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Spatial Patterns and Size Distributions of Cities
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Abstract

City size distributions are known to be well approximated by power laws across many coun-
tries. One popular explanation for such power-law regularities is in terms of random growth
processes, where power laws arise asymptotically from the assumption of iid growth rates
among all cities within a given country. But this assumption has additional consequences.
Since all subsets of cities have the same statistical properties, each subset must exhibit
essentially the same power law. Moreover, this common power law (CPL) property must
hold regardless of the spatial relations among cities. Using data from the US, this paper
shows first that spatial partitions of cities based on geographical proximity are significantly
more consistent with the CPL property than are random partitions. It is then shown that this
significance becomes even stronger when proximity among cities is measured in terms of
trade linkages rather than simple geographical distance. These results provide compelling
evidence that spatial relations between cities do indeed matter for city-size distributions.
Further analysis shows that these results hinge on the natural “spacing out” property of city
patterns in which larger cities tend to be widely spaced apart with smaller cities organized
around them.
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1 Introduction

City size distributions are known to be well approximated by power laws across a wide range
of countries. The most popular approach to explaining this regularity at present perhaps is in
terms of simple random growth processes (as in Gabaix [21]).1 This approach has been very
successful, and indeed such processes have been incorporated in full-fledged general equilibrium
models that match actual city size distributions quite well, as for example in Duranton [15]
and Rossi-Hanseberg and Wright [47]. But even in these more complex versions, power laws
for city size distributions arise fundamentally from the underlying assumption of common iid
growth rates for all cities. Moreover, this basic assumption is well known to have additional
consequences. For if cities exhibit common iid growth rates, then all (su�ciently large) subsets
of these cities must exhibit power laws with the same exponent. In particular, this common power
law (CPL) property must hold regardless of the particular spatial relations that exist among cities.
So these random growth models suggest that spatial relations among cities do not influence the
distribution of city sizes.

However, there is a substantial and growing literature showing that space does indeed play
a crucial role in shaping the economic landscape we observe. At the global scale, there is a
long tradition in the international trade literature focusing on how trade frictions induced by
inter-country distances (among other factors) influence trade flows between countries.2 At the
urban scale, there has been a long tradition in the urban economics literature focusing on how
within-city spatial structure influences a variety of urban phenomena, including both housing
and land markets.3 Finally at the regional level, there is a small emerging literature more closely
related to the present analysis that focuses on how spatial separation influences trade between
cities and city growth; see, e.g., Donaldson [14], Duranton, Morrow and Turner [16], Hering and
Poncet [32] , Michaels [41], and Redding and Sturm [46].

Taken together, these many research e↵orts suggest that the distribution of city sizes may
indeed be influenced by the spatial relations among these cities. To study this question, we
begin by postulating that the spatial organization and sizes of cities are linked by the spacing-out
property that larger cities tend to be widely spaced apart, with smaller cities grouped around

1It is well documented that power laws are good descriptors of city size distributions, especially in their upper
tails; see Rosenfeld et al. [48] and Ioannides and Skouras [35]. In particular, the random growth processes proposed
by Gabaix only imply power laws for the upper tails of their steady-state city size distributions (see the discussion
in Section 2.1). See Gabaix [22] for a survey on the extensive empirical literature on city size distributions, as well
as Eeckhout [19] for similar processes that generate log-normal city size distributions.

2Such inter-country distances are indeed one of the most fundamental explanatory variables in all gravity-type
regression models. See Anderson and van Wincoop [4] for a survey of this extensive literature.

3See Anas, Arnott, and Small [5] for a survey of this substantial body of literature. More recent developments
can be found in Lucas and Rossi-Hansberg [39] and Ahlfedlt, Redding, Sturm, and Wolf [1].
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these centers. For city landscapes that do exhibit this property, one might expect to find similar
size relations among the cities in each spatial grouping. This in turn suggests that the CPL
property above may indeed be stronger for such groupings than for arbitrary groupings of cities.
Given this line of reasoning, our main objectives are to develop explicit tests of these hypotheses.
Our first set of tests provide evidence that consistency with the CPL property is significantly
higher for even simple groupings of nearby cities (i.e., without regard to the spacing-out property)
than for arbitrary groupings of these cities. Our second set of tests provide independent evidence
for the spacing-out property itself, without regard to the CPL property. Finally we combine
certain aspects of these two lines of investigations by replacing groupings of nearby cities in the
CPL tests with appropriately defined “economic regions” that are closer in spirit to our postulated
spacing-out property. Our test results here confirm that consistency with the CPL property is
even higher for these economic regions than for groupings of cities based on simple proximity
relations as above.

With this brief overview, we now consider each of these testing procedures in more detail.
The data used for all tests is taken from the US in 2007. In particular, cities are here defined to
be Core Based Statistical Areas (CBSAs) 4 [see Figure 7(a)]. Using this data, our first set of
tests focus on spatial groupings of cities without regard to major cities themselves. The question
is whether groupings of nearby cities are more comparable in terms of CPL than are arbitrary
groupings of cities. For each number of possible groupings, K , this is accomplished by selecting
K cities randomly and identifying the subsets of cities closest to each of these K cities. Formally
these subsets constitute a Voronoi K-partition in which cities are spatially grouped in the sense
that all cities in the same Voronoi region (or cell) are closest to a common city. Power laws for the
cities in each cell are then estimated by log regressions of size against rank. As detailed in Section
2.2 below, it is convenient to replace both log(rank) and log(size) by their smoother “upper
average” versions which facilitate comparisons of the upper tail structures of such distributions.
In this context, the level of agreement between power laws for each cell of cities is essentially
determined by comparing the similarity of slopes between these log regressions (as detailed in
Section 2.3 below). Finally, by simulating random K-partitions of cities and carrying out the
same regression procedure, one can test whether there is significantly stronger agreement among
the power-laws of these K Voronoi regions than would be expected if they were simply cells in a
random K-partition of cities. With respect to these tests, our main result is to show that for our
US data there is indeed stronger agreement with CPL among these Voronoi regions over a broad
range of K values.

This initial set of tests involve only a minimal concept of “space” and make no assertions
4See the US O�ce of Management and Budget [61] for the definition of CBSA.
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about the spacing-out property itself. But further analysis of the test results shows that a key
di↵erence between Voronoi partitions and arbitrary partitions relates to the placement of largest
cities among their cells. As discussed further in Section 3, the largest cities are the most influential
in determining the power law exponent of any group of cities. Moreover, our test results show
that those Voronoi partitions exhibiting the strongest agreement with the CPL property tend to
be those in which the largest cities appear in di↵erent cells, and are thus associated with di↵erent
groupings of nearby cities. In this sense, the present results can be said to establish an indirect
link between the spacing-out property and CPL property.

Our second set of tests pursue this line of reasoning further by asking whether this separation
property continues to be present in all Voronoi partitions versus random partitions. If so, then
this provides compelling evidence for the spacing-out property itself, without regard to CPL.
Such relationships are easily testable for, say, the r largest cities by simply counting the number
of cells containing at least one of these cities in a given Voronoi K-partition, and comparing such
counts with those of randomly generated K-partitions. By simulating many such comparisons,
one can then determine whether these r cities are distributed over a significantly larger number
of Voronoi cells than random cells. Our results show that there is indeed a significant di↵erence.

But by their nature, these tests focus more on the separation between large cities than on the
clustering of smaller cities around them. Thus, to test this latter part of the spacing-out property,
we construct Voronoi partitions with reference cities that correspond to the K largest cities rather
than K randomly chosen cities. For these largest-city Voronoi K-partitions, we then calculate
the distance of each city to its reference city, and designate the sum of these distances across
all cities as the total distance measure for this K-partition. If smaller cities are indeed clustered
around the largest cities, then one would expect total distances for these largest-city Voronoi
K-partitions to be significantly smaller than for similar Voronoi K-partitions with randomly
selected reference cities. Our tests show that this is indeed the case. Moreover, by using an
alternative measure, total population-weighted distance, in which the distance of a city to the
reference city is weighted by the city population, the results become even stronger. These results
together with the spacing out of the largest cities explain why Voronoi partitions tend to exhibit
higher consistency with the CPL property than their random counterparts. In particular, Voronoi
cells containing the largest cities tend also to contain substantial portions of their corresponding
city clusters.

Finally, as mentioned above, we combine some of these ideas by replacing Voronoi K-
partitions in the CPL test with a set of “economic regions” based explicitly on a commodity-flow
interpretation of the spacing-out property. Essentially, each such economic region consists of
a large city together with other smaller cities for which the commodity inflows from this city
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are larger than from any other city other than from themselves.5 This construction essentially
mirrors the spacing-out property with distance replaced by trade flows. The CPL property for the
economic regions generated by the K largest cities is then tested against random K-partitions
for which the numbers of cities in each cell are the same as those in each economic region. The
results of these tests confirm that over a considerable range of partition sizes, K, the CPL property
is even more significant for these economic regions (relative to their random counterparts) than
for the simple groupings of nearby cities above.

There have been surprisingly few studies in the economics literature that systematically
examine the spacing patterns of cities, not to mention the identification of specific pattern
properties.6 Thus the main contributions of the present paper are to document the spacing-out
property for city locations, and to examine its relation to city-size distributions in terms of
the CPL property.7 In reference to the absence of such a relationship as implied by the iid
growth-rate assumption in random growth models, our first set of test results show that even
modestly spatial groupings of “nearby cities” exhibit significantly stronger CPL properties than
arbitrary groupings. This by itself would seem to provide compelling evidence that spatial
relations among cities do indeed matter. The more refined results in terms of economic regions
only serve to strengthen this conclusion.8 In this regard, the present paper is closely related to
a series of recent studies that document possible deviations from the assumption of iid growth
rates, including Desmet and Rappaport [12], Black and Henderson [8], Holmes and Lee [29],
Michaels, Rauch, and Redding [42], and Redding and Sturm [46]. One example is the empirical
study by Redding and Sturm [46] documenting the e↵ect of the post World War II German
separation on the growth of cities near the border. Their results suggest that there was indeed a
certain degree of dependence between the growth rates of nearby cities in this region.

Finally, the present paper is also closely related to the recent work of Behrens, Mion, Murata,
and Südekum [6] who formulate a spatial economic model with trade costs between cities, and
estimate this model using US data. In this modeling context, regression results based on their
estimates suggest that “spatial friction” (in terms of the cost of trade between cities) does not
significantly influence the distribution of city sizes. However, it should be stressed that our
present testing framework is independent of any specific economic modeling assumptions. Thus

5The trade flow data used here is based on the 2007 Commodity Flows Survey.
6The most closely related work in this respect appears to be that of Dobkins and Ioannides [13] and Ioannides

and Overman [34] who find mixed results regarding the role of space (distance among cities) in influencing various
city phenomena, such as size, growth, and emergence of cities.

7Giesen and Südekum [25] also use regional level data to examine city size distributions. However, their focus is
on testing whether Gibrat’s law holds in each subset of cities in Germany, and they do not test CPL per se.

8However, our results should not to be taken as rejection of the random growth approach itself. As discussed
further in the conclusion, there may indeed be weaker conditions on growth rates (possibly including spatial
considerations) under which random growth processes continue to predict power laws in the upper tail.
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the results obtained here suggest that spatial relations between cities may influence city-size
distributions in ways that remain to be captured by current economic models.9

The rest of the paper is organized as follows. Section 2 introduces an estimation strategy
for CPL and define the goodness of fit of such an estimation. Section 3 conducts CPL tests
by comparing the goodness of fit under Voronoi partitions of cities with that under random
partitions. Section 4 examines the spacing-out property. Section 5 constructs economic regions
and conducts CPL tests by comparing the goodness of fit under economic regions with that under
random partitions. Section 6 concludes.

2 Methods for Analyzing Common Power Laws

Before developing these test results, it is convenient to begin with a number of methodological
tools that will be used throughout. First we briefly consider the explicit class of stochastic growth
models known as Kesten processes. These will provide us with a way of simulating processes
with known asymptotic power laws that can be used to test our methods. Next we introduce an
upper-averaging method for estimating power-law exponents that is particularly useful for our
present purposes. Finally we develop the categorical regression framework that will be used to
compare the degrees of the similarities among power laws across subsets of cities.

2.1 Kesten Processes

As first introduced into stochastic urban growth theory by Gabaix [21], Kesten processes provide
a simple class of stochastic growth models that exhibit asymptotic power laws under fairly weak
conditions. For a given a collection of cities, i = 1, . . . , n, if S it denotes the size (population) of
city i in time period t, then it is hypothesized that the city sizes evolve over time according to a
stochastic di↵erence equation of the form

S i,t+1 = �itS it + eit, i = 1, . . . , n ; t = 1, 2, . . . (1)

where (�it : i = 1, . . . , n, t = 1, 2, . . .) is a sequence of independently and identically distributed
(iid) nonnegative growth multipliers and (eit : i = 1, . . . , n, t = 1, 2, . . .) is a sequence of small
nonnegative growth increments. If in addition, it is assumed that these two sequences are mutually

9Note also that there is no clear correspondence between “spatial frictions” and “spatial patterns of cites”. In
fact it is possible to have spatial economic models in which the spatial pattern of cities is entirely independent of
spatial frictions in terms of (positive) transport costs between cities (e.g., Hsu [30]). So direct comparisons between
the e↵ects of spatial frictions and spatial patterns of cities on the distribution of city sizes are at best problematic.
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independent, then (1) is said to define a Kesten process.10 Note that the individual processes for
each city are essentially independent copies of one another, and hence must exhibit the same
asymptotic behavior. In particular, it can be shown that under very general conditions there exists
a limiting random variable, S , such that each city process converges in distribution to S , i.e.,

lim
t!1

S it =d S , i = 1, . . . , n (2)

(where =d denotes equality in distribution). More importantly, if � denotes a representative
growth multiplier, and if there exists a positive exponent, , for which E(�) = 1, then under
very weak additional conditions, it can be shown that S satisfies an asymptotic power law with
exponent , i.e., that there exists a positive constant, c, such that,

lim
s!1

s Pr(S > s) = c , (3)

which is more conveniently written as

Pr(S > s) ⇡ c s� , s! 1 . (4)

So the city sizes in (1) can eventually be treated as independent random samples from a distri-
bution with this property. In our simulations of such processes, we shall assume that growth
multipliers, �, are log normally distributed, and in particular that ln(�) ⇠ N(µ, 1). Here it can be
shown (see Gabaix [21]) that the desired exponent, , is given by

 = �2µ (5)

for µ < 0. In addition, we assume that the small growth increments, e, are uniformly distributed
on [0, 0.01].

2.2 Upper Average Smoothing of Rank-Size Distributions

If a given set of cities is postulated to exhibit an asymptotic power law as in (4), and if cities
are ranked by size as s1 � s2 � · · · � sn so that i denotes the relevant rank of city i, then a
natural estimate of Pr(S > si) is given by the ratio (i/n). So by (4) we obtain the following

10These processes were first introduced by Kesten [36] as multivariate (matrix-valued) processes. More accessible
treatments of the univariate case can be found in Vervaat [57] and Goldie [27].
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approximation,

i/n ⇡ Pr(S > si) ⇡ cs�i ) ln(i) ⇡ ln(cn) �  ln(si)

) ln(si) t b � (1/) ln(i) (6)

where b = ln(cn)/. This motivates the standard log regression procedure for estimating  based
on “rank-size” data, [ln(i), ln(si)], i = 1, . . . , n. But as observed by many authors (e.g., Gabaix
and Ibragimov [23] and Nishiyama et al. [43]) this log regression tends to underestimate the true
value of . Several approaches have been proposed for correcting this bias, including the “1/2”
rule of Gabaix and Ibragimov [23] and the “trimming rule” of Nishiyama et al. [43].

However our present objectives are somewhat di↵erent. Here we are primarily interested in
comparing similarities between the upper-tail properties of city size distributions for di↵erent
subsets of cities within a country. With this in mind, we start by smoothing the usual rank-size
data in a manner that emphasizes the upper tails of this data. In particular, we transform the data
[ln(i), ln(si)], i = 1, . . . , n, by taking upper averages to obtain new data pairs, upper log rank,
ULRi, and upper log size, ULS i, as defined respectively by

ULRi =
1
i

i
X

j=1

ln( j) , (7)

ULS i =
1
i

i
X

j=1

ln(s j) . (8)

These upper averages smooth the data in a manner that emphasizes the largest cities. The
theoretical and practical relevance of this transformation can be illustrated by the two plots in
Figure 1. In Figure 1(a) we have plotted the rank-size data, [ln(i), ln(si)], for the US as blue
circles, and have superimposed the corresponding upper-average data, [ULRi,ULS i], as a red
curve (with points connected by lines for visual clarity).

As is typical for such rank-size plots, log linearity is most evident in the upper tail (largest
cities) where the power law starts to emerge. In contrast, there is little indication of such a
power law in the lower tail (smallest cities) where values decrease dramatically. So when ln(si)
is regressed against ln(i), it should be clear that the regression line is “pulled down” by these
lower-tail values, and becomes too steep. As seen from expression (6), this should result in an
underestimation of . In contrast, the upper-average plot is not only smoother, but is also shifted
toward the upper tail where the power law is most evident. This is reflected by the corresponding
regression results, in which the US rank-size data yields an estimated slope of ✓̂ = �1.219, with
corresponding power exponent, ̂ = 1/✓̂ = 0.821, while the US upper-average data yields the
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“flatter” slope estimate, ✓̂ = �1.059 , with power exponent, ̂ = 0.944.
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Figure 1: City size distribution from Kesten process

As an additional comparison, we also include results for the “1/2” rule by Gabaix and
Ibragimov under which log rank, log(i), is replaced by log(i � 1

2 ) in the rank-size regression, thus
weighting larger cities more heavily in a manner analogous to our upper-average approach.11 But
since this weighting scheme is somewhat less extreme than upper-averaging, the corresponding
regression results yield a slope estimate, ✓̂ = �1.200, with power exponent, ̂ = 0.833, larger than
the standard estimate under the rank-size regression but smaller than that under the upper-average
regression. The Gabaix-Ibragimov data, [log(si), log(i � 1

2)], is shown by the dashed curve in
Figure 1(a) (again with points connected by lines as in the upper-average data). From the plot, it
is rather obvious that the upper-average data is most successful in picking up the “power-law
content” from the entire distribution.

But since the “true” exponent for the US is not known, this comparison leaves much to be
desired. What is needed is an example in which the true exponent is actually known. In this way,
the relative accuracy of these methods can be compared in a more meaningful way. To do so, we
have simulated a Kesten process that roughly approximates the US case. In particular, we set
n = 930 (as in our US data) and use (4) to construct a Kesten process with power-law exponent,

11It is to be noted that while the Gabaix-Ibragimov approach is often adopted to estimate the power-law exponent
of the city size distribution (e.g., Behrens et al. [6]), this approach assumes that the city sizes follow an exact Pareto
distribution. But actual city size distributions at the national level are often more similar to those obtained from
simulated Kesten processes as in Figure 1(b) (see also Rossi-Hansberg and Wright [47]).
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 = �1/✓ = 1/1.059 ' 0.944, based on the upper-average estimate above.12 Starting from
uniform city sizes, S i0 = 1 for all i = 1, . . . , n, the steady state was approximated by iterating
this process until the mean city sizes converged with respect the criterion:

|S t � S t�1| < 0.0001 ⇥ S t (9)

where S t ⌘
1
n
Pn

i=1 S it.13 The resulting (scaled) output, [ln(i), ln(si)], is shown by the blue
circles in Figure 1(b). Again the transformed upper-average data, [ULRi,ULS i], is plotted in
red. Here the rank-size regression again underestimates  with an estimated value of ̂ = 0.841
[= �1/✓̂ = 1/1.189]. The Gabaix-Ibragimov regression underestimates less, with an estimated
value of ̂ = 0.853, and again the upper-average regression comes closest to the true value with
an estimated value of ̂ = 0.909.

To gauge the robustness of this particular result, steady states were obtained for 1000
replications of the present Kesten process, and regressions were run for each replication using the
rank-size (R-S), Gabaix-Ibragimov (G-I) and upper-average (U-A) approaches. In comparison
to R-S/G-I estimates, the U-A estimates were closer to the true value ( = 0.944) in all but
31/43 of the 1000 cases. The average absolute errors over the 1000 simulations for the R-S,
G-I and U-A estimates were 0.1324, 0.1207 and 0.0427, respectively, i.e., the relative estimate
errors for U-A versus R-S and versus G-I are 0.0427/0.1324 = 0.322 and 0.0427/0.1207 = 0.354,
respectively. These results suggest that this upper-average procedure does tend to yield more
reliable estimates.14

Finally it is worth noting that if one is interested in the upper-tail properties of a distribution,
then it would seem that an obvious approach is simply to truncate the lower tail. For example, a
visual inspection of Figure 1(a) suggests that the distribution for US cities could best be truncated
by removing all ranks above say 600 (ULR600 ⇡ 6.40). But for arbitrary subsets of cities (such
as those considered throughout the present paper), the systematic identification of “optimal”
truncation points is not at all obvious.15 In this light, the present upper-average approach provides

12Using expresssion (5), the growth multipliers, � , were simulated by taking independent draws of ln(�) from
the normal distribution, N(µ, 1) with µ = �/2 = �0.472.

13While condition (9) is only a necessary condition for a true steady-state, this approximation appears to work
reasonably well for our present purposes. Among the 1000 simulations generated below, the minimum and the
maximum numbers of iterations required to achieve condition (9) were 1002 and 19,821, respectively (with an
average of 3356 iterations).

14It should also be noted that the basic results do not change for alternative values of  < 1.0 [i.e., for those 
values where the power-law approximation, eq.(4), to the upper tail makes sense].

15One possible approach to estimating truncation points is that of Clauset et al. [11], who employ maximum
likelihood estimation together with Kolmogorov-Smirnov statistics to determine that trucation point which yields a
best fit to the upper tail. But, for the US city size distribution considered here, their truncation is at the 916th rank,
yielding ̂ = 0.841 under the G-I regression which di↵ers from the untruncated estimate by less than 1%.
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a reasonably robust procedure for approximating the upper-tail structure of arbitrary city-size
distributions without the need to specify truncation points.16,17

2.3 A Categorical Regression Framework

As stated in the introduction, our main objective in this paper is to compare the values of estimated
power-law exponents for di↵erent subregions. So the smoothing achieved by upper averaging
has the additional advantage of sharpening these comparisons from statistical perspectives.

It should be clear that many di↵erent summary statistics can in principle be used for measuring
the similarity between sets of slopes. But a particularly convenient approach for our present
purposes is based on categorical regression. To begin with, if for any given set of regions,
j = 1, . . . ,m, we consider the null hypothesis that the slopes for these regions are identical, then
under this hypothesis, the upper-average plots should di↵er only by their intercepts and not their
slopes. So their common slope can be estimated by a simple categorical regression with regional
fixed e↵ects. To formalize this model, observe first that if each region j contains nj cities, then
for each city-region pair (i j : i = 1, . . . , nj, j = 1, . . . ,m) one can use (7) and (8) to define the
appropriate upper-average rank and size variables as follows:

ULRi j =
1
i

i
X

h=1

ln(h) ⌘ ULRi , (10)

ULS i j =
1
i

i
X

h=1

ln(sh j) . (11)

where the identity, ULRi j ⌘ ULRi, follows from the fact that this quantity is the same for all
relevant j (i.e., all j with nj � i). Finally, if we let region 1 denote the choice of a “reference”
region and for each other region, j = 2, . . . ,m, define the indicator variable, Dj, by Dj(h) = 1 if
h = j and zero otherwise, then the desired categorical regression model takes the form,

ULS i j = ↵ + ✓ULRi +

m
X

h=2

�hDj(h) + "i j . (12)

16By the same reasoning, this upper-average approach may also be useful for cross-country comparisons.
17As a robustness check on our results for U-A data, we carried out all tests in Sections 3 and 5 below using both

G-I and R-S data as well. In this regard, the Voronoi results in Section 3 appear to be quite robust, and the basic
conclusions remain the same for all three data sets. However, there are some di↵erences for the economic-region
results in Section 5. In particular, the R-S data fails to capture any significant CPL properties of economic-region
partititions. (As noted above, this may be due to the overemphasis of R-S data on lower tail properties, which
magnifies the bias of log linear regression estimates.) But di↵erences between G-I and U-A are far less dramatic.
While G-I places more emphasis on similarities between the mid ranges of city-size distributions than does U-A, the
basic conclusions regarding CPL properites are the same for both data sets.
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Here it should be emphasized that this regression framework is used only to provide a convenient
least-squares framework for gauging how well the given regional data agrees with the null
hypothesis of a common slope. Since we are not concerned with the distribution properties of
coe�cient estimators in this nonparametric setting, there is no need to make assumptions about
the residuals, "i j. Hence, letting n =

Pm
j=1 nj, we simply adopt the Root Mean Squared Errors

(RMSE) statistic,

RMSE =
s

1
n

X

i, j

(ULS i j �[ULS i j)2 (13)

for this regression as an appropriate measure of goodness-of-fit,18 and employ this statistic to
construct a series of nonparametric tests (as detailed in Section 3 below).

To gauge how well this categorical regression procedure works using the U-A data, [ULRi j,ULS i j]
in (10) and (11) rather than the associated R-S data, [ln(i), ln(si j)], or G-I data, [ln(i � 1

2 ), ln(si j)],
we can employ simulated steady-state realizations from the Kesten process above. In particular,
if these realized cities are randomly partitioned into a given number of subsets, then within the
framework of Kesten processes, these subsets can be viewed as random samples of di↵erent
sizes from the same statistical population of cities. This implies that their asymptotic power laws
must be the same, and thus that the CPL property must in fact be true for these subsets.

To evaluate how well the CPL property is being captured by these three possible categorical
regression approaches, we first simulate 1000 separate steady-state realizations of the Kesten
process under  = 0.944. For each realization, we then generate 1000 random 4-partitions of
these 930 cities into disjoint subsets (subregions), j = 1, 2, 3, 4, of fixed sizes (n1, n2, n3, n4). The
specific subset sizes chosen for this analysis were (n1, n2, n3, n4) = (182, 254, 261, 233) [which
correspond to the four subregions shown in Figure 3(a) of Section 3 below].

By applying the three categorical regression procedures to each of these random partitions,
one can compare how accurately each procedure captures the CPL property in terms of its
mean estimate of ̂ of the common power exponent,  = 0.944, (for this particular steady-state
realization and partition size). By determining the resulting bias of the mean estimate of ̂ from
the true value  for each of the 1000 steady-state realizations, one can then obtain frequency
distributions of these values across the steady-state realizations for each procedure. The bias
distributions for the U-A and R-S/G-I procedures are compared in Figure 2, where it is seen
that the mean bias for the R-S, G-I, and U-A procedures are respectively 0.1891, 0.1564, and
0.0999. So the mean bias of the R-S/G-I procedure is about 90%/50% higher than that of the

18While similar measures could also be used here which reflect actual error magnitudes (such as mean absolute
errors), RMSE is by far the most commonly used measure of model accuracy in nonparametric modeling. For recent
illustrative applications in economics, see for example McMillen and Redfearn [40], Kitamura et al. [37], and
Ait-Sahalia and Duarte [2].
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U-A procedure.19 These results suggest that the upper-average approach continues to exhibit the
best performance in this categorical regression setting.20

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

Upper-average 
Gabaix-Ibragimov

Rank-size
Sh

ar
e 

(o
ut

 o
f 1

00
0)

Figure 2: Comparison of categorical regression bias

3 Voronoi Regions and the Common Power Law

Our first set of tests compare the CPL properties of random groupings of nearby cities versus
purely random groupings. Here such random groupings of nearby cities are modeled as the cells
of a Voronoi K-partition in which K reference cities are selected at random, and each cell, or
Voronoi region, is defined by the set of cities closest to each reference city.21 Let the number of
cities in each cell, j = 1, . . . ,K, be denoted by nj and the vector, n(K) = (nj : j = 1, . . . ,K), be
designated as the size of the given partition. Then only random partitions of the same size will be
comparable with this partition. So this size vector, n(K), defines the key parameters governing the
tests to be constructed. As one illustration of these parameters, Figure 3(a) displays an example
of Voronoi K-partition with K = 4 and with n(4) = (n1, n2, n3, n4) = (182, 254, 261, 233).

In this context, our basic null hypothesis, H0, is that the level of agreement of Voronoi
partitions with the CPL property is statistically indistinguishable from that of similarly sized
random partitions. As in Section 2.3, this level of agreement is measured in terms of RMSE for
the corresponding categorical regressions in expression (12) above.

19Note that in principle one could also compare the overall fit of these three procedures in terms of their mean
RMSE values. But since the underlying data sets are modified by these methods themselves, such RMSE values are
not fully comparable. So while such a comparison again strongly favors the U-A procedure, these results are not
reported here.

20Again, the basic results remain the same for alternative choices of partition sizes.
21Here “closeness” is defined in terms of travel distance between cities (CBSAs). More precisely, we use the

shortest travel distances between the court houses of those counties contained in each CBSA.
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For the Voronoi partition in Figure 3(a), the upper-average plots for these four Voronoi
regions are shown in Figure 4(a), where the colors of each plot correspond to the partition colors
in Figure 3(a).

(a) Voronoi partition (b) Random partition

Figure 3: An example of Voronoi 4-partition
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Region 1
Region 2
Region 3
Region 4

(a) Voronoi partition (b) Random partition
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Figure 4: Upper-average distributions in Voronoi and random partitions

So to test the null hypothesis, H0, for a given level of K, we proceed in two stages. First we
generate M = 1000 random Voronoi K-partitions, v = 1, . . . ,M. Associated with each partition,
v, is a given size vector, nv(K). So to estimate the distribution of RMSE for random partitions
of size nv(K) under H0, we generate 1000 random partitions of size nv(K) and calculate RMSE
for each. For the Voronoi 4-partition shown in Figure 3(a), an example of random partition of
the same size is shown in Figure 3(b), with corresponding upper-average plots shown in Figure
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4(b). As can be seen from this figure, the upper-average plots di↵er from the Voronoi partition
case mainly in the extreme upper tail, corresponding to the largest cities. In particular, the four
largest cities (New York, Los Angeles, Chicago and Dallas) are contained in separate cells in the
Voronoi partition shown in Figure 3(a), while for the random partition shown in Figure 3(b), all
the four cities are contained in a single cell (the red region in the figure). As we shall see below,
the locations of these largest cities within a given partition play a crucial role in determining its
agreement with the CPL property.

If the RMSE level for partition v is denoted by RMSEv, and if the number of RMSE values
smaller than RMSEv is denoted by Mv, then the p-value for a one-sided nonparametric test of H0

for partition v is given by22

pv =
Mv

N
, v = 1, . . . ,M. (14)

For the Voronoi partition, v, with upper-average plots in Figure 4(a), the RMSE value is
RMSEv = 0.072, and for the same sized random partition in Figure 4(b), the value is RMSE =
0.162. So this random partition exhibits less agreement with CPL than does partition v. In fact,
for this particular Voronoi partition, none of the RMSE values for the corresponding 1000 random
partitions fell below 0.072. So pv = 0 for this extreme case.

The results of these tests of H0 over the range of values, K = 2, . . . , 20, are shown in Figure
5. Here the possible K values for Voronoi partitions are on the horizontal axis, and the possible
p-values for these tests are on the vertical axis. To interpret these results, let us focus on the
vertical slice at K = 4 in Figure 5. Recall that there are 1000 p-values for K = 4, one for each of
the Voronoi 4-partitions generated. Among this population of p-values, the median value (on the
red curve) is about 0.30, indicating that 50% of these p-values are below 0.30. But if Voronoi
partitions were indistinguishable from random partitions as hypothesized under H0, then one
would expect that only 30% of these p-values would be at or below 0.30. More generally one
can see from the corresponding percentile points at the 5%, 10%, 50%, 90% and 95% levels
that this distribution of p-values is uniformly below what would be expected under H0. The
most interesting case of course involves p-values at or below 0.05 or 0.10. In this case 8.5%
are below 0.05 and 17.5% are below 0.10. Thus in both cases, there are 75% more “significant”
results than would be expected under H0. So for the case of K = 4, there is substantial evidence
suggesting that these Voronoi regions are exhibiting power laws that are more similar to one
another than would be expected for random regions of comparable sizes. Figure 5 shows that the
results become even more significant for larger values of K.

22To be more precise, pv, estimates the probability of achieving an RMSE level as low as RMSEv if it were true
that partition v was in fact a typical random partition of size nv(K).

14



 10, 90% points

   Median
 5, 95% points

p-value

 2  10 6  8 4  12  16  18 14 20 0

 0.2

 0.4

 0.6

 0.8

 1.0

0.05
0.1

Figure 5: Comparison of RMS Es between Voronoi and random partitions

One key distinction between Voronoi and random partitions contributing to these results is
that the largest cities tend to be more separated by Voronoi partitions than random partitions.
This separation property will be established more formally in Section 4.1 below. But for the
present, the relation between CPL properties and separation of large cities can be illustrated by
focusing on the single significance level, ↵ = 0.05, in Figure 5. If for each K we denote the
set of (simulated) Voronoi K-partitions that are significant at this ↵ level by VK

↵ = {v : pv < ↵},
then we can measure the degree of large-city separation in these partitions as follows. For each
partition, v 2 VK

↵ , let NK
r (v) denote the number of cells in partition v containing at least one of the

top r cities [so that NK
2 (v) is the number of cells in v containing either New York or Los Angeles].

Finally, if N K
r (↵) denotes the average of these values over VK

↵ [so that 1  N
K
r (↵)  r], then the

fraction, N
K
r (↵)/r, can be viewed as measuring the degree of separation of the top r cities in

VK
↵ . These degrees of separation are plotted over a range of K values for r = 2, 3, 4 in Figure 6.

So at K = 4, for example, the degree of separation for r = 2 is seen to be 1.0, indicating that
every partition significant at the ↵ = 0.05 level (i.e., in V4

↵) places New York and Los Angeles in
di↵erent cells. Similarly, the degree of separation for r = 4, namely 0.78 ⇡ 3/4, indicates that the
top four cities are typically split among three of the four cells in these partitions. What is most
important for our present purposes is that these degrees of separation for r = 4 exhibit a sharp
increase from K = 3 to K = 4, and continue to increase for larger K. This echoes the decreasing
contour for ↵ = 0.05 in Figure 5, and shows that the most significant Voronoi partitions with
respect to CPL (at this ↵ level) are indeed those achieving greater separation, i.e., with these four
cities almost always completely separated.23

23For completeness, it should also be noted that for K = 2, 3 the stronger significance of these partitions again
depends largely on the patterns of separation between the top four cities. For K = 2, it can be verified by closer
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Figure 6: Voronoi Separation of Major Cities

One can gain further insight here by considering the full range of city sizes. In particular,
since small cities are not only more numerous but also more ubiquitous, they tend to be evenly
distributed across cells in both Voronoi partitions and random partitions. Moreover, since they
exhibit less variation in size, one can expect di↵erences in size distributions across cells to be
most sensitive to the placement of the largest cities. Finally, since power laws focus on the upper
tails of these distributions (as reflected by our upper-averaging procedure), one can expect that
the more even spread of large cities across Voronoi-partition cells will lead to more similar power
laws than for random partitions.

This leads naturally to the question of why the largest cities should be more evenly spread
among the cells of Voronoi partitions. Here the most compelling reason seems to be that these
cities are in fact more widely separated in space, i.e., are consistent with the first tenet of
the spacing-out property. If so, then given the relative ubiquity of possible reference cities
throughout the US, Voronoi partitions would then seem more likely to separate these largest
cities than would random partitions of the same size. Such relations are most evident for the
four largest cities (New York, Los Angeles, Chicago and Dallas) where Voronoi separation was
evident in Figure 6 and where spatial separation is equally evident in Figure 7. A more detailed
analysis of these relations is given in the next section, where tests are developed for both tenets
of the spacing-out property.

examination of the partitions in V2
↵ [and can also be seen roughly from Figure 1(a) ] that separations in which New

York is in one cell and (Los Angeles, Chicago, Dallas) are in the other will tend to yield very similar upper-average
curves for a considerable range of di↵erent Voronoi 2-partitions.
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4 The Spacing-Out Property of Cities

While Figure 6 suggests that those Voronoi partitions most consistent with the CPL property tend
to separate the largest cities of a country, there remains the question of whether such separation
is exhibited by all Voronoi partitions. If so, then as suggested above, this would provide strong
evidence for the first tenet of the spacing-out property. In Section 4.1 below we develop a
testing procedure that confirms the presence of such separation quite independently from any
considerations of the CPL property.

In addition, we show the spacing-out property also asserts that smaller cities tend to be
clustered around these larger centers. In Section 4.2 below we show that Voronoi partitions
generated by the largest cities do indeed exhibit significantly stronger accessibility to the smaller
cities in their cells than do Voronoi partitions generated by random cities. These results thus
provide further support for the spacing-out property itself.

4.1 Spatial Separation of the Largest Cities

Let U denote the relevant set of cities for a given country (so that |U | = 930 for the case of
US). For any given number, r, of the largest cities in U, and for any partition, v, of U, let Nr(v)
denote the number of partition cells of v containing at least one of these r cities. If there is
indeed substantial spacing between the largest cities in U, then we would expect Nr(v) to be
larger for Voronoi partitions than for random partitions of the same size. For given values of r
and K, we start by simulating M (= 1000) Voronoi K-partitions, v = 1, . . . ,M, as in Section 3,
and summarize the above counts, Nr(v) , by the Voronoi count vector,

Nr = [Nr(v) : v = 1, . . . ,M] . (15)

For each of these Voronoi K-partitions, v, we again simulate M (= 1000) random K-partitions,
! = 1, . . . ,M, of the same size, nv(K). But rather than conducting separate tests for each Voronoi
partition, v, as in Section 3, we now construct a summary test using appropriate mean values as
follows.

First we write the random partitions for v as ordered pairs (v,!), ! = 1, . . . ,M, to indicate
their size-dependency on v. In a manner paralleling Nr(v), we then let Nr(v,!) denote the number
of cells in random partition (v,!) that contain at least one of the r largest cities in U. In these
terms the count vectors,

Nr(!) = [Nr(v,!) : v = 1, . . . ,M] , ! = 1, . . . ,M (16)
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can each be regarded as random-partition versions of the Voronoi count vector in (15), where
each component, Nr(v,!) , of Nr(!) is based on a random partition of the same size as Voronoi
partition, v. In this setting, our basic null hypothesis is essentially that the Voronoi count vector,
Nr is drawn from the same population as its random-partition versions in (16). But for operational
simplicity, we focus only on the associated mean-counts, defined for (15) and (16), respectively,
by

Nr =
1
M

M
X

v=1

Nr(v) (17)

and

Nr(!) =
1
M

M
X

v=1

Nr(v,!) , ! = 1, . . . ,M . (18)

In these terms, our explicit null hypothesis, H0, is that the Voronoi mean-count, Nr, is drawn
from the same population as its associated random mean-counts, Nr(!), ! = 1, . . . ,M.24 If for
the given set of simulated random partitions above, we now let M0 denote the number of random
mean-counts, Nr(!), larger than Nr, then the p-value, p0, for a one-sided test of H0 is given [in a
manner similar to (14)] by

p0 =
M0

M
. (19)

The p-values, p0, for such tests using the US data are given in Table 1 for the selected numbers
of largest cities, r = 2, . . . , 10, and partition sizes, K = 2, . . . , 10, 20. Here significance levels,
p0  0.01, p0  0.05, p0  0.10, are denoted respectively by  , G# and #, with blanks denoting
no significance.

5 103 204 62 7 8 9

2

5

10

3
4

6
7
8
9

Table 1: The result of spatial separation test (US)
24As an alternative view of this hypothesis, observe that if one lets Nr(v, 0) = Nr(v) and considers the matrix of

counts Cr = [Nr(v,!) : v = 1, . . . ,M,! = 0, 1, . . . ,M], then H0 amounts to the hypothesis that the mean of the
first column of Cr is drawn from the same population as the means of the remaining columns.
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So for example, the symbol  in cell (2, 2) signifies that the mean number of cells in Voronoi
2-partitions containing at least one of the 2 largest cities in the US is significantly greater (at the
0.01 level) than would be expected if this were a random 2-partition. Moreover, since for r = 2,
this significance level persists for all partition sizes up to K = 20, it is evident that for Voronoi
2-partitions these two largest cities (New York and Los Angeles) are almost never in the same
cell of any such partition. This is hardly surprising, since New York and Los Angeles are on
opposite coasts. So the key point here is that random partitions are not sensitive to “opposite
coasts”, while Voronoi partitions most certainly are. More generally this same degree of maximal
significance is seen to persist up to the first four largest cities (New York, Los Angeles, Chicago,
and Dallas), which we have already seen are spaced widely apart within the US. But when
the fifth largest city (Philadelphia) is included, its close proximity to New York makes such
separation less likely. Moreover, since the sixth largest city (Houston) is also close to Dallas,
the significance of Voronoi separation now disappears altogether. What is more interesting is
the apparent resurgence of significance when the seventh largest city (Miami) is included. Here
again it is evident from the map in Figure 7 that Miami is about as far away from the six largest
cities as is physically possible within continental US.

Boston (10)
New York (1)
Philadelphia (5)

Washington, DC (8)

Miami (7)
Houston (6)Dallas (4)

Los Angeles (2)

Chicago (3)

Atlanta (9)

Figure 7: Locations of Cities

So again, this separation e↵ect is strongly captured by our testing procedure. In summary,
these results do indeed support the spacing-out property of largest cities within the US, and in
particular, they echo the strong separation of the four largest cities seen in the tests of Section 3
above. Notice also that the spacing between these largest four cities is somewhat more uniform
than the spacing between smaller cities. This is in part explained by the the tendency of smaller
cities to cluster around larger cities, as we examine further in the next section.
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4.2 Concentration of Smaller Cities Around the Largest Cities

We now focus on the spatial distribution of smaller cities associated with that of the largest cities
studied in the previous section. For this purpose, we designate the (unique) Voronoi K-partition
generated by the K largest cites as the largest-city Voronoi K-partition. Our objective is then
to test whether these K largest cities are significantly more accessible to all other cities in their
cells than are the corresponding reference cities in random Voronoi K-partitions (as in Section 3
above).

To formalize these concepts, we first identify the sets of cities in each partition cell. For any
Voronoi K-partition, let the set of all cities in each cell, i = 1, . . . ,K, be denoted by Ui (⇢ U),
and let ui 2 Ui denote the reference city in this cell. If the distance from ui to any city u 2 Ui is
denoted by d(ui, u),25 then the total distance of all cities in U to their reference cities in a given
Voronoi K-partition is then given by

DK ⌘

K
X

i=1

X

u2Ui

d(ui, u) . (20)

With these definitions, if the largest K cities do indeed serve as cluster centers for those smaller
cities around them, then one should expect to observe values of DK for largest-city Voronoi
K-partitions that are smaller than the corresponding values, say eDK , for similarly sized random
Voronoi K-partitions. To test this assertion for a given value of K = 2, 3, . . . , the appropriate
null hypothesis, H0, is simply that DK and eDK come from the same statistical population. By
using the 1000 samples of random Voronoi K-partitions as in the previous section, we can then
compute the appropriate p-value for a one-sided the test of H0 for this value of K.

Alternatively, it may be more appropriate to use accessibilities to city populations by weight-
ing each distance, d(ui, u), in eq. (20) by the population size, su, of city u 2 Ui . Note however
that since d(ui, ui) = 0 for each reference city, ui, the populations of the K largest cities will
automatically be excluded from the largest-city Voronoi K-partition. But for random K-partitions,
where these largest cities are generally not the reference cities, these largest populations will
often be included in total population-weighted distances. Thus in order to focus on comparisons
of accessibility to populations in smaller cities, it is appropriate to exclude the K largest city
populations from all such comparisons.26 To do so, if we now denote the set of K largest cities

25Recall that our measure of distance, d(u, u0), between cities u and u0 was defined in footnote 21 above. Note in
particular that this (set) distance implies that the distance from any city to itself is zero, i.e., that d(u, u) = 0.

26As will become clear below, this convention has the additional advantage of yielding a conservative test of
clustering around the largest cities. In particular, the inclusion of largest-city populations must necessarily increase
the total population-weighted distances for almost all random K-partitions.
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in U by UK , then for any given largest-city Voronoi K-partition, the appropriate modification of
DK above is now taken to be the total population-weighted distance as defined by,

D⇤K ⌘
K
X

i=1

X

u2Ui�UK

sud(ui, u) . (21)

If the total population-weighted distance for a random K-partition is similarly denoted by eD⇤K ,
then the appropriate null hypothesis, H⇤0, for this alternative test is now that D⇤K and eD⇤K come
from the same statistical population.

Since the largest-city Voronoi K-partition is unique for each K, the hypotheses, H0 and H⇤0,
are tested by simulating 1000 random Voronoi K-partitions and calculating appropriate p-values
(for one-sided tests) as the share of associated total distance values, eDK < DK , under H0, and
the share of total population-weighted distance values, eD⇤K < D⇤K , under H⇤0, respectively. The
results of these tests are plotted in Figure 8 for K = 1, . . . , 20. Turning first to H0 (plotted in red),
the significance results for K = 3 and 4 reflect the strong tendency in Voronoi separation for
r = 3 and 4 in Table 1. Note that high p-value at K = 2 is expected. For since the largest two
cities (New York and Los Angeles) are located on opposite coasts, random pairs of reference
cities will almost always have better overall access to cities than these two. The subsequent rise
in p-values at K = 5 and 6 echoes the spatial separation results for r = 5 and 6 in Table 1. In
particular, given the respective closeness of Philadelphia to New York and Houston to Dallas,
the addition of each of these reference cities yields only a small increase in overall accessibility
relative to randomly chosen reference cities. Similarly, the improvement in accessibility when
Miami is added (K = 7), and deterioration when Washington, D.C. is added (K = 8) also reflect
the cases of r = 7 and 8 in Table 1. But overall, there is a discernible tendency of cities to exhibit
more clustering around the largest cities than around randomly selected reference cities.

This tendency is much more dramatic when population accessibilities are compared. As
shown by the blue curve in Figure 8, these results are uniformly more significant than for the case
of simple inter-city distances. Indeed, except for the “bi-coastal” case (K = 2) and the “Houston
next to Dallas” case (K = 6), these results are all strongly significant (p ⌧ .05). Thus, the single
most important conclusion here is that relative to randomly selected reference cities, the largest
cities in the US tend to exhibit significantly better access to their surrounding city populations.

In relation to the results in Section 3 above, the spatial relations between smaller and larger
cities studied here show that the city subsets around the three or four largest cities are roughly
comparable to one another, each consisting of similarly sized cities. This in part suggests why
Voronoi partitions tend to exhibit higher consistency with the CPL property than their random
counterparts. In particular, those Voronoi cells containing the largest cities tend also to contain
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substantial portions of their corresponding city clusters.
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Figure 8: Result of total-accessibility test

5 Economic Regions and the Common Power Law

Our final objective is to determine whether the CPL property is stronger when comparing more
economically meaningful regions. As mentioned in the Introduction, we here replace simple
distance proximities by commodity flow dependencies. Such dependencies are based on the
Commodity Flow Survey (CFS) for 2007. This data identifies total shipments between 111
regions in the continental US, as defined by the CFS. In particular, 64 of these regions are CFS-
defined metropolitan areas, and the remaining 47 regions are either states that do not overlap
these metropolitan areas or “remainder of the state” regions including those part of states outside
the metro areas.27 Each CFS metropolitan area is either an individual CBSA, or a Combined
Statistical Area (CSA) consisting of multiple CBSAs.28

We start in Section 5.1 below by constructing an operational definition of economic regions
in terms of these commodity flow dependencies. In Section 5.2, we then test the significance

27The 47 regions correspond to the continental states excluding Rhode Island as it is completely contained in a
CFS-defined metro area, Boston-Worcester-Manchester.

28However, there is one case in which a single CBSA (Washington-Arlington-Alexandria) has been divided into
two CFS metropolitan areas [designated, respectively, as the Washington-Arlington-Alexandria CBSA and the
Washington-Baltimore-Northern Virginia CSA (Virginia part)]. In order to reconcile this CFS data with the set of
CBSAs defining “cities” in the present paper, we have thus aggregated these two CFS areas into a single Washington-
Arlington-Alexandria metropolitan area (consisting of three CBSAs, Washington-Arlington-Alexandria, Winchester
and Culpeper). For the complete list of the CFS metropolitan areas, refer to the website of the US Department of
Transportation: http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/commodity flow survey/2007/
metropolitan areas/index.html.
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of the CPL property for these economic regions against comparable sets of random partitions.
In Section 5.3 these CPL test results are shown to be even stronger than comparable results for
the Voronoi partitions in Section 3. Finally in Section 5.4, we develop an alternative method for
comparing di↵erences in upper-average distributions between economic regions and between
their corresponding random partitions. In particular, we construct a new measure of similarity of
between upper-average distributions in terms of the order-consistency properties of their ULS i

levels across ranks, i. Here it is shown that this measure can in many cases provide even sharper
comparisons between power laws across regions.

5.1 Economic Regions

If R denotes the set of all CFS regions, i = 1, . . . , 111, we first identify each region, i 2 R, with its
associated set of cities as follows. Let the set of all cities, U, be partitioned into cells, {Ui : i 2 R},
so that u 2 Ui if and only if region i accounts for the largest population share of city u. In the
analysis to follow we refer to Ui as the set of cities for region i. For convenience we then order
regions in terms of their largest cities, so that by again letting su denote the size of city u it follows
that regions, i, j 2 R, will satisfy i < j if and only if maxu2Ui su > maxu2U j su. Thus the first K
regions will generally be associated with the K largest cities in U.29 For each K (= 1, 2, . . .),
the desired sets of K economic regions then correspond essentially to the largest-city regions
together with their associated economic hinterlands.

These ideas can be made more precise terms of commodity-flow dependencies as follows. If
for any regions, i, j 2 R, we let fi j denote the commodity flow (in dollar value) from region i to
region j, then the (commodity) flow dependency, �i j 2 [0, 1), of region j on region i is taken to
be the fraction of the total commodity-inflow to j that comes from i, i.e.,

�i j ⌘
fi j

P

k2R fk j
, (22)

where in particular, � j j is designated as the self-flow dependency of region j. For any given
set of K “central” regions, one can then generate appropriate economic hinterlands by simply
assigning every other region in R to its largest supplier among these K regions. But the definition
of “central” regions themselves is more subtle. Here it might seem natural to simply choose
the first K regions, i.e., with the largest cities. But this ignores the relative flow dependencies
among these regions. For example, while Philadelphia is the fifth largest city, it exhibits a strong

29In particular, the largest cities in the first K = 20 regions (used in the analysis below) match the largest 20
cities in U, with the two exceptions of Los Angeles-Long Beach-Santa Ana (second largest) and Riverside-San
Bernardino-Ontario (14th largest) that belong to the same CFS region.
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flow dependency on New York (�1,5 = 0.119). This suggests that in central-region systems with
K � 5, it might be more appropriate to treat Philadelphia as part of the New York hinterland.
More generally, the notion of “centrality” itself appears to involve a tradeo↵ between flow
dependencies and largest-city sizes. To make this tradeo↵ explicit, we now parameterize possible
collections of K central regions in terms of the maximum allowable flow dependency between
any pair of central regions, designated as their threshold-dependency level, � 2 (0, 1). For any
given values of � and K, we then define the appropriate set of central regions, R�,K , to be the
first K regions, j 2 R, with no flow dependencies on larger regions that are higher than either �
or their own self-flow dependency, � j j.30,31 To be more precise, if we now let R⇤j = {i 2 R : i < j}
denote the set of regions with larger maximum city size than region, j, then membership in
R�,K ⌘ { jm : m = 1, . . . ,K} ⇢ R is defined by j1 = 1 and for all m = 2, . . . ,K by

jm = arg min
(

j > jm�1 : max
i2R⇤j
�i j  min{�, � j j}

)

. (23)

In essense, central regions, R�,K , constitute the set of K largest regions exhibiting no mutual
flow dependencies stronger than �. Note however that parameters, K and �, are by no means
independent. In particular, for su�ciently small values of �, only K = 1 is possible, i.e., the
entire country is in the economic hinterland of New York. However, for first 20 regions in R
considered in the present analysis, all relevant numbers of central regions, 2  K  20, are
possible for threshold-dependency levels, � � 0.05. Finally, it should be clear that even in this
most relevant range, the set of central regions, R�,K , can be quite di↵erent from the first K regions
in R. These di↵erences are of course most dramatic for small �. In the case of � = 0.05, for
example, four of the ten largest regions (Philadelphia, Miami, Washington DC, and Boston) are
all excluded by their strong flow dependencies on New York. Additional details and examples
can be found in the Appendix, where all flow dependencies among the first 20 regions in R are

30Note that one could in principle require the first condition to hold for all other regions rather than simply larger
regions. However, there are exceptions where smaller regions are the largest suppliers of larger regions, especially
when the smaller region is a major transshipment point (such as a port) or a border region. The most important
instance for our purposes is Houston ( j = 6), which is a major supplier of Dallas ( j = 4). For example at the
� = 0.05 level, it can be seen from Table 3 in the Appendix that �4,6 = 0.036 < � < 0.055 = �6,4, which would
exclude Dallas as a central region for this level of �. So to avoid such exceptional cases, we apply this condition
only to larger regions. But it should also be noted here that such di�culties are in part due to the fact that CFS data
does not distinguish transshipment points from origin and destination points, thus tending to overestimate outflows
originating at transshipment points.

31Note also that while the second condition is reasonable, it is actually only binding for one CFS region. In
particular, San Diego-Carlsbad-San Marcos imports 36.4% from Los Angeles-Long Beach-Riverside, while its
domestic supply (self-flow dependency) accounts for only 29.9%. But since San Diego-Carlsbad-San Marcos hardly
constitutes an economic center comparable to Los Angeles-Long Beach-Riverside, this creates no problem for the
present analysis.
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depicted in Table 3.
Given this definition of central regions, R�,K , we can now define the associated system of

economic regions, E�,K , as follows. For each central region, j 2 R�,K , let the corresponding
economic region, E j, consist of all regions in R for which region j is the largest supplier, i.e.,

E j ⌘

(

i 2 R : j = arg max
r2R�,K

�ri

)

. (24)

This automatically generates a K-partition of U under threshold-dependency level, �,

E�,K ⌘
n

E j : j 2 R�,K
o

, (25)

which we now designate as the economic-region K-partition for �.
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Atlanta
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Figure 9: Economic regions for selected values of � and K

These economic-region partitions are illustrated by the examples in Figure 9 for selected
combinations of � and K. Here each colored cell represents the geographical coverage of a
single city in U. Those cities of the same color all belong to a single economic region. In
particular, panel (a) shows the economic-region 4-partition, E0.1,4, that happens to be the same
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for all � 2 [0.037, 1.0]. Here the corresponding central regions, R�,4, consist of the four largest
cities (New York, Los Angeles, Chicago and Dallas). Notice the strong resemblance between
these four economic regions and Voronoi 4-partition in Figure 3(a).

5.2 Test of the CPL Property

To test the significance of the CPL property for the economic regions, we constructed economic-
region partitions, E�,K , for selected values of (�,K), and (as in Section 3) generated 1000 random
partitions of similar sizes for each case.32 The relevant range of significant results are shown in
Table 2, where each cell contains the p-value (p0) for a one-sided test of H0 given that particular
(�,K) pair.33 As in Table 1, significance levels, p0  0.01, p0  0.05, p0  0.10, are denoted
respectively by  , G# and #, with blanks denoting no significance. To interpret these results,
we first note that since the four largest cities are highly independent of one another in terms of
commodity flows (as shown in Table 3 of the Appendix), the economic-region partitions, E�,K ,
are the same for all � � 0.05 when K  4.34 Thus the test results shown in the first three columns
continue to hold for all � � 0.12, as indicated in the table. In particular, the economic-region
partitions for both K = 3 and 4 are significantly more consistent with the CPL property than
random partitions regardless of mutual flow-dependency considerations.35 (The insignificance of
CPL for the K = 2 case will be discussed in Section 5.3 below.)

To examine these results in more detail, it is instructive to compare the upper-average
distributions of economic-region partitions with representative random partitions of the same
size. The upper-average distributions of E�,K for K = 4 (and all � � 0.05) are shown in panel (a)
of Figure 10. To represent random partitions of the same size, we use the random partition with
median RMSE value, as shown in panel (b). As in the Voronoi 4-partition example of Figure 4
in Section 3, the distinction between observed and random partitions is again seen to be most
pronounced in the upper tails of the distributions. Note in particular that for the largest 100 cities
(i.e., up to ULRi = 3.64), the upper-average distributions for these four economic regions do not

32The values of � used were (i) 0.05 to 0.15 in increments of 0.01, and (ii) 0.20 to 1.00 in increments of 0.10.
The values of K used were K = 2, . . . , 20. Note also that while it is possible to consider values � < 0.05 in some
cases, these flow dependency thresholds are so low that the resulting economic regions tend exhibit little spatial
cohesion whatsoever.

33The only significant cases not shown (namely with � = 0.06, 0.07 and K � 18 ), all include single-city regions
for which power laws are not meaningful.

34To be more precise, R�,4 consists of the largest four cities for all � > 0.037, while Dallas will be contained in
Los Angeles region for �  0.037. Similarly, R�,3 consists of the largest three cities for all � > 0.029, while Chicago
will be contained in New York region for �  0.029. Refer to Table 3 in the Appendix for these threshold levels of �.

35Notice that even under di↵erent values of threshold-dependency levels, say, � and �0, the economic-region
partitions are identical, i.e., E�,K = E�0,K , if the set of central regions are identical, i.e., R�,K = R�0,K .
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cross one another, while many such crossings occur in the corresponding random partition.36

53 4 62 7
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0.08
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0.10
0.11

Table 2: Result of CPL test for economic regions
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Figure 10: Upper-average distributions under (�,K) = (0.1, 4)

For K � 5, the CPL property continues to be significant until either Philadelphia (the 5th
largest) or Atlanta (the 9th largest) is added as a central region. As mentioned above, Philadelphia
belongs to the hinterland of New York when �  0.119, but forms its own economic region at
all higher values of �. Similarly, Atlanta belongs to the Chicago hinterland for �  0.032 , but
forms its own economic region at all higher levels. The presence or absence of these two cities
appear to be the major factors governing the pattern of significance levels for K � 5 in Table 2.

36Such comparisons will be made more explicit in Section 5.4 below.
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The “Atlanta e↵ect” can be illustrated by the case, (�,K) = (0.05, 6), shown in Figure 9(b),
which is relatively close to the K = 4 case but no longer exhibits any significant consistency with
the CPL property. To understand this dramatic di↵erence, note first that the six central cities
include the four largest cities together with Houston and Atlanta.37 Here both Philadelphia and
Miami now belong to the New York region, even though Philadelphia is larger than Houston,
and Miami is larger than Atlanta. Notice also that the New York region for this case is about a
half its size under K = 4 in Figure 9(a), where the southern half is now taken by Atlanta except
for the isolated city of Miami. As a consequence, there are too few small cities in the economic
region of New York to sustain the CPL property with other economic regions. As seen in Figure
11, this is reflected in the upper-average distribution of the New York region, which now exhibits
strong concavity in the lower tail compared to that shown in Figure 10(a) for (�,K) = (0.1, 4).
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Figure 11: Upper-average distributions under (�,K) = (0.05, 6)

Next, the “Philadelphia e↵ect” is well illustrated by the case, (�,K) = (0.12, 5), in Figure
9(c). Notice that the coverage of the Philadelphia region is very limited.38 As a consequence, the
upper-average distribution of this region di↵ers markedly from those of other regions, as seen in
Figure 12. This in turn deteriorates the strength of the CPL property seen at lower levels of �.

37To be more precise, the same 6-partition as depicted in Figure 9(b) is obtained for all � 2 (0.037, 0.052].
In particular, among the central cities in R0.05,6, Dallas would belong to the hinterland of Los Angeles for

�  0.037, while Miami (which is larger population size than Atlanta) belongs to the hinterland of New York for
�  0.052, but would join R�,6 for � > 0.052 in place of Atlanta.

38Notice also that the set of five central cities is identical for all � � 0.12, since the threshold-dependency, �, is
relevant only for the selection of the central cities.
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Figure 12: Upper-average distributions under (�,K) = (0.12, 5)

Thus, while the case of K = 4 yields strong consistency with the CPL property across all
values of � , the above examples show that for larger values of K, the addition of economic regions
with smaller central cities tends to increase the variation among upper-average distributions,
leading to a deterioration of the CPL property. However, it should also be noted that this
deterioration may in part be due to our partition-based definition of economic regions. In reality
such regions tend to overlap, and may even form hierarchical relations. For example, rather than
requiring Philadelphia to form a separate region at higher levels of commodity-flow dependency,
it may be more appropriate to treat Philadelphia as a subcenter within the New York region.
Along these lines, it has been shown by Akamatsu et al. [3] (using the same data as ours)
that such hierarchical economic regions yield even stronger support for the CPL property (as
discussed further in the Conclusions).

5.3 Comparison with Voronoi Partitions

It is also of interest to compare these CPL results with those obtained in Section 3 for the simpler
case of Voronoi partitions. This comparison is shown in Figure 13, where the 5% and 10% bands
for Voronoi partitions in Figure 5 are here reproduced (in green and blue, respectively). The
significance levels (p-values) for economic-region partitions with � = 0.1 and K = 2, . . . , 20 are
then superimposed (in red) on these bands (where the gray band can be ignored for the moment).
Before comparing the more significant results, we begin by noting the conspicuous lack of
significance for economic regions at the K = 2 level, in contrast to the Voronoi results. Closer
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examination of this case shows that while many Voronoi 2-partitions tend to split the country
evenly between New York and Los Angeles (given the higher density of possible reference-city
pairs on the two coasts), the economic-region 2-partition case is actually somewhat more random.
In particular, those cities in the third major economic region, Chicago, are split quite randomly
according to which flow dependency on New York or Los Angeles is the larger one, leading to
less spatial coherence of these two regions. In contrast, the similarities between these three major
regions are fully reflected at the K = 3 level, leading to results comparable to the top 5% of
Voronoi cases. Moreover, for the most important cases of K = 4 through 6 (as discussed above)
there is far stronger consistency with the CPL property than for comparable Voronoi cases. In
particular, the p-values here are actually below the 1% band (not shown), indicating that the
CPL property is more significant for these economic-region partitions than for 99% of the 1000
randomly generated Voronoi partitions.

 0
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 2  4  6  8  10  12  14  16  18  20

Random Voronoi (5% point)
Random Voronoi (10% point)

Economic regions (λ = 0.1)
Largest-city Voronoi

p-value

K

Figure 13: CPL Comparisons of Economic-Region and Voronoi Partitions

However, one may ask whether these results might not be improved by using largest-city
Voronoi partitions rather than random choices. So as one final comparison, the p-values for
the K largest-city Voronoi partitions, K = 2, . . . , 20, are shown by the gray band in Figure 13.
Surprisingly these results are never more than weakly significant, and in addition, are nowhere
close to the top 10% of the randomly generated Voronoi partitions. Recall from Figure 8 however
that in terms of the spacing-out property, these largest-city Voronoi partitions exhibit significantly
higher population accessibility (lower total population-weighted distances) than do random
Voronoi partitions. Moreover, they also tend to exhibit higher population accessibility than
economic-region partitions for any given K. In particular, when largest-city Voronoi partitions
share the same reference cities as economic-region partitions (as for example when � = 0.1 and
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K  4) then by construction they must exhibit higher population accessibility.39

But given the stronger CPL properties of economic-region partitions, it is of interest to ask
how these two types of partitions di↵er when their reference cities consist of the same largest
cities. In general terms, since the cells of both partitions tend to include those cities closest
to each largest city, the major di↵erences are near the boundaries of each cell. A closer look
at the data indicates that for those major cities relatively far from any of the K largest cities
(i.e., those near the regional boundaries), their largest trade partners are often not the closest of
the K largest cities. This can be illustrated for K = 4 by a comparison of the economic-region
partition (for � = 0.1) in Figure 9(a) with the largest-city Voronoi partition shown in Figure
14. For example, while Miami is closest to Dallas [i.e., is in the green region of Figure 14], its
largest flow dependency is on New York [i.e., is in the red region of Figure 9(a)]. Similarly, St.
Louis is closest to Chicago [i.e., is in the magenta region of Figure 14], but again with largest
flow dependency on New York [i.e., is also in the red region of Figure 9(a)]. These observations
suggest that in terms of the CPL property itself, perhaps a trade-linkage interpretation of the
spacing-out property would be more appropriate than our present geographical version.

New York

Chicago

St. Louis

Miami

Dallas

New York region
Los Angeles region

Chicago region
Dallas region

Figure 14: The largest-city Voronoi 4-partition

5.4 Order-Consistency of Upper-Average Distributions

Recall from the example in Figure 10 that a distinguishing feature of economic-region partitions
exhibiting significant CPL properties is that their upper-average distributions appear to be
more “parallel” than those of comparable random partitions. This e↵ect can be described more
formally in terms of the order consistency among these upper-average distributions, i.e., the
order consistency among the ULS i values at each rank value i. As we now show, this type of

39Since each non-reference city in a Voronoi partition must always be assigned to its closest reference city, it
follows by definition that both distance sums in (20) and population-weighted distance sums in (21) are necessarily
minimal with respect to the given set of reference cities.
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consistency is far more stable for economic-region partitions than for random partitions as shown
below.

To do so, we begin by observing that if all upper-average curves for a given regional partition
were perfectly parallel (and thus were exactly consistent with the CPL property) then the vertical
ordering of ULS values at each rank value would necessarily agree with their common ordering
predicted by the categorical regression used to test this CPL property. So the simplest way to
measure overall order consistency is to compare these orderings at each rank value with the
common predicted ordering. A stylized version of such comparisons is shown in Figure 15,
where only two sets of “red” and “blue” cities are shown, each consisting of four cities (so that
comparisons can be made at all four rank values, i = 1, 2, 3, 4). Here the red and blue lines
correspond to the results of the categorical regression (which by construction yields that pair of
parallel lines minimizing the overall sum of squared errors for both sets of cities). So the ULS
values for blue cities are here predicted to be above those for red cities at every rank. This is
seen to be true at ranks i = 3, 4, but not true at ranks i = 1, 2. So of the possible comparisons that
can be made in this case, one can say that the degree of order consistency is 50%. However, for
much larger examples, it is more convenient to focus on inconsistencies, which tend to be fewer
in number and to exhibit wider relative variations. Thus in the present example, the degree of
order inconsistency is also 50%. This is essentially the test statistic we seek to construct.

1 2 3 4
1 0 01

1
2

Figure 15: Categorical Regression Example

To formalize these ideas for a given number of partition cells, K, let the set of cities in
each partition cell, k = 1, . . . ,K, be designated as the kth city set, Uk, of size |Uk| (in a manner
paralleling Section 5.1 above). Thus in the example of Figure 15 there are two city sets of equal
size, |U1| = 4 = |U2|. But more generally, these sets will be of di↵erent sizes. So for each city
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rank, i, the only city sets, Uk, for which this rank is meaningful are those for which |Uk| � i. If
this collection of city sets is now denoted by UK(i) = {k 2 {1, . . . ,K} : |Uk| � i}, then the relevant
ordering of ULS i values involves only those city sets in UK(i). With this in mind, recall next
from Section 2.3 that city sets, k, now constitute the appropriate “regions”, j, in expression (12),
so that ULS ik denotes the relevant ULS i value for each city set, k 2 UK(i). In these terms the
i-rank, ri(k), of city set, k 2 UK(i), is given by the number of such city sets with ULS i values no
larger than that of k, i.e., by

ri(k) = |{` 2 UK(i) : ULS ik  ULS i`}| (26)

so that the city set with highest ULS i value has rank one (assuming no ties). This in turn yields
the desired i-rank ordering,

ri(k)  ri(`), ULS ik � ULS i` (27)

for all k, ` 2 UK(i) and i = 1, . . . , n (= |U | ).
Given these definitions, our main objective is to compare each ordering in (27) with the

common ordering generated by the categorical regression for partition, K. To do so, recall from
expression (12) that if (for convenience) we now set �1 = �̂1 = 0 for the reference region, k = 1,
then the predicted values, [ULS ik, in this regression are given by

[ULS ik = ↵̂ + ✓̂ULRi +

m
X

h=1

�̂hDj(h) = (↵̂ + ✓̂ULRi ) + �̂k . (28)

Thus the ordering of these predicted values reduces to the identity,

[ULS ik �[ULS i` , �̂k � �̂` (29)

which is seen to be independent of i. This in turn yields regression ranks,

r̂(k) = |{` = 1, . . . ,K : �̂k  �̂`}| (30)

which generate the desired regression-rank ordering,

r̂(k)  r̂(`),[ULS ik �[ULS i`, (31)

for all k, ` 2 UK(i) and i = 1, . . . , n.
Finally, to determine the degree of inconsistency between this regression-rank ordering and
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each i-rank ordering in (27), note first that since we are primarily interested in comparisons of
these orderings in the upper-tail (where CPL properties are most critical), it is not essential to
consider all possible i-rank orderings. In particular, for any given cut-o↵ level, I  n, one may
choose to consider only the I top ranked cities, i = 1, . . . , I. (In the analysis to follow, we set
I = 100.) Next observe that if for each i  I and k 2 UK(i) we let Ri(k) = {` 2 UK(i) : ` > k}, then
the total number of distinct comparisons to be made is given by NK(I) =

PI
i=1
P

k2UK (i) |Ri(k)|.
Moreover, observe that for any ` 2 Ri(k), a disagreement occurs between the orderings of ri and r̂
if and only if the signed di↵erences, sgn[ri(k)�ri(`)] and sgn[r̂(k)� r̂(`)], are not equal (including
possible zeros).40 So if we let �(x, y) = 1, sgn(x) , sgn(y) , and �(x, y) = 0 otherwise, then the
desired degree of order inconsistency is given by the following fraction of disagreements,

�K(I) ⌘
1

NK(I)

I
X

i=1

X

k2UK (i)

X

`2Ri(k)

�(ri(k) � ri(`), r̂(k) � r̂(`)) . (32)

Note in particular that � = 0 if the upper-average distributions of partition cells never cross one
another.

To employ �K(I) as a test statistic for a given K-partition, here we consider only the top 100
cities (I = 100) and compute �K(100) for this partition.41 Our null hypothesis, H0, is again that
this value is not statistically distinguishable from those values, e�K(100), derived from random
K-partitions of the same size (as in Section 5.2 above). To construct a one-sided test of H0,
we again sample 1000 random K-partitions of the same size, and estimate the p-value for this
test by the fraction of e�K(100) values smaller than �K(100). The results of these tests for the
relevant range of partition sizes, K = 2, . . . , 7, and commodity-flow thresholds, � 2 [0.05, 0.13],
are shown in the left panel of Figure 16.42 For purposes of comparison, the ratios of the actual
�K(100) values to the medians, �K(100), of their corresponding random �-values are shown in
the right panel.

40Recall that the sign function is defined by sgn(x) = �1, 0, 1 i↵ x < 0, x = 0, x > 0.
41Essentially the same results are obtained under di↵erent values of I.
42These tests were actually conducted for � 2 [0.05, 1.00], but none of the curves show significant change beyond

� = 0.13.
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Figure 16: Consistency in the orders of upper-average distributions across partition cells

From these p-value results, it is clear that all K = 2, . . . , 5 are extremely significant for
� 2 [0.05, 0.11], and that K = 6 is also significant (at the 0.05 level) for � 2 [0.06, 0.11]. For
example, Figure 10 shows that �4(100) = 0 for � = 0.10,43 where in all Figures 10 through 12,
the rank value, I = 100, corresponds to upper log rank value, ULR100 ' 3.64. The sharp increase
in significance for K = 6 at � = 0.06 corresponds precisely to the “Atlanta e↵ect” described in
Section 5.2 above, and similarly, the sharp decrease in significance for K = 5 and 6 at � = 0.12
corresponds to the “Philadelphia e↵ect”. So, aside from these special e↵ects, it should be clear
that those K-partitions of economic regions exhibiting the strongest CPL properties in Section 5.2
above also exhibit the strongest order-consistency properties with respect to their upper-average
distributions. But, the result under K = 2 indicates that the order-consistency test captures certain
aspects of similarity among upper-average distributions not captured by the CPL test in Section
5.2. In particular, although the CPL property was not significant at K = 2 in terms of the test in
Section 5.2, the economic regions of the largest two cities still exhibit a similarity in city size
distributions in terms of the order-consistency.44

6 Conclusions

In this paper we have examined the question of whether spatial relations among cities may
influence the distribution of city sizes. Specifically, we have tested the implication of iid random
growth processes that a common power law (CPL) must hold across arbitrary subsets of cities,

43More generally, �K(100) = 0 for K = 2, 3, 4 at all values � 2 [0.05, 0.13] , and �5(100) = 0 at values
� 2 [0.05, 0.11].

44In fact, the upper-average distributions of economic regions do not cross at the relevant ranks under K = 2 and
3, i.e., �2(I) = �3(I) = 0 for all I � 1.
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regardless of their spatial relations. Using CBSA data from the US, we have shown that this
CPL property is in fact much stronger for spatial groupings of nearby cities (as determined by
Voronoi partitions) than for random groupings of cities. In addition, we conjectured that such
spatial groupings are characterized by the spacing-out property that larger cities tend to be widely
spaced, with smaller cities grouped around these centers. Our second series of results found
(independently of any CPL considerations) that there is strong evidence for this spacing-out
property in the US. We then combined certain aspects of these results by replacing Voronoi
groupings of nearby cities with economic regions that reflect the spacing-out property among
cities in terms of commodity-flow relations rather than simple spatial proximity. Our final set of
results confirm that the CPL property is even stronger for these economic regions.

But while these results do cast doubt on the assumption of iid growth shocks for all cities,
this should not be taken as a rejection of the random growth approach to city-size distributions.
Indeed, the original results of Gabaix ([21], Proposition 2), suggest that it may be possible to
“regionalize” such iid assumptions in a manner more consistent with our findings. More generally,
as pointed out by Duranton and Puga [17], it may be possible to develop weaker assumptions
which still yield approximate power laws for city-size distributions. One particularly relevant
extension suggested by our present results [as well as those of Redding and Sturm [46],45 among
others] would be to introduce local dependencies between the growth rates of nearby cities. Here
the recent Markovian approaches to Kesten processes by Saporta [49], Ghosh et al. [24], and
others might o↵er possible methods for doing so.

An alternative spatial approach to city-size distributions is suggested by central place theory,
dating back to the original work of Christaller [10]. Indeed, the central tenets of this theory assert
that the heterogeneity of goods together with the spatial extent of markets give rise to natural
hierarchies of cities, and thus to a diversity of city sizes. Along these lines, the one-dimensional
central place model of Hsu [30] based on micro-economic behavior exhibits both the CPL
property and spacing-out property of the present paper. In addition, an explicit power law for
city sizes is shown to emerge from this micro behavior.

One particular feature of this model which is of interest for our present purposes is the
hierarchical nesting of market areas that arises in equilibrium. Recall that our present testing
schemes involve only simple partitions of city sets. However, our results (as illustrated for
example by the “Philadelphia e↵ect”) suggest that hierarchical systems of nested regions may
in many cases be more appropriate. Along these lines, the recent paper of Akamatsu et al. [3]
proposes a hierarchical partitioning scheme inspired by Hsu’s model. Here each economic

45In their study of the growth e↵ects of German separation after world war II, these authors found significant
local dependencies in the growth rates of cities around the border.

36



region is further partitioned into economic subregions based on intraregional commodity flows.
In this setting it is shown (using the same data as ours) that such a nested structure exhibits
strong CPL properties between economic regions and their subregions (such as between the New
York and Philadelphia regions).

Finally, while the specific model of Hsu is highly stylized, the basic results of this model
continue to hold in the more general new economic geography versions of central place models
by Fujita et al. [20] and Tabuchi and Thisse [52]. In particular, these general equilibrium models
continue to exhibit the same structural features of central place theory, namely multiple industries
with di↵erentiated scale economies, and agents that choose locations in continuous geographic
space. In terms of quantitative applications, Akatatsu et al. [3] have developed computable
multiple-industry extensions of these models that exhibit stable equilibria in which both the CPL
property and spacing-out property continue to hold.46

Appendix. Flow-Dependency Levels among the 20 Largest-city
CFS Regions

This Appendix includes further details on flow dependencies among the first 20 regions in R.
These dependencies are shown in Table 3, where flow dependency, �i j, corresponds to the cell in
row i and column j.

Here the colored cells (both blue and red) identify all flow dependencies, �i j > 0.05, which
thus exclude the associated column region, j, from central region systems with � = 0.05 that
contain row region i. In particular, the red cells identify all flow dependencies, �i j > 0.10, so
that these column regions, j, are also excluded from central region systems with � = 0.10 that
contain row region i.

46In a related work, Brackman et al. [9] show that the observed diversity of city sizes can to some degree be
reproduced by introducing negative externalities of agglomeration into the standard multiple-region NEG model of
Krugman [38].
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