ln igt = ln zt + (φ) lnhgt (108)

Totally differentiate with respect to time to obtain

d ln igt
dt

=
d ln zt
dt

+ φ
d lnhgt
dt

(109)

Simplify to obtain
digt
dt

1

ig
=
dzt
dt

1

z
+ φ

dhgt
dt

1

hg
(110)

Pass to log-deviations to obtain

îgt = ẑt + φĥgt (111)

7.12 Linearized Technology Shock Process

ln at+1 = (1− ρa) ln a+ ρa ln at + εat+1 (112)

Totally differentiate with respect to time to obtain

d ln at+1

dt
= (1− ρa)d ln a

dt
+ ρa

d ln at
dt

+
dεat+1

dt
(113)

dat+1

dt

1

a
= ρa

dat
dt

1

a
+ εat+1 (114)

where for t = 1 dεat+1 ≈ ln(eε
a
t+1/eε

a
) = εat+1 − εa = εat+1 since εa = 0

Pass to log-deviations to obtain

ât+1 = ρaât + εat+1 (115)

7.13 Linearized Health Stochastic Process

ln zt+1 = (1− ρz) ln z + ρz ln zt + εzt+1 (116)

Totally differentiate with respect to time to obtain

d ln zt+1

dt
= (1− ρz)d ln z

dt
+ ρz

d ln zt
dt

+
dεzt+1

dt
(117)
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Simplify to obtain
dzt+1

dt

1

z
= ρz

dzt
dt

1

z
+ εzt+1 (118)

where for t = 1 dεzt+1 ≈ ln(eε
z
t+1/eε

z
) = εzt+1 − εz = εzt+1 since εz = 0.

Pass to log-deviations to obtain

ẑt+1 = ρz ẑt + εzt+1 (119)
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