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Abstract

We propose a general model of monopolistic competition, which encompasses existing mod-

els while being �exible enough to take into account new demand and competition features.

Using the concept of Frechet di�erentiability, we determine a general demand system. The

basic tool we use to study the market outcome is the elasticity of substitution at a symmetric

consumption pattern, which depends on both the per capita consumption and the total mass

of varieties. We impose intuitive conditions on this function to guarantee the existence and

uniqueness of a free-entry equilibrium. Our model is able to mimic oligopolistic behavior and

to replicate partial equilibrium results within a general equilibrium framework. For example,

an increase in per capita income or in population size shifts prices (outputs) downwards (up-

wards). When �rms face the same productivity shock, they adopt an incomplete pass-through

policy, except when preferences are homothetic. Finally, we show how our approach can be

generalized to the case of a multisector economy and extended to cope with heterogeneous

�rms and consumers.
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erences
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1 Introduction

The theory of general equilibrium with imperfectly competitive markets is still in infancy. In his

survey of the various attempts made in the 1970s and 1980s to integrate oligopolistic competition

within the general equilibrium framework, Hart (1985) has convincingly argued that these contri-

butions have failed to produce a consistent and workable model. Unintentionally, the absence of a

general equilibrium model with oligopolistic competition has paved the way to the success of the

CES model of monopolistic competition developed by Dixit and Stiglitz (1977), which has been

applied to an amazingly large number of economic problems (Brakman and Heijdra, 2004). This

state of a�airs has led many scholars to believe that the CES model was the model of monopolistic

competition. For example, Head and Mayer (2014) observe that this model is �nearly ubiqui-

tous� in the trade literature. However, owing to its extreme simplicity, the CES model dismisses

several important e�ects that contradict basic �ndings in economic theory as well as empirical

evidence. To mention a few, unlike what the CES predicts, markups and �rm sizes are a�ected

by entry (Breshnahan and ..,), market size (Handbury and Weinstein, 2013), consumers' income

(Simonovska, 2013), while markups are dependent of cost (De Loecker et al., 2012). In addition,

�tweaking� the CES in the hope of obviating these di�culties, as done in many empirical papers,

does not appear to be a satisfactory research strategy for at least two reasons. First, it does not

permit a genuine comparison of results and, second, it hinders the development of new and more

general models of monopolistic competition that could be brought to the data.

Di�erent alternatives have been proposed to avoid the main pitfalls of the CES model. Behrens

and Murata (2007) propose the CARA utility that captures both price and size e�ects, while

Zhelobodko et al. (2012) use general additive preferences to work with a variable elasticity of

substitution. Vives (1999), Ottaviano et al. (2002) and Melitz and Ottaviano (2008) show how

the quadratic utility model obviates some of the di�culties associated with the CES model, while

delivering a full analytical solution. More recently, Bertoletti and Etro (2013) consider an additive

indirect utility function to study the impact of per capita income on the market outcome, but

price and �rm size are independent of population size in their setting. In sum, it seems fair to

say that the state of the art looks like a scattered �eld of incomplete and insu�ciently related

contributions.

Our purpose is to build a general equilibrium model of monopolistic competition, which en-

compasses existing models and retains enough �exibility to take into account new demand and

competition features. There are two main reasons explaining why working with monopolistic com-

petition in general equilibrium looks more promising than oligopolistic competition. First, it is

well known that the redistribution of �rms' pro�ts is at the root of the non-existence of an equi-

librium in general equilibrium with oligopolistic competition. Since entry drives pro�ts down to

zero in monopolistic competition, we get rid of this feedback e�ect and end up with a consistent

and analytically tractable model.
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Second, we capture Chamberlin's idea that the decision made by a �rm has no impact on

its competitors by assuming the existence of a continuum of �rms.1 However, �rms are bound

together through the marginal utility of income and substitution e�ects among varieties. This has

an far-fetched implication: even though �rms do not compete strategically, our model is able to

mimic oligopolistic markets and to generate within a general equilibrium framework �ndings akin

to those obtained in partial equilibrium analyses.

To prove the existence and uniqueness of an equilibrium and to study its properties, we need to

impose some restrictions on the demand side of our model. Rather than making new assumptions

on preferences and demands, we tackle the problem by building on the theory of product di�erenti-

ation. Speci�cally, we exploit the symmetry of preferences over a continuum of goods to show that

under the most general speci�cation of preferences, at any symmetric outcome the elasticity of

substitution between any two varieties is a function of two variables only: the common per capita

consumption and the total mass of �rms. Combining this with the absence of business-stealing

e�ects reveals that, at the market equilibrium, �rms' markup must be equal to the inverse of the

equilibrium value of the elasticity of substitution.

This result agrees with one of the main messages of industrial organization: the higher is the

elasticity of substitution, the less di�erentiated are varieties, and thus the lower are �rms' markup.

It should then be clear that the properties of the symmetric free-entry equilibrium depends on

how the elasticity of substitution function behaves when the per capita consumption and the

mass of �rms, which are both endogenous, vary with the parameters of the economy. The above

relationship, which links the supply and demand sides of the model in a very intuitive way, allows us

to study the market outcome by means of simple analytical arguments. To be precise, by imposing

plausible conditions to the elasticity of substitution function, we are able to disentangle the various

determinants of �rms' strategies. For example, we show how markups vary with market size and

�rms' productivity. This may help applied economists to improve their structural interpretation

of the estimated elasticities.

Our main �ndings may be summarized as follows. First, using the concept of Frechet di�eren-

tiability, we determine a general demand system, which includes a wide range of special cases such

as the CES, quadratic, CARA, additive, indirectly additive, and homothetic preferences. At a sym-

metric market outcome, the individual demand for a variety depends only upon its consumption

when preferences are additive. By contrast, when preferences are homothetic, the demand for a

variety depends upon its relative consumption level and the mass of available varieties. Therefore,

when preferences are neither additive nor homothetic, the demand for a variety must depend on

both its consumption level and total mass of available varieties.

Second, to insulate the impact of various types of preferences on the market outcome, we focus

on symmetric �rms and, therefore, on symmetric free-entry equilibria. We provide weak su�cient

1The idea of using a continuum of �rms was already discussed by Dixit and Stiglitz in their 1974 working paper,
which has been publised in Brakman and Heijdra (2004).
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conditions to be satis�ed by the elasticity of substitution function for the existence and uniqueness

of a symmetric free-entry equilibrium. Our setting is especially well adapted to conduct detailed

comparative static analyses. The typical thought experiment is to study the impact of market

size. What market size signi�es is not always clear because it compounds two variables, i.e. the

number of consumers and their willingness-to-pay for the product under consideration. Regarding

the impact of population size and income level on prices, output and the number of �rms, the

nature of preferences does not matter for the impact of the former, but it does for the impact of

the latter.

An increase in population or in income raises demand, thereby fostering entry and lower prices.

But an income hike also raises consumers' willingness-to-pay, which tends to push prices upward.

The �nal impact is thus ambiguous. However, the entry e�ect dominates the income e�ect if and

only if the elasticity of substitution rises or does not fall too much with the number of competitors,

that is, the entry of new �rms does not entail a considerable augmentation in the degree of product

di�erentiation. To sum up, like most oligopoly models, our model exhibits the standard pro-

competitive e�ects associated with entry. However, it may also give rise to less standard �ndings,

such as the anti-competitive e�ect that may be caused by an income hike. This echoes results

obtained in industrial organization, but the channels are di�erent (Amir and Lambson, 2000;

Chen and Riordan, 2008). The CES is the only utility for which price and output are independent

of both income and market size.

We also show that, when preferences are non-homothetic, a productivity hike a�ecting all �rms

leads to a lower market price, but a higher markup. In this event, there is incomplete pass-

through, like in spatial pricing models. Interestingly, �rm size need not increase under a positive

productivity shock. Firm size increases when preferences are additive or homothetic, but it may

decrease under indirectly additive or quadratic preferences.

Last, we discuss three major extensions of our baseline model. In the �rst one, we consider

Melitz-like heterogeneous �rms. In this case, the market outcome is not symmetric anymore. In

addition, when preferences are non-additive, the pro�t-maximizing price of a �rm depends directly

on the prices set by other types' �rms. This requires the use of Tarski's �xed point theorem to

prove the existence of an equilibrium. The second extension focuses on a multisector economy.

The main additional di�culty stems from the fact that the sector-speci�c expenditures depend

on the upper-tier utility. Under fairly mild conditions on this function, we prove the existence of

an equilibrium and show that many of our results hold true for the monopolistically competitive

sector. This highlights the idea that our model can be used as a building block to embed mo-

nopolistic competition in full-�edged general equilibrium models coping various applications. Our

last extension addresses the almost untouched issue of consumer heterogeneity in love-for-variety

models of monopolistic competition. Consumers may be heterogeneous because of taste or income

di�erences. Here, we will restrict ourselves to the discussions of some particular cases.

In the next section, we describe the demand and supply sides of our setting. The primitive of
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the model being the elasticity of substitution function, we discuss in Section 3 how this function

varies with per capita consumption and the mass of varieties. In Section 4, we prove the existence

and uniqueness of a symmetric free-entry equilibrium and characterize its various properties. Three

extensions are discussed in Section 5. First, we show how our model and �ndings can be extended

to a multisector economy. We then address the case of heterogeneous �rms and, last, discuss some

possible lines of research to tackle the case of heterogeneous consumers. Section 6 concludes.

2 The model and preliminary results

Consider an economy with a mass L of identical consumers, one sector and one production factor

� labor, which is used as the numéraire. Each consumer is endowed with y e�ciency units of

labor, so that the per capita income y is given and the same across consumers. This will allow

us to discriminate between the e�ects generated by the consumer income, y, and the number of

consumers, L. Firms produce a horizontally di�erentiated good under increasing returns. Each

�rm supplies a single variety and each variety is supplied by a single �rm.

2.1 Consumers

Let N, an arbitrarily large number, be the mass of �potential� varieties, e.g. the varieties for which

a patent exists. Very much like in the Arrow-Debreu model where all commodities need not be

produced and consumed, all potential varieties are not necessarily made available to consumers.

We denote by N ≤ N the endogenous mass of available varieties.

A potential consumption pro�le x ≥ 0 is a Lebesgue-measurable mapping from [0,N] to R+.

Since a market price pro�le p ≥ 0 must belong to the dual of the space of consumption pro�les

(Bewley, 1972), we assume that both x and p belong to L2([0,N]), which is its own dual. This

implies that both x and p have a �nite mean and variance. Furthermore, L2 may be viewed as the

most natural in�nite-dimensional extension of Rn. Indeed, as will be seen below, using L2 allows us

to write the consumer program in a simple way and to determine well-behaved demand functions

by using the concept of Frechet-di�erentiability, which is especially tractable in L2 (Dunford and

Schwartz, 1988).

Preferences are described by a utility functional U(x) de�ned over L2([0,N]). In what follows,

we make two assumptions about U , which seem close to the �minimal� set of requirements for our

model to be nonspeci�c while displaying the desirable features of existing models of monopolistic

competition. First, for any N , the functional U is symmetric in the sense that any Lebesgue

measure-preserving mapping from [0, N ] into itself does not change the value of U . Intuitively, this
means that renumbering varieties has no impact on the utility level.

Second, the utility function exhibits love for variety if, for any N ≤ N, a consumer strictly

prefers to consume the whole range of varieties [0, N ] than any subinterval [0, k] of [0, N ], that is,
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U
(
X

k
I[0,k]

)
< U

(
X

N
I[0,N ]

)
(1)

where X > 0 is the consumer's total consumption of the di�erentiated good and IA is the indicator

of A v [0, N ]. Since (1) holds under any monotone transformation of U , the nature of our de�nition
of love for variety is ordinal. In particular, our de�nition does not appeal to any parametric measure

such as the elasticity of substitution in CES-based models.

Proposition 1. If U(x) is continuous and strictly quasi-concave, then consumers exhibit love

for variety.

The proof is given in Appendix 1. The convexity of preferences is often interpreted as a �taste

for diversi�cation� (Mas-Collel et al., 1995, p.44). Our de�nition of �love for variety� is weaker than

that of convex preferences because the former, unlike the latter, involves symmetric consumption

only. This explains why the reverse of Proposition 1 need not hold.

For any given N , the utility functional U is said to be Frechet-di�erentiable in x ∈ L2([0,N])

when there exists a unique function D(xi,x) from [0, N ] × L2 to R such that, for all h ∈ L2, the

equality

U(x + h) = U(x) +

ˆ N

0

D(xi,x)hi di+ ◦ (||h||2) (2)

holds, ||·||2 being the L2-norm. In what follows, we restrict ourselves to utility functionals that are

Frechet-di�erentiable for all x ≥ 0 such that D(xi,x) is decreasing and di�erentiable with respect

to the consumption xi of variety i. The function D is the marginal utility of variety i when there

is a continuum of goods. That D(xi,x) does not depend directly on i ∈ [0, N ] follows from the

symmetry of preferences. Moreover, D(xi,x) strictly decreases with xi if U is strictly concave.

Thus, a strictly concave utility functional exhibits love for variety and generates a downward

sloping demand function for every variety.

The reason for restricting ourselves to decreasing Frechet-derivatives is that this property allows

us to work with well-behaved demand functions. Indeed, maximizing the functional U(x) subject

to (i) the budget constraint ˆ N

0

pixidi = y (3)

where y stands for the individual income, and (ii) the availability constraint

xi ≥ 0 for all i ∈ [0, N ] and xi = 0 for all i ∈]N,N]

yields the following inverse demand function for variety i:

pi =
D(xi, x)

λ
for all i ∈ [0, N ] (4)
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where λ is the Lagrange multiplier of the consumer's optimization problem. Expressing λ as a

function of y and x, we obtain

λ(y,x) =

´ N
0
xiD(xi,x) di

y
, (5)

which is the marginal utility of income at the consumption pro�le x under income y.2

The marginal utility function D also allows determining the Marshallian demand. Indeed,

because the consumer's budget set is convex and weakly compact in L2([0,N]), while U is continuous

and strictly quasi-concave, there exists a unique utility-maximizing consumption pro�le x∗(p, y)

(Dunford and Schwartz, 1988). Plugging x∗(p, y) into (4) � (5) and solving (4) for xi, we obtain

the Marshallian demand for variety i:

xi = D(pi,p, y) (6)

which is weakly decreasing in its own price.3 In other words, when there is a continuum of varieties,

decreasing marginal utilities are a necessary and su�cient condition for the Law of demand to hold.

To illustrate how preferences shape the demand system, consider the following examples of

utility functionals satisfying the condition (2).

1. Additive preferences.4 (i) Assume that preferences are additive over the set of available

varieties (Spence, 1976; Dixit and Stiglitz, 1977):

U(x) ≡
ˆ N

0

u(xi)di (7)

where u is di�erentiable, strictly increasing, strictly concave and such that u(0) = 0. The CES

and the CARA utility (Bertoletti, 2006; Behrens and Murata, 2007) are special cases of (7).

It is straightforward to show that (7) satis�es (2). The marginal utility of variety i depends

only upon its own consumption:

D(xi,x) = u′(xi).

Thus, the inverse demand functions satisfy the property of independence of irrelevant alterna-

tives, whereas the demand functions

xi = (u′)−1(λpi) (8)

2If we apply to U a monotonic transformation ψ, then D(xi, x) will change into ψ
′ (U(x))D(xi, x). However,

as implied by (5), λ is also multiplied by ψ′ (U(x)), which means that the inverse demand D(xi, x)/λ is invariant
to a monotonic transformation of the utility functional.

3Since D is continuously decreasing in xi, there exists at most one solution of (4) with respect to xi. However,
if a �nite choke price exists, i.e. when D(0,x∗)/λ < ∞, there may be no solution. To encompass this case, the
Marshallian demand D should be formally de�ned by D(pi,p, y) ≡ inf{xi ≥ 0 | D(xi,x

∗)/λ(y,x∗) ≤ pi}.
4The idea of additive utilities and additive indirect utilities goes back at least to Houthakker (1960).
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do not because, as seen from (5), the multiplier λ captures information about the whole consump-

tion pro�le.

(ii) Bertoletti and Etro (2013) have recently proposed a new approach to modeling monopolistic

competition, in which preferences are expressed through the following indirect utility function:

V(p, y) ≡
ˆ N

0

v(pi/y)di (9)

where v is di�erentiable, strictly decreasing and strictly convex. Using Roy's identity, the demand

function for variety i is given by

xi =
v′(pi/y)´ N

0
(pk/y)v′(pk/y)dk

(10)

where the denominator is an aggregate demand shifter that, by the envelope theorem, equals −λy.
Clearly, the demand functions satisfy the property of independence of irrelevant alternatives,

whereas the inverse demand functions

pi = y(v′)−1(−λyxi)

do not. Thus, unlike the Marshallian demand (8) obtained under additive preferences, the Mar-

shallian demand (10) now depends directly on y.

In brief, the link between a direct and an indirect additive utility goes through the demand

functions under (9) and the inverse demand functions under (7), which both share the property

of independence of irrelevant alternatives. Thus, we may already conclude that a direct and an

indirect additive utility generate di�erent market outcomes. This point is further developed in

Sections 3 and 4.

2. Non-additive preferences. Consider �rst the quadratic utility proposed by Ottaviano et

al. (2002):

U(x) ≡ α

ˆ N

0

xidi−
β

2

ˆ N

0

x2
i di−

γ

2

ˆ N

0

(ˆ N

0

xi di

)
xjdj (11)

where α, β,and γ are positive constants such that β > γ. In this case, the marginal utility of

variety i is given by

D(xi, x) = α− β xi − γ
ˆ N

0

xjdj

which is linear decreasing in xi. In addition, D also decreases with the aggregate consumption

across varieties:

X ≡
ˆ N

0

xjdj.
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Another example of non-additive preferences, which also captures the idea of love for variety is

given by the entropy utility proposed by Anderson et al. (1992):

U(x) ≡ U(X) +X lnX −
ˆ N

0

xi lnxidi

where U is increasing and strictly concave. The marginal utility of variety i is

D(xi, x) = U ′(X)− ln
(xi
X

)
which decreases with xi.

3. Homothetic preferences. A tractable example of non-CES homothetic preferences is the

translog, as developed by Feenstra (2003). By appealing to the duality principle in consumption

theory, these preferences are described by the following expenditure function:

lnE(p) = lnU0 +
1

N

ˆ N

0

ln pidi−
β

2N

[ˆ N

0

(ln pi)
2di− 1

N

(ˆ N

0

ln pidi

)]
.

A generalization of the translog is provided by the following expenditure function (Feenstra,

2014), which also portrays homothetic preferences:

E(p) = U0 ·

[
α

ˆ N

0

pridi+ β

(ˆ N

0

p
r/2
i di

)2
]1/r

r 6= 0.

A large share of the literature focusing on additive or homothetic preferences, we �nd it im-

portant to provide a full characterization of the corresponding demands (the proof is given in

Appendix 2).

Proposition 2. The marginal utility D(xi,x) of variety i depends only upon (i) the consump-

tion xi if and only if preferences are additive and (ii) the consumption ratio x/xi if and only if

preferences are homothetic.

Proposition 2 can be illustrated by using the CES:

U(x) ≡
(ˆ N

0

x
σ−1
σ

i di

) σ
σ−1

where σ > 1 is the elasticity of substitution across varieties. The marginal utility D(xi,x) is given

by

D(xi,x) = A(x)x
1/σ
i = A(x/xi)

where A(x) is the aggregate given by

9



A(x) ≡
(ˆ N

0

x
σ−1
σ

j dj

)−1/σ

.

Let η̄(xi,x) be �rm i's inverse demand elasticity given by

η̄(xi,x) ≡ −xi
D

∂D

∂xi
(12)

which is conditional on the consumption pro�le x.

Since each variety is negligible, it must be that

∂D(xi,x)

∂xj
=
∂D(xj,x)

∂xi
= 0

for all j 6= i. Plugging this expression into the formulae provided by Nadiri (1982, p.442) for the

elasticity of substitution between any two varieties i and j, setting xi = xj = x and simplifying

yield

σ̄(x,x) = −D(x,x)

x

1
∂D(x,x)
∂x

=
1

η̄(x,x)
. (13)

Because we focus on symmetric equilibria, we may restrict ourselves to symmetric consumption

pro�les:

x = xI[0,N ].

Therefore, in accordance with Proposition 2, we may rede�ne η̄(xi,x) and σ̄(x,x) as follows:

η(x,N) ≡ η̄(x, xI[0,N ]) σ(x,N) ≡ σ̄(x, xI[0,N ]).

Furthermore, (13) implies that

σ(x,N) = 1/η(x,N). (14)

Therefore, along the diagonal, our original functional analysis problem boils down into a two-

dimensional one.

The number of varieties as a consumption externality. In their 1974 working paper,

Dixit and Stiglitz (1977) argued that the mass of varieties could enter the utility functional as a

speci�c argument.5 In this case, the number of available varieties has the nature of a consumption

externality, the reason being that the value of N stems from the entry decisions made by �rms.

5Note that technically N could be written as a function of the consumption functional x in the following way
N = µ{xi > 0,∀i ≤ N} yet this would raise new issues regarding the Frechet di�erentiability of the utility function.
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An example is given by the augmented-CES, which is de�ned as follows:

U(x, N) ≡ Nν

(ˆ N

0

x
σ−1
σ

i di

)σ/(σ−1)

. (15)

In Benassy (1996), ν is a positive constant that captures the consumer bene�t of a larger number

of varieties. The idea is to separate the love-for-variety e�ect from the competition e�ect generated

by the degree of product di�erentiation, which is inversely measured by σ. Blanchard and Giavazzi

(2003) takes the opposite stance by assuming that ν = −1/σ(N) where σ(N) increases with N .

Under this speci�cation, increasing the number of varieties does not raise consumer welfare but

intensi�es competition among �rms.

Another example is the quadratic utility proposed by Shubik and Levitan (1971):

U(x, N) ≡ α

ˆ N

0

xidi−
β

2

ˆ N

0

x2
i di−

γ

2N

ˆ N

0

(ˆ N

0

xi di

)
xjdj. (16)

The di�erence between (11) and (16) is that the former may be rewritten as follows:

αX − β

2

ˆ N

0

x2
i di−

γ

2
X2

which is independent of N , whereas the latter becomes

αX − β

2

ˆ N

0

x2
i di−

γ

2N
X2

which ceteris paribus strictly increases with N .

One restrictive aspect of introducing N as an explicit argument in the utility functional U(x, N)

is that varying the number of varieties may change the indi�erence surfaces. In this case, pref-

erences are no longer ordinal. Nevertheless, the analysis developed below remains valid in such

cases. Indeed, the marginal utility function D already includes N as an argument because the

support of x varies with N .

2.2 Firms

Each �rm supplies a single variety and each variety is produced by a single �rm. Thus, a variety

may be identi�ed by its producer i ∈ [0, N ]. Firms are homogeneous: to produce q units of its

variety, a �rm needs F + cq e�ciency units of labor, which means that F is the �xed production

cost and c the marginal production cost. Being negligible to the market, each �rm chooses its

output (or price) while accurately treating some market aggregates as given. However, for the

market to be in equilibrium, �rms must accurately guess what these market aggregates will be.

In monopolistic competition, unlike oligopolistic competition, Cournot and Bertrand compe-
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tition yield the same market outcome (Vives, 1999). However, unless explicitly mentioned, we

assume that �rms are quantity-setters. Thus, �rm i ∈ [0, N ] maximize its pro�ts

Π(qi) = (pi − c)qi − F (17)

with respect to its output qi subject to the inverse market demand function pi = LD/λ. Since

consumers share the same preferences, the consumption of each variety is the same across con-

sumers. Therefore, product market clearing implies qi = Lxi. Firm i accurately treats the market

aggregates N and λ, which are endogenous, parametrically.

At any symmetric consumption outcome, the variety pro�le x can be replaced with the common

consumption level x and the mass N of varieties. Plugging D into (17), the program of �rm i is

given by

max
xi

π(xi,x) ≡
[
D (xi,x)

λ
− c
]
Lxi − F. (18)

Because �rm i accurately treats λ as a parameter, the �rst-order condition for pro�t-maximization

xi
∂D(xi,x)

∂xi
+D(xi,x) = [1− η̄(xi,x)]D(xi,x) = λc (19)

implies that the equilibrium output is such that a �rm's markup is equal to η̄ = 1/σ̄.

It is well known that (19) is both necessary and su�cient if the following condition holds:

(A.1) the elasticity η̄(xi,x) weakly increases with xi (Foellmi and Zweimuller, 2004).

This condition implies that the pro�t function π is strictly concave in xi.

We propose below a di�erent condition that builds on the concept of r-convexity, which gener-

alizes the standard notion of convexity (Pearce et al., 1998). For (19) to have at least one solution

regardless of c > 0, it is su�cient to assume that, for any x, the following Inada conditions hold:

lim
xi→0

D =∞ lim
xi→∞

D = 0. (20)

Indeed, since η̄(0,x) < 1, (20) implies that limxi→0(1 − η̄)D = ∞. Similarly, since 0 <

(1 − η̄)D < D, it follows from (20) that limxi→∞(1 − η̄)D = 0. Because (1 − η̄)D is continuous,

it follows from the intermediate value theorem that (19) has at least one positive solution. The

same holds if D displays a �nite choke price exceeding the marginal cost.

For (19) to be a necessary and su�cient condition of pro�t maximization, it must be that the

second derivative of pro�t π is negative:

xi
∂2D

∂x2
i

+ 2
∂D

∂xi
< 0. (21)

In this case, (19) has a single solution.

Solving (19) for xi, plugging the result into (21) and multiplying both parts by ∂D/∂xi, we
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obtain:

2

(
∂D

∂xi

)2

− (D − λc)∂
2D

∂x2
i

> 0 (22)

which necessarily holds if D− λc is a strictly (−1)-convex function for all xi < D−1(λc).6 Indeed,

if

∂2

∂x2
i

(
1

D − λc

)
=

2
(
∂D
∂xi

)2

− (D − λc)∂2D
∂x2i

(D − λc)3 > 0

then (22) also holds. Since

1 +
λc

D − λc
=

pi
pi − c

the strict convexity of 1/(D− λc) is equivalent to the strict convexity of pi/(pi− c) in xi. In other

words, the pro�t function π is strictly quasi-concave in xi if

(A.2) the Lerner index (pi − c)/pi is strictly (−1)-convex in xi.

Note that this condition holds if the marginal utility is concave or log-concave in xi.

In what follows, we assume that at least one of the two conditions (A.1) and (A.2) holds.

3 How does the elasticity of substitution vary?

In what follows, we restrict ourselves to symmetric outcomes and, then, impose some intuitively

plausible conditions on the elasticity of substitution σ at a symmetric outcome when each of the

N available varieties is consumed in volume x.

Rewriting the equilibrium conditions (19) along the diagonal yields

p− c
p

= η(x,N) =
1

σ(x,N)
. (23)

We illustrate below what the function σ(x,N) and (23) become for the di�erent types of

preferences discussed in the previous section.

(i) When the utility is additive, we have:

1

σ(x,N)
= η(x,N) = r(x) ≡ −xu

′′(x)

u′(x)
(24)

which means that σ depends only upon the per capita consumption when preferences are additive.

6Following Pearce et al. (1998), given a real number r 6= 0, a function f(x) is r-convex if and only if [f(x)]r is
convex.
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In this case, (23) yields

p =
c

1− r(x)
.

Combining this expression with the budget constraint shows that, under additive preferences,

the pro�t-maximizing price varies both with the per capita income y and the mass N of �rms.

(ii) When the indirect utility is additive, it is shown in Appendix 3 that σ depends only upon

the total consumption X = Nx. Since the budget constraint implies X = y/p, (23) may be

rewritten as follows:
p− c
p

= θ(X) ≡ − v
′(p/y)

v′′(p/y)

y

p
. (25)

The per capita income y being given, the pro�t-maximizing price must solve the equation

p =
c

1− θ(y/p)
(26)

which signi�es that the pro�t-maximizing price varies only with the per capita income, but not

with the mass of �rms.

(iii) When preferences are homothetic, it follows from Proposition 2 and (12) that

1

σ(x,N)
= ϕ(N) ≡ η(1, N) (27)

and thus the pro�t-maximizing price

p̄ =
c

1− ϕ(N)

varies only with the mass of �rms, but not with the per capita income.

For example, under translog preferences, we have

D(pi,p, y) =
y

pi

(
1

N
+
β

N

ˆ N

0

ln pjdj − β ln pi

)
where ϕ(N) = 1/(1 + βN).

(iv) In the CES case, the indirect utility is given by

V(p, y) =

ˆ N

0

(
pi
y

)−(σ−1)

di.

Since both the direct and indirect CES utilities are additive, the elasticity of substitution is

constant. Furthermore, since the CES is also homothetic, it must be that

r(x) = θ(X) = ϕ(N) =
1

σ
.

14



It is, therefore, no surprise that σ is the only demand side parameter that drives the market

outcome under CES preferences.

(v) In the entropy utility case, it is readily veri�ed that

σ(x,N) = U ′(Nx) + lnN

which decreases with x, whereas σ(x,N) can be U-shaped in N according to the function form of

U .

As illustrated in Figure 1, the CES is the sole function that belongs to the three classes of

preferences. Furthermore, the expressions (24), (25) and (27) imply that the classes of additive,

indirectly additive and homothetic preferences are disjoint, expect for the CES that belongs to the

three of them.

Fig. 1. The space of preferences

Properties of the function σ(x,N). In what follows, we consider the function σ(x,N) as the

primitive of the model. This is because this function portrays preferences along the diagonal,
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which is su�cient to characterize symmetric equilibria. Hence, we impose below some plausible

restrictions on the behavior of σ with respect to x and N . For notational simplicity, we denote by

Ez(f) the elasticity of f(z) with respect to z.

First, when N is constant, assuming that σ(x,N) increases (decreases) with x means that

varieties become better (worse) substitutes. Although we acknowledge with Zhelobodko et al.

(2012) that well-behaved additive preferences may give rise to price-increasing competition under

additive preferences, we �nd it more in accordance with the folk wisdom of economic theory to

focus on price-decreasing competition. As a consequence, we assume that σ(x,N) weakly decreases

with x:
∂σ

∂x
≤ 0. (28)

We now come to the impact of N on σ. The literature in industrial organization suggests that

varieties become closer substitutes when N increases, the reason being that adding new varieties

crowds out the product space (Salop, 1979; Tirole, 1988). However, in some standard models of

monopolistic competition such as the quadratic utility, the elasticity of substitution decreases with

N :

σ(x,N) =
α− βx
βx

− γ

β
N.

This should not come as a surprise. Indeed, although spatial models of product di�erentiation

and symmetric models of monopolistic competition are not orthogonal to each other, they di�er

in several respects (Anderson et al., 1992). This implies that all their properties need not be the

same. In particular, as consumers are endowed with a love for variety, they are likely to spread their

consumption over a wider range of varieties at the expense of their consumption of each variety,

whereas consumers buy one unit of a single variety in spatial models. It thus seems reasonable to

assume that the consumption x falls when the number of varieties rises.

To capture the interaction between these two e�ects, it appears to be convenient to study the

impact of N on σ when a consumer's total consumption Nx is constant. In this case, it is readily

veri�ed that the following two relationships must hold simultaneously:

dx

x
= −dN

N
dσ

σ
=

∂σ

∂N

N

σ

dN

N
+
∂σ

∂x

x

σ

dx

x
.

Plugging the �rst expression into the second, we obtain

dσ

dN

∣∣∣∣
Nx=const

=
σ

N
(EN(σ)− Ex(σ)) .

Hence, when Nx is constant the elasticity of substitution weakly decreases with N if and only if
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the condition

Ex(σ) ≤ EN(σ) (29)

holds. Evidently, if ∂σ/∂N > 0 is satis�ed, (29) holds true, but the reverse is not true. In

other words, (29) is a less stringent assumption than ∂σ/∂N > 0, which allows the elasticity of

substitution to decrease mildly with N . In other words, entry may increase or decrease the degree

of product di�erentiation. Note that ∂σ/∂x = ∂σ/∂N = 0 in the CES case.

In what follows, unless explicitly mentioned, the elasticity of substitution σ is assumed to satisfy

the two conditions (28) and (29).

Properties of markup. Using the budget constraint, the equilibrium condition (23) may be

restated as

p

(
1− 1

σ (y/Np,N)

)
= c. (30)

It follows immediately from (28) that the left-hand side of (30) increases with p. Thus, (30) has

a unique solution, which is the pro�t-maximizing price p̄(N) conditional on N . Note (29) amounts

to assuming that the left-hand side of (30) increases with N . As a consequence, the equilibrium

markup

m(N) ≡ p̄(N)− c
p̄(N)

(31)

decreases with N , which re�ects the pro-competitive e�ects generated by the entry of new �rms.

This agrees with standard di�erentiated oligopoly models (Anderson et al., 1992; Vives, 1999).

Note that the pro�t-maximizing price p̄, whence the corresponding markup m, increases with y

because a higher income raises consumers' willingness-to-pay, thus allowing the incumbent �rms

to sell at a higher price. Finally, as implied by (25), in the additive indirect utility case �rms'

markup is independent of the mass of �rms: m′(N) = 0.

Given that

m(N) =
1

σ (y/Np̄(N), N)
(32)

always holds, a decreasing (increasing) markup means that the degree of product di�erentiation

across varieties decreases (increases) when more �rms are in the market. It should be stressed

that this intuitive result is not trivial because the relationship (32) holds even when (29) is not

satis�ed, so that how Np̄(N) varies with N is a priori undetermined.
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4 Symmetric free-entry equilibrium

In the case of a general strictly concave utility functional, a symmetric free-entry equilibrium (SFE)

is described by the vector (p∗, x∗, q∗, N∗), which solves the following four conditions:

(i) the pro�t-maximization condition:

p− c
p

=
1

σ(x,N)
(33)

(ii) the zero-pro�t condition:

(p− c)q = F (34)

(iii) the product market clearing condition:

q = Lx

(iv) and budget constraint:

Npx = y.

The Walras Law implies that labor market balance N(cLx + F ) = yL holds. In what follows, we

restrict ourselves to the domain of parameters for which N∗ < N.
We have seen above that conditions (i), (iii) and (iv) yield the equilibrium markup (31). Com-

bining this expression with (ii), we obtain a single equilibrium condition given by

m(N) =
NF

Ly
(35)

which means that, at the equilibrium mass of �rms the equilibrium markup is equal to the share

of the labor supply spent on overhead costs. Therefore, the larger F , the higher the markup m

because there are fewer competitors.

4.1 Existence

Because the right-hand side of (35) increases from 0 with N whereas m is positive and decreasing

with N , the two curves intersect each other, and only once. As a consequence, we get the following

result.

Proposition 3. Assume that (A.1) or (A.2) holds. If (28) and (29) hold, then there exists a

unique symmetric free-entry equilibrium.

Figure 2 illustrates this result.
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Fig. 2. Existence.

Note that Proposition 3 relies on a set of su�cient, but not necessary, conditions for the

existence and uniqueness of an SFE. In particular, there exists a unique SFE when the markup

function m(N) increases with N provided that the slope of m is smaller than F/Ly (minus an

arbitrarily small positive number). In other words, a market mimicking anti-competitive e�ects

need not preclude the existence and uniqueness of a SFE (Chen and Riordan, 2008; Zhelobodko

et al., 2012).

4.2 Comparative statics

In this subsection, we study the impact of a higher gross domestic product on the SFE. A higher

total income may stem from a larger population L, a higher per capita income y, or both. Next,

we will discuss the impact of �rm's productivity.

4.2.1 Population size

A larger population leads to (i) a larger number of �rms and (ii) a lower market price. To show it,

we �rst note that the left-hand side of (35) is una�ected by a population hike because, as implied

by (30) and (31), it does not involve L as a parameter. By contrast, the ray representing the

right-hand side of (35) rotates clockwise (see Figure 2 for an illustration), so that the equilibrium

mass of �rms increases with L, while the equilibrium price falls with L. This is in accordance with

Handbury and Weinstein (2013) who observe that price level for food products falls with city size.
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Second, the zero-pro�t condition (p − c)q = F implies that L always shifts p and q in opposite

directions. Therefore, �rm sizes are larger in larger markets. It remains to determine how the per

variety consumption level x varies with an increase in population L and per capita income y.

When σ weakly decreases with N , the right-hand side of (33) increases with N . Since the left-

hand side of this equation decreases with N , (28) implies that x∗ decreases with L. This result thus

holds for additive, indirectly additive and quadratic preferences. The situation is more ambiguous

when σ increases with N .

To illustrate it, consider the case of homothetic preferences where σ depends upon N only. In

this case, (30) boils down to

p (1− ϕ (N)) = c. (36)

Totally di�erentiating (36) with respect to L yields

EL(p∗)− N∗ϕ′(N∗)

1− ϕ(N∗)
EL(N∗) = 0.

In addition, the budget constraint pNx = y implies

−EL(N∗)− EL(p∗) = EL(x∗).

Thus, adding the above two expressions, we get

−
[
1 +

N∗ϕ′(N∗)

1− ϕ(N∗)

]
EL(N∗) = EL(x∗)

which means that x∗ decreases with L if and only if

1 +
N∗ϕ′(N∗)

1− ϕ(N∗)
> 0.

Since ϕ′ < 0, this inequality need not hold. However, in the case of the translog where ϕ(N) =

1/(1 + βN), the desired inequality is satis�ed, and thus x∗ decreases with L.

The following proposition summarizes our results.

Proposition 4. Assume that (28) and (29) hold. Then, a larger population leads to (i) more

product diversity, (ii) a larger �rm size and (iii) a lower markup. Furthermore, if preferences are

additive, indirectly additive, quadratic, or translog, a larger population leads to a decrease in the

per variety consumption.

4.2.2 Income

We now come to the impact of the per capita income on the SFE. A positive shock on y triggers

the entry of new �rms because there is more labor available for production while consumers have a

higher willingness-to-pay for the incumbent varieties. More precisely, we know that the curvem(N)
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is shifted upward when y rises. Therefore, as shown by Figure 3, N∗ increase with y. However,

the impact of y on market price p∗and �rms' size q∗ is less straightforward.

We show in Appendix 4 that the equilibrium price decreases (increases) with y when σ(x,N)

increases (decreases) with N . In other words, a higher per capita income may give rise to both

price-decreasing and price-increasing competition. This extends Zhelobodko et al. (2012) who

show that a larger market size generates price-decreasing (price-increasing) competition under

additive preferences when r(x) increases (decreases) with x. Under indirectly additive preferences,

(28) and (29) implies θ′(X) > 0. As a consequence, a higher income always triggers a lower market

price, a �nding obtained by Bertoletti and Etro (2013) through a di�erent approach.

Finally, note that the product market balance q = Lx implies that �rm's size and the per

variety consumption always vary in the same direction under a per capita income shock.

Proposition 5. Assume that (28) and (29) holds. Then, a higher per capita income leads to

more product diversity. Furthermore, a higher per capita income results in (i) a lower markup, (ii)

a larger �rm size, and (iii) a larger per variety consumption if and only if σ(x,N) increases with

N .

Propositions 4 and 5 imply that, under (28) and (29) an increase in y and L leads to similar

pro-competitive e�ects if σ(x,N) increases with N . Otherwise, a positive shock on y generates

an anti-competitive e�ect, i.e. an increase in price and a decrease in output, whereas a larger

population gives rise to pro-competitive e�ects. Therefore, an increase in L (y) cannot be used

as a substitute for an increase in y (L) in comparative statics (except in the case of homothetic

preferences as shown below). This should not come as a surprise because an increase in y a�ects

the shape of individual demands when preferences are non-homothetic, whereas an increase in L

shifts upward the market demand without changing its shape.

Observe that using (indirectly) additive utilities allows capturing the e�ects generated by shocks

on population size (income), but disregard the impact of the other magnitude. Propositions 4 and

5 thus extend results obtained by Zhelobodko et al. (2012) and Bertoletti and Etro (2013).

Finally, if preferences are homothetic, it is well known that the e�ects of L and y on the market

variables p, q and N are exactly the same. To check it within our framework, it su�ces to notice

that (30), whence m, does not involve y as a parameter because σ depends solely on N . Therefore,

it follows from (35) that the equilibrium price, �rm size, and number of �rms depend only upon

total income yL.

4.2.3 Productivity

A �rm's productivity is typically measured by its marginal cost level. Thus, to uncover the impact

on the market outcome of a productivity shock common to all �rms, we conduct a comparative

static analysis of the SFE with respect to c.

Assume, �rst, that preferences are not homothetic, which means that σ strictly decreases with

21



x. It then follows from (30) that a drop in c implies that p̄(N) gets lower for all values of N .

Therefore, since (32) implies that the curve m(N) is shifted upward, both the markup m(N∗) and

the mass of �rms N∗ increase from (35).

Intuitively, we expect p∗ to decrease with a drop in c. Figure 4 depicts (30) and (35) in the

plane (N, p).

Fig. 4. The impact of a productivity shock.

It is straightforward to check that a drop in c moves the vertical line rightward while the p∗-

locus is shifted downward. Thus, p∗ decreases together with c. Because the markup increases,

�rms follow a pricing policy that involves incomplete pass-through. Thus, �rms partially o�set

their reduction in marginal costs by raising markups, very much like in oligopoly theory.

Consider now the case of homothetic preferences. It follows from (36) that

p̄(N) =
c

1− ϕ(N)
=⇒ m(N) = ϕ(N).

As a consequence, (35) does not involve c as a parameter. This implies that a technological shock

does a�ect the number of �rms. In other words, the markup remains the same regardless of the

productivity shocks, thereby implying that under homothetic preferences �rms follow a complete

pass-through policy. This explains why trade models that combine CES preferences and iceberg

trade costs are unable to exhibit freight absorption or phantom freight.
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The impact of technological shocks on �rms' size is more involved. Assume, �rst, that σ(x,N)

is a weakly increasing function of N . Using (33) and (34), we obtain

x

σ(x,N)− 1
=

F

cL
.

Combining this equation and (28) shows that x∗ increases, and thus �rms' size q∗ decreases. By

contrast, as illustrated by the following examples, when σ(x,N) decreases with N , the impact of

technological shocks on q∗ is ambiguous.

Consider the case of indirectly additive preferences (9). The pro�t-maximizing condition boils

down to p[1− θ(y/p)] = c, thus implying that the equilibrium price always decreases when c falls.

Furthermore, the zero-pro�t condition amounts to

q =
F

p− c

and thus �rms' size increases in response to a positive technological shock if and only if the unit

margin p− c = pθ(y/p) decreases with c. For example, if v(p/y) ≡ (a− p/y)1+b, with a, b > 0, we

have q∗ = F (1 + b)/(ay − c), which decreases in response to a positive technological shock.

We now come to the case of quadratic preferences in which the parameter α is normalized to 1

by choosing the unit of the di�erentiated product. Using (30) and (34), it is readily veri�ed that

the following two relationships hold:

N =
1

γ

(
L

q
− 2β − βc

F
q

)
(37)

q =
LN

βN + γN2 + βy(L/F )
. (38)

Note that (38) is independent of c and is described by a bell-shaped curve. Therefore, the

impact of a technological shock on q∗ has the same sign as the impact on N∗ if and only if N∗

belongs to the interval [0, N0], where N0 maximizes the right-hand side of (38):

N0 ≡

√
βyL

γF

that is, when the (38)-locus is upward-sloping.

Plugging (38) into (37) and rearranging terms shows that N∗ must solve the following equation:

γN3 +

(
β + c

L

F
− γ yL

F

)
N2 − β

(
yL

F

)2

= 0. (39)

Since the left-hand side of (39) is either increasing or U-shaped, the solution N∗ is unique.

Therefore, N∗ ≤ N0 if and only if the left-hand side of (39) is non-negative at N = N0, or,
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equivalently, if and only if the following inequality holds:

c ≥ max{ĉ, 0} where ĉ ≡ 2γy −
√
βγy(F/L)− β(F/L).

To sum up, �rms' size increases with productivity when ĉ ≤ 0, or �rst increases and, then,

decreases when ĉ > 0.

The following proposition comprises a summary.

Proposition 6. Assume that (28) and (29) hold. Then, when marginal costs decrease, (i)

prices decreases whereas markups weakly increase; (ii) there is more diversity when preferences are

non-homothetic; (iii) under additive or homothetic preferences, �rms' size increases, but �rms'

size may decrease under indirectly additive or quadratic preferences.

4.2.4 Monopolistic or oligopolistic competition

It should be clear that Propositions 4-6 have the same nature as results obtained in similar compar-

ative analyses conducted in oligopoly theory (Vives, 1999). They may also replicate the less stan-

dard anti-competitive e�ects that a larger market size may trigger under some speci�c conditions.

Therefore, we �nd it fair to say that our model of monopolistic competition mimics oligopolistic

competition.

Observe that the markup (33) stems directly from preferences through the sole elasticity of sub-

stitution because we focus on monopolistic competition. However, in symmetric oligopoly models

the markup emerges as the outcome of the interplay between preferences and strategic interac-

tions. To illustrate, consider the case of quantity-setting �rms and additive preferences over a

�nite-dimensional consumption set:

U(x1, ..., xn) =
n∑
i=1

u(xi)

where n is an integer. The inverse demands are given by

pi =
u′(xi)

λ
λ =

1

y

n∑
i=1

xiu
′(xi).

Unlike monopolistic competition, each �rm can manipulate λ. This is captured by the �rst-

order conditions for pro�t maximization:

pi − c
pi

= r(xi) + Exi(λ).
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At the symmetric outcome, the expression boils down to

p− c
p

= r (x) +
1

n
(1− r(x)) (40)

while, under monopolistic competition with additive preferences, we have

p− c
p

= r (x) . (41)

Comparing (40) and (41) shows that, when preferences are additive, the markup decreases

directly with n under Cournot competition, exactly like it does under monopolistic competition

under non-additive preferences.

We would be the last to say that monopolistic competition models are able to replicate the

whole range of results obtained in industrial organization. For example, these models are useless

for studying the incumbents' strategies vis-a-vis potential entrants when there is a handful of �rms.

4.3 When is the SFE socially optimal?

The social planner faces the following optimization problem:

maxU(x)

s.t. Ly = cL

ˆ N

0

xidi+NF.

The �rst-order condition with respect to xi implies that the problem may be treated using

symmetry, so that the above problem may be reformulated as maximizing

φ(x,N) ≡ U
(
xI[0,N ]

)
(42)

subject to Ly = N(cLx+ F ).

The ratio of the �rst-order conditions with respect to x and N leads to

φx
φN

=
NcL

cLx+ F
. (43)

It is well known that the comparison of the social optimum and market outcome leads to am-

biguous conclusions for the reasons highlighted by Spence (1976). We illustrate here this di�culty

in the special case of homothetic preferences. Without loss of generality, we can write φ(N, x) as

follows:

φ(N, x) = Nψ(N)x

where ψ(N) is an increasing function of N . In this event, we get φxx/φ = 1 and φNN/φ =
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1 +Nψ′/ψ, which is equal to the constant ν in Benassy (1996). Therefore, (43) becomes

EN(ψ) =
F

cLx

while the market equilibrium condition (35) is given by

ϕ(N)

1− ϕ(N)
=

F

cLx
.

The social optimum and the market equilibrium are identical if and only if

EN(ψ) =
ϕ(N)

1− ϕ(N)
. (44)

It should be clear that this condition is unlikely to be satis�ed unless strong restrictions are

imposed on the utility. To be concrete, denote by A(N) the solution to

EN(A) + EN(ψ) =
ϕ(N)

1− ϕ(N)

which is unique up to a positive coe�cient. It is then readily veri�ed that (44) holds for all N if and

only if φ(x,N) is replaced with A(N)φ(x,N). Thus, contrary to the folk wisdom, the equilibrium

and the optimum may be the same for utility functions that di�er from the CES (Dhingra and

Morrow, 2013). This �nding has an unexpected implication: when preferences are homothetic,

whatever the market outcome there exists a consumption externality such that the equilibrium is

optimal regardless of the values taken by the parameters of the economy. Hence, the choice of a

particular consumption externality has subtle welfare implications, which are often disregarded in

the literature.

Last, in the case of additive preferences, (44) amounts to the condition:

r(x∗) = 1− x∗u′(x∗)

u(x∗)
.

In other words, the market outcome is optimal if and only if the equilibrium markup is equal

to what Kuhn and Vives (1999) call the preference for variety.

5 Extensions

In this section, we extend our baseline model to cope with a multisector economy as well as with

heterogeneous �rms and consumers.
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5.1 Multisector economy

Following Dixit and Stiglitz (1977), we consider a two-sector economy involving a di�erentiated

good supplied under increasing returns and monopolistic competition, and a homogeneous good

supplied under constant returns and perfect competition. Both goods are normal. Labor is the only

production factor and is perfectly mobile between sectors. Consumers share the same preferences

given by U(U(x), x0) where the functional U(x) satis�es the properties stated in Section 2, while

x0 is the consumption of the homogeneous good. The upper-tier utility U is strictly quasi-concave,

once continuously di�erentiable, strictly increasing in each argument, and such that the demand

for the di�erentiated product is always positive.7

Choosing the unit of the homogeneous good for the marginal productivity of labor to be equal

to 1, the equilibrium price of the homogeneous good is equal to 1. Since pro�ts are zero, the budget

constraint is given by ˆ N

0

pixidi+ x0 = E + x0 = y

where the expenditure E is endogenous because competition across �rms is a�ected by the relative

preference between the di�erentiated and homogeneous goods.

Applying the �rst-order condition for utility maximization yields

pi =
U ′1(U (x), x0)

U ′2(U (x), x0)
D(xi, x) (45)

which generalizes (4) to the case of an economy with two sectors.

When varieties of the di�erentiated product are equally priced, (45) becomes

p =
U ′1(φ(x,N), x0)

U ′2(φ(x,N), x0)
D(x, xI[0,N ]). (46)

where φ(x,N) is de�ned by (42). Since U is strictly quasi-concave and both goods are normal,

the marginal rate of substitution decreases with φ(x,N) and increases with x0. Therefore, for any

given (p, x,N), (46) has a unique solution in x∗0(p, x,N), which increases in p and x. Plugging this

solution into the symmetrized budget constraint, we get

pNx+ x∗0(p, x,N) = y. (47)

The left-hand side of this expression increases with p and x. Therefore, this equation has a single

solution x∗(p,N), which decreases with p.

Since the marginal rate of substitution in (45) is independent of xi, the elasticity of the inverse

demand for variety i is the same as in the one-sector economy studied in the previous sections.

Therefore, we may still consider the elasticity of substitution σ(x,N) as a primitive. As in 4.1,

7In fact, our results hold true if the choke price is �nite and su�ciently high.
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there exists a unique equilibrium price p̂(N).

Plugging x∗(p,N) and p̂(N) into the zero-pro�t condition that prevails in the di�erentiated

sector, we obtain

Π(N) ≡ (p̂(N)− c)x∗(p̂(N), N) = F/L. (48)

Since Π(N) is continuous, for this equation to have a solution, it is su�cient that Π(N) gets

arbitrarily large (small) when N is arbitrarily low (high). The argument goes as follows. (i)

Since x∗(p̂(N), N) < x∗(c,N) while x∗(c,N) tends to 0 when N is arbitrarily large by the budget

constraint, it must be that x∗(p̂(N), N)→ 0 when N →∞. (ii) If N → 0, then x∗(p̂(N), N)→∞.

Indeed, note �rst that x∗(p̂(N), N) > x∗(sup p̂(N), N). Therefore, we get the desired result since,

for p = sup p̂(N), x∗(p,N) → ∞ when N → 0, for otherwise the demand for the di�erentiated

product would converge to 0.

The above boundary conditions imply that at least one solution of (48) is stable, that is,

Π′(N∗) < 0. Moreover, from the continuity of Π(N) it must be that the set of SFEs has a

supremum and an in�mum that are also stable SFEs.

Finally, it is straightforward from (48) that, for any stable SFE, a population hike triggers

more entry.8 Note also that the market price (the �rm size) decreases (shrinks) with L as long as

p̂(N) decreases with N . For example, under homothetic preferences, we have

p̂(N) =
c

1− ϕ(N)

so that p̂(N) decreases as implied by (29). Under additive preferences, (46) becomes

p =
U ′1(φ(x,N), x0)

U ′2(φ(x,N), x0)
u′(x)

thereby implying that x∗0(p, x,N) increases with N . It then follows from (47) that x∗(p,N) de-

creases with N . Therefore, using (41), p̂(N) must solve

p− c
p

= r(x∗(p,N)).

Since r increases with x, raising N lowers the right-hand side of this expression. Thus, p̂(N)

decreases with N .

Our results are summarized in the next proposition.9

Proposition 7. Assume an upper-tier utility such that the demand for the di�erentiated product

is always positive. Then, (i) the set of stable SFEs is non-empty and has a supremum and an

in�mum, which are both stable; (ii) in any stable SFE, the number of �rms rises in response to an

8When the SFE is unstable, an increase in L leads to less product diversity.
9Note that the proof developed above di�ers from and is more general than that proposed in Zhelobodko et al.

(2012).
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increase in market size; and (iii) the market price (�rm size) decreases (increases) with population

size under additive or homothetic preferences.

5.2 Heterogeneous �rms

One may wonder how the approach developed in this paper can cope with Melitz-like heterogeneous

�rms. In this case, the equilibrium ceases to be symmetric, for �rms are now parametrized by their

marginal cost ci that di�ers across �rms. The equilibrium distribution of prices, �rm sizes and the

number of �rms must be determined as the �xed point of a mapping describing the equilibrium

conditions in a functional space. For conciseness, we use the one-period timing proposed by Melitz

and Ottaviano (2008). The mass of potential �rms is N. Prior to entry, risk-neutral �rms face

uncertainty about their marginal cost and entry requires a sunk cost Fe. Once the entry cost is

paid, �rms observe their marginal cost drawn randomly from the probability distribution G(c)

de�ned over [0,∞). After observing its type c, each entrant decides to produce or not, given that

an active �rm incurs a �xed production cost F . Even though varieties are di�erentiated from the

consumer's point of view, �rms sharing the same marginal cost c behave in the same way. As a

consequence, we may refer to any available variety by its c-type only.

Studying monopolistic competition as a price game appears to be more convenient when �rms

are heterogeneous, the reason being that we can use the concept of complementarity. To describe

the price game, we have to de�ne the demand mapping away from the diagonal. Note that the

consumer demand D(pi,p, y) is well de�ned when the utility functional U is strictly quasi-concave.

Indeed, in this case there exists a unique solution to the consumer's problem.

The new equilibrium conditions are as follows:

(i) the pro�t-maximization condition for �rms of c-type:

π∗(c,p, y) ≡ max
p≥0
{L(p− c)D(p,p, y)− F}

(ii) the zero-pro�t condition for the cut-o� �rm c̄:

(pc̄ − c̄)qc̄ = F

(iii) the product market clearing condition:

qc = Lxc c ∈ [0, c̄]

(iv) the budget constraint:

N

ˆ c̄

0

pcxcdG(c) = y
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(v) �rms enter the market until their expected pro�ts net of entry costs Fe are zero:

ˆ c̄

0

Π∗(c)dG(c) = Fe (49)

where Π∗(c) is the equilibrium value of a type c-�rm pro�t.

In what follows, we prove the existence of a Nash price equilibrium when λ ≥ 0 and c̄ > 0

are given but arbitrary. To this end, we assume that D(pc,p, y) is di�erentiable with respect to pc

while its elasticity

ε̄(pc,p) ≡ −∂D
∂pc

pc
D
> 1

increases in pc and decreases in p, where the inequality is required for pro�t maximization condi-

tions to have a solution. Given these conditions, the following proposition holds true.

Proposition 8. Assume that (i) �rms are heterogenous while λ and c are given and (ii) the

direct demand elasticity ε̄(pc,p) increases in pc and decreases in p. Then, a Nash equilibrium in

the price game exists.

The sketch of the proof is as follows. The �rst-order condition for a c-type �rm, conditional on

the vector of prices p charged by the other �rms, is given by

pc − c
pc

=
1

ε̄(pc,p)
. (50)

Since the left- (right-)hand side of (50) continuously increases (decreases) with pc for any given

p, there exists a unique p̂c(p) that solves (50) for any given p ∈ L2([0, c]) and c ∈ [0, c]. Because

ε̄ decreases with p, p̂c(p) increases both in p. Finally, since the left-hand side of (50) decreases in

c, p̂c(p) also increases in c.

Let us de�ne the best-reply mapping P from L2([0, c]) into itself:

P(p; c) ≡ p̂c(p).

The proposition holds true if P has a �xed point. This is done in Appendix 5 by using Tarski's

theorem (Vives, 1999, ch.2).

Remark 1. Under additive preferences, that ε̄(pc,p) increases in pc and decreases in p is

equivalent to the assumptions that (i) r(xc) is an increasing function of xc and (ii) r(xc) < 1 for

all x ≥ 0. Indeed, (u′)−1 (λpc) is the demand for variety c, while its elasticity with respect to pc is

given by

ε̄(pc,p) =
1

r
[
(u′)−1 (λ(p)pc)

] > 1 (51)

where λ(p) is the implicit solution to the budget constraint:
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ˆ c

0

(u′)
−1

(λpc)pcdG(c) = y. (52)

Therefore, the elasticity of a c-type �rm's revenue with respect to pc is negative, thereby

implying that a �rm's revenue (u′)−1 (λpc)pc decreases with pc. It then follows from (52) that λ(p)

also decreases with p. Combining this with r′(x) > 0, we obtain from (51) that ε̄(pc,p) increases

in pc and decreases in p.

Remark 2. For indirectly additive preferences, the elasticity ε̄(pc,p) is independent of p.

Existence thus follows immediately when ε̄ increases with pc.

Remark 3. In the case of translog preferences, we have:

D(pi,p, y) =
y

pi
(

1

N
+
β

N

ˆ N

0

ln pjdj − β ln pi)

whereas the elasticity is given by

ε̄(pi,p) = 1 + β
pi

1
N

+ β
N

´ N
0

ln pjdj − β ln pi

which is increasing in pi and decreasing in p when keeping N constant.

We now come to the cut-o� cost. Consider two �rms with marginal costs c and c′ such that

c > c′ . Evidently, we have

(pc − c)D(pc,p, y) < (pc − c′)D(pc,p, y) ∀(pc,p) ∈ R+ × L2([0,N])

which implies the perfect sorting of �rms along their cost type. As a consequence, if there exists

a solution c̄(p) to the equation

π∗(c,p, y) = F/L

this solution is unique. Furthermore, when the Inada conditions (20) hold, the above equation has

a solution.

Without imposing more structure on preferences and the cost distribution, the cuto� cost need

not be monotone in the price vector p and, therefore, competitive shocks generate convoluted

e�ects in the selection of �rms.

To gain insights about the equilibrium, we investigate whether the main comparative static

results of Section 4 still hold when �rms are heterogenous. Since obtaining results for the case

of unspeci�ed preferences seems to be hopeless, we focus on particular preferences that lead to

unambiguous predictions.

1. Additive preferences. When preferences are additive, Zhelobodko et al. (2012) show

that the cuto� cost is independent of the population size if and only if preferences are CES. In

addition, the per capita income has no impact on the cuto� cost and the equilibrium price and
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�rm size distributions. By contrast, when preferences are indirectly additive, Bertoletti and Etro

(2013) show that the cuto� cost is independent of income if and only if preferences are CES,

while population size has no impact on the cuto� cost and the equilibrium price and �rm size

distributions. Interestingly enough, these results hold regardless of the cost distribution.

2. Homothetic preferences. As shown by (51), when preferences are additive D depends

on the price pro�le p solely through the scalar aggregate λ. This ceases to hold for non-CES

homothetic preferences. However, we can show that our result on complete pass-through at the

industry level still holds under �rm heterogeneity. To this end, consider a proportionate reduction

in marginal costs by a factor µ > 1. In other words, the distribution of marginal costs is now given

by G(µc).

Let us �rst investigate the impact of µ on �rms' operating pro�ts when the cuto� c̄ is un-

changed. The cuto� �rms now have a marginal cost equal to c̄/µ. Furthermore, under homothetic

preferences, ε̄(pi,p) does not depend on the income y and is positive homogenous of degree 0.

Therefore, (50) is invariant to the same proportionate reduction in c, pc and p. As a conse-

quence, the new price equilibrium pro�le over [0, c̄] is obtained by dividing all prices by µ. To

put it di�erently, regardless of the cost distribution, under homothetic preferences the equilibrium

price distribution changes in proportion with the cost distribution, thereby leaving unchanged the

distribution of equilibrium markups.

We now show that the pro�ts of the c̄-type �rms do not change in response to the cost drop.

Indeed, both marginal costs and prices are divided by µ, while homothetic preferences imply that

demands are shifted upwards by the same factor µ. Therefore, the operating pro�t of the c̄-type

�rms is unchanged because (
pc̄
µ
− c̄

µ

)
Lµxc̄ = (pc̄ − c̄)Lxc̄ = F

which also shows that the new cuto� is given by c̄/µ.

Last, like in the symmetric �rm case, any shock on L and y that keeps Ly unchanged does not

a�ect the equilibrium outcome. The reason is that all the equilibrium conditions (i)-(v) depends

only upon the aggregate income Ly.

5.3 Heterogeneous consumers

Accounting for consumer heterogeneity in models of monopolist competition is not easy but doable.

Let D(pi,p; y, θ) be the Marshallian demand for variety i of a (y, θ)-type consumer where θ is the

taste parameter. The aggregate demand faced by �rm i is then given by

∆(pi,p) = L

ˆ
R+×Θ

D(pi,p; y, θ)dG(y, θ) (53)
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where G is a joint probability distribution of income y and taste θ. As in the foregoing, ∆(pi,p)

is decreasing in pi. A comparison with Hildenbrand (1983) and Grandmont (1987), who derived

fairly sophisticated conditions for the Law of demand to hold when the number of goods is �nite,

shows how working with a continuum of goods, which need not be the varieties of a di�erentiated

product, vastly simpli�es the analysis.

The properties of D crucially depend on the relationship between income and taste. Indeed,

since �rm i's pro�t is given by π(pi,p) = (pi − c)∆(pi,p)− F , the �rst-order condition (30) for a

symmetric equilibrium becomes

p

[
1− 1

ε(p,N)

]
= c (54)

where ε(p,N) is the elasticity of ∆(p,p) evaluated at the symmetric outcome. If ε(p,N) is an

increasing function of p and N , most of the results derived above hold true. Indeed, integrating

consumers' budget constraints across R+ × Θ and applying the zero-pro�t condition yields the

markup.

m(N) =
NF

LY
where Y ≡

ˆ
R+×Θ

ydG(y, θ). (55)

Note that (55) di�ers from (35) only in one respect: the individual income y is replaced with

the mean income Y , which is independent of L. Consequently, if ε(p,N) decreases both with p

and N , a population hike or a productivity shock a�ects the SFE as in the baseline model (see

Propositions 4 and 6). By contrast, the impact of an increase in Y is ambiguous because it depends

on how θ and y are related.

Ever since the Sonnenschein-Mantel-Debreu theorem (Mas-Colell et al., 1995, ch.17), it is well

known that the aggregate demand (53) need not inherit the properties of the individual demand

functions. In particular, there is no reason to expect the aggregate demand to exhibit an increasing

price elasticity even if the individual demands satisfy this property.

To highlight the nature of this di�culty, we show in Appendix 6 that

∂ε(p,N)
∂p

=
´
R+×Θ

∂ε(p,N ; y,θ)
∂p

s(p,N ; y, θ)dG(y, θ)−

−1
p

´
R+×Θ

[ε(p,N ; y, θ)− ε(p,N)]2 s(p,N ; y, θ)dG(y, θ)

(56)

where ε(p,N ; y, θ) is the elasticity of the individual demand D(pi,p; y, θ) evaluated at a symmetric

outcome (pi = pj = p), while s(p,N ; y, θ) stands for the share of demand of (y, θ)-type consumers

in the aggregate demand, evaluated at a symmetric outcome:

s(p,N ; y, θ) ≡ D(p,p; y, θ)

∆(p,p)

∣∣∣∣
p=pI[0,N ]

. (57)
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Because the second term of (56) is negative, the market demand may exhibit decreasing price

elasticity even when individual demands display increasing price elasticities. This term being the

variance of individual demand elasticities across consumers (up to the coe�cient −1/p), loosely

speaking, we may say that the less heterogeneous consumers are, the more likely the aggregate

demand elasticity increases with p.

In the special case where consumers are endowed with di�erent incomes and CES preferences

such that the elasticity of substitution σ(θ) depends on θ, Osharin et al. (2014) show that the

market price and the mass of varieties are given, respectively, by p∗ = cσ̄/(σ̄− 1) and N∗ = Y/σ̄F

where

σ̄ ≡
´

Ω
σ(ω)y(ω)dG(θ, y)´
Ω
y(ω)dG(θ, y)

.

Thus, the market outcome depends on the income and taste distribution through the sole value

of σ̄.

6 Concluding remarks

We want to stress that our equilibrium conditions are all the same as those obtained in a standard

CES model in which the constant elasticity of substitution is equal to the value taken by the

elasticity of substitution function at the equilibrium per capita consumption and mass of �rms.

Because the values of these variables depend on the population size, income level, and production

costs, it is, therefore, not surprising that empirical studies �nd in the data that these parameters

have an impact on the market outcome. Our model displays enough versatility to obviate several

of the analytical di�culties encountered in oligopoly theory, as well as the main pitfalls of the CES

model of monopolistic competition. Yet, it must be acknowledged that working with heterogeneous

�rms and/or consumers remains a hard task. Furthermore, in order to bring our model to the data,

it seems promising to develop new parametrization methods along the line of what Mrazova and

Neary (2013) do. Clearly, more work is called for.
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Appendix

Appendix 1. Proof of Proposition 1.

(i) We �rst show (1) for the case where N/k is a positive integer. Note that

1[0,N ] =

N/k∑
i=1

1[(i−1)k, ik] (A.1)

while symmetry implies

U
(
X

k
1[(i−1)k, ik]

)
= U

(
X

k
1[0,k]

)
for all i ∈ {2, ..., N/k}. (A.2)

Together with quasi-concavity, (A.1) � (A.2) imply

U
(
X

N
1[0,N ]

)
= U

 k

N

N/k∑
i=1

X

k
1[(i−1)k, ik]

 > min
i
U
(
X

k
1[(i−1)k, ik]

)
= U

(
X

k
1[0,k]

)
.

Thus, (1) holds when N/k is a positive integer.

(ii) We now extend this argument to the case where N/k is a rational number. Let r/s, where

both r and s are positive integers and r ≥ s, be the irredundant representation of N/k. It is then

readily veri�ed that

s1[0,N ] =
r∑
i=1

1[N{(i−1)k/N}, N{ik/N}] (A.3)

and

U
(
X

k
1[N{(i−1)k/N}, N{ik/N}]

)
= U

(
X

k
1[0,k]

)
for all i ∈ {2, ..., r} (A.4)

where the fractional part of the real number a is denoted by {a}.
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Using (A.3) � (A.4) instead of (A.1) � (A.4) in the above argument, we obtain

U
(
X

N
1[0,N ]

)
= U

(
1

r

r∑
i=1

X

k
1[N{(i−1)k/N}, N{ik/N}]

)
> U

(
X

k
1[0,k]

)
.

Thus, (1) holds when N/k is rational.

(iii) Finally, since U is continuous while the rational numbers are dense in R+, (1) holds for

any real number N/k > 1. Q.E.D.

Appendix 2. Proof of Proposition 2.

It is readily veri�ed that the inverse demands generated by preferences (7) are given by

D(xi,x) = u′(xi). The uniqueness of the Frechet derivative implies that preferences are addi-

tive. This proves part (i).

Assume now that U is homothetic. Since a utility is de�ned up to a monotonic transformation,

we may assume without loss of generality that U is homogenous of degree 1. This, in turn, signi�es

that D(xi,x) is homogenous of degree 0 with respect to (xi, x). Indeed, because tU(x/t) = U(x)

holds for all t > 0, (2) can be rewritten as follows:

U(x + h) = U(x) +

ˆ N

0

D
(xi
t
,
x

t

)
hi di+ ◦ (||h||2) . (A.5)

Uniqueness of the Frechet derivative together with (A.5) implies that

D
(xi
t
,
x

t

)
= D(xi,x) for all t > 0

which shows that D is homogenous of degree 0. As a result, there exists a functional Φ belonging

to L2([0,N]) such that D(xi,x) = Φ (x/xi). Q.E.D.

Appendix 3. Let

ε̄(pi,p, y) ≡ −∂D(pi,p, y)

∂pi

pi
D(pi,p, y)

be the elasticity of the Marshallian demand (6). At any symmetric outcome, we have

ε(p,N) ≡ ε̄(p, pI[0,N ]).

Using the budget constraint p = y/Nx and (14) yields

ε(y/Nx,N) = η(x,N) =
1

σ(x,N)
. (58)

When preferences are indirectly additive, it follows from (10) that ε(y/Nx,N) = 1 − θ(y/p)
where θ is given by (25). Combining this with (A.6), we get σ(x,N) = 1/θ(Nx).
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Appendix 4. Setting

ς

(
y

p
,N

)
≡ 1

σ
(

y
Np
, N
) (59)

and plugging ς into (30), we obtain

p

[
1− ς

(
y

p
,N

)]
= c. (60)

Furthermore, combining (33) and (34) yields

p− c
p

=
NF

Ly
.

Di�erentiating (A.7) and (A.8) with respect to y and rearranging terms yields the following

two conditions:

−(1− ς)Ey(p∗) + ςEy(N∗) = ς

(
1− ς + ςEy/p(ς)

)
Ey(p∗)− ςEς(N)Ey(N∗) = ςEy/p(ς).

Solving these equations for Ey/p(p∗) and Ey(N∗) yields

Ey(p∗) =
ς

1− ς
Ey/p(ς) + EN(ς)

1 + ςEy/p(ς)− EN(ς)
(A.9)

Ey(N∗) =
1− ς + Ey/p(ς)

ςEy/p(ς) + (1− ς) (1− EN(ς))
. (A.10)

It is readily veri�ed that

Ey/p(ς) = −Ex(σ)|x=y/Np EN(ς) = Ex(σ)− EN(σ)|x=y/Np < 0 (A.11)

Combining (A.11) with (28)-(29) implies EN(ς) < 0 < Ey/p(ς). As a consequence, it follows from

(A.9) that Ey(p∗) < 0 if and only if Ey/p(ς) + EN(ς) < 0, that is,

EN(σ) > 0.

Finally, (A.10) implies that N∗ always increases with income y. Q.E.D.

Appendix 5. P has a �xed point.

Since p̂c(p) increases in p, P is an increasing operator. To check the assumption of Tarski's

�xed-point theorem, it su�ces to construct a set S ⊂ L2([0, c]) such that (i) PS ⊆ S, i.e. P maps

the lattice S into itself and (ii) S is a complete lattice.
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Denote by p̄ the unique symmetric equilibrium price when all �rms share the marginal cost c

(which exists as shown in Section 4) and observe that p̄ = p̂c (p̄), where p̄ ≡ p̄1[0,c]. Since p̂c(p)

increases in c, we have p̄ ≥ p̂c (p̄) for all c ∈ [0, c] or, equivalently, p̄ ≥ Pp̄. Furthermore, because P
is an increasing operator, p ≤ p̄ implies Pp ≤ Pp̄ ≤ p̄. In addition, Pp is an increasing function

of c because p̂c(p) increases in c. In other words, P maps the set S of all non-negative weakly

increasing functions bounded above by p̄ into itself. It remains to show that S is a complete lattice,

i.e. any non-empty subset of S has a supremum and an in�mum that belong S. This is so because

pointwise supremum and pointwise in�mum of a family of increasing functions are also increasing.

To sum-up, since S is a complete lattice and PS ⊆ S, Tarski's theorem implies that P has a

�xed point. Q.E.D.

Appendix 6. At a symmetric outcome the aggregate demand elasticity is given by

ε(p,N) =

ˆ
R+×Θ

ε(p,N ; y, θ)s(p,N ; y, θ)dG(y, θ) (A.12)

where s(p,N ; y, θ) is the share of the (y, θ)-type consumer's individual demand in the aggregate

demand.

Di�erentiating (A.12) with respect to p yields

∂ε(p,N)

∂p
=

ˆ

R+×Θ

(
∂ε(p,N ; y, θ)

∂p
s+ ε(p,N ; y, θ)

∂s

∂p

)
dG(y, θ). (A.13)

Using (57), we obtain

Ep(s) = ε(p,N)− ε(p,N ; y, θ).

Hence,

∂s

∂p
=
s

p
[ε(p,N)− ε(p,N ; y, θ)] .

Finally, note that

ˆ
R+×Θ

s(p,N ; y, θ)dG(y, θ) = 1 ⇒
ˆ
R+×Θ

∂s

∂p
dG(y, θ) = 0. (A.14)

Plugging (A.14) into (A.13) and subtracting (ε(p,N)/p)
´
R+×Θ

(∂s/∂p)dG(y, θ) = 0 from both parts

of (A.13), we obtain (56). Q.E.D.
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